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Spin-glass chain in a magnetic field: Influence of the disorder distribution on ground-state
properties and low-energy excitations
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For the spin-glass chain in an external fiblda nonzero weight at the origin of the bond distributjgd) is
known to induce a nonanalytical magnetization at zero temperaturg(Jpr A|J|*" nearJ— 0, the magne-
tization follows the Chen-Ma scalinigl ~h#/(2*#)_|n this paper, we numerically revisit this model to obtain
detailed statistical information on the ground-state configuration and on the low-energy two-level excitations
that govern the low-temperature properties. The ground state consists of long unfrustrated intervals separated
by weak frustrated bonds. We accordingly compute the strength distribution of these frustrated bonds, as well
as the length and magnetization distributions of the unfrustrated intervals. We find that the low-energy exci-
tations are of two typedi) one frustrated bond of the ground state may have two positions that are nearly
degenerate in energy and) two neighboring frustrated bonds of the ground state may be annihilated or
created with nearly zero energy cost. For each excitation type, we compute its probability density as a function
of its length. Moreover, we show that the contributions of these excitations to various obsel(spleleific
heat, Edwards-Anderson order parameter, susceptibdiy in full agreement with the direct transfer matrix
evaluations at low temperature. Finally, following the special bimodal cdseviiere a Ma-Dasgupta, RG
procedure has been previously used to compute explicitly the above observables, we discuss the possibility of
an extended RG procedure. We find that the ground state can be seen as the result of a hierarchical “fragmen-
tation” procedure that we describe.
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[. INTRODUCTION lengthl is_of orderm~ VI, i.e., it gives rise to an energy of
order 4yl in the external fieldh, whereas a pair of two
frustrated bonds has for energy cost As a consequence,
the ground state is made of unfzrusztrated domains having the
_ typical Imry-Ma lengthL,, ~4J</h=. The real-space Ma-
H=- 2 Jioioie = h; 7i @) Dasgupta renormalization groypef. 3 allows to construct
explicitly the positions of frustrated bonds and to compute
to obtain detailed results on the ground state and the lowvarious statistical properties, such as the distribution of the
energy excitations as functions of the expongint 0, char-  domain lengths. This approach, moreover yields the statistics
acterizing the weight of the coupling distribution for small of low-energy two-level excitatiorSA natural question is
couplings as then, What are the corresponding results for a general distri-
-1 bution p(J) that is not bimodal? It turns out that a different
p(‘])JfOA|‘J| ' 2 behavior occurs ip(J) has some weight at small couplings
) ) ) ) J~0. This case, which includes the Gaussian distribution,
As is well known, the previous model is equivalent to acompletely changes the physics of the model, as we now

In this paper, we consider a one-dimensional spin-glas
chain in a small external field>0,

random-bond and random-field ferromagnetic cHain, discuss.
H=->13|SS.1-h2 xS 3) B. Distributions with small couplings p(J)=A[J|# % Chen-Ma
i i argument
wherexi:H}:1 sgn(J)). For distributions presenting some weight at small cou-

plings (2) the above Imry-Ma argument for the bimodal case
is replaced by the following Chen-Ma arguménithe essen-
tial idea is that frustrated bonds will be now located on weak
bonds, in contrast with the bimodal case where the cost of a
For the special case of the bimodal distributidr+J  frustrated bond is the same everywhere. More precisely, the
with probabilities(1/2,1/2, the model(3) corresponds to a Chen-Ma(CM) argument is as follows: the bonds weaker
pure Ising chain|Jj|=J in a bimodal random fielch,=hx  than some cutoffJ|<Jcy, are separated by a typical dis-
=+h. The Imry-Ma argumenstfor the random-field Ising tance of order
chain can be immediately translated for the spin glass in an P (4)
external field, since the domain walls of the random field cM oM
Ising chain now become frustrated bonds for the spin glassthe magnetization of the unfrustrated domain between two
the random magnetizatiom of an unfrustrated domain of such weak bonds is of order,

A. Bimodal distribution J;=+J: Imry-Ma argument and
real-space renormalization group
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The flipping of such a domain thus involves a typical energy @_’-e———-e—lie—’e_—e
of orderJgy for the creation of two weak frustrated bonds,
but allows us to gain a magnetic energy of ordern.y

~hJ2, The balance between the two terms yields an opti-
mal cutoff of order:

