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The effect of an insulating barrier located at a distancea from aNSquantum point contact is analyzed in this
work. The Bogoliubov-de Gennes equations are solved forNINS junctionssS, anisotropic superconductor;I,
insulator; andN, normal metald, where theNIN region is a quantum wire. ForaÞ0, quasibound states and
resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair
potential, the strength of the insulating barrier anda. Our results show that in aNINSquantum point contact the
number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results
for the NINS junction, in which only the position of the resonances changes with the symmetry.

DOI: 10.1103/PhysRevB.71.094515 PACS numberssd: 74.20.Rp, 74.50.1r, 74.45.1c, 81.07.Lk

I. INTRODUCTION

In high critical temperature superconductivity the symme-
try of the pair potential is one of the most studied aspects.1,2

Tunneling spectra depend strongly on this symmetry and
therefore tunneling spectroscopy is a very sensitive tool for
its study. In ad-symmetry ands110d orientation, for instance,
the differential conductance has a peak at zero voltage, called
zero-bias conductance peaksZBCPd, which has been pre-
dicted theoretically by different authors.3–8 and observed ex-
perimentally by others.9–14The existence of the ZBCP is due
to the formation of Andreev quasibound states at the Fermi
level szero energy statesd close to the interface.15–17 These
states appear by the interference between quasiparticles scat-
tered at the interface because they can experience a different
pair potential due to the superconductor anisotropy. Quantum
point contacts studies in NIS junctions show that the ZBCP
is removed by the quasiparticle diffractions at the point
contact,18,19 an aspect that has been shown experimentally.14

In contrast, in quantum point contacts with
p-superconductors, the ZBCP appears, even for single mode
junctions.20 Tunneling spectroscopy has been proposed to de-
termine the parity of the pair potential.20–22 Recently two
quantum point contacts have been studied for the crossed
Andreev reflection ind-wave superconductors.23

On the other hand, inNINS sRefs. 24 and 25d andNISN
junctions,26,27 resonances in the differential conductance ap-
pear. In anisotropic superconductors, the resonance energies
depend on the symmetry of the pair potential. InNINS junc-
tions anddxy-symmetry the positions of these resonances are
out of phase with respect to those predicted for isotropic
superconductors.28 In NISN junctions the conductance pre-
sents two types of resonances due to anisotropy of the pair
potential.27

In this paper, we analyze the differential conductance
when quasiparticles are injected into a superconductor from a
single-mode quantum wire, with an insulating barrier located
at a distancea of the NS interface sNINS quantum point
contactd. We show that there exist quasibound states which
cause resonances in the differential conductance and that the
number of these resonances depends on the symmetry of the
order parameter. This is shown through the solution of the
Bogoliubov-de Gennes equations inNINS junctions, where

theNIN region is modeled by a wire of widthW. In particu-
lar, s- andd-symmetries are considered.

II. THE BOGOLIUBOV-DE GENNES EQUATIONS AND
THEIR SOLUTIONS IN NINS POINT CONTACTS

The elementary excitations or quasiparticles in a super-
conductor are described by the Bogoliubov-de GennessBdGd
equations, which can be generalized for anisotropic
superconductors.29 For a steady state these equations are

Hesr 1dũsr 1d +E dr 2D̃sr 1,r 2dṽsr 2d = Eũsr 1d,

s1d

− He
*sr 1dṽsr 1d +E dr 2D̃*sr 1,r 2dũsr 2d = Eṽsr 1d,

whereHesr 1d=−"2¹2/2m+Vsr 1d−m is an electronic Hamil-

tonian andm is the chemical potential.D̃sr 1,r 2d is the pair
potential, ũsr 1d and ṽsr 1d are the wave functions for the
electronlike and holelike components of a quasiparticle,

csr 1d = Sũsr 1d
ṽsr 1d

D. s2d

The pair potentialD̃sr 1,r 2d is a function of the position
coordinatesr 1 and r 2, and can be transformed to

DsR,r d = D̃sr 1,r 2d, s3d

with R=r 1−r 2 and r =sr 1+r 2d /2. The Fourier transform of
DsR ,r d is

DFTsk,r d =E dRe−ik·RDsR,r d. s4d

Using the quasiclassical approximation, the pair potential
DFTsk ,r d is aproximated by

