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We discuss a phenomenological equation for the evolution of vortex tangle in counterflow superfluid
turbulence, which takes into account the influence of the nonlocal effects, introducing into the original equation
of Vinen two simple corrective terms dependent on a nonvanishing ratio between the average separation
between vortex lines and the diameter of the channel. The equation allows one to describe, in relatively
good agreement with experimental results, the two turbulent regimes present in counterflow superfluid
turbulence and the transition between them. The decay rate of the vortex line densityL, when the heat
flux is suddenly turned off, is also investigated; due to the simplicity of the model, which does not take
into account the coupling of the line densityL with the superfluid velocity, this decay agrees with experiments
in the initial and intermediate stages, but does not describe the full slow-down observed at very long
times.
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I. INTRODUCTION

Nonlocal terms are receiving much attention in current
transport theory due to the recent stimulus of research on
nanoscale systems, where the size of the system becomes
comparable to the mean free pathsmfpd of particles. In fact,
this situation is found not only in small systems, but also in
macroscopic systems, when the mfp becomes sufficiently
long, as in the analysis of short-wavelength perturbations,
where the wavelength becomes comparable to the mfp. This
is, for instance, the case of low-density gases, which has
been studied in the framework of kinetic theory, or of
neutron-scattering experiments in liquids, described by mo-
lecular hydrodynamics.

We want to stress here some questions on a physical situ-
ation that is an interesting candidate to be considered from
this perspective. We refer to superfluid turbulence in narrow
channels,1–4 a situation that may be of practical interest in
cryogenic applications to keep small systems at low tempera-
tures by removing heat through the flow of superfluid helium
along thin capillaries.2

Superfluid turbulence in counterflow has been the subject
of many experiments and theories; the usual descriptions
consider a vortex tangle with vortex line densityL, giving
the total length of vortex lines per unit volume. The analysis
of L, for different values of the counterflow velocity, has
been undertaken mainly from phenomenological per-
spective,5–7 but very interesting microscopic models have
also been developed.8

From the phenomenological point of view, the most well-
known equation describing the evolution ofL under a coun-
terflow characterized by the intensityV of the relative veloc-
ity V between normal and superfluid components is the
Vinen’s equation,5 which is

dL

dt
= aVL3/2 − bkL2, s1.1d

where k=h/m is the quantum of vorticitysm is the mass
of the 4He atoms and h Planck’s constant; thus,
k=9.97310−4 cm2 s−1d, anda andb are phenomenological
dimensionless parameters, which may depend on tempera-
ture.

In experiments where turbulence is generated by thermal
counterflow in a tube of circular cross section, the vortex
line density is observed to develop from a low-density
statesTId to a higher-density statesTII d that can be associ-
ated with the homogeneous state.9,10 Vinen’s equation
describes satisfactorily only the fully developed second
turbulent regime, but not the TI turbulent low-density state
and, therefore, it does not account for the transition from TI
to TII regimes.

To derive his equation, Vinen assumes that the time
derivative ofL is composed of two opposite contributions

dL

dt
= FdL

dt
G

f
− FdL

dt
G

d
, s1.2d

where subscriptsf and d denote formation and destruction
of vortices per unit of time and volume, respectively. In
wide channels, the growth of the line density is due to
the mutual friction force between superfluid and normal
components and the decay is originated by a cascade-like
process of vortex breakup, due to the vortex reconnection,
but in narrow channels the walls also play an important
role.

Vinen assumes that the termfdL/dtg f depends on
the quantum of circulationk, the local and instantaneous
value of L, and the forcef between the vortex line and
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the normal component, which is linked to the intensityV of
the counterflow velocity; dimensional analysis leads to the
equation5,6

FdL

dt
G

f
= VL3/2f fF V

kL1/2G , s1.3d

wheref f is some dimensionless function of its dimension-
less argument. By analogy with the growth of a vortex ring,
Vinen assumed that the dimensionless functionf f is con-
stant, obtaining

FdL

dt
G

f
= aVL3/2, s1.4d

with a a dimensionless constant.
The form of thefdL/dtgd destruction term was determined

in analogy with classical turbulence, obtaining

FdL

dt
G

d
= − bkL2. s1.5d

A theoretical value forb, proposed in Ref. 5, isb=x /2p,
wherex is a constant of the order of unity, which depends on
temperature.

