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Quantum point contact conductance in normal-metal/insulator/metal/superconductor junctions
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The effect of an insulating barrier located at a distemfé®m aNSquantum point contact is analyzed in this
work. The Bogoliubov-de Gennes equations are solved\IdIS junctions(S, anisotropic superconductar;
insulator; andN, normal metdl, where theNIN region is a quantum wire. Fa# 0, quasibound states and
resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair
potential, the strength of the insulating barrier an@®ur results show that inldINSquantum point contact the
number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results
for the NINSjunction, in which only the position of the resonances changes with the symmetry.
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I. INTRODUCTION the NIN region is modeled by a wire of widtV. In particu-

In high critical temperature superconductivity the symme-lar, S- andd-symmetries are considered.
try of the pair potential is one of the most studied aspéets.
Tunneling spectra depend strongly on this symmetry and |I. THE BOGOLIUBOV-DE GENNES EQUATIONS AND
therefore tunneling spectroscopy is a very sensitive tool for  THEIR SOLUTIONS IN NINS POINT CONTACTS
its study. In ad-symmetry and110) orientation, for instance, o o )
the differential conductance has a peak at zero voltage, called The elementary excitations or quasiparticles in a super-
zero-bias conductance pegEBCP), which has been pre- conductor are described by the Bogoliubov-de GeriBe&)
dicted theoretically by different authots® and observed ex- €quations, which can be generalized for anisotropic
perimentally by other&:*4The existence of the ZBCP is due superconductor®’ For a steady state these equations are
to the formation of Andreev quasibound states at the Fermi

level (zero energy statgslose to the interfac® 1’ These He(r 1)T(r ;) +J dryA(r4,r)5(ry) = EU(ry),

states appear by the interference between quasiparticles scat-

tered at the interface because they can experience a different (1)
pair potential due to the superconductor anisotropy. Quantum £, ~ ~

point contacts studies in NIS junctions show that the ZBCP ~He(rgo(ry) + [ droA (ry,ro)U(ry) = Ev(ry),

is removed by the quasiparticle diffractions at the point

contact!®19an aspect that has been shown experimentally. WhereHe(r,)=-#2V2/2m+V(r,) - is an electronic Hamil-
In  contrast, in quantum point contacts  with tonian andu is the chemical potentialA(rq,r,) is the pair

p-superconductors, the ZBCP appears, even for single modsotential, Ti(r,) and 7(r;) are the wave functions for the

junctions?® Tunneling spectroscopy has been proposed to deglectronlike and holelike components of a quasiparticle,
termine the parity of the pair potenti#:?2 Recently two
quantum point contacts have been studied for the crossed _(T(ry
Andreev reflection ird-wave superconductofs. Yiry) = (5(r1))'

On the other hand, iNINS (Refs. 24 and 26and NISN _
junctions?62” resonances in the differential conductance ap- The pair potentialA(ry,r,) is a function of the position
pear. In anisotropic superconductors, the resonance energiesordinates ; andr,, and can be transformed to
depend on the symmetry of the pair potential NINSjunc- o ~
tions andd,,-symmetry the positions of these resonances are AR,r)=A(rq,ry), (3
out of phase with respect to those predicted for isotropic . _ _ .
superconductorg In NISN junctions the conductance pre- with R=ri=rs andr=(ry+r,)/2. The Fourier transform of
sents two types of resonances due to anisotropy of the paﬁ(R’r) IS
potential?’ o

In this paper, we analyze the differential conductance AFT(k,r):fdRe""'RA(R,r). (4)
when quasiparticles are injected into a superconductor from a
single-mode quantum wire, with an insulating barrier located  Using the quasiclassical approximation, the pair potential
at a distancea of the NS interface (NINS quantum point  A_.(k,r) is aproximated by
contacj. We show that there exist quasibound states which
cause resonances in the differential conductance and that the Apr(k,r) = A(Q,r), (5)
number of these resonances depends on the symmetry of the | .
order parameter. This is shown through the solution of thavherek =k/|k| is a unit wave vector. Using(k,r), the BdG
Bogoliubov-de Gennes equations MINS junctions, where equations are approximated as

