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Nonlocal effects in superfluid turbulence: Application to the low-density- to high-density-state
transition and to vortex decay
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We discuss a phenomenological equation for the evolution of vortex tangle in counterflow superfluid
turbulence, which takes into account the influence of the nonlocal effects, introducing into the original equation
of Vinen two simple corrective terms dependent on a nonvanishing ratio between the average separation
between vortex lines and the diameter of the channel. The equation allows one to describe, in relatively
good agreement with experimental results, the two turbulent regimes present in counterflow superfluid
turbulence and the transition between them. The decay rate of the vortex line densityen the heat
flux is suddenly turned off, is also investigated; due to the simplicity of the model, which does not take
into account the coupling of the line densltywith the superfluid velocity, this decay agrees with experiments
in the initial and intermediate stages, but does not describe the full slow-down observed at very long
times.
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I. INTRODUCTION dL
a- aVL32 - Bkl?, (1.1
Nonlocal terms are receiving much attention in current
transport theory due to the recent stimulus of research ofyhere x=h/m is the quantum of vorticitym is the mass
nanoscale systems, where the size of the system becomgs the “He atoms andh Planck’s constant; thus,
comparable to the mean free pdthfp) of particles. In fact, x=9.97x 10 cnm?s™Y), anda and 8 are phenomenological
this situation is found not only in small systems, but also indimensionless parameters, which may depend on tempera-
macroscopic systems, when the mfp becomes sufficientlyure.
long, as in the analysis of short-wavelength perturbations, In experiments where turbulence is generated by thermal
where the wavelength becomes comparable to the mfp. Thisounterflow in a tube of circular cross section, the vortex
is, for instance, the case of low-density gases, which hakne density is observed to develop from a low-density
been studied in the framework of kinetic theory, or of state(Tl) to a higher-density stat€Tll) that can be associ-
neutron-scattering experiments in liquids, described by moated with the homogeneous std€. Vinen's equation
lecular hydrodynamics. describes satisfactorily only the fully developed second
We want to stress here some questions on a physica| Sit&urbulent regim.e, but not the TI turbulent |0W-d.€'.nSity State
ation that is an interesting candidate to be considered frorAnd, therefore, it does not account for the transition from Tl
this perspective. We refer to superfluid turbulence in narrow© T!l regimes. _ _
channeld a situation that may be of practical interest in 10 derive his equation, Vinen assumes that the time
cryogenic applications to keep small systems at low temperaqerlvatlve ofL is composed of two opposite contributions

tures by removing heat through the flow of superfluid helium

along thin capillaries. dL _ {d_l-] _ {d_l-] (1.2)
Superfluid turbulence in counterflow has been the subject dt dtl; [dtly

of many experiments and theories; the usual descriptions

consider a vortex tangle with vortex line density giving  where subscript$ and d denote formation and destruction

the total length of vortex lines per unit volume. The analysisof vortices per unit of time and volume, respectively. In

of L, for different values of the counterflow velocity, has wide channels, the growth of the line density is due to

been undertaken mainly from phenomenological perthe mutual friction force between superfluid and normal

spectivel™ but very interesting microscopic models have components and the decay is originated by a cascade-like

also been developéd. process of vortex breakup, due to the vortex reconnection,
From the phenomenological point of view, the most well-but in narrow channels the walls also play an important

known equation describing the evolution lofunder a coun- role.

terflow characterized by the intensiof the relative veloc- Vinen assumes that the terrfdL/dt]; depends on
ity V between normal and superfluid components is thehe quantum of circulatiork, the local and instantaneous
Vinen's equatior?, which is value of L, and the forcef between the vortex line and
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the normal component, which is linked to the intendtypf  they provide examples of situations in which the size of the
the counterflow velocity; dimensional analysis leads to thesystem or the typical wavelength of perturbation is compa-

equatiof-® rable to the mfp.
In the present paper, we discuss a phenomenological gen-
[d—l‘} :v|_3/2¢f[ \/1/2] (1.3 e_ralization of Vinen’s equatio_n, including nonlocal contribu-
dt J kL tions related to a nonvanishing value'/?/d, and we apply

them to the study of the transition from Tl to Tll regimes and
of some aspects of the decay of vortices in counterflow su-
perfluid turbulence, with the aim of contributing to describe
such phenomena and to illustrate the relevance of nonlocal

where ¢ is some dimensionless function of its dimension-
less argument. By analogy with the growth of a vortex ring,
Vinen assumed that the dimensionless functifnis con-
stant, obtaining

effects.