0
Jo~ P2, U Ny
so that the magnetization per spihy presents the following

nonanalytical behavior,

-6.0 u=3
M, ~ Mem pyel (2+i) 7 B_/_E/E/‘B/B———E

lem

The zero-temperature susceptibility, 70,55 Y Y Y o
M Inh
T=0) ~— ~h2@w, 8
X ) h ® FIG. 1. Magnetization per spin in the ground state as a function

. . . . of the external field varying betwedr¥5x 10°° andh=1x 10"*in
thus diverges at zero field— 0. For instance, the Gaussian 4 log-log plot, for disorder distributiond1) with exponentsu=1,

distribution p(J), which corresponds to the exponemtl, 5 3 The corresponding slopes are in full agreement with the exact

leads to the behaviaWs~h*3 The critical exponeni/(2  exponents 1/3, 1/2, 3/EEq. (12)].

+u) for the magnetization in the external field was found to

be exact via transfer matrix calculations by Gardner angyner we have used the following distribution for the cou-

Derrida® where the prefactor was, moreover, computed. Th‘?)lings:

presence of small couplings does induce interesting new

properties for the ground state with respect to the bimodal

case. p) =Bt for —1<9<1, (11)
Chen and Ma have also analyzed the low-temperature 2

properties, in particular in the regime where the temperature

T is much smaller than the typical enerdyy of a domain.  yielding A= /2. The results given in this section have been

In this regimeT <Jcy (6) only a small fraction of the two-  gbtained from averages of over®liddependent chains con-
level excitations will be excited. The densigyE=0) of ex-  taining N~ 1 sites.

citations near zero energy can be estimated to scéle as
p(E=0) ~ 1 y 1 _ JéKAl ~ R ) A. Magnetization per spin
lem Jewm As a first observable, we have computed the magnetiza-
where 11, represents the density of the frustrated bonds irfion per spin which corresponds to a thermodynamic quantity
the ground state and whereJk{, represents the fraction of Which is exactly known from a transfer matrix calculation
these frustrated bonds that will be involved in excitations ofdone by Gardner and Derrida who have obtaihed,
vanishing energye— 0. This excitation density is then ex-

pected to govern the leading term of the specific heat at low AA 1’#+2F(‘ﬂ)
temperaturé, ngaﬁ: (u+ 1)( 2) MIZ hH/(2+)
2 h—0 wlp+2) (o
C-TorE=0+ o(T?). (10) (12)
T—0

In this paper, our aim is to study in some detail the statisWe have checked that both the scalinghitsee Fig. 1 and
tical properties of the ground-state configuration and of thghe prefactor are in excellent agreement with the exact result
low-energy excitations that govern low-temperature proper{12).
ties. Now that we have identified the regime imwhere the
scaling(7) is satisfied, we may turn to more refined statistical
properties for which, to the best of our knowledge, no exact

Il. STATISTICAL PROPERTIES OF THE GROUND-STATE expression is available.

CONFIGURATION

In this section, we present the numerical results that we B. Probability distribution of frustrated links
have obtained via the zero-temperature transfer-matrix
formulatior? from which one can obtain the ground-state We have computed the normalized probability density of
configuration{a;} in each given sampléJ;}. In the whole coupling|J| among frustrated links as
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FIG. 2. Rescaled probability distributior,_,[K=|J|/Icw(h)]
of frustrated links in the ground state: the data for various fields
namely h=1x 1072 (line), h=5x 10" (circles, and h=1x10*
(triangles follow the same master curve.

N¢(J)

P'(J)=
J dJ'N¢(J)

(13

where N;(J) represents the number of frustrated links of
strengthd.
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FIG. 3. Probability  distributions PL(RE r/rem(h)

=[|3]/3cm(h)]#) of the frustrated links for various disorder distribu-
tions (11) corresponding to the exponents=1 (bold ling), ©=0.5
(thin line), and x©=0.1 (dashed ling

state become simpler, and we will discuss this point in more
detail in the Appendix.

C. Probability distribution of the lengths of unfrustrated
intervals

According to the Chen-Ma argument, the lengtietween

According to the Chen-Ma argument, the frustrated linksyyo frustrated links has for typical scallgy~ h™24/2*), In-
should have a typical strength of ordagy ~h*'®". We geeq, we obtain that the appropriate rescaled variable for the
have thus plotted in Fig. 2 the probability distribution of |ength of unfrustrated intervals is
frustrated links in terms of the appropriate rescaled variables,

B
- JCM(h) - h2/(2+,u)’

(14)

for various h with the same initial distributior{11) corre-
sponding tou=1.