Equation s1.1d has been given a physical microscopic
basis by Schwarz, starting from statistical considerations
on vortex-line dynamics.8 In the microscopic model by
Schwarz, the vortex lines are represented in the parametric
form ssj ,td, j being the length along the line. The equation
of motion of the line depends ons8, s9 and on the higher-
order derivativess-, s-8 and so on, which follow a hierarchy
of evolution equations. To truncate this hierarchy, it is
assumed that the derivatives become uncorrelated in a
distance of order of the average vortex separationL−1/2.
Starting from this model, Schwarz is able to derive Vinen’s
equation.

An open question is what would be the evolution equation
for the tangle in situations in which the vortex separation
L−1/2, becomes comparable to the diameterd of the channel.
In fact, Eq. s1.1d is valid when the average separation be-
tween vortex lines is much smaller than the diameter of the
channeld, in which case the evolution ofL does depend on
the local values ofV and L. However, experiments have
been carried out in channels in wide range of diametersd, or
in a wide range of speedsV, in such a way that the value of
L−1/2/d may become comparable to 1; this happens, for
instance, for low values ofV, either in situations in whichV
is increasing to reach turbulence,11 or in situations in which
V or L are decreasing, as in turbulence decay.12 In fully
developed turbulence,L is high andL−1/2/d is likely to be
small even for narrow channels. Problems arise, however,
when L−1/2/d becomes comparable or higher than 1. These
situations are foundsad in narrow channels,sbd in the
transition from TI to TII turbulent regimes,scd in the late
stages of the decay of turbulence after the counterflow
velocity has been set to zero, andsdd in the transport of
short-wave second-sound across a vortex tanglesin this
case, the relevant ratio isL−1/2/l, with l the wave-length,
rather L−1/2/dd. These situations are of special interest for
researchers in nonconventional transport theory, because

they provide examples of situations in which the size of the
system or the typical wavelength of perturbation is compa-
rable to the mfp.

In the present paper, we discuss a phenomenological gen-
eralization of Vinen’s equation, including nonlocal contribu-
tions related to a nonvanishing valueL−1/2/d, and we apply
them to the study of the transition from TI to TII regimes and
of some aspects of the decay of vortices in counterflow su-
perfluid turbulence, with the aim of contributing to describe
such phenomena and to illustrate the relevance of nonlocal
effects.

In Sec. II, we discuss our proposed phenomenological
generalization of Eq.s1.1d, taking into account these kinds
of effects. As an illustration of the possible physical interest
of the generalized equation, in Secs. III and IV we apply it
to the study of two situations in which the presence of
nonlocal terms is important: the transition from TI to TII
turbulent states and the decay of vorticity in counterflow
superfluid turbulence. The results show that the proposed
generalized equation for the evolution of vortex line density
L is able to explain the transition from TI to TII turbulent
regimes and yields a slower decay ofL, at intermediate
times. We do not claim that these terms are the only possible
explanation of the observed effects, but they are shown to
have a non-negligible influence, in such a way that they
should be taken into account in future analyses of these
problems.

II. PHENOMENOLOGICAL GENERALIZATION
OF VINEN’S EQUATION

Our aim is to incorporate to the usual hydrodynamical
description of superfluid turbulence based on Eq.s1.1d non-
local effects, arising when the ratioL−1/2/d is not negligible,
and therefore allowing one to incorporate into the equation
the effects of the walls.