dL| _ 32 In Sec. Il, we discuss our proposed phenomenological

dt f‘ aVL™s, (1.4 generalization of Eq(1.1), taking into account these kinds
_ ) ) of effects. As an illustration of the possible physical interest
with « a dimensionless constant. - ~ of the generalized equation, in Secs. Ill and IV we apply it
The form of the[dL/dt] destruction term was determined to the study of two situations in which the presence of

in analogy with classical turbulence, obtaining nonlocal terms is important: the transition from TI to TII
dL turbulent states and the decay of vorticity in counterflow
{—] = - BklL2. (1.5 superfluid turbulence. The results show that the proposed
dt g generalized equation for the evolution of vortex line density

A theoretical value forg, proposed in Ref. 5, ig=y/2, L is_ able to explain the transition from TI tq T turb_ulent

wherey is a constant of the order of unity, which depends onf€gimes and yields a slower decay bf at intermediate

temperature. times. We do not claim that these terms are the only possible
Equation (1.1) has been given a physical microscopic €xplanation of th¢ .Obsefrved effecf[s, but they are shown to

basis by Schwarz, starting from statistical consideration§@ve & non-negligible influence, in such a way that they

on vortex-line dynamic8. In the microscopic model by should be taken into account in future analyses of these

Schwarz, the vortex lines are represented in the parametrRroblems.

form s(&,t), £ being the length along the line. The equation

of motion of the line depends osl, s” and on the higher-

order derivatives”, s”’ and so on, which follow a hierarchy Il. PHENOMENOLOGICAL GENERALIZATION

of evolution equations. To truncate this hierarchy, it is OF VINEN'S EQUATION

assumed that the derivatives become uncorrelated in a

distance of order of the average vortex separatioh?.

Starting from this model, Schwarz is able to derive Vinen’s

equation. g : . .
An open question is what would be the evolution equatiorﬁ]ned;fr;eeggoc:? tﬁgovva;TFS one to incorporate into the equation

for the tangle in situations in which the vortex separation First of all, we briefly comment that Vinen himself pro-

L~%2 becomes comparable to the diametesf the channel. q ke i he off fth lis. introd

In fact, Eq.(1.1) is valid when the average separation be-POS€ to take Into account the effects of the walls, introduc-
. . ; ing in the production term of Eq1.1) a term proportional to

tween vortex lines is much smaller than the diameter of thq__l/zld_ﬁ

channeld, in which case the evolution df does depend on ’

the local values ofv and L. However, experiments have dL 5 a -1/2

been carried out in channels in wide range of diameders a BrL +aVLT 1 - v (2.9

in a wide range of speed§ in such a way that the value of

L-¥2/d may become comparable to 1; this happens, fowith  a phenomenological positive parameter. The intuitive

instance, for low values d¥, either in situations in whicl interpretation of Eq.(2.1) is that the vortex generation

is increasing to reach turbulentegr in situations in which mechanism is inactive within a characteristic distahcH?

V or L are decreasing, as in turbulence defain fully  from the wall. Since this idea is related to the generation

developed turbulencd, is high andL™Y2/d is likely to be  mechanism, it is logical that the decay term is left unchanged

small even for narrow channels. Problems arise, howevefsee Refs. 7-10

when L™Y2/d becomes comparable or higher than 1. These However, according to SchwafZ22'® in narrow

situations are founda) in narrow channels(b) in the channels the walls play an important role in vortex

transition from TI to Tl turbulent regimegc) in the late  dynamics, both in generation and decay, as fluctuations

stages of the decay of turbulence after the counterflovare assumed to grow and annihilate on them, whereas

velocity has been set to zero, afd) in the transport of for wider channels the onset of turbulence is more similar

short-wave second-sound across a vortex tarnglethis to that in classical fluids. Therefore, these arguments, as

case, the relevant ratio is2/\, with A the wave-length, well as experimental resulfs'® on the decay of turbulence,

rather L"12/d). These situations are of special interest forsuggest the need to modify as well the destruction term,

researchers in nonconventional transport theory, becaus®t only the generation term. Consequently, in this work,