To compare the distributions of frustrated links corre-
sponding to different disorder distributiongJ) character-
ized by different exponentg (11), it is more convenient to
consider the reduced variable,

r= |J H (15)
which is distributed with the flat distribution,
P = go<r<1), (16)

for any u in (11). Taking into account the Chen-Ma scaling,

rem(h) = Jy(h) = /@), (17)

we have plotted in Fig. 3 the probability distributicﬁL[R
=r/rcy(h)] of the frustrated links for various disorder dis-
tributions corresponding to the exponepts 1, ©=0.5, and
u=0.1. Foru=1, this distribution is rather smooth, whereas
it becomes steeper as decays. In particular, for=0.1, it
becomes close to a simple theta functi6(R<1). This
shows that in the limitu— 0O, the properties of the ground

|
lem(h)

ash varies. The probability distributio®,(\) of the scaling
variable\ is plotted in Fig. 4 for varioug.

For A—0, in contrast with the bimodal case whePéx
=1/l,,) presents an essential singulafityye obtain here
power-law behavior near the origin,

N = |h2/Zw), (18)

PN o« N, (19)
A—0

with an exponeni(w) that grows withu (see Fig. 4. For
instance, foru=1, the best fit yields the exponeatu=1)
=0.8. For large\, the decay is exponential,

e_y(,u))\ .

P, MN) (20)

oC
A—0
For u=1, the best fit yieldgy(u=1)=0.25.

D. Probability distribution of the magnetizations of
unfrustrated intervals

Similarly, we find that, in agreement with the Chen-Ma
argument, the appropriate rescaled variable for the magneti-
zation of unfrustrated intervals is
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FIG. 4. Rescaled probability distributiof,(A=1/lcpn) of the
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length between two frustrated bonds of the ground state, for various F|G. 6. Low-temperautre behaviors of the specific l@abf the

initial disorder distributions characterized by the exponemntsl
(full line), u=1/2 (dashed ling and x=1/4 (circles.

©” mew(h)

ash varies. The probability distributio®,(w) of the scaling
variablew is plotted in Fig. 5 for variougu.
Again, for «— 0, we obtain power-law behaviors,

= mhp/@), (21)

QM( w) B ,

w—

(22
with, for instance 8(uw=1) ~ 1.5, whereas the decay for large
w is exponential,

Q,u(w) o« @ W

w—x

(23)

with 8(x=1)=0.5.
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FIG. 5. Rescaled probability distributiod,[w=m/mcy(h)] of

Edwards-Anderson order parameteand of the susceptibility as

a function of the external field in a log-log plot for the special value
u=1. The exponents are, respectively).04 for the specific heat,
—0.66 forqg, and —0.6 for y (see text for more detajls

Ill. LOW-TEMPERATURE PROPERTIES

A. Low-temperature transfer-matrix results for various
observables

We have first computed via the transfer matrix various
observables in the low-temperature regimie Joy(h) (6).
For instance, foh=0.02 corresponding tdqy(h)=0.07, we
have checked, for temperaturds=2.103, T=3.103 T
=4.103, andT=5.1073, that the leading term of the specific
heat is linear inT,

<E3>-<E\>?

C=
TN

o T,
T—0

(24)

and that the leading term of the susceptibility is a constant,
_< MZ > - <My>2
TN

o« cte.
T—0

x(T) (25

We have also found that the Edwards-Anderson order param-
eter deviates linearly in temperature from the zero-
temperature valugga(T=0)=1,

Oea= <0, >2 = 1-T(cte).

—

(26)

We have then studied the dependence in the external field
h at fixed temperature. For instance, f5+5.10°%, we have
studied the dependence =107 to h=10"" (see Fig. 6.
The results for the specific heat are in good agreement with
the Chen-Ma predictiofEgs. (10) and(9)),
9 ~ h2(,u—l)/(2+,u),

27
TT—>O ( )

the magnetization between two frustrated bonds of the ground stat@S Well as the susceptibility,

for various initial disorder distribution characterized by the expo-
nentu=1 (full line) u=1/2 (dashed ling w=1/4 (circles.