DFTsk,r d = Dsk̂,r d, s5d

wherek̂ =k / uk u is a unit wave vector. UsingDsk̂ ,r d, the BdG
equations are approximated as
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Hesr duksr d + Dsk̂,r dvksr d = Euksr d, s6d

− He
*sr 1dvksr d + D*sk̂,r duksr d = Evksr d. s7d

We focus in the rest of the paper on cuprate supercon-
ductor junctions. It is supposed that the quasiparticle moves
on the CuO2 plane with thea andb axes in thex-y plane; the
interfaces are normal to thex-axis and theNIN region has a
width W in the y direction, as indicated in Fig. 1. The insu-
lating barrier is modeled by a delta function,Vsxd=U0dsx
+ad and the pair potential byDsk̂ ,r d=QsxdDsk̂d, whereQsxd
is the Heaviside function. The solutions to the BdG equations
in theNI, NII and in the superconducting regions are, respec-
tively,

cNI
= FS1

0
Deik1

+x + AS0

1
Deik1

−x + BS1

0
De−ik1

+xGf1syd, s8d

cNII
= FU1S1

0
Deik1

+x + U2S1

0
De−ik1

+x + V1S0

1
Deik1

−x

+ V2S0

1
De−ik1

−xGf1syd, s9d

cS=E
−`

`

dsFcssdS u0
+ssdeiw+ssd/2

v0
+ssde−iw+ssd/2Deik+

+ssdx

+ dssdS v0
−ssdeiw−ssd/2

u0
−ssde−iw−ssd/2De−ik−

−ssdxGwssyd, s10d

with

f1syd =Î 2

W
sinF p

W
Sy +

W

2
DGQSW

2
− uyuD ,

s11d

wssyd =
eisy

Î2p
,

u0
±ssd =Î1

2
F1 +

V±ssd
E

G, v0
±ssd =Î1

2
F1 −

V±ssd
E

G ,

s12d

V±ssd = ÎE2 − uD±ssdu2. s13d

k1
± are the electronss1d and holess2d wave numbers in

the wire, which are functions of the energyE of the incom-
ing electrons from region I;k+

+ssd and k−
−ssd are the wave

numbers for the quasiparticlesQe and Qh, respectivelyssee
Fig. 1d and depend on the wave number along they axis,
defined bys. The wave numbers are given by

k1
± =Îk1

2 ±
2mE

"2 , k1 =ÎkF
2 −

p2

W2 ,

s14d

k±
±ssd =Îkssd2 ±

2mV±ssd
"2 , kssd = ÎkF

2 − s2.

Since the quasiparticlesQe and Qh have different wave
vectors, they undergo different effective pair potentialsD+
andD−,

D±ssd = Ds±k±
±î + sĵd ; uD±ueiw±, s15d

wherew+ andw− are the phases of the effective pair poten-
tials D+ and D−, respectively. For ad-symmetry D±
=D0 cosf2su7adg, a is the angle between thes100d axis of
the superconductor and the normal to the interface, andu
=sin−1ss/kFd fcf. Fig. 1sadg. Experimentally the anglea can
be changed in angle-resolved ZBCP measurements of ramp-
edge tunnel junctions with different crystal interface bound-
ary angles.14 In these experiments the width of the contact is
reduced by using a focused-ion beam technique. From the
measurements it is concluded that, as the width is reduced,
the relative ZBCP height decreases, indicating that Andreev
reflections decrease. The system illustrated in Fig. 1 can be
materialized experimentally in a similar way if we add a
defect or impurity at a distancea of the interface; this defect
can be modeled as an insulating barrier.

To simplify the discussion, all the evanescent modes have
been neglected. This approximation is justified because for
p,WkF,2p the narrow wire has a single mode and the
energy of evanescent modes is well above the Fermi
energy.18,23 One findsA, B, U1, U2, V1, V2, c, and d using
boundary conditions inx=−a andx=0. Details are given in
the Appendix. The electron-electron and electron-hole reflec-
tion coefficients are, respectively,