Our aim is to incorporate to the usual hydrodynamical
description of superfluid turbulence based on Egl) non-
local effects, arising when the ratio*/?/d is not negligible,
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we propose to modify Vinen’s equatiqd.l) in the simple n_aV
form LY2=——, (3.2
Bk
dL aVvL3? BrlL? This is in agreement with experiments at low and at high

dt - L2 (22 values ofV, but with different values of the proportionality

dt 2 -12\ 2"
1+ a’<T> 1 +,8'<T) coefficients(the so-called Tl and Tll regimgseparated by a
transition region. Vinen's equatiofl.1) does not describe
Here o’ and B’ are coefficients that could depend on tem-the two different values of the proportionality coefficient be-
perature. It is obvious that whdm/?/d is very small, one tweenL'2 andV, nor the transition from the one to the other.
recovers Vinen’s equation. In contrast, our proposed generalizati@®) describes these
Now we examine the physical motivations of the correc-features in a natural, though relatively simplified way, as is
tion factors, beyond the simple consideration that theshown in this paragraph.
corresponding generalized terms should be always positive. Indeed, forL different from zero, the stationary solution
These corrections indicate a reduction both of the rat®f Eq.(2.2) can be written as
of formation and of the rate of decay of the vortices 5.
when L™2 is not negligible as compared td. Physical V:KI[_;L:L/ZM.
reasons for this reduction may be attributed to the pinning a  Ld+p
of vortices on small irregularities of the walls. This may
have two different opposite contributions: due to the

tendency to remain pinned on the walls instead to goingegion of Tl turbulence, wheré is small, dominated by

fully 1o the bulk flow, the walls would reduce the rate of nonlocal effects and by the influence of the walls, to a Tl

formation of the vortices in the flow, as compared with . T

L turbulent region, where is high and does not depend on the
the same volume of the fluid in the absence of the Wa”'size of the channel. corresponding to Vinen's equation. In
On the other hand, the fact that, once pinned on the wall ' P g d '

the vortices become more resistant to elimination woul ct, for very small values of, Eq.(3.2) can be approxi-

(3.2

Using suitable values of the coefficients, which will be dis-
cussed below, this equation exhibits a crossover from the

imply a reduction in the rate of destruction. It is not clear mated as
priori which of these reductions should be predominant ' av; Vv
o Ba 1 12_aB
over the other one. Our analysis will allow us to compare the V= KZY,EL or L7 = E;; = h1;, (3.9

consequences of both of them with experimental observa-
tions related to the transition from TI turbulence to TII while, for high values ol.'? it results from Eq(3.2) that
turbulence.

Beyond these physical motivations to expect a reduction B

12 w_aV_V
of the formation and the destruction rates, we briefly V= Lo L :’E;_hz} (3.4
mention that in other different context&inetic theories ] o
of gased®16 generalized hydrodynamidé, and extended We recall now that in the TII turbulent regiméigh val-

thermodynamic$19 nonlocal corrective terms have U€S 9“-1/2)1 the line densityL is well described by Vinen
been proposed that have the phenomenological form adopté&@!ution(3.1). As a consequence, the ratid 3 furnishes an
in Eq. (2.2. Indeed, in the presence of a perturbation@PProximate value of the coefficiehj:

with wave vectork, the classical transport coefficients

(thermal conductivityh and shear viscosityy)) are modified h,= 2. (3.5

in the form B
Xo 7o From Eq.(3.4) we also obtain the ratio of the coefficients

= — = and B’ as
Mok =Tz MW=T5e (23 B

a" h
| being the mfp of the particles in the gas. Thus, lacking, for g = h_2 (3.9

1

the moment, detailed microscopic models to describe the ex-
pected reduction of the rate of formation and destruction of Observe that the transition from TI to TII turbulent re-
the vortices, we propose in ER.2) to describe them in a gimes happens when the counterflow velodityreaches a
way analogous to E¢2.3), i.e., by introducing a second- critical valueV,, and the quantityy=L"%d a valuey.,. In
order polynomial inL"?/d in the denominator, which is a correspondence to this transition, the slope of the stationary
form simple enough to allow for sufficiently detailed analy- solution (3.2) undergoes a rapid change and the curvature

sis of its consequences. becomes equal to zero. Therefore, at the pbigtEqg. (3.2)
must present an inflection point. The coordinate of this flex
IIl. THE TRANSITION EROM Tl TO TIl TURBULENT point can be easily expressed as functiorrbfind 8’ in the
REGIMES following way:
. - ) . . . 1 !
According to Vinen s_equatlom.l), t_he stationary regime V= E—E\GT?’(S n a_’) (3.73
of counterflow superfluid turbulence is dda
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TABLE |. Values of the parameters appearing in E8.2) for y=dL'?
two different values of the temperature. The values)fare from r

Ref. 13.