() = 2w,
T—0

(28)
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We have also computed the Edwards-Anderson order pa®-0008 '
rameter and have found the same exponent as for the susce
tibility (28),

1-0ga ~ pr2e, (29) 0.0006
T 1-0

which can be explained from the analysis in terms of the
low-energy two-level excitations, as we now explain. 0.0004

B. Interpretation in terms of low-energy two-level excitations

We have already given the expressidf) of the specific ~ 0.0002
heat in terms of the densify(E=0) of excitations near zero
energy. Similar expressions for the Edwards-Anderson ordel
parameter and the susceptibility refad,

0.0000 ‘ '
1- o 0.00 1.00 2.00 3.00 4.00
%\ ~ 2f dllp(E=0), (30) A
=0 Jo FIG. 8. Densities of the three types of low-energy excitations

. present in Eq(32) in terms of their rescaled lengtt=1/1cp(h) in

” the caseu=1.
X = 2f dmn?p(E=0,m), (31) *“

T—0 —

B , o J,, that can be displaced to another position of couplipg
where p(E=0,1) represents the density of excitations of (inside the intervals defined by the two frustrated neighbors

lengthl, and wherep(E=0,m) represents the density of ex- f 3,) with almost no energy cost. The energy difference,
citations of magnetizatiom. Note that in the random field

chain? the magnetization of a ferromagnetic domain is equal
to its length, whereas here in the spin-glass chain, that is not
the case, since the magnetization of an unfrustrated domajgyolves the defrustration af,, the frustration ofl,, and the
scales asl. This is why the scaling il is the same here for - magnetizatiorm,, between these two links.

these two observables. N _ (2) The excitations of type 2 involve a pair of neighbor
We have numerically computed the probability density of¢, \«-ated bonds that can be annihilat@rﬁni(E:O,l)] or

excitations, as a function of thelr_ sizeand (_)f their type. _that can be createﬂo(z) (E=0,1)] with almost no energy
Indeed, we obtain by an exhaustive numerical enumerat|onost crea

that the total density of low-energy excitations is exactly the®OSt
sum of three contributionésee Fig. 7,

AEW = =23 + 23| + 2hmy, < T, (33

N " o AEGy =23/ 23 ]+ 2hm, < T, (39)
ptot(E = Ovl) = pdisp(E = O!I) + panni(E = Ovl) + pcrea(E = Oal) .

(32 AE2 =23, +2|3,| + 2hmy, < T. (35)

L (1) = .
(1) The excitations of type 1, of densi isp(E—O,I), in-

volve a single frustrated link of the ground state, of coupling €S WO types of excitations are symmetric and are thus

expected to correspond to the same distribution,

i iy k [
Grouwd Sate 0 fgo o { Pan(E=01)=pR{E=0,), (36)
. . - / which we have checked in our numerical results. The densi-
Displacement ¥4 1o -’g' 0 O ties of these excitations in terms of their rescaled length
N > > =I/lcy(h) are given in Fig. 8 foru=1.
o . ; / We have, moreover, checked the relatigh6),(30),(31)
Annihilation o f}{ <0 between, on the one hand, the specific heat, the Edwards-
S

4
5 B 5

~

0

Creation iy C Jo ko m
< ¢ ; 4 g

N
RVATN

Anderson order parameter, and the susceptibility obtained
from the low-temperature transfer-matrix calculations, and,
on the other hand, the total number of excitations, their av-
eraged length, and their averaged square magnetization. The

TR
agreement shows that the excitations described above are the
FIG. 7. Nature of the low-energy excitations. The ground state i€2nly ones that play a role in the low-temperature behavior of
made of long unfrustrated intervals separated by frustrated bond§l€se observables. The present analysis in terms of the sta-
called---ig,jo. kol - LOw-energy excitations may be of several tistics of low-energy excitations thus gives a microscopic
types(displacement, annihilation, or creation of frustrated bonds interpretation of the low-temperature equilibrium properties.
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IV. RENORMALIZATION PROCEDURES IN EACH no interval to flip, we have obtained the ground state, since
SAMPLE by definition the ground state is stable upon the flip of any
interval.