First of all, we briefly comment that Vinen himself pro-
posed to take into account the effects of the walls, introduc-
ing in the production term of Eq.s1.1d a term proportional to
L−1/2/d:6

dL

dt
= − bkL2 + aVL3/2F1 − v

L−1/2

d
G , s2.1d

with v a phenomenological positive parameter. The intuitive
interpretation of Eq.s2.1d is that the vortex generation
mechanism is inactive within a characteristic distanceL−1/2

from the wall. Since this idea is related to the generation
mechanism, it is logical that the decay term is left unchanged
ssee Refs. 7–10d.

However, according to Schwarz,8,12,13 in narrow
channels the walls play an important role in vortex
dynamics, both in generation and decay, as fluctuations
are assumed to grow and annihilate on them, whereas
for wider channels the onset of turbulence is more similar
to that in classical fluids. Therefore, these arguments, as
well as experimental results12,14 on the decay of turbulence,
suggest the need to modify as well the destruction term,
not only the generation term. Consequently, in this work,
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we propose to modify Vinen’s equations1.1d in the simple
form

dL

dt
=

aVL3/2

1 + a8SL−1/2

d
D2 −

bkL2

1 + b8SL−1/2

d
D2 . s2.2d

Here a8 and b8 are coefficients that could depend on tem-
perature. It is obvious that whenL−1/2/d is very small, one
recovers Vinen’s equation.

Now we examine the physical motivations of the correc-
tion factors, beyond the simple consideration that the
corresponding generalized terms should be always positive.
These corrections indicate a reduction both of the rate
of formation and of the rate of decay of the vortices
when L−1/2 is not negligible as compared tod. Physical
reasons for this reduction may be attributed to the pinning
of vortices on small irregularities of the walls. This may
have two different opposite contributions: due to the
tendency to remain pinned on the walls instead to going
fully to the bulk flow, the walls would reduce the rate of
formation of the vortices in the flow, as compared with
the same volume of the fluid in the absence of the wall.
On the other hand, the fact that, once pinned on the walls,
the vortices become more resistant to elimination would
imply a reduction in the rate of destruction. It is not cleara
priori which of these reductions should be predominant
over the other one. Our analysis will allow us to compare the
consequences of both of them with experimental observa-
tions related to the transition from TI turbulence to TII
turbulence.

Beyond these physical motivations to expect a reduction
of the formation and the destruction rates, we briefly
mention that in other different contextsskinetic theories
of gases,15,16 generalized hydrodynamics,17 and extended
thermodynamics18,19d nonlocal corrective terms have
been proposed that have the phenomenological form adopted
in Eq. s2.2d. Indeed, in the presence of a perturbation
with wave vector k, the classical transport coefficients
sthermal conductivityl and shear viscosityhd are modified
in the form

lGradskd =
l0

1 + l2k2, hskd =
h0

1 + l2k2 , s2.3d

l being the mfp of the particles in the gas. Thus, lacking, for
the moment, detailed microscopic models to describe the ex-
pected reduction of the rate of formation and destruction of
the vortices, we propose in Eq.s2.2d to describe them in a
way analogous to Eq.s2.3d, i.e., by introducing a second-
order polynomial inL−1/2/d in the denominator, which is a
form simple enough to allow for sufficiently detailed analy-
sis of its consequences.

III. THE TRANSITION FROM TI TO TII TURBULENT
REGIMES

According to Vinen’s equations1.1d, the stationary regime
of counterflow superfluid turbulence is

L1/2 =
a

b

V

k
. s3.1d

This is in agreement with experiments at low and at high
values ofV, but with different values of the proportionality
coefficientssthe so-called TI and TII regimesd separated by a
transition region. Vinen’s equations1.1d does not describe
the two different values of the proportionality coefficient be-
tweenL1/2 andV, nor the transition from the one to the other.
In contrast, our proposed generalizations2.2d describes these
features in a natural, though relatively simplified way, as is
shown in this paragraph.

