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For the spin-glass chain in an external fieldh, a nonzero weight at the origin of the bond distributionrsJd is
known to induce a nonanalytical magnetization at zero temperature; forrsJd,AuJum−1 nearJ→0, the magne-
tization follows the Chen-Ma scalingM ,hm/s2+md. In this paper, we numerically revisit this model to obtain
detailed statistical information on the ground-state configuration and on the low-energy two-level excitations
that govern the low-temperature properties. The ground state consists of long unfrustrated intervals separated
by weak frustrated bonds. We accordingly compute the strength distribution of these frustrated bonds, as well
as the length and magnetization distributions of the unfrustrated intervals. We find that the low-energy exci-
tations are of two types:sid one frustrated bond of the ground state may have two positions that are nearly
degenerate in energy andsii d two neighboring frustrated bonds of the ground state may be annihilated or
created with nearly zero energy cost. For each excitation type, we compute its probability density as a function
of its length. Moreover, we show that the contributions of these excitations to various observablessspecific
heat, Edwards-Anderson order parameter, susceptibilityd are in full agreement with the direct transfer matrix
evaluations at low temperature. Finally, following the special bimodal case ±J, where a Ma-Dasgupta, RG
procedure has been previously used to compute explicitly the above observables, we discuss the possibility of
an extended RG procedure. We find that the ground state can be seen as the result of a hierarchical “fragmen-
tation” procedure that we describe.
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I. INTRODUCTION

In this paper, we consider a one-dimensional spin-glass
chain in a small external fieldh.0,

H = − o
i

Jisisi+1 − ho
i

si s1d

to obtain detailed results on the ground state and the low-
energy excitations as functions of the exponentm.0, char-
acterizing the weight of the coupling distribution for small
couplings as

rsJd .
J→0

AuJum−1. s2d

As is well known, the previous model is equivalent to a
random-bond and random-field ferromagnetic chain,1

H = − o
i

uJiuSiSi+1 − ho
i

xiSi s3d

wherexi =p j=1
i sgnsJjd.

A. Bimodal distribution Ji = ±J: Imry-Ma argument and
real-space renormalization group

For the special case of the bimodal distributionJi = ±J
with probabilitiess1/2,1/2d, the models3d corresponds to a
pure Ising chainuJiu=J in a bimodal random fieldhi =hxi
= ±h. The Imry-Ma argument2 for the random-field Ising
chain can be immediately translated for the spin glass in an
external field, since the domain walls of the random field
Ising chain now become frustrated bonds for the spin glass:
the random magnetizationm of an unfrustrated domain of

length l is of orderm,Îl, i.e., it gives rise to an energy of
order 2hÎl in the external fieldh, whereas a pair of two
frustrated bonds has for energy cost 4J. As a consequence,
the ground state is made of unfrustrated domains having the
typical Imry-Ma lengthLIM ,4J2/h2. The real-space Ma-
Dasgupta renormalization groupsRef. 3d allows to construct
explicitly the positions of frustrated bonds and to compute
various statistical properties, such as the distribution of the
domain lengths. This approach, moreover yields the statistics
of low-energy two-level excitations.4 A natural question is
then, What are the corresponding results for a general distri-
bution rsJd that is not bimodal? It turns out that a different
behavior occurs ifrsJd has some weight at small couplings
J,0. This case, which includes the Gaussian distribution,
completely changes the physics of the model, as we now
discuss.

B. Distributions with small couplings r„J…¶AzJzm−1: Chen-Ma
argument

For distributions presenting some weight at small cou-
plings s2d the above Imry-Ma argument for the bimodal case
is replaced by the following Chen-Ma argument.1 The essen-
tial idea is that frustrated bonds will be now located on weak
bonds, in contrast with the bimodal case where the cost of a
frustrated bond is the same everywhere. More precisely, the
Chen-MasCMd argument is as follows: the bondsJi, weaker
than some cutoffuJiuøJCM, are separated by a typical dis-
tance of order

lCM , JCM
−m . s4d

The magnetization of the unfrustrated domain between two
such weak bonds is of order,
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mCM , ÎlCM , JCM
−m/2. s5d