As already mentioned in the Introduction, in the bimodal
case 4, there exists a real-space RG procedure that allow
us to compute exactly the statistical properties of the groun

igiiést(iitsjcct} ﬁ)svipeig?miggi?:t?ﬂgigﬁj urginsu\(lavsetliloisi;h:s tained that, actually, the links that become frustrated during
gy ' q the procedure never get “unfrustrated” later in this proce-

follows: Is there a generalized RG procedure that would be . : . .
valid for the spin glass beyond the bimodal calse +J? dure. And in fact the following hierarchical RG procedure,

Before trying to answer this question for tpeJ) — Al where at generation the chain is cut into a certain number

. . o of subchains, gives the exact ground stdig:same initial
case, let us flrst briefly recall the principle of the RG Proce-giote as before andi) once the first intervali;, j,) to be
dure for the bimodal case.

flipped is found, we can find the next intervals to be flipped

independently within the three subchalifisi,), (i1,j1), and

_ ] ) (j1,N). And we iterate until there is no interval to flip any-
The RG procedure defined in Ref. 3 for the bimodal casg,gre.

consists of an optimization from small scales towards large Tnhe fact that the first linkgi,, j,) that become frustrated

s:cages. One starts, fc;}rl iﬂstance., from the fcomplet((ejlybmadgnqﬁdeed belongs to the final ground state can be justified via a
tized states;=+1, which contains many frustrated bonds, «gqy,ctio ad absurdun?’and then it is valid for all stages of

and one flips iteratively the unfrustrated domain presentingérIe procedure.

the sma}IIeSt maghnettl)z?tlon, ?)S long ashthe energy 1S Iov(\j/efre This hierarchical procedure thus defines an energy-driven
.e., as long as the balance between the energy gained o,y mentation process of the chain, whose statistical proper-

the suppression of the 1wo boundary-frustra_ted bpnds !S bi%es can be studied and compared to other fragmentation
ger than the energy log&hm) from the negative orientation models? In particular, we have studied the numbeg;, of

with respect to the external field, splitting and the numbetye,Of generations as a function of
AEMP = — 43+ 2h|m| < 0. (37) the sizeN of the chain, forN=500 to N=8000. For the
disorder distribution(11) with =1 and external fielch
So the RG procedure has to be stopped when all unfrustrate€.02, which corresponds to the length on Chen-Ma scale
domains have magnetizatioms=2J/h; the state obtained |.,,(h)~13.5..., we obtain, as expected, that the number of
then corresponds to the ground state. What makes the renajplittings grows linearly irlN,
malization tractable in this case is that, due to the constant

We have indeed checked that this procedure allows us to
btain the exact ground state computed independently via the
ero-temperature transfer matrix. We have moreover ob-

A. Bimodal distribution

cost(2J) of any domain wall, the renormalization concerns a nsglit(N) ~ 8% 1073 (39)
one-dimensional potential, namely the magnetization as a N Now '

function of the running point. . I .
ap and that the number of generations grows logarithmically in

B. General distribution: hierarchical RG based on the energy N,

In this case, the problem cannot be reformulated as the Ngend N
o P . . . i ) —‘JM ~21 (40)
renormalization of a one-dimensional potential, since in ad- NN N

dition to the magnetization, one has to take into account that ) ) )

the couplingsJ; vary along the chain. Moreover, we have This RG analysis reveals a hierarchical structure among

seen with the Chen-Ma argument that the frustrated links arthe frustrated links of the ground state. This hierarchy has a

concentrated on small couplings. spatial meaning, but also an energy meaning. Indeed, since
As a first step, we can thus formulate the following renor-an interval created inside another interval has, by definition

malization that optimizes from the biggest scales toward®f the RG procedure, a smaller energy, it is clear that the

smaller scales: low-energy excitations of the type “annihilation” introduced

(i) One starts from the state with no frustrated links thatin (32) can only concern a pair of frustrated bonds that have
presents a positive magnetizatitf order VN for a chain of ~ been created together and that have no descendent in the
size N). It corresponds to one of the two mirror zero-field hierarchy. Similarly, the low-energy excitations of the type
ground states. “creation” introduced in(32) correspond to a pair of frus-

(i) At each step, we flip the intervdb,y, ..., o)) that trated bonds that would have been created next if the proce-
allows the maximal decrease of enerfyminAE(i,j)<0  dure had been applied a bit beyoA&<0. Finally, the only

i<j remaining excitations are the “displacemen(32) that actu-
where ally also preserve the hierarchical structure since a link can
j move only between its two frustrated neighbors.
AE(L]) =203 + 24 +2h X o, (39)
k=i+1 C. RG based on the weakest link at each step

where f(J;)=1 if J; becomes frustrated during the flip, and  Since the frustrated links concentrate on the links that are
f(J,)=-1if J; becomes unfrustrated during the flip. If we find weak, i.e., of orded¢y(h), it is tempting to try to define a
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RG procedure based on the weakest link at each step. In thempting to define a RG procedure based on the weakest link
Appendix, we show that a simple RG procedure based oat each step. In the following, we consider the simplified RG
this idea becomes exact in the limit— 0, which corre- procedure.