Indeed, forL different from zero, the stationary solution
of Eq. s2.2d can be written as

V = k
b

a
L1/2Ld2 + a8

Ld2 + b8
. s3.2d

Using suitable values of the coefficients, which will be dis-
cussed below, this equation exhibits a crossover from the
region of TI turbulence, whereL is small, dominated by
nonlocal effects and by the influence of the walls, to a TII
turbulent region, whereL is high and does not depend on the
size of the channel, corresponding to Vinen’s equation. In
fact, for very small values ofL, Eq. s3.2d can be approxi-
mated as

V . k
b

a

a8

b8
L1/2 or L1/2 .

a

b

b8

a8

V

k
= h1

V

k
, s3.3d

while, for high values ofL1/2, it results from Eq.s3.2d that

V . k
b

a
L1/2 or L1/2 .

a

b

V

k
= h2

V

k
. s3.4d

We recall now that in the TII turbulent regimeshigh val-
ues ofL1/2d, the line densityL is well described by Vinen
solution s3.1d. As a consequence, the ratioa /b furnishes an
approximate value of the coefficienth2:

h2 =
a

b
. s3.5d

From Eq.s3.4d we also obtain the ratio of the coefficientsa8
andb8 as

a8

b8
=

h2

h1
. s3.6d

Observe that the transition from TI to TII turbulent re-
gimes happens when the counterflow velocityV reaches a
critical value Vc2 and the quantityy=L1/2d a valueyc2. In
correspondence to this transition, the slope of the stationary
solution s3.2d undergoes a rapid change and the curvature
becomes equal to zero. Therefore, at the pointVc2 Eq. s3.2d
must present an inflection point. The coordinate of this flex
point can be easily expressed as function ofa8 andb8 in the
following way:

Vc2 =
k

d

1

4

b

a
Î3b8S3 +

a8

b8
D , s3.7ad
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Lc2
1/2 =

1

d
Î3b8. s3.7bd

As one sees, we obtain forVc2 andLc2
1/2 a 1/d dependence,

in agreement with experiments.14 Thus the corrective coeffi-
cients a8 and b8 characterize the transitions from TI to
TII turbulent regimes: indeed, Eq.s3.7bd allows us to deter-
mine, using the experimental value ofL at the transition
TI-TII, the coefficient b8. Equations3.7ad, taking into ac-
count Eq. s3.5d, which furnishes an approximate value of
b /a, allows us to determine the ratioa8 /b8 sand therefore,
the value ofa8d. The very rapid change ofL with V nearVc2
furnishes only a restricted interval of possible values forLc2;
therefore, in the following, comparing with experimental
data, we chooseyc2=11 for both temperaturess1.5 and
1.7 K, which will be examined belowd, which corresponds to
b8=40. The values ofh1, h2, a8, and b8 obtained are re-
ported in Table I.

In Fig. 1, the plots of the stationary solutionss3.2d, at
temperaturesT=1.5 K andT=1.7 K, are shown. We must
observe that fixing the parametersh1, h2 in Eqs. s3.3d and
s3.4d to obtain the desired asymptotic behavior andb8 in Eq.
s3.7bd to describe the observed value ofLc2, leads to a slight
underestimation of the critical velocityVc2 in Eq. s3.7d. This
could indicate that the nonlocal terms may have a more com-
plicated form than the one assumed in Eq.s2.2d; for instance,
the exponent in the termL−1/2/d could be different from 2, or
higher-order terms could be considered, maybe an infinite
number of terms through a continued-fraction expansion.
However, since for the moment we do not have a sufficiently
clear microscopic motivation for such a change, we will
keep the simple form proposed in Eq.s2.2d, which clearly
shows that nonlocal effects cannot be ignoreda priori, but
may play an important role in the transition. Indeed, the
present model allows us to describe in a simple way the
existence of such a transition from the TI to the TII turbulent
regimes, and to obtain it with relatively good agreement with
experimental results, especially for the lowest value of the
temperature.