The flipping of such a domain thus involves a typical energy
of orderJCM for the creation of two weak frustrated bonds,
but allows us to gain a magnetic energy of orderhmCM

,hJCM
−m/2. The balance between the two terms yields an opti-

mal cutoff of order,1

JCM , h2/s2+md, s6d

so that the magnetization per spinMs presents the following
nonanalytical behavior,

Ms ,
mCM

lCM
, hm/s2+md. s7d

The zero-temperature susceptibility,

xsT = 0d ,
Ms

h
, h−2/s2+md, s8d

thus diverges at zero fieldh→0. For instance, the Gaussian
distribution rsJd, which corresponds to the exponentm=1,
leads to the behaviorMs,h1/3. The critical exponentm / s2
+md for the magnetization in the external field was found to
be exact via transfer matrix calculations by Gardner and
Derrida,5 where the prefactor was, moreover, computed. The
presence of small couplings does induce interesting new
properties for the ground state with respect to the bimodal
case.

Chen and Ma have also analyzed the low-temperature
properties, in particular in the regime where the temperature
T is much smaller than the typical energyJCM of a domain.
In this regimeT!JCM s6d only a small fraction of the two-
level excitations will be excited. The densityrsE=0d of ex-
citations near zero energy can be estimated to scale as1

rsE = 0d ,
1

lCM
3

1

JCM
, JCM

m−1 , h2sm−1d/s2+md, s9d

where 1/lCM represents the density of the frustrated bonds in
the ground state and where 1/JCM represents the fraction of
these frustrated bonds that will be involved in excitations of
vanishing energyE→0. This excitation density is then ex-
pected to govern the leading term of the specific heat at low
temperature,6

C .
T→0

T
p2

6
rsE = 0d + OsT2d. s10d

In this paper, our aim is to study in some detail the statis-
tical properties of the ground-state configuration and of the
low-energy excitations that govern low-temperature proper-
ties.

II. STATISTICAL PROPERTIES OF THE GROUND-STATE
CONFIGURATION

In this section, we present the numerical results that we
have obtained via the zero-temperature transfer-matrix
formulation5 from which one can obtain the ground-state
configurationhsij in each given samplehJij. In the whole

paper, we have used the following distribution for the cou-
plings:

rsJd =
m

2
uJum−1 for − 1 ø J ø 1, s11d

yielding A=m /2. The results given in this section have been
obtained from averages of over 105 independent chains con-
taining N,106 sites.

A. Magnetization per spin

As a first observable, we have computed the magnetiza-
tion per spin which corresponds to a thermodynamic quantity
which is exactly known from a transfer matrix calculation
done by Gardner and Derrida who have obtained,5

Ms
exact.

h→0
sm + 1dS 4A

msm + 2d2D1/m+2Gsm+1
m+2d

Gs 1
m+2dhm/s2+md.

s12d

We have checked that both the scaling inh ssee Fig. 1d and
the prefactor are in excellent agreement with the exact result
s12d.

Now that we have identified the regime inh where the
scalings7d is satisfied, we may turn to more refined statistical
properties for which, to the best of our knowledge, no exact
expression is available.

B. Probability distribution of frustrated links

We have computed the normalized probability density of
coupling uJu among frustrated links as

FIG. 1. Magnetization per spin in the ground state as a function
of the external field varying betweenh=5310−5 andh=1310−4 in
a log-log plot, for disorder distributionss11d with exponentsm=1,
2, 3. The corresponding slopes are in full agreement with the exact
exponents 1/3, 1/2, 3/5fEq. s12dg.
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PfsJd =
NfsJd

E dJ8NfsJ8d
s13d

where NfsJd represents the number of frustrated links of
strengthJ.

According to the Chen-Ma argument, the frustrated links
should have a typical strength of orderJCM,h2/s2+md. We
have thus plotted in Fig. 2 the probability distribution of
frustrated links in terms of the appropriate rescaled variables,

K =
uJu

JCMshd
=

uJu
h2/s2+md , s14d

for various h with the same initial distributions11d corre-
sponding tom=1.