sponds to an infinitely broad distributigtl) nearJ— 0. (i) The same initial state as before; one starts from the
state with no frustrated links that presents a positive magne-
V. CONCLUSION tization

(ii) The first iteration; we choose the smallest coupling in

For the spin-glass chain in an external figldwe have - S .
first studied via zero-temperature transfer-matrix calculation bsolute Va!u¢_|3mi“|' The chain is thus Qecpmposed Into
wo subchains. We consider the magnetizations of the two

the statistical properties of the ground-state configuration. behai M=M= 0. If f the t tizati
We have then studied the nature and the statistics of thg" camnIm+my= - [T one of the two magnetizations
my,My) is negative, for instancan; <0, we will flip the

low-energy two-level excitations via a direct enumeration,

and we have analyzed their contributions to the specific hea?“bCh"""}1 h; it Iowders_the epergy, i-%-,bif thdebbalance brf:tween
the Edwards-Anderson order parameter, and the susceptib?® cost Z' of introducing a frustrated bond between the two
subchains is less than the energy gained by the orientation of

ity in the low-temperature regime. Finally, we have shown h behai | h | field
that an extended RG procedure, based on the iterative fliﬁ- e subchain 1 along the external field,

ping of the best energetic interval, could be used to obtain AEMP = — 2h|my| + 2I" < 0. (A1)
the exact ground state in the external field. This RG proce-

dure reveals a hierarchical structure among the frustrate@therwise, ifAE"" >0, we do not flip the subchain 1. After
links present in the ground state. this, the two subchains will evolve as two independent sub-

The possible relation of this hierarchical picture with chains with free boundary conditions, so we iterate the pro-
higher dimensional disordered models is clearly of interestcedure.
In the two-dimensional2D) random field Ising model, a  This very simple RG procedure is of course not exact,
spatial hierarchical picture has been identified long %go,since at each step we neglect the weak bond at the other
based on the existence of the Imry-Ma domain length scaldoundary of the interval that has been previously decimated
We tend to think that this hierarchy is energetic in nature]J|<T'. Indeed, at each step, we consider that the cost of
More precisely, we believe that in a RG procedure thaflipping an interval is exactly P, whereas it should be
would start from the ferromagnetic pure state and flip itera2(I'+ €), wheree<T is the absolute value of the coupling at
tively at each step the most advantageous domain-the other boundary, which was previously decimated, and
regardless of its size—will ultimately converge towards thewhere the sigr(=) depends on the state of this coupliag
ground state. After the initial flipping of the most advanta-frustrated or not, in the renormalized chain at the RG sEale
geous domaittwhich, through the Imry-Ma argument, is also However, we will show below that it becomes exact in the
the largest one has to search separately for the next advarlimit «— 0, where the distribution becomes infinitely broad
tageous domain inside and outside the initial one. ThesgearJ—0.
flipped domains will then display a disjointed or hierarchi-
cally nested structure. Another related problem, where an o _ )
iterative optimization procedure starts from the largest scalé- Statistical properties of the intervals between weak bonds at
and hierarchically proceeds towards smaller scales, has been RG scalel’

studied by Binde’ for interfaces. _ In this section, we study the RG procedure defined above
For the 2D or three-dimension&8D) spin-glass case at i, the thermodynamic limit of an infinite chain. At the renor-

zero magnetic field, there is no equivalent of'the Imry-Ma Ofmalization scaldl, the chain is split into independent, un-
Chen-Ma length scale. The existence of a hierarchical orgaysirated intervals separated by weak bonds that can be ei-
nization in ground-state or low-temperature properties hager frustrated or not. We now derive some statistical
nevertheless been found along various lines: r'g'd'typroperties of these intervals between weak bonds.