T (K) hy h, X B o' o' B 80—
15 0.0205  0.127 0.78 40 247 6.19 [
1.7 0.0243  0.166 13 40 274 6.86 40l

1 — 20
Lz’ = V36", (3.7b

As one sees, we obtain f&t, andL? a 1/d dependence, I e T
in agreement with experiment$Thus the corrective coeffi- 100 200 400 s0  x=Vd/x
cients o’ and B’ characterize the transitions from TI to @ T=15K
TII turbulent regimes: indeed, E¢3.7b allows us to deter-
mine, using the experimental value bf at the transition ¥
TI-Tll, the coefficient 8’. Equation(3.73, taking into ac-
count Eq.(3.5), which furnishes an approximate value of sl
Bl a, allows us to determine the rati®' /3’ (and therefore, I
the value ofa’). The very rapid change a&f with V nearV,, I
furnishes only a restricted interval of possible valuesLfgr o
therefore, in the following, comparing with experimental
data, we chooseg/,,=11 for both temperature$l.5 and
1.7 K, which will be examined belojywhich corresponds to
B’'=40. The values oh,, h,, &', and B8’ obtained are re- i
ported in Table I. 20

In Fig. 1, the plots of the stationary solutiof3.2), at
temperaturesT=1.5 K andT=1.7 K, are shown. We must
observe that fixing the parametens, h, in Egs. (3.3 and T
(3.4) to obtain the desired asymptotic behavior g@idn Eq. (b) T=17K
(3.7b to describe the observed valuelgs, leads to a slight _
underestimation of the critical velocity,, in Eq. (3.7). This FIG. 1. Plots ofy=L*"?d via x=Vd/« as result from Eq(3.2):
could indicate that the nonlocal terms may have a more com® atT=1.5 K and(b) at T=1.7 K, choosingx/ f=h,, g'=40 and
plicated form than the one assumed in Ej2); for instance, «' obtained from Eq(§.6) and given in Table I. Points are experi-
the exponent in the terio2/d could be different from 2, or Mental values of Martin and TougRef. 11.

higher-order terms could be considered, maybe an infinitgate of decay(given by 8’). This could be interpreted in
number of terms through a continued-fraction expansionterms of a higher tendency of vortices to remain pinned
However, since for the moment we do not have a sufficientlyon the walls than to pin on them, when they are in motion;
clear microscopic motivation for such a change, we willindeed, this means higher difficulty that the vortices
keep the simple form proposed in E@.2), which clearly  unpin and go free to the bulk floghigh reduction of forma-
shows that nonlocal effects cannot be ignogegriori, but  tion, due to the presence of the wathan that they pin
may play an important role in the transition. Indeed, theto the irregularities of the walllower influence of the walls
present model allows us to describe in a simple way then the decay, which, however, it is also reducdthis strong
existence of such a transition from the Tl to the TIl turbulentreduction of the formation term in comparison with the
regimes, and to obtain it with relatively good agreement withdestruction one agrees qualitatively with Vinen's proposal
experimental results, especially for the lowest value of thg2.1), in which only the formation term was reduced. How-
temperature. ever, the reduction in the decay may also be experimentally
A description of the microscopic phenomenon underlyingobserved, in contrast with E@2.1), which does not modify
the TI-TIl transition, which agrees with Eq(2.2) can the corresponding ternfand does not describe the TI-TII
be the following: the TI turbulent regime is an inhomoge- transition.
neous and locally polarized state dominated by the Our model does not strictly require that the normal fluid
influence of the walls. When the counterflow reachesbecomes turbulent, as the explanation of the TI-TII transition
the critical valueV,,, this state becomes unstable and theproposed by Melotte and Barenghiequires; what it shown
flow undergoes a transition to the fully developed turbulents a drastic increase in the line density which practically
regime TIl, which is homogeneous and independent oreliminates the relatively stabilizing influence of the walls;
the walls. the corresponding decrease in the average separation be-
It is seen that the reduction in the rate of formationtween vortex linegL™*?) would favor vortex reconnections
(described bya’) is much higher than the reduction in the in the bulk of the superfluid, thus contributing to reinforce

