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Josephson junction arrays can be used as quantum channels to transfer quantum information between distant
sites. In this paper we discuss simple protocols to realize state transfer with high fidelity. The channels do not
require complicated gating but use the natural dynamics of a properly designed array. We investigate the
influence of static disorder both in the Josephson energies and in the coupling to the background gate charges,
as well as the effect of dynamical noise. We also analyze the readout process, and its back action on the state
transfer.
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The transmission of a quantum state through a channel
between distant parties is an important issue in quantum
communication. In optical systems photons can be trans-
ferred coherently over large distances.1 However, it is also
highly desirable to have similar protocols for quantum infor-
mation transfer in solid-state environments. A possible solu-
tion would be to interface solid-state quantum hardware to
optical systems.2 Another possibility is to use flying qubits,
i.e., to transfer the physical qubits along leads.3 Inspired by
the paper of Bose4 we developed the idea to construct a
genuine quantum transmission line using a Josephson junc-
tion array.

Recently, a spin chain with ferromagnetic Heisenberg in-
teractions has been proposed for quantum communication.4

It was shown that Heisenberg chains can be used to transfer
unknown quantum states over appreciable distancess,102

lattice sitesd with high fidelity.4–7 By preparing the state to be
transferred at one end of the chain and waiting for a well-
defined time interval, one can reconstruct the state at the
other end of the chain. Even perfect transfer could be
achieved over arbitrary distances in spin chains.8 Quantum
state transport through harmonic chains was considered in

Ref. 9.
Josephson qubits are among the most promising candi-

dates as building blocks of quantum information
processors.10,11 In this Rapid Communication, we extend
their application range to quantum communication and show
that a one-dimensional Josephson array is a natural transmis-
sion line for systems with superconducting charge qubits. We
calculate the transmission fidelity and investigate the effect
of static inhomogeneities and dynamical noise. We also ana-
lyze the readout process by a single-electron transistorsSETd
at the end of the array. To our knowledge, this is the first
realizable and concrete implementation of a solid-state quan-

tum communication protocol following the idea of Bose.4

The model that we want to study is schematically
illustrated in Fig. 1 and described by the Hamiltonian
H=HJJ+Hqp+Hcoup, where

HJJ=
1

2o
i j

L

sQi − QxidCij
−1sQj − Qxjd − EJo

i

L−1

cosfi,i+1 s1d

is the Hamiltonian of a one-dimensional Josephson junction
array12 of lengthL, andfi,i+1=fi −fi+1. The other terms of
the Hamiltonian describe the measurement apparatus and
will be discussed later. The chargeQi and phasefi are ca-
nonically conjugated. The first term in Eq.s1d is the charging
energy,Cij is the capacitance matrix; the second is due to
Josephson tunneling. An external gate voltageVxi gives
a contribution to the energy via the induced charges
Qxi=2eqxi=VxiCii . This external voltage can be either applied
to the ground plane or unintentionally caused by trapped
charges in the substratesin this caseQxi will be a random
variabled. We assume that each island is coupled to its near-
est neighbors by junction capacitancesC and to the ground
by a capacitanceC0. In this case, the charging interaction has
a range given byÎC/C0 in units of the lattice spacing of the
array.12 In the following we put"=kB=1.

In the charge regimee2C00
−1@EJ, the system is approxi-

mately described by only two charge states for each island.

FIG. 1. Dashed box: one-dimensional Josephson array proposed
for the transmission of quantum states. The crossed rectangles de-
note the Josephson junctions between the islands. The state pre-
pared on the left-most island is transfered to the right-most island
by the time evolution generated by the Hamiltonian. Left: the
Cooper-pair boxscharge qubitd used to prepare the state. Right: the
SET transistor used as measurement device.
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The chain HamiltonianHJJ is equivalent to an anisotropic
XXZ spin-1/2 Heisenberg model,13,14 the Josephson chain is
thus different from theXY and Heisenberg cases.4 It is char-
acterized by a strong anisotropy between thez direction and
the xy plane. Moreover thez coupling has a range that de-
pends on the electrostatic energy and can extend over several
lattice constants.