Re = Uh

g
U2

, Rh = U2F3

g
U2

, s16d

FIG. 1. sad The point contactNINS junction. The insulating bar-
rier is located atx=−a and theNIN region is a single mode quan-
tum wire with widthW, the pair potential,D, in the normal metal is
zero and in the superconductor region depends onu; the axesa and
b are along thea andb axes of the CuO2 plane. For ad-symmetry,
D is modeled asDsud=D0 coss2u−2ad. Two types of quasiparticles,
Qe andQh, are scattered at theNII-S interface by the pair potentials
D+ andD−, respectively. ForQe, Dsud+=D0 coss2u−2ad and forQh,
Dsud−=D0 coss2u+2ad. The coneso lobess1d and s2d represents
the pair potentialsDsud+ and Dsud−, respectively.sbd Schematic
energy diagram for the potentials and scattering processes. The
solid and dashed lines represent the electron and the holelike com-
ponents of a quasiparticle, respectively.
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g = s1 + Z2dfs1 + F1d2 − F2F3g

+ Z2fs1 − F1d2 − F2F3ge−2isk+−k−da

+ Zf1 − F1
2 + F2F3gfZse2ik−a + e−2ik+ad + ise−2ik+a − e2ik−adg,

s17d

h = sF1
2 − F2F3 − 1dfZ2e2isk++k−da − s1 − iZd2g

− ZsZ + idf2F1se2ik+a − e2ik−ad

+ s1 + F1
2 − F2F3dse2ik+a + e2ik−adg, s18d

Fi =
4

p2ÎgF
2 − 1

E
−gF

gF

dq
ÎgF

2 − q2

s1 − q2d2 cos2Spq

2
D f isqd, s19d

f1 =
1 + G+G−e−isw+−w−d

1 − G+G−e−isw+−w−d , f2 =
2G−eiw−

1 − G+G−e−isw+−w−d ,

f3 =
2G+e−iw+

1 − G+G−e−isw+−w−d , s20d

G± =
v0

±

u0
± , gF =

kFW

p
andZ =

kFU0

2EF
Î1 − gF

−2
. s21d

III. DIFFERENTIAL CONDUCTANCE

The differential conductance has been calculated by using
the BTK model30 for anisotropic superconductors.3–6,8,29For
this calculation the electron-electron and electron-hole re-
flection coefficients are used. This result can be contrasted
with those found from Green’s functions calculations31 for
charge transport in diffusive normal metal/unconventional
singlet superconductor contacts. For the ballistic limit the
authors reproduced the generalized conductance obtained
with the BTK model for anisotropic superconductors.3,6 Us-
ing this model, the normalized differential conductance,GR,
at T=0 K is calculated from

GRseVd =UGSsEd
GN

U
E=eV

s22d

=
fs1 + F0d2 + 4Z2gf1 − ReseVd + RhseVdg

4F0
, s23d

where GN is the conductance whenD=0 and a=0. F0 is
defined bys19d with f i =1 and the reflection coefficients are
evaluated inE=eV, whereV is the voltage.

Figures 2 and 3 show the differential conductance fors
symmetry sD+=D−=D0d and dx2−y2-symmetry sD+=D−

=D0 cos 2ud. When a=0 sNIS point contactd, our results
agree with Ref. 18. ForaÞ0 and symmetrys, subgap reso-
nances appear in the differential conductance and their num-
ber increases witha. WhenZ decreases, it can be seen that
the numbers and positions of the resonances remain unal-
tered; the peaks are just broader. Fordx2−y2-symmetry the
number of peaks and their positions are similar to thes sym-

metry case, except that for a fixedZ value the width of the
peak is greater.

Figure 4 exhibits the differential conductance fora
=p /4 sdx−y-symmetry,D−=−D+=D0 sin 2ud. ZBCP does not
appear because the Andreev reflections are zero. In the last
case the wave functions in the channel are a superposition of
two plane waves with wave numbersky= ±p /W. Each wave
experiences a pair potential phase 0 andp, respectively, and
therefore the Andreev reflection coefficientasud fRhsud
= uasudu2g for each wave is outphased inp, therefore the
waves of the reflected holes interfere destructively and the

FIG. 2. Differential conductance fors-symmetry.sad Different
values ofZ with a=63W; sbd different values ofa with Z=5. In
both caseskFW=1.7.

FIG. 3. Same as in Fig. 2 fora=0 sdx2−y2-symmetryd.
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Andreev reflections vanish. In relation with the
dx−y-symmetry the number of resonances decrease compared
with the s and dx2−y2-symmetries. Additionally, whenZ de-
creases, the number of the resonances is constant, the peak
broadens and its position is smoothly shifted to the right.