(2)
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FIG. 1. (a) The point contacNINSjunction. The insulating bar-

rier is located ak=-a and theNIN region is a single mode quan-
tum wire with widthW, the pair potential), in the normal metal is
zero and in the superconductor region depends;dhe axes and

b are along the andb axes of the Cu@plane. For a-symmetry,
A is modeled ad\()=A, cog260-2«). Two types of quasiparticles,
Q. andQ,, are scattered at the-S interface by the pair potentials
A, andA_, respectively. FoR,, A(6),=Aycog260-2a) and forQy,
A(6)-=Ayco926+2a). The cone® lobes(+) and (—) represents
the pair potentialsA(6), and A(6)_, respectively.(b) Schematic
energy diagram for the potentials and scattering processes. The
solid and dashed lines represent the electron and the holelike com-

ponents of a quasiparticle, respectively.

He(F)uy(r) + A(K,1o(r) = Eug(r),

= HL(r Pug(r) + A" (K, 1)U (r) = Evy(r).

. (12)
ey
edy) = \"ET’
+0 0.(9) + 1 _QJ_,(S)
Ug(s) = 1+ E | vp(s) = > 1 = |
(12)
Q.(9) =VE2 - |AL(9)% (13

ki are the electrongé+) and holes(—) wave numbers in
the wire, which are functions of the energyof the incom-
ing electrons from region 1k{(s) and k (s) are the wave
numbers for the quasiparticlé€d, and Q,, respectively(see
Fig. 1) and depend on the wave number along yhexis,
defined bys. The wave numbers are given by

N 2mE 2
K = kii?, ky = k;é—w,
(19
+ 2mQ. (s >
(6) Ki(s) = \/k(9)%+ ﬁ—z‘() k(s) = VK& - 2.
7) Since the quasiparticle®, and Q,, have different wave

vectors, they undergo different effective pair potentials

We focus in the rest of the paper on cuprate superconrandA_,
ductor junctions. It is supposed that the quasiparticle moves

on the CuQ@ plane with thea andb axes in thex-y plane; the

Au(9) = A(KST +s]) = A€, (15

interfaces are normal to theaxis and theNIN region has a ] )
width W in they direction, as indicated in Fig. 1. The insu- Where¢, and ¢_ are the phases of the effective pair poten-

lating barrier is modeled by a delta functiov(x)=Uqyd(x
+a) and the pair potential b (k,r)=0(x)A(k), where®(x)
is the Heaviside function. The solutions to the BdG equations.
in theN;, N, and in the superconducting regions are, respec:

tively,

(1 ikIx 0 ik;x 1 ~ikTx
i =g JE Al Bl et ey, ®)
1\ .« 1\ - 0\ . -
wN” - |:U1<O)e|klx+ U2(0>e—|klx+vl<l)e|klx

with

0\ .-
+V2<1)e_'klx} 1),

Ps= f: ds[ c(s)(

+ d(s)(

v(s)ee-92
U(_)(S) e—i ¢_(s)/2

US(S)ei 0. ()12
UE(S) e—i @ (912

)eik::(s)x

)e“mx] oY),

tials A, and A_, respectively. For ad-symmetry A,
=Ayco92(0+ )], « is the angle between tHa00) axis of

the superconductor and the normal to the interface, @nd
=sin Y(s/kg) [cf. Fig. 1(a)]. Experimentally the angle: can

be changed in angle-resolved ZBCP measurements of ramp-
edge tunnel junctions with different crystal interface bound-
ary angles? In these experiments the width of the contact is
reduced by using a focused-ion beam technique. From the
measurements it is concluded that, as the width is reduced,
the relative ZBCP height decreases, indicating that Andreev
reflections decrease. The system illustrated in Fig. 1 can be
materialized experimentally in a similar way if we add a
defect or impurity at a distanceof the interface; this defect
can be modeled as an insulating barrier.