At t=0, the chain is initialized in the stateuc0l
= uc ,000. . .0l, where u0l su2ld denotes the state of an
island without swithd an excess Cooper pair, anducl
=cossu /2du0l+eif sinsu /2du2l is the state that has been pre-
pared in the left-most island. This initial state is not an eigen-
state of the Hamiltonian; it will evolve as a function of time.
In fact, as the total chargeQ=oiQi is a conserved quantity,
the dynamics is restricted to theL+1-dimensional space
H=H0 % H2 of total charge zero,H0, and charge two,
H2=spanhu jlj, whereu jl, 1ø j øL is the state with an excess
Cooper pair on thej th site. In this basis the Hamiltonian
reads

HJJu jl = 2e2SCjj
−1 − 2o

i=1

L

Cij
−1qxiDu jl −

EJ

2
fs1 − d jLdu j + 1l

+ s1 − d j1du j − 1lg. s2d

We first calculate the fidelity of transmission and the time
required for the transfer of information as a function of the
coupling constants of the Josephson chain. The quality of the
transmission is quantified by the fidelity of thesmixedd state
rL of the right-most islandssite Ld to the initial state

FLstd =
1

4p
E kcurLstducldV. s3d

This definition gives the fidelity averaged over all possible
initial states on the Bloch sphere, 1/2øFLø1.

The fidelity is a strongly oscillating function of time. Only
at well-defined times the state is transferred faithfully
through the chain. This does not necessarily correspond to
the time in which a Cooper pair has been transferred, since
also the relative phases of the state have to be reconstructed.

In Fig. 2 we show the value of the first fidelity maximum and
the time at which it is reached as a function of the lengthL of
the array and for different values of the ratioC/C0. For the
parameters considered, the fidelity is never smaller than
75%. For longer chains, or if the conditionC0@C is re-
leased, the first maximum of the fidelity is considerably re-
duced. Another option is to fix a threshold for the fidelity of
transmission and seek for the first local maximum above the
threshold. The time at which these maxima occur increases
exponentially with the chain length. The value of the fidelity
does not necessarily decrease on increasingL, and for larger
arrays a higher fidelity can be achievedsalthough at larger
timesd, see Fig. 3. The results of Figs. 2 and 3 are encourag-
ing since they indicate that faithful state transmission using
Josephson chains is already possible with present-day tech-
nology.

Since experimental arrays are never completely homoge-
neous, we now consider the case in which a small amount of
static disorder is present. In general, imperfections will re-
duce the fidelity. In Fig. 4 we show both the effects of bond
disordersJosephson couplings distributed around an average
valued and site disordersmimicking the effect of static back-

FIG. 2. sColor onlined Maximum value of the fidelity as a func-
tion of the length of the chain for two different values ofC/C0

!1 ands2ed2/ sEJC0d=10. Inset: The time at which the maximum is
reached.

FIG. 3. sColor onlined Maximum value of the fidelity as a func-
tion of the length of the chain for three different values ofC/C0

*1 ands2ed2/ sEJC0d=10. Inset: The time at which the maximum is
reached.

FIG. 4. sColor onlined Fidelity as a function of time for an array
of lengthL=7, s2ed2/ sEJC0d=10 andC=0, i.e., a junction capaci-
tance much smaller than the ground capacitance. Disorder param-
eters: relative varianceDEJ/EJ=0.1 for bond disorder; absolute
varianceDQx/2e=0.025 for site disorder. Dotted linesright axisd:
variance of the fidelity for the case without disorder.
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ground charges and/or different capacitancesd and compare
them to the case without disorder. The effect of charge dis-
order appears to be more disruptive. This is because addi-
tional frequencies enter the dynamical evolution making the
reconstruction of the additional wave function more difficult.
The dotted line in Fig. 4 shows the variance of the fidelity for
the case without disorder. Around the maxima of the fidelity,
the variance is small, i.e., the transmission quality for any
given state is high.