The subgap resonances in the differential conductance are
a direct consequence of the quasibound states formed inside
the energy gap. The energies and lifetimes of these quasi-
bound states are given by the poles of the current transmis-
sion amplitude. Settingg=0 in Eq. s17d one finds these
poles. A complex energy,E=En+ iEI, is required in order to
solve this equation, whereER is the position of resonance
and" / s2uEIud is the lifetime of the quasibound states.

For s or dx2−y2-symmetries the resonance positionsEn are
given by

En = E0snp − fd, n = 1,2,… , s24d

and fordxy-symmetry they are determined from

En = E0s2np − f8d, n = 1,2,… . s25d

In these equations

E0 =
EF

akF

Î1 − gF
−2 s26d

andf,f8 are phases that depend onZ, a, andE. Therefore,
the number of resonances withE,maxsDd for s- or
dx2−y2-symmetries are approximately twice the corresponding
number of adxy-symmetry. This is due to the fact that in the
case of adxy-symmetry the Andreev reflection is zero. The
quantization of the quasibound states occurs when the qua-
siparticles travel in a round trip a distance equal to 2a in the
x direction andEn~2np /2a; see Fig. 5sad. In the case ofs-
or dx2−y2-symmetries the quasiparticles complete a round trip
when they travel a distance 4a along thex direction andEn
~2np /4a, as illustrated in Fig. 5sbd. One concludes that in

this case the number of quasibound states is approximately
twice the corresponding number for thedx−y symmetry.

In order to determine the lifetime of the quasibound
states, a semiclassical analysis will be used. The lifetimet is
defined as the time that a quasiparticle in theNII region re-
quires to “escape” toward theNI or S region. For s or
dx2−y2-symmetries, a quasiparticle employs a timeT for a
round trip given by

T =
4a

"k0F1/m
=

2"d

EF
Î1 − gF

−2
, s27d

whered= pa/w. If N is the number of closed trips during
which the probability that the quasiparticle still remains
within the NII region has decreased to 1/e, the lifetime can
be written as

t = TN, s28d

whereN is obtained from

sRe-hRIh-hRh-eRIe-edN = 1/e, s29d

with Re-h, Rh-e the electron-hole and hole-electron reflection
coefficients, respectively, forZ=0 spoint contactNSd and
RIe-e, RIh-h the electron-electron and hole-hole reflection co-
efficients, respectively, for an insulating barriersINd. The ex-
pressionRe-hRIh-hRh-eRIe-e is the probability that the quasi-
particle still remains in theNII region in one round trip, see
Fig. 5sbd. From Eqs.s27d, s28d, and s29d one finds that the
lifetime is given by

t = −
"d

EF
Î1 − gF

−2

1

lnfZ2Re-h/s1 + Z2dg
, s30d

where we have used the facts thatRe-h=Rh-e and RIe-e
=RIh-h=Z2/ s1+Z2d. Equations30d is like the one found for
NINS junctions with s-symmetry.24 Similarly, for the
dxy-symmetryN is obtained from

sRe-eRIe-edN = 1/e, s31d

with Re-e the electron-electron reflection coefficient forZ
=0. The expressionRe-eRIe-e is the probability that the qua-
siparticle still remains in theNII region after one round trip,
see Fig. 5sad, From Eqs.s27d, s28d, and s31d one finds that
the lifetime is given by

FIG. 4. Same as in Fig. 2 fora=p /4 sdx−y-symmetryd.

FIG. 5. Illustration of quasiparticle scattering processes that fol-
low round trips:sad the quasiparticle is reflected as an electron in
x=0 andx=−a; sbd the quasiparticle is reflected as a hole inx=0,
reflected as a hole inx=−a, reflected as an electron inx=0 and
finally reflected as an electron inx=−a.
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t = −
"d

EF
Î1 − gF

−2

1

lnfZ2Re-e/s1 + Z2dg
. s32d

For the case ofs-symmetry andE, uDu, Re-h=1. Therefore
the lifetime increases withZ and tends to infinity forZ@1,
while the resonance width, 2uEIu<" /t→0, as it is observed
in Fig. 2. Fordx2−y2-symmetry the quasiparticle transmission
coefficient is finite forE,D0 due to the anisotropy of the
pair potential,Re-h,1, and the lifetime increases withZ but
is finite for Z@1. This is observed in the width of the reso-
nances shown in Fig. 3. For thedxy-symmetry the behavior
of the lifetime and the width of the resonances are similar to
the case ofdx2−y2-symmetry, see Fig. 4. For all cases, with
E.D0, the reflection coefficients are always less than one,
the lifetimes decrease and the widths of the resonances in-
crease.