To simplify the discussion, all the evanescent modes have
been neglected. This approximation is justified because for
T<Wk-<27 the narrow wire has a single mode and the
energy of evanescent modes is well above the Fermi
energy*®23 One findsA, B, U;, Uy, V3, V,, ¢, andd using
boundary conditions ix=—a andx=0. Details are given in
the Appendix. The electron-electron and electron-hole reflec-
tion coefficients are, respectively,

9

(10)

2

2 2F
==, (16)

,Rh—g
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0= (1+Z9)[(1+Fy)? - F,F,]
+Z7[(1 - Fp? - F Fgle?erton
+ Z[l _ Fi + F2F3][Z(82ik‘a + e—2ik+a) + i(e—2ik+a _ 2ik_a)],

(17)
h=(F2 - FoF5 - D[22 92— (1 -iz)?]
— Z(Z+i)[2F(e#h:2 - e2®)
+ (1 +F2 = F,Fy) (622 + 28], (18)

4 f’F VE- P (WOI>
Ry B Tro e AL

_ 1 +l“+1"_e_i(‘P+_‘P—)

1 1 _F+I‘_e—i(¢+‘¢—)’

. 2ree-
271 - F+F_e—i(¢+—¢_) !

2T, eles
T IR 29
5 keW keU
=20 yo=-= andz=——=—_ (21)
Uo m 2EpN1 -y

Ill. DIFFERENTIAL CONDUCTANCE
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FIG. 2. Differential conductance fa-symmetry.(a) Different
values ofZ with a=63W; (b) different values ofa with Z=5. In
both case&-W=1.7.

metry case, except that for a fix@dvalue the width of the
peak is greater.

Figure 4 exhibits the differential conductance far
=m/4 (dy-,-symmetry,A_=—-A,=A, sin 20). ZBCP does not

The differential conductance has been calculated by usingPP€ar because the Andreev reflections are zero. In the last

the BTK modet? for anisotropic superconductots®-82°For :
this calculation the electron-electron and electron-hole refWo plane waves with wave numbeis=

case the wave functions in the channel are a superposition of
+7/W. Each wave

flection coefficients are used. This result can be contraste@XPeriences a pair potential phase 0 andespectively, and

with those found from Green’s functions calculatidhsor

therefore the Andreev reflection coefficieafd) [R.(6)

charge transport in diffusive normal metal/unconventionaf|a(¢)[’] for each wave is outphased im, therefore the
singlet superconductor contacts. For the ballistic limit thewaves of the reflected holes interfere destructively and the
authors reproduced the generalized conductance obtained

with the BTK model for anisotropic superconductéfsUs-

ing this model, the normalized differential conductanGg,
at T=0 K is calculated from

GreV) = ——— (22)

_[(1 +Fg)? +4Z%][1 - R(eV) + Ry(eV)]
B 4F, ’

(23)

where Gy is the conductance wheA=0 anda=0. F; is

y S

defined by(19) with f;=1 and the reflection coefficients are
evaluated inE=eV, whereV is the voltage.

Figures 2 and 3 show the differential conductancesor
symmetry (A,=A_=Ay) and de_y2-symmetry (A,=A_
=Agcos ). When a=0 (NIS point contac), our results
agree with Ref. 18. Foa# 0 and symmetns, subgap reso-
nances appear in the differential conductance and their num-
ber increases witla. WhenZ decreases, it can be seen that
the numbers and positions of the resonances remain unal-
tered; the peaks are just broader. Fpf_-symmetry the
number of peaks and their positions are similar toglsgm-
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FIG. 3. Same as in Fig. 2 fa#=0 (d,2_y2-symmetry.
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FIG. 4. Same as in Fig. 2 fag=7/4 (dy_y-symmetry.

Andreev reflections vanish. In relation with the

dy-y-symmetry the number of resonances decrease compared

with the s and d,>_>-symmetries. Additionally, whe de-
creases, the number of the resonances is constant, the p
broadens and its position is smoothly shifted to the right.

The subgap resonances in the differential conductance a
a direct consequence of the quasibound states formed insi
the energy gap. The energies and lifetimes of these quasi-
bound states are given by the poles of the current transmis-

sion amplitude. Settingg=0 in Eq. (17) one finds these
poles. A complex energ¥=E,+iE,, is required in order to
solve this equation, whergg is the position of resonance
and#/(2|E))) is the lifetime of the quasibound states.