Ll
300

R BN B
400 500 x=Vd /x
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the increase of, then yielding a relatively abrupt transition.  With this aim, we now analyze the decay process using
However, the possibility that the normal fluid becomes tur-Eq. (2.2); namely,

bulent cannot be excluded. dL ) BKLZ

Note also that transition TI-TIl is observed in channels — = . 4.3
whose transverse sections have a low aspect r@o, dt 1+ B'L—
circle, squarg but not in those with high aspect ratoe., d?
elongated ellipses, elongated rectangt€swhere only one . .
turbulent state, similar to state TII, is observed. From theThe solution of Eq(4.3) is
perspective of the present paper, this fact is not surprising; 1112 1 p(1 1
in a cylindrical channel the TI-TIl transition is observed Sl L 2\ 2) | (4.4

whenL™'2/d is of the order 10%, whereas in a rectangular
channel the transition from TI to TIl would be expected First, we observe that, for high values bf the terms
to take place forL™?/d,.=10", but if dy. is large, depending on the dimensiahof the channel become negli-
such a transition would take place for small valuesLof gible, and one recovers Vinen’'s decgy?). For decreasing
and therefore the Tl regime would be reduced to a vent, the influence of nonlocal terms will become more impor-
narrow range of flows, and it would be practically unobserv-tant and the decay will be slower. In fact, whens small
able. enough in such a way that the nonlocal terms become domi-
nating in the denominator of E¢4.3), one is lead to a decay

IV. VORTEX DECAY TOWARD A QUIESCENT STATE of the kind

1
In the preceding section it was seen that the wall effects = 2Kd2£,t,
on the reduction of vortex formation rate were much higher L5(t) B

than on the reduction of the decay rate. However, the lattefystead of Eq(4.2). Thus, Eq(4.3) exhibits a crossover from
one also deserves attention, due to its role on the decay @he initial behavior4.2), corresponding to Vinen's equation,
vorticity in counterflow superfluid turbulence, after the heatjndependent on the size of the channels, to evolutibB),
flux, which is proportional td/, is suddenly set to zero. This dominated by nonlocal effects, and by the influence of the
is a somewhat artificial situation, aswill decay not sud-  \all. Indeed, expansior4.5) suggests that for small, L
denly, but follows a dynamical equation; however, it will be decays ag ~t2

enough to explore some new features of E2j2) in a prob- In Fig. 2 we have plotted the solutidd.4) of Eq. (4.3 at

lem independent of the previous one, and to illustrate ther=1.5 K andT=1.7 K, choosingd= y/2# and 8’ =40 (this
convenience to modify not only the generation term, but als,ajue for 8’ is the one found in the previous section to de-

(4.5

the decay term. scribe the TI-TII transition We have chosen as initial values
According to Vinen's equatioiil.1), the decay oL after  for L the highest values used in the experiments described in
V is set to zero is described by Ref. 11.
We have also compared our modéisaintaining the same
dL = - Bil2 (4.1) value of the corrective coefficieft’) with experimental data
dt ’ ' of Schwarz and Rozelt. The counterflow channel of

Schwarz and Rozen was a large rectangular waveguide tube
thus leading to 1.00 by 2.35 cm in cross section, the temperature of the lig-
uid wasT=1.9 K.
11, Figures 17 and 18 of Schwarz and Ro%ershow
= Bxt. (4.2 o ; .
L(t) Lo the presence of two distinct decay regimes. Introducing
the quantity w=1/B«L, the slope of the experimental
This solution corresponds to the decay of a homogeneousurve, very near ta=0 (Fig. 18 of Ref. 12 is about 1
vortex tangle, which occurs whdnis high. However, com- and remains constant for the first few secort@sor 3 9;
parison with experimental ddfal* indicates that the decay this regime corresponds to the rapid decay characteristic
of L is slower than his prediction. We will study here how of the homogeneous stat@s predicted by Vinen The
nonlocal terms in Eq(2.2), increasingly important ak is  vortex tangle then switches to a regime of much slower
lowered, may contribute to the mentioned slowing down ofdecline, where the slope of the experimental curve is
the decay. It must be noted, in fact, that the results for thebout 0.09.
steady state situation described in Sec. 1l do depend on the In order to compare the results of our models with
ratio of the rate-reducing terms, rather than on their absolutéhe experimental values of Ref. 12, in Fig. 3 we have plotted
values, i.e., they stay the same if the whole right-hand ternthe values of 18«L, obtained using our model, as function
in Eq. (2.2) is multiplied by 1+8'/Ld? This would leave of t. As one sees, the terms dependentLof?/d (which
invariant the results of Sec. Ill, but will modify the unsteady are very small, being large the diametkof the channel
result of the present section. However, we will stick the rea-cannot explain the anomalous slow-down, but also in the
soning leading to Eq.2.2), which outlines the actual role of large channel used by Schwarz and Rozen, they are not neg-
each rate-reducing factor rather than only to the ratio of thdigible. In particular, Fig. 3 shows that the switch to the re-
factors. gime of slower decline happens in correspondence to the
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FIG. 3. (a) Plot of the curve of equatioi4.4) at T=1.9 K,
choosing B=x/27w (y=1.55 and B’'=40. The initial value is