Figure 6 shows how the differential conductanceGR
evolves for different values ofa between 0 andp /4. Notice
that some peaks begin to decrease and vanish fora
<0.20p. This happens because the Andreev reflections de-
crease and the electron-electron reflection increases. Fora
=p /4 the Andreev reflections are zero and one has the con-
ductance fordxy-symmetry. Similarly, the resonances energy
values move toward the left asa increases due to a change of
the phasef in the solution of the equationg=0.

Finally, it is interesting to note that if one considers the
p-type symmetry, because the Andreev reflection is present
for a single normal mode,20 the number of resonances must
be similar to thes anddx2−y2-cases, although a zero voltage
peak is expected. This will be an interesting topic to explore
further.

IV. CONCLUSIONS

Our results show that atNINSpoint contacts the differen-
tial conductance have resonances due to quasibound states.
The number of resonances depends on the symmetry of the
order parameter, in contrast to aNINS junction. In the latter
case only the position of the resonances changes with the
symmetry. The number of resonances withE,maxsDd ssub-
gap resonancesd, for s- or dx2−y2-symmetries is approximately
twice the corresponding number for thedxy-symmetry. When

a changes from 0 top /2 some peaks disappear because the
Andreev reflection vanishes.

In the case ofs-symmetry, the lifetime of quasibound
states increases with the insulating barrier strength and is
infinite for Z@1. In contrast, for ad-symmetry the lifetime
increases withZ but is finite forZ@1. This occurs because
the quasiparticles transmission is different from zero forE
,D0 in contrast to the case ofs-symmetry, where the trans-
mission is zero forE,D0. Therefore, the lifetime of the
resonances decreases ind-symmetries and their width in-
creases. The results obtained in this work can be used to find
the symmetry of high temperature superconductors in experi-
ments of the type carried out in Ref. 14.
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APPENDIX: REFLECTION COEFFICIENTS

The boundary conditions for the wave function of a qua-
siparticle inx=−a, are

CNI
s− ad = CNII

s− ad,

sA1d

UdCNI
sxd

dx
U

x=−a
= UdCNII

sxd

dx
U

x=−a
− 2m

U0

"2 CNI
s− ad,

from them we obtain

e−ik1
+a + Beik1

+a = U1e
ik1

+a + U2e
−ik1

+a, sA2ad

Aeik1
−a = V1e

ik1
−a + V2e

−ik1
−a, sA2bd

e−ik1
+as2iZ − 1d + Beik1

+as1 + 2iZd = U1e
ik1

+a − U2e
−ik1

+a,

sA2cd

Aeik1
−as1 − 2iZd = V1e

ik1
−a − V2e

−ik1
−a. sA2dd

From the continuity conditions for the wave function and its
first derivative, inx=0,

CNII
s0d = CSs0d, UdCNII

sxd

dx
U

x=0
=UdCSsxd

dx
U

x=0
,

sA3d

we have that

fU1 + U2gf1syd =E
−`

`

dsfcssdu0
+ssdeiw+ssd/2

+ dssdv0
−ssdeiw−ssd/2gwssyd, sA4ad

fV1 + V2gf1syd =E
−`

`

dsfcssdv0
+ssde−iw+ssd/2

+ dssdu0
−ssde−iw−ssd/2gwssyd, sA4bd

FIG. 6. Differential conductance ford-symmetry, D±

=D0 cosf2su7adg with Z=5, a=63W, kFW=1.7 and different val-
ues ofa.
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k1fU1 − U2gf1syd =E
−`

`

dskssdfcssdu0
+ssdeiw+ssd/2

− dssdv0
−ssdeiw−ssd/2gwssyd, sA4cd

k1fV1 − V2gf1syd =E
−`

`

dskssdfcssdv0
+ssde−iw+ssd/2

+ dssdu0
−ssde−iw−ssd/2gwssyd. sA4dd

We have used the Andreev approximation in the boundary
conditions for the first derivative of the wave function,k1