A description of the microscopic phenomenon underlying
the TI-TII transition, which agrees with Eq.s2.2d can
be the following: the TI turbulent regime is an inhomoge-
neous and locally polarized state dominated by the
influence of the walls. When the counterflow reaches
the critical valueVc2, this state becomes unstable and the
flow undergoes a transition to the fully developed turbulent
regime TII, which is homogeneous and independent on
the walls.

It is seen that the reduction in the rate of formation
sdescribed bya8d is much higher than the reduction in the

rate of decaysgiven by b8d. This could be interpreted in
terms of a higher tendency of vortices to remain pinned
on the walls than to pin on them, when they are in motion;
indeed, this means higher difficulty that the vortices
unpin and go free to the bulk flowshigh reduction of forma-
tion, due to the presence of the walld than that they pin
to the irregularities of the wallslower influence of the walls
on the decay, which, however, it is also reducedd. This strong
reduction of the formation term in comparison with the
destruction one agrees qualitatively with Vinen’s proposal
s2.1d, in which only the formation term was reduced. How-
ever, the reduction in the decay may also be experimentally
observed, in contrast with Eq.s2.1d, which does not modify
the corresponding termsand does not describe the TI-TII
transitiond.

Our model does not strictly require that the normal fluid
becomes turbulent, as the explanation of the TI-TII transition
proposed by Melotte and Barenghi20 requires; what it shown
is a drastic increase in the line densityL, which practically
eliminates the relatively stabilizing influence of the walls;
the corresponding decrease in the average separation be-
tween vortex linessL−1/2d would favor vortex reconnections
in the bulk of the superfluid, thus contributing to reinforce

TABLE I. Values of the parameters appearing in Eq.s3.2d for
two different values of the temperature. The values forx are from
Ref. 13.

T sKd h1 h2 x b8 a8 a8 /b8

1.5 0.0205 0.127 0.78 40 247 6.19

1.7 0.0243 0.166 1.3 40 274 6.86

FIG. 1. Plots ofy=L1/2d via x=Vd/k as result from Eq.s3.2d:
sad at T=1.5 K andsbd at T=1.7 K, choosinga /b=h2, b8=40 and
a8 obtained from Eq.s3.6d and given in Table I. Points are experi-
mental values of Martin and ToughsRef. 11d.
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the increase ofL, then yielding a relatively abrupt transition.
However, the possibility that the normal fluid becomes tur-
bulent cannot be excluded.

Note also that transition TI-TII is observed in channels
whose transverse sections have a low aspect ratiosi.e.,
circle, squared but not in those with high aspect ratiosi.e.,
elongated ellipses, elongated rectanglesd,1,2 where only one
turbulent state, similar to state TII, is observed. From the
perspective of the present paper, this fact is not surprising;
in a cylindrical channel the TI-TII transition is observed
when L−1/2/d is of the order 10−1, whereas in a rectangular
channel the transition from TI to TII would be expected
to take place forL−1/2/dmax.10−1, but if dmax is large,
such a transition would take place for small values ofL
and therefore the TI regime would be reduced to a very
narrow range of flows, and it would be practically unobserv-
able.

IV. VORTEX DECAY TOWARD A QUIESCENT STATE

In the preceding section it was seen that the wall effects
on the reduction of vortex formation rate were much higher
than on the reduction of the decay rate. However, the latter
one also deserves attention, due to its role on the decay of
vorticity in counterflow superfluid turbulence, after the heat
flux, which is proportional toV, is suddenly set to zero. This
is a somewhat artificial situation, asV will decay not sud-
denly, but follows a dynamical equation; however, it will be
enough to explore some new features of Eq.s2.2d in a prob-
lem independent of the previous one, and to illustrate the
convenience to modify not only the generation term, but also
the decay term.