For s or d,2_,>-symmetries the resonance positidfsare
given by

E.=Ey(nm—¢), n=1,2,.., (24)
and ford,,-symmetry they are determined from
E,=Ey@2nm-¢'), n=1,2,.... (25
In these equations
E,: ——)
Eo=—V1- 26
PR (26)

and ¢,¢’ are phases that depend @na, andE. Therefore,
the number of resonances witB<maxA) for s or
dy2_y2-symmetries are approximately twice the correspondin
number of ad,,-symmetry. This is due to the fact that in the

case of ad,,-symmetry the Andreev reflection is zero. The

PHYSICAL REVIEW B71, 094515(2005
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FIG. 5. lllustration of quasiparticle scattering processes that fol-
low round trips:(a) the quasiparticle is reflected as an electron in
x=0 andx=-a; (b) the quasiparticle is reflected as a holexin0,
reflected as a hole in=-a, reflected as an electron k=0 and
finally reflected as an electron in=-a.

this case the number of quasibound states is approximately
twice the corresponding number for thg, symmetry.

In order to determine the lifetime of the quasibound
states, a semiclassical analysis will be used. The lifetirise
defined as the time that a quasiparticle in Mygregion re-
quires to “escape” toward th&l, or S region. Fors or
de_y2-symmetries, a quasiparticle employs a tiffifor a
round trip given by

T= 4da 2hd
fikora/m E,:\e“'l—ygz’

(27)

eV)C{Eered: malw. If N is the number of closed trips during
Wi

ich the probability that the quasiparticle still remains
ithin the N, region has decreased to€l the lifetime can
g written as

7=TN, (29)
whereN is obtained from
(RerRIhnRreRlee)N = 116, (29

with Ry, Ry the electron-hole and hole-electron reflection
coefficients, respectively, fo£=0 (point contactNS and
Rlee Rly.h the electron-electron and hole-hole reflection co-
efficients, respectively, for an insulating barriéd). The ex-
pressionR. ,RIh.nRh-cRlee is the probability that the quasi-
particle still remains in thé\, region in one round trip, see
Fig. 5b). From Egs.(27), (28), and(29) one finds that the
lifetime is given by

_ id 1
ErV1 - y2IN[Z°Rey/(1 +29)]’

(30)

where we have used the facts thaf,=R;.. and Rl
=RI,.,=Z%/(1+Z?). Equation(30) is like the one found for
NINS junctions with s-symmetry?* Similarly, for the

Q:ixy—symmetryN is obtained from

(Re-eRIe-e)N = 1/e, (31

quantization of the quasibound states occurs when the qua-

siparticles travel in a round trip a distance equal &ir2the
x direction andg,«2nw/2a; see Fig. ). In the case o0&

with Ree the electron-electron reflection coefficient f@r
=0. The expressioR. Rl.. is the probability that the qua-

or d,2_,2-symmetries the quasiparticles complete a round tripsiparticle still remains in thél;, region after one round trip,

when they travel a distanceadlong thex direction andg,
«2nsr/4a, as illustrated in Fig. ®). One concludes that in

see Fig. Ba), From Egs.(27), (28), and(31) one finds that
the lifetime is given by

094515-4
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14 a changes from 0 ter/2 some peaks disappear because the
Andreev reflection vanishes.

In the case ofs-symmetry, the lifetime of quasibound
states increases with the insulating barrier strength and is
infinite for Z>1. In contrast, for al-symmetry the lifetime
increases witlZ but is finite forZ> 1. This occurs because
the quasiparticles transmission is different from zero Eor
<A, in contrast to the case afsymmetry, where the trans-
mission is zero forE<A,. Therefore, the lifetime of the

7 0. resonances decreases drsymmetries and their width in-
00 02 04 06 08 10 12 14 023 creases. The results obtained in this work can be used to find
eViAg the symmetry of high temperature superconductors in experi-
ments of the type carried out in Ref. 14.