+

=k1
−=k1 and k+

+ssd=k−
−ssd=kssd. Multiplying Eqs. sA4d by

ws8syddy and integrating overy we obtain

fU1 + U2gP1ssd = cssdu0
+ssdeiw+ssd/2 + dssdv0

−ssdeiw−ssd/2,

sA5ad

fV1 + V2gP1ssd = cssdv0
+ssde−iw+ssd/2 + dssdu0

−ssde−iw−ssd/2,

sA5bd

k1fU1 − U1gP1ssd = kssdfcssdu0
+ssdeiw+ssd/2 − dssdv0

−ssdeiw−ssd/2g ,

sA5cd

k1fV1 − V2gP1ssd = kssdfcssdv0
+ssde−iw+ssd/2

− dssdu0
−ssde−iw−ssd/2g , sA5dd

where

P1ssd =E
−`

`

dyf1sydwssyd =
2

W
Îp

W

cosssW/2d
p2/W2 − s2 . sA6d

From the normalization conditions

E
−`

`

dyws8
* sydwssyd = dss− s8d, E

−`

`

dyf1
*sydf1syd = 1,

sA7d

the functionP1ssd has the following property:

E
−`

`

dsP1
*ssdP1ssd = 1. sA8d

From Eqs.sA2d and sA5d we obtain the following equa-
tions for A andB:

S1 − iZs1 + e2ik1
−ad + f1 − iZs1 − e2ik1

−adgkssdf1ssd
k1

DP1ssdA

− f1 + iZs1 − e−2ik1
+adgkssdf3ssd

k1
P1ssdB

= f1 − iZs1 − e2ik1
+adgkssdf2ssd

k1
P1ssd, sA9ad

f1 − iZs1 − e2ik1
−adgkssdf2ssd

k1
P1ssdA

− Sf1 + iZs1 − e−2ik1
+adgkssd

k1
f1ssd + 1

+ iZs1 + e−2ik1
+adDP1ssdB

= f1 − iZs1 − e2ik1
+adgkssdf1ssd

k1
P1ssd

− f1 − iZs1 + e2ik1
+adP1ssdg . sA9bd

Here the functionsf i, i =1, 2, 3, are defined by Eq.s20d.
Multipliying sA9d by P1

*ssdds, integrating overs and using
sA8d we obtain a system of equations forA andB,

h1 − iZs1 + e2ik1
−ad + f1 − iZs1 − e2ik1

−adgF1jA

− f1 + iZs1 − e−2ik1
+adgF3B

= f1 − iZs1 − e2ik1
+adgF2, sA10ad

f1 − iZs1 − e2ik1
−adgF2A − hf1 + iZs1 − e−2ik1

+adgF1 + 1

+ iZs1 + e−2ik1
+adjB

= f1 − iZs1 − e2ik1
+adgF1

− f1 − iZs1 + e2ik1
+adg , sA10bd

where

Fi =E
−`

`

ds
kssd
k1

p

W

4

W2

cos2ssW/2d
sp2/W2 − s2d2 f issd.

Since the states that contribute to superconductivity are
around the Fermi energy and in the Andreev approximation
the magnitude of the wave vectors iskF, the integrals overs
between −̀ to ` are approximated by −kF andkF; with this,
the functionsFi are written as

Fi > E
−kF

kF

ds
kssd
k1

p

W

4

W2

cos2ssW/2d
sp2/W2 − s2d2 f issd

=
4

p2ÎgF
2 − 1

E
−gF

gF

dq
ÎgF

2 − q2

s1 − q2d2 cos2Spq

2
D f isqd

sA11d

with

q =
Ws

p
, gF =

WkF

p
. sA12d

The solutions for Eqs.sA10d are given by

A =
2F3

g
andB =

h

g
, sA13d

with g and h given by s17d and s18d. Finally we obtain the
reflection coefficients electron-electronsRed and electron-
hole sRhd as
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Re = uBu2, Rh = uAu2. sA14d

It is important to underline that in the normal region we
have approximated to one mode only. If one takes into ac-
count all the possible modes,n=1 to n=`, one must deter-
mine the reflection amplitude in each mode for electrons,Bn,
and holes,An. Instead of Eq.sA9bd one obtains one equation
that is a linear combination of functionsPnssd
=e−`

` dyfnsydwssyd with coefficientsAn andBn. To illustrate,
let us assume that one has aN-N contact,D=0 andZ=0. In
a way similar to the case where one obtains the equations for
A andB, one obtains

o
n=1

`

BnPnssdskssd + knd = sk1 − kssddP1ssd. sA15d

Multipliying by Pn
*ssdds, integrating ins we obtain the sys-

tem of equations

o
n=1

`

BnHmn+ kmBm = k1d1,m − Hm1, sA16d

with

Hnm=E dsPm
* ssdkssdPnssd. sA17d

EquationssA16d are solutions to Eq.sA15d for all s only
if one adds contributions from all the modes. Since this is not
possible, the sum goes up to an appropiaten. This justifies
the type of solution that one finds in Eqs.sA13d, with first
mode approximation. If one neglects modes withnù2, one
obtains fromsA16d,

B1 =
k1 − H11

H11 + k1
. sA18d

This result is a particular case ofsA13d sB1;Bd when D
=0 andZ=0.