propertiesi! distance .betl/geen spin configurations subject t0  The distribution Pr(l) of the length(j—i) between two
the same thermal noisé;} calculations on small systers, weak bonds};,;<T is simply exponential, since it corre-

and extensive data clustering analySighis hierarchical or- 5,45 1 the probability thatindependent couplings have
ganization pertains to spin clusters, and it is mopriori |3 -

linked to a hierarchy in its flipping energ$.
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P I.= =~ :FM (A3)
APPENDIX: SIMPLE SOLUBLE RG PROCEDURE IN THE -Inl 1 _f dJp(J) =0
LIMIT pm—0 lal<r
In the limit u— 0, the disorder distributiop(J) Eq. (11) The magnetization of an unfrustrated interval of length

becomes an infinitely broad distribution nelar: 0. It is thus  is simply the summ:iE!zlsgn (J). Sincel is large, the
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distribution of m, when | is given, is a Gaussian in the a prior mh) 2+
ground state at=0, and thus we obtain after averaging with =PrP(m)| 1+ ; (A11)
respect to the lengthwith (A2) the following a priori dis-
tribution, r
T 0(0 >m> - —)[Pr(m)]sw"f"e
P? priori(m) ~ f dl_e—lllr — = ——¢ |m‘/mI‘ 2
| |27l 2 2u(I")+ I’
0 r N mp _Paprlorl( )f dar’ ( ) |: <o>m>__>:|
(A4) h
(A12)

with the characteristic magnetization,

= lr L ad 2 _ pa priori { _<m>2ﬂ]
Mp = \/:F_>021“/L/2< ) ' (AS) _PFP (m) 1 T . (A13)

Now from this a priori distribution that describes the In the limit »«— 0, we have thus the simplification that
magnetizations of these domains in the0 ground state, we negativem become negligible, because two bonds weaker
wish to compute the distribution of domain magnetizationsthanI” are typically much weaker thah, as a consequence
obtained via the renormalization procedure, where we havef the broadness of distribution. So at the leading ordet,in
tried to flip intervals in an iterative way. we have the simple property,

A domain existing at scalE was created at some previous ori
scalel'’ representing the biggest of the couplings at the two [Pf(m)]StableﬂiO: 6(m= 0)2Py P (m) (A14)
boundaries. Since the distribution of the already decimated
coupling reads, 1
=g(m=0)—e ™M (A15)

Mp

0(19] < D)p(J]) e

pr (3D = =03 < D)= -
f d30(|3| < l“))0(|J|) 2. Probability measure for the fragmentation process
at scalel’
(A6) . _ :
The probability measure to find a bond of strengjttn-
the distribution of the creation scal& is simply, side an interval(L,M) existing at scale™™ that becomes
fragmented into two subintervals;,m;) and(l,,m,) reads,
pPetONT) = 205 I f o CINAPRUS(NE) Ne(LM: 1y, my: |, mpdldLdldlb,dmdm, — (A16)
<
2u(")?mt dL
=60 <D~ (A7) =deF(F)F “Urdldl,S[L - (14 +1,)]dM26
The stability conditionm>-I""/h at the scald™ of its e—ml/(2|1) e ~m3/(21)
creation immediately yields the simple properties for the  X(M = 0)dm, ool dm——8M - (m + my)].
probability distributionP(m) of the domain magnetization \2mly V2,
at scalel’ (A17)

r A briori Indeed, we have the following properties for the integration
o\m> - |Pr(m) = 2P} PN (m), (A8)  over some variables. After the integration over,,m,), the
distribution of M is a Gaussian as it should be,

r
0(‘ E > m) Pr(m)=0. (A9) J dmlf dm (L, M; 1, my; 15, mp) (A18)
For the values|m/<T'/h, the probability distribution ML)
[Pr(m)]¥' induced by the only condition to have been I e—L/Ir L=(l+1.)126(M =0
stable at the creation scal& reads, =pr ) AL~ (121260 ) V2rL
r (A19)
— stable
0( h - m= O)[Pr(m)] After the integration over all magnetizatioqs,,m,M), the
5 (F )Zu 1 , distribution for (I1,1,) is uniform except for the constraint
Paprlon( )J ar’ Lid [1+9<m> F)} [1+1,=L,
(A10) fde dmlf dmpNp(L,M; 1, my;lo,my)  (A20)

094436-8
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=pr(r>ie-“'rau (1)), (A21)

After the integration ovefly,l,), the probability of finding a
bondI" in an interval of length.,

fdllf dlzdeJ dmlf dmp (L, M1, my; 1, my)

1
= Lpr(I‘)I—e_L”F, (A22)
r

is proportional ta_Py(L) since they ard possible positions.