Dynamical fluctuations play a different role. They arise
from gate-voltage fluctuations and are described by adding
stochastic terms to the gate voltages,qxi→qxi+jistd in the
Hamiltonian in Eq.s1d. Here we choose a very simple model
and assume thejistd to be independently Gaussian distrib-
uted: kjistdl=0, kjistdj jst8dl=gdi jdst− t8d. Nevertheless, due
to capacitive coupling between separated sites, such stochas-
tic factors result in correlated stochastic terms in the effec-
tive Hamiltonian Eq.s2d, Hnoiseu jl=HJJu jl−2J jstdu jl, where
the zero-averaging Gaussian distributed functionsJistd, are
uniquely fixed bykJistdJ jst8dl=gfsC−1d2gi jdst− t8d. Averag-
ing out the stochastic terms leads to the master equation for
the density matrix of the chain in the spaceH,

ṙ = − ifHJJ,rg − o
i,j=1

L
gfsC−1d2gi j

8e2 sQiQjr − 2QirQj + rQiQjd,

s4d

where the operatorsQi projected on the spaceH are
Qi =2euilki u. The state of the system develops into a com-
pletely incoherent mixture in which any charged state is
equally probable,riist→`d=s1/Ldr11st=0d. The average fi-
delity as defined in Eq.s3d is reduced toF`=1/2+1/s6Ld,
corresponding to an almost unfaithful transmission. The time
dependence of the fidelity in the noisy system is presented in
Fig. 5 where it is compared with the fidelity in the absence of
noise. The peaks of the fidelity are not smeared out by noise.
The dominant effect of the coupling to the environment is the
relaxation of the fidelity amplitude towards the stationary
value sindependent on the initial stated. Numerically, such
relaxation takes place on a characteristic time scale
,1/sLgd. Thus, to observe high values of the fidelity it is
important to have a maximum at a short time. As a conse-

quence,C/C0!1 is preferable, and the conditiong!EJ/L2

is required to have a high value for the first maximum of the
fidelity.

Finally we discuss how the fidelity can be measured in a
practical setup. To do this, we assume that the right-most
island ssite Ld is part of a SET transistor. We therefore
specify the effective coupling Hamiltonian between the
right-most island and the leads,15

Hqp = o
b=u,d,L

o
k,s

ebskdgksb
† gksb, s5d

Hcoup= o
b=u,d,L

fe−isfL−wbd/2Xb + H.c.g

+ − o
b=u,d

Jb cossfL − wbd − o
b=u,d

VbQb, s6d

whereg, g† are annihilation and creation operators of quasi-
particles in the grainL and in the leads,u andd ssee Fig. 1d.
The operatorXb=ok,q,sTqkgksb

† gqsL describes quasiparticles
tunneling into the grain with an associated charge increasing
e−isfL−wbd/2. Qb is the total charge entering the chain from
the up or down reservoirs. We assume nonvanishing quasi-
particle tunneling only across the upper junctionseVd

=0,eVu=−eV<−2Dd and conversely we allow
coherent Cooper pairs tunneling only in the lower junction
sJu=0,Jd=J!EJd. Gate voltages are chosen so that the SET
is off resonance and we can therefore neglect the stationary
current through the SET due to the Cooper-pair quasiparticle
cycle.15

The measurement device modifies the dynamics of Coo-
per pairs on the chain and requires taking into account qua-
siparticle excitations on theLth site of the chain. By neglect-
ing quasiparticle tunneling we would have a coherent
dynamics for the charges in the chain described by the
Hamiltonian H0=HsTqk→0d. Tracing out the quasiparticle
degrees of freedom results, instead, in an incoherent dynam-
ics described by a master equation for the reduced density
matrix r̃ of charges in the chain.16 In the basis of eigenstates
of H0, H0ual=Eaual,17 the master equation reads16

ṙ̃abstd = − ikaufH0,r̃gubl − o
mn

8Rabmnr̃mn. s7d

The prime indicates that the sum has to be performed over
states with energies such thatuEa−Eb−Em+Enu!1/Dt, Dt
being the time over which the coarse-graining implicit in Eq.
s7d takes place.