*Electronic address: jherreraw@unal.edu.co
†Electronic address: jvninoc@unal.edu.co
‡Electronic address: jjgiraldog@unal.edu.co
1C. C. Tsuei and J. R. Kirtley, Phys. Rev. Lett.85, 182 s2000d.
2D. J. VanHarlingen, Rev. Mod. Phys.67, 515 s1995d.
3Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451s1995d.
4S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys.63, 1641s2000d.
5S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima, and K.

Kajimura, Phys. Rev. B51, 1350s1995d.
6S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Phys.

Rev. B 53, 2667s1996d.
7Y. S. Barash, A. A. Svidzinsky, and H. Burkhardt, Phys. Rev. B

55, 15 282s1997d.
8M. B. Walker and P. Pairor, Phys. Rev. B60, 10 395s1999d.
9M. Covington, R. Scheuerer, K. Bloom, and L. H. Greene, Appl.

Phys. Lett.68, 1717s1996d.
10L. Alff, H. Takashima, S. Kashiwaya, N. Terada, H. Ihara, Y.

Tanaka, M. Koyanagi, and K. Kajimura, Phys. Rev. B55,
R14 757s1997d.

11J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik, Phys. Rev.
Lett. 81, 2542s1998d.

12M. Aprili, M. Covington, E. Paraoanu, B. Niedermeier, and L. H.
Greene, Phys. Rev. B57, R8139s1998d.

13W. Wang, M. Yamazaki, K. Lee, and I. Iguchi, Phys. Rev. B60,
4272 s1999d.

14I. Iguchi, W. Wang, M. Yamazaki, Y. Tanaka, and S. Kashiwaya,

Phys. Rev. B62, R6131s2000d.
15J. Yang and C.-R. Hu, Phys. Rev. B50, 16 766s1994d.
16C.-R. Hu, Phys. Rev. Lett.72, 1526s1994d.
17Y. Tanaka and S. Kashiwaya, Phys. Rev. B53, 9371s1996d.
18Y. Takagaki and K. H. Ploog, Phys. Rev. B60, 9750s1999d.
19K. Tsuchikawa, N. Yoshida, Y. Tanaka, S. Kashiwaya, J. Inoue,

and Y. Takagaki, Physica C352, 224 s2001d.
20K. Tsuchikawa, N. Yoshida, Y. Tanaka, S. Kashiwaya, J. Inoue,

and Y. Takagaki, Physica C357, 1588s2001d.
21Y. Tanaka and S. Kashiwaya, Phys. Rev. B70, 012507s2004d.
22Y. Tanaka, Y. Tanuma, K. Kuroki, and S. Kashiwaya, J. Phys.

Soc. Jpn.71, 2102s2002d.
23S. Takahashi, T. Yamashita, and S. Maekawa, cond-mat/0401111.
24R. A. Riedel and P. F. Bagwell, Phys. Rev. B48, 15 198s1993d.
25S. H. Tessmer, D. J. VanHarlingen, and J. W. Lyding, Phys. Rev.

Lett. 70, 3135s1993d.
26W. L. McMillan, Phys. Rev.175, 559 s1968d.
27W. J. Herrera and J. V. Niño, Phys. Status Solidi B220, 555

s2000d.
28J. H. Xu, J. H. Miller, Jr., and C. S. Ting, Phys. Rev. B53, 3604

s1996d.
29C. Bruder, Phys. Rev. B41, 4017s1990d.
30G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515s1982d.
31Y. Tanaka, Y. V. Nazarov, A. A. Golubov, and S. Kashiwaya,

Phys. Rev. B69, 144519s2004d.

QUANTUM POINT CONTACT CONDUCTANCE IN… PHYSICAL REVIEW B 71, 094515s2005d

094515-7