FIG. 6. Differential conductance ford-symmetry, A,
=Agc092(6F a)] with Z=5, a=63W, keW=1.7 and different val- ACKNOWLEDGMENT
ues ofa.
The authors have received support from Divisiéon de In-

4d 1 vestigaciones de la Universidad Nacional de Colombia sede
e =12 > (32)  Bogota.
ErvL - 72 IN[Z%Re (1 +22)]

For the case of-symmetry andE<|A|, R.,=1. Therefore
the lifetime increases witd and tends to infinity foz>1, The boundary conditions for the wave function of a qua-
while the resonance width|B|~7/7—0, as it is observed siparticle inx=-a, are

in Fig. 2. Ford,2_,2-symmetry the quasiparticle transmission

T=

APPENDIX: REFLECTION COEFFICIENTS

coefficient is finite forE<A, due to the anisotropy of the Wy (-a) =Py, (-a),
pair potential,R.,<1, and the lifetime increases withbut (A1)
is finite for Z>1. This is observed in the width of the reso- dWy, (x) d¥y, (x) Uo
nances shown in Fig. 3. For tig,-symmetry the behavior dx = T ax Zmﬁ‘I’N,(— a),
of the lifetime and the width of the resonances are similar to x=-a x=-a
the case ofd,2_2-symmetry, see Fig. 4. For all cases, with from them we obtain
E>A,, the reflection coefficients are always less than one, . . . .
the lifetimes decrease and the widths of the resonances in- ea+ Beid= U ek + U ha?, (A2a)
crease.
Figure 6 shows how the differential conductanGg AdK? = v/, gkia + \ekia, (A2b)

evolves for different values at between 0 andr/4. Notice

that some peaks begin to decrease and vanish dfor e e ] ' kA

~0.207. This happens because the Andreev reflections de- € 1(2iZ = 1) + Be1*(1 + 2Z) = U %1% — Ue™?,

crease and the electron-electron reflection increasesaFor (A2¢)

=/4 the Andreev reflections are zero and one has the con-

ductance ford,,~-symmetry. Similarly, the resonances energy i N, ik ik

values move téward the left asincreases due to a change of AUT(1 - 27) = V,ela® - Ve, (A2d)

the phasep in the solution of the equatiog=0. From the continuity conditions for the wave function and its
Finally, it is interesting to note that if one considers thefirst derivative, inx=0,

p-type symmetry, because the Andreev reflection is present

for a single normal mod#, the number of resonances must W - d‘I’N”(X)

be similar to thes andd,2_.-cases, although a zero voltage Nu(o) =V40), dx

peak is expected. This will be an interesting topic to explore

further.

d¥g(x)

x=0 dx

x=0
(A3)

we have that
IV. CONCLUSIONS

[’

[U1+U2]¢1(Y)=J d{c(s)ug(s)ei%(s)/z

Our results show that INS point contacts the differen-
tial conductance have resonances due to quasibound states. _
The number of resonances depends on the symmetry of the +d(s)up(9€*2]pdy),  (Ada)
order parameter, in contrast tadNdNS junction. In the latter

case only the position of the resonances changes with the [ i (912
symmetry. The number of resonances vtk max(A) (sub- [Vi+Vali(y) = dS[C(S)Uo(S)e i

gap resonancgsfor s- or d,2_,2-symmetries is approximately - _

twice the corresponding number for thg-symmetry. When +d(s)Uy(9)e-92]ey), (A4b)

094515-5
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k(U = Uzly(y) =f dsk9)[ c(s)uf(s)el#+/2

—d(9vg(9€*-92]ody),  (Adc)
Ka[V1—Vali(y) = f dSKS)[C(S)US(S)e_i‘P*(S)/Z
+d(9)ug(9)e -2 ]p((y).  (A4dd)

We have used the Andreev approximation in the boundary

conditions for the first derivative of the wave functidkj,
=k;=k; and k;(s)=kZ(s)=k(s). Multiplying Egs. (A4) by
¢y (y)dy and integrating ovey we obtain

[Ul + U2] Pl(S) = C(S)US(S)ei%(S)/Z + d(s)v(')(s)ei"’—<s)/2,
(A5a)