As we are interested in the time evolution over short
times, let us discuss in some detail our approximations. We
first assume thatJ!EJ, so that, in evaluating the kernelR,
we neglect the Josephson coupling to the leads.18 In this case

the spectrum ofH0 is hE0,E1/2,EM̄j, M̄ =1, . . . ,L. Due to the
energy scale separationEM̄ −EN̄&EJ!1/Dt&EM̄ −E1/2
,EM̄ −E0!eV, the sum in Eq.s7d mixes population and

coherences of the density matrix only in the subspace ofM̄
states. In this case the coarse-grained dynamics of Eq.s7d
can resolve the time scales of order 1/EJ that we are inter-
ested in. In this approximation, the only nonvanishing terms

FIG. 5. sColor onlined Fidelity vs time in the presence of gate
voltage fluctuationssfull lined. The dashed line is the noiseless case.
L=7, e2/ sEJC0d=10, C/C0=0.1, g=0.01.
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of the kernel R are found to be R00s1/2ds1/2d
.−Rs1/2ds1/2ds1/2ds1/2d.−G, RehRs1/2ds1/2dM̄N̄j.−lM̄N̄,
RehRM̄0N̄0j. 1

2lM̄N̄, RehRM̄N̄P̄Q̄j. 1
2fdM̄,P̄lN̄Q̄+dN̄,Q̄lM̄P̄g,

where lAB=GkAuLlkL uBl. In these expressions
we approximated G.e0

`dsexpsieVsdkXussdXu
†s0dl

.e0
`dsexphifeV± sEM̄ −E1/2dgsjkXussdXu

†s0dl as a conse-
quence of the separation of energy scales discussed above.
We also neglected all other exponentially smalls,e−eV/Td
rates.

Finally let us address the proposed measurement protocol.
It consists in disconnecting the right-most site from the rest
of the chain at a timet!!1/G and in measuring the time-

integrated current through the SETI =e/Te0
`Ĩstddt

=e/Tet!
` Ĩstddt+OsGt!d where T is the time between two

pulses; it is the largest time scale in the system. The instan-

taneous particle current isĨstd=Gfr̃LLstd+ r̃s1/2ds1/2dstdg. The

last term OsGt!d in the current corresponds toe0
t!Ĩstddt

=e0
t!dtfr̃LLstd+ r̃s1/2ds1/2dstdg,Gt!. As at time t. t! the

SET is disconnected from the rest of the chain and
is out of resonance, the measured current is,e/Tf2r̃LLst!d
+ r̃s1/2ds1/2dst!dg. This measurement scheme does not provide a
tomography for the state of the right-most site: the measured
current does not depend on the coherences ofrLst!d, to
which the fidelity is sensitive. Nevertheless, the peaks in the
current correspond exactly to the maxima of the fidelity as
shown in Fig. 6. The current decay in time due to quasipar-
ticle tunneling happens on a time scale,1/G irrespective of
the length of the chain. Therefore, our measurement scheme
can be used also for long chains, the main constraint are
disorder and gate voltage fluctuations. In this sense the cur-
rent measurement allows to check the theoretical prediction
for the fidelity of state transfer.

In conclusion, we have proposed to use a Josephson junc-

tion chain as a solid-state quantum communication channel.
We have analyzed the state preparation, its propagationswith
a model appropriate for Josephson nanocircuitsd, the role of
the measuring apparatus and the effect of noise and imper-
fections. This, we believe, is an important and necessary step
towards the experimental realization of quantum communi-
cation in solid-state systems. Present-day technology should
allow the realization of quantum channels of the type de-
scribed here.
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During completion of this work we became aware of Ref. 19,
which discusses state transmission in a setup using supercon-
ducting quantum interference device loops coupled to reso-
nators.
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FIG. 6. sColor onlined Full line: time dependence of the current
sin units of e/Td through the SET. Dashed line: fidelity of the iso-
lated chain.G=0.05; all other parameters as in Fig. 5.
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