According to Vinen’s equations1.1d, the decay ofL after
V is set to zero is described by

dL

dt
= − bkL2, s4.1d

thus leading to

1

Lstd
=

1

L0
+ bkt. s4.2d

This solution corresponds to the decay of a homogeneous
vortex tangle, which occurs whenL is high. However, com-
parison with experimental data12,14 indicates that the decay
of L is slower than his prediction. We will study here how
nonlocal terms in Eq.s2.2d, increasingly important asL is
lowered, may contribute to the mentioned slowing down of
the decay. It must be noted, in fact, that the results for the
steady state situation described in Sec. III do depend on the
ratio of the rate-reducing terms, rather than on their absolute
values, i.e., they stay the same if the whole right-hand term
in Eq. s2.2d is multiplied by 1+b8 /Ld2. This would leave
invariant the results of Sec. III, but will modify the unsteady
result of the present section. However, we will stick the rea-
soning leading to Eq.s2.2d, which outlines the actual role of
each rate-reducing factor rather than only to the ratio of the
factors.

With this aim, we now analyze the decay process using
Eq. s2.2d; namely,

dL

dt
= −

bkL2

1 + b8
L−1

d2

. s4.3d

The solution of Eq.s4.3d is

t =
1

bk
F 1

L
−

1

L0
+

b8

2d2S 1

L2 −
1

L0
2DG . s4.4d

First, we observe that, for high values ofL, the terms
depending on the dimensiond of the channel become negli-
gible, and one recovers Vinen’s decays4.2d. For decreasing
L, the influence of nonlocal terms will become more impor-
tant and the decay will be slower. In fact, whenL is small
enough in such a way that the nonlocal terms become domi-
nating in the denominator of Eq.s4.3d, one is lead to a decay
of the kind

1

L2std
< 2kd2 b

b8
t, s4.5d

instead of Eq.s4.2d. Thus, Eq.s4.3d exhibits a crossover from
the initial behaviors4.2d, corresponding to Vinen’s equation,
independent on the size of the channels, to evolutions4.5d,
dominated by nonlocal effects, and by the influence of the
wall. Indeed, expansions4.5d suggests that for smallL, L
decays asL, t−1/2.

In Fig. 2 we have plotted the solutions4.4d of Eq. s4.3d at
T=1.5 K andT=1.7 K, choosingb=x /2p andb8=40 sthis
value forb8 is the one found in the previous section to de-
scribe the TI-TII transitiond. We have chosen as initial values
for L the highest values used in the experiments described in
Ref. 11.

We have also compared our modelssmaintaining the same
value of the corrective coefficientb8d with experimental data
of Schwarz and Rozen.12 The counterflow channel of
Schwarz and Rozen was a large rectangular waveguide tube
1.00 by 2.35 cm in cross section, the temperature of the liq-
uid wasT=1.9 K.

Figures 17 and 18 of Schwarz and Rozen12 show
the presence of two distinct decay regimes. Introducing
the quantity w=1/bkL, the slope of the experimental
curve, very near tot=0 sFig. 18 of Ref. 12d is about 1
and remains constant for the first few secondss2 or 3 sd;
this regime corresponds to the rapid decay characteristic
of the homogeneous statesas predicted by Vinend. The
vortex tangle then switches to a regime of much slower
decline, where the slope of the experimental curve is
about 0.09.

In order to compare the results of our models with
the experimental values of Ref. 12, in Fig. 3 we have plotted
the values of 1/bkL, obtained using our model, as function
of t. As one sees, the terms dependent onL−1/2/d swhich
are very small, being large the diameterd of the channeld
cannot explain the anomalous slow-down, but also in the
large channel used by Schwarz and Rozen, they are not neg-
ligible. In particular, Fig. 3 shows that the switch to the re-
gime of slower decline happens in correspondence to the
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values oft andL, where the influence of the walls becomes
appreciable.