1/BxLy=3.854 (i.e., 1/L;=9.48x 107* cnP). The straight line is
solution (4.2). Points are experimental values of Schwarz and Ro-
[ zen(Ref. 12.

10 |-
I an intermediate stage of the evolution, and there is no
- reason to exclude thempriori in a detailed analysis of this
phenomenon.

V. DISCUSSION

-y
10 20 t (sec)

(b} T=17K

We have stressed that superfluid turbulence may be
exciting not only from the already known perspectives,
but also from the point of view of systems in which
the mfp becomes comparable to the size of the system.
Our proposal is a phenomenological statement analogous
to the modifications of transport coefficients in kinetic theory
of gases and in generalized hydrodynamics and aims
to stimulate this kind of research; i.e., accounting for
values oft andL, where the influence of the walls becomeswall effects reducing the rate of vortex formation and vortex
appreciable. decay. We have described these effects, due to the pinning

There are, however, several proposals to ascribe thef vortices on the walls, by means of E(.2), using a
anomalous slowing down of the vortex decay with timesimple mathematical form. It turns out that the new terms are
(see, for example, Refs. 12 and)2Most of these explana- able to describe in a simple way the transition from TI tur-
tions are based on macroscopic hydrodynamic ideas  bulence to TII turbulence. In this model, Tl turbulen@ew
explanation, too, is based on molecular hydrodynamicyalues ofL) is dominated by wall effects; namely, by vortex
ideas, in some senseThus, the fast decay is associatedlines pinned to the walls. Wheh becomes high enough in
with the homogeneous high-density tangle, whereas therder thatL™'2, and the average separation of vortex lines
slow one is related to the influence of spatial inhomogenebecomes lower thad, there is a fast reconnection of vortex
ities of the syste???2 Thus, according to Schwarz lines in the bulk of the fluid, and the effect of pinned vortices
and Rozel? and to Geurst and van Beeléhthis inhomoge- becomes negligible.
neity in the tangle would imply inhomogeneity in the On the other hand, when applied to the analysis of
flow, and viscous effects related to the normal fluidvortex decay after setting to zero the heat flux in counterflow
would come into play and become dominant, in such aurbulence, the correction terms introduced in Eg.2)
way that, during its deceleration, not immediately followedyield a decay of L as L~t'2 instead of Vinen's
by the superfluid, it would produce a certain small differenceresult L~t™, which would be valid for short times,
betweenv,, and v capable of sustaining the vortex tangle when L2 is sufficiently smaller than the diameter
for a long time. These authors use Vinen's equatibri), of the channel. Our equations show that, in contrast
but do not take into account nonlocal terms as those includedith Vinen’s result, which does not depend on the diameter,
in Eq. (4.3. We think that a consistent analysis of thein the other situations the decay depends dnas
decay should include them besides taking into account ~dt™1/2,
hydrodynamic effects related to the evolution equation of Notwithstanding this relative slowing down at intermedi-
V. Indeed, they are numerically important, at least, inate times, the full slow-down of the decay observed

FIG. 2. Plots of the curve of Eq4.4): (a) atT=1.5 K and(b) at
T=1.7 K, choosingB=x/2m and p’'=40. The initial values are
1/L5=1.52x10%cn? at T=1.5 K and 1L,=1.13x10°%cn? at
T=1.7 K. The straight line is solutiot#.2).
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