PHYSICAL REVIEW B 71, 094436(2005

NPY(T) = J dm f dmy J dmN(M;mg,my) - (A30)

+00 0
=pp(I) f dMl f dmye™/MreM-my/mp
0 —o0

M

+oc

+fM

d mle—ml/ mp e—M —my/mp

dmye ™/Mrgmm-M/ ”‘F] (A31)

In the following, when computing observables concerning

the flips at scald’, it will be more convenient to integrate
first over the lengths that play no direct role in the flip con-

dition, to keep the magnetizations that enter the flip condi-

tion,

NF(M;ml,mZ)Edef dllf diLNE(L,M; 1, my; 1, my)

(A23)
1
=pr(I);~26(M = 0) M — (my +m,)]
r
2 2
+oo e—ml/2ll o em /215
xJ dle ' ff dle'r—— (A24)
0 \”2’7T|1 0 b

=pr(I"6(M = 0)dM - (m, + mz)]e_|m1‘/ml“e‘|m2\mr_
(A25)

3. Flipping probability at scale I

The number of bonds of strengih that becomes frus-
trated at scald’ is proportional to

prr”S(F)=fde dmlf dmyNp(M;my, m,)

x[(ﬂ(m <—£)+0(m <—£>] (A26)
1 h 2 h ’

=pr(r)f dMéM = 0)

)(f dn’he_ml/ml"e_M_mllmI‘20<ml < - %)

(A27)
=2pF(F)f dMe™Mmr [ gy g2m/me
0 T'/h
(A28)
=pp(D)mpe M), (A29)

that should be compared with the total number of bonds of

strengthl” proportional to the normalization,

=2pp(I")m. (A32)

The flipping probabilityF(I') of a bondI" at scalel is
given by the ratio of the two,

NfUST) 1 1
Frl) = —or o = e /hm) =~ A33
where the rescaled variable
I 2/ A 1/2
X=——= —(—) riwi2 (A34)
hme h\pu

represents the ratio between the quankith appearing in
the flip condition and the typical scaig; of the magnetiza-
tion of a domain existing at scalé At the beginning of the
procedurex< 1, there is a finite probability of a flip, of order
1/2, whereas forx>1, the probability of a flip becomes
exponentially small.

4. Magnetization per spin at the end of the procedure

To compute the magnetization per spig{(h), we have
to integrate over all the flips done at various scales and keep
track of the associated magnetization gain,

2Amo
inh: I =
Mpir(h) ; S fo

(AM)p regr
Ir

. (A39)

where(Am)r r.qr is the mean magnetization gain associated
with a domain flip at scald’, which can be expressed in
terms of the measur@\25),

(Am)F,F+dF:fde dmlf dmpNR(M; mg,my)

r r
A= o=
(A36)

=pr(T’) j dMé(M = 0) J dmyermilmrg-M-milimr g

r
><<m1 <- H>4|m1| (A37)
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+oc
dmim;e 2™/m - (A38)

=4pp(T") f dme™Mmr
0 I'/h

=pr(DMA(L + 20e7, (A39)
wherex is the scaling variable defined {#A\34).

Finally, usingp(I') =2AI'*"! and the new variable as an
integration variable instead di, we obtain the magnetiza-
tion per spin(A35) as

Mgpir(h) = (1/2) f dlpr(D)mp[1 + 2]e™, (A40)
0
and the result,

(A41)

l/(,u,+2)
) Csimple(/-L) .

e
o

The exponents ih andA agree with the exact results of Ref.
5, whereas the prefactor reads,

PHYSICAL REVIEW B71, 094436(2009

M +oo ~ ~
Csimpld 1) = A0t 2) f dxd/ (#2711 4 2x) e
0

=1te 2—ﬂ’<ﬂ+2>r<1 £ ) (A42)
2+u mt2
:} 1-Yeyer—In2 + 2|: (Yeuer* In 2
2 4 H 16
12 - 72
- +0(ud), A43
9% ] () (A43)

instead of the exact prefactor obtained via the transfer-matrix
computationdthat reads in our notations,

(43)
Cexac(ﬂ) = (,U« + 2)_2/(#+2)(/~L + DHL_)
ut2
:l 1_')’Euler_|n2+ 2(Yeuer+ In 2
2 4 H 16
+0(ud), (A44)

so the discrepancy with the exact prefactdd4) only ap-
pears at ordep?.
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