There are, however, several proposals to ascribe the
anomalous slowing down of the vortex decay with time
ssee, for example, Refs. 12 and 21d. Most of these explana-
tions are based on macroscopic hydrodynamic ideassour
explanation, too, is based on molecular hydrodynamics
ideas, in some sensed. Thus, the fast decay is associated
with the homogeneous high-density tangle, whereas the
slow one is related to the influence of spatial inhomogene-
ities of the system.12,22 Thus, according to Schwarz
and Rozen12 and to Geurst and van Beelen,21 this inhomoge-
neity in the tangle would imply inhomogeneity in the
flow, and viscous effects related to the normal fluid
would come into play and become dominant, in such a
way that, during its deceleration, not immediately followed
by the superfluid, it would produce a certain small difference
betweenvn and vs capable of sustaining the vortex tangle
for a long time. These authors use Vinen’s equations1.1d,
but do not take into account nonlocal terms as those included
in Eq. s4.3d. We think that a consistent analysis of the
decay should include them besides taking into account
hydrodynamic effects related to the evolution equation of
V. Indeed, they are numerically important, at least, in

an intermediate stage of the evolution, and there is no
reason to exclude thema priori in a detailed analysis of this
phenomenon.

V. DISCUSSION

We have stressed that superfluid turbulence may be
exciting not only from the already known perspectives,
but also from the point of view of systems in which
the mfp becomes comparable to the size of the system.
Our proposal is a phenomenological statement analogous
to the modifications of transport coefficients in kinetic theory
of gases and in generalized hydrodynamics and aims
to stimulate this kind of research; i.e., accounting for
wall effects reducing the rate of vortex formation and vortex
decay. We have described these effects, due to the pinning
of vortices on the walls, by means of Eq.s2.2d, using a
simple mathematical form. It turns out that the new terms are
able to describe in a simple way the transition from TI tur-
bulence to TII turbulence. In this model, TI turbulenceslow
values ofLd is dominated by wall effects; namely, by vortex
lines pinned to the walls. WhenL becomes high enough in
order thatL−1/2, and the average separation of vortex lines
becomes lower thand, there is a fast reconnection of vortex
lines in the bulk of the fluid, and the effect of pinned vortices
becomes negligible.

On the other hand, when applied to the analysis of
vortex decay after setting to zero the heat flux in counterflow
turbulence, the correction terms introduced in Eq.s2.2d
yield a decay of L as L, t−1/2 instead of Vinen’s
result L, t−1, which would be valid for short times,
when L−1/2 is sufficiently smaller than the diameter
of the channel. Our equations show that, in contrast
with Vinen’s result, which does not depend on the diameter,
in the other situations the decay depends ond as
L,d−1t−1/2.

Notwithstanding this relative slowing down at intermedi-
ate times, the full slow-down of the decay observed

FIG. 3. sad Plot of the curve of equations4.4d at T=1.9 K,
choosing b=x /2p sx=1.55d and b8=40. The initial value is
1/bkL0=3.854 si.e., 1 /L0=9.48310−4 cm2d. The straight line is
solution s4.2d. Points are experimental values of Schwarz and Ro-
zen sRef. 12d.

FIG. 2. Plots of the curve of Eq.s4.4d: sad at T=1.5 K andsbd at
T=1.7 K, choosingb=x /2p and b8=40. The initial values are
1/L0=1.52310−6 cm2 at T=1.5 K and 1/L0=1.13310−6 cm2 at
T=1.7 K. The straight line is solutions4.2d.
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at very long times, is still much slower than the decay
at intermediate times. The most plausible explanation
for such long time slowing down is that proposed by
Schwarz and Rozen12 according to which the viscosity
of the normal component plays a dominant role. For
narrow channels,the viscous deceleration of the normal fluid
would be much smaller than in wide channels, and it could
be short enough to leave observable the slow decay due to
the nonlocal terms.
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