[V, + V5]Py(9) = c(9)uii(8)e 92 + d(s)ug(9)e -2,

(A5b)
ky[Uy = U1IPy(9) = k(9)[ c(9)ug(9)€#+972 - d(s)vg(s)€¥-9"2],
(A5c)

ke[ V1 = V,]Py(s) = k() c(8)ug(s)e #+(52
- d(s)up(s)ee-92],  (A5d)

where
2 cos{sWZ)

Py(s) = f Ay (V) gely) = = | W (A8

From the normalization conditions

f dyey (Y)edly) = 8(s=s), f dyd(y)a(y) = 1,

(A7)

the functionP,(s) has the following property:

f ’ dsP,(s)Py(s) = 1. (A8)

From Egs.(A2) and (A5) we obtain the following equa-
tions for A andB:

(1 —iz(1+e?a®) + [1-iz(1 - éikia)]w> P,(SIA
1
-[1+iz(a - e-2ik1a)]—k(s)|:3(s) P.(s)B
1
=[1-iza - p ) (A%%)

1

PHYSICAL REVIEW B71, 094515(2005

K919 k(s)fa(s)

1

<[1 +iz(1- e—2'kla)]

[1-iz(1-e2) P,(SIA

() fi(s)+1

1
+iZ(1+ e‘ZikIa)> P,(9B
_ [ ] k(s) fll(s)

-[1-iz@ +&}2py(s)]. (A9b)

Here the functiond;, i=1, 2, 3, are defined by E¢20).
Multipliying (A9) by P;(s)ds, integrating overs and using
(A8) we obtain a system of equations farand B,

{1 —iz(1 +efka?) + [1 -iz(1- ez‘kia)]Fl}A
~[1+iza-e %7 |F,B
=[1-iz(1 -3 F,

—iz(1 - e?ki?) Pi(s)

(A10a)

[1-iz(1 -3 |Fa-{[1+iz(1 -e 253 |F, + 1
+iZ(1+ ‘z'kla)}B
=[1-iz(1 -3,

~[1-iz@ ey,

_ [ gk m 4 cos(sw2)
Fi_f_wds kl WW2(172/W2—32)2f|(S)

Since the states that contribute to superconductivity are
around the Fermi energy and in the Andreev approximation
the magnitude of the wave vectorskis the integrals oves

between <o to » are approximated bykg andkg; with this,
the functionsF; are written as
ds Sk, WW2 (/W2 - 27"
4 F
= —ﬂZ\/;/,Z:——lf-yF dq( 7 cosz( )f (a)
(A11)

(A10b)

where

. f k(s) m 4 cof(sW2)
-

with
(A12)

The solutions for EqS(A10) are given by

2F h
A== andB=-, (A13)
9 g
with g and h given by (17) and (18). Finally we obtain the
reflection coefficients electron-electrdi®,) and electron-

hole (R,) as

094515-6
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Re=[BI>, Ry=|A]% (A14) -
It is important to underline that in the normal region we EBnHmn+ KB = k1dm = Him,

have approximated to one mode only. If one takes into ac- .

count all the possible modes=1 to n=c, one must deter- With

mine the reflection amplitude in each mode for electr@gs,

and holesA,,. Instead of Eq(A9b) one obtains one equation

that is a linear combination of functionsP,(s)

=[” dydn(y)edy) with coefficientsA,, andB,,. To illustrate, Equations(A16) are solutions to EqA15) for all s only

let us assume that one ha®\aN contact,A=0 andZ=0. In if one adds contributions from all the modes. Since this is not

a way similar to the case where one obtains the equations fgossible, the sum goes up to an appropiaté his justifies

A andB, one obtains the type of solution that one finds in Eq#13), with first

mode approximation. If one neglects modes witk 2, one

obtains from(A16),

(A16)

Hym= f dsP,(s)k(9)Py(9). (A17)

> BiPu(9(K(s) +ky) = (k; —k(9))Py(9).  (A15)

k;—H
] B = L

= . A18
Hqii+ kg ( )

Multipliying by P:,(s)ds; integrating ins we obtain the sys-
tem of equations

This result is a particular case 6A13) (B;=B) when A
=0 andZ=0.
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