To compare the distributions of frustrated links corre-
sponding to different disorder distributionsrsJd character-
ized by different exponentsm s11d, it is more convenient to
consider the reduced variable,

r = uJum, s15d

which is distributed with the flat distribution,

pa priorisrd = us0 ø r ø 1d, s16d

for any m in s11d. Taking into account the Chen-Ma scaling,

rCMshd = JCM
m shd = h2m/s2+md, s17d

we have plotted in Fig. 3 the probability distributionPm
f fR

; r / rCMshdg of the frustrated links for various disorder dis-
tributions corresponding to the exponentsm=1, m=0.5, and
m=0.1. Form=1, this distribution is rather smooth, whereas
it becomes steeper asm decays. In particular, form=0.1, it
becomes close to a simple theta functionusRø1d. This
shows that in the limitm→0, the properties of the ground

state become simpler, and we will discuss this point in more
detail in the Appendix.

C. Probability distribution of the lengths of unfrustrated
intervals

According to the Chen-Ma argument, the lengthl between
two frustrated links has for typical scalelCM,h−2m/s2+md. In-
deed, we obtain that the appropriate rescaled variable for the
length of unfrustrated intervals is

l =
l

lCMshd
= lh2m/s2+md, s18d

ash varies. The probability distributionPmsld of the scaling
variablel is plotted in Fig. 4 for variousm.

For l→0, in contrast with the bimodal case wherePsl
= l / l IMd presents an essential singularity,3 we obtain here
power-law behavior near the origin,

Pmsld ~
l→0

lasmd, s19d

with an exponentasmd that grows withm ssee Fig. 4d. For
instance, form=1, the best fit yields the exponentasm=1d
.0.8. For largel, the decay is exponential,

Pmsld ~
l→`

e−gsmdl. s20d

For m=1, the best fit yieldsgsm=1d.0.25.

D. Probability distribution of the magnetizations of
unfrustrated intervals

Similarly, we find that, in agreement with the Chen-Ma
argument, the appropriate rescaled variable for the magneti-
zation of unfrustrated intervals is

FIG. 2. Rescaled probability distributionsPm=1fK= uJu /JCMshdg
of frustrated links in the ground state: the data for various fields,
namely h=1310−2 slined, h=5310−4 scirclesd, and h=1310−4

strianglesd follow the same master curve.

FIG. 3. Probability distributions Pm
f (R; r / rCMshd

=fuJu /JCMshdgm) of the frustrated links for various disorder distribu-
tions s11d corresponding to the exponentsm=1 sbold lined, m=0.5
sthin lined, andm=0.1 sdashed lined.
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v =
m

mCMshd
= mhm/s2+md, s21d

ash varies. The probability distributionQmsvd of the scaling
variablev is plotted in Fig. 5 for variousm.

Again, for v→0, we obtain power-law behaviors,

Qmsvd ~
v→0

vbsmd, s22d

with, for instance,bsm=1d,1.5, whereas the decay for large
v is exponential,

Qmsvd ~
v→`

e−dsmdv s23d

with dsm=1d.0.5.

III. LOW-TEMPERATURE PROPERTIES

A. Low-temperature transfer-matrix results for various
observables

We have first computed via the transfer matrix various
observables in the low-temperature regimeT!JCMshd s6d.
For instance, forh=0.02 corresponding toJCMshd=0.07, we
have checked, for temperaturesT=2.10−3, T=3.10−3, T
=4.10−3, andT=5.10−3, that the leading term of the specific
heat is linear inT,

C ;
,EN

2 . − ,EN.2

T2N
~

T→0
T, s24d

and that the leading term of the susceptibility is a constant,

xsTd ;
,MN

2 . − ,MN.2

TN
~

T→0
cte. s25d

We have also found that the Edwards-Anderson order param-
eter deviates linearly in temperature from the zero-
temperature valueqEAsT=0d=1,

qEA ; ,si .
2 .
T→0

1 − Tscte8d. s26d

We have then studied the dependence in the external field
h at fixed temperature. For instance, forT=5.10−3, we have
studied the dependence inh=10−2 to h=10−1 ssee Fig. 6d.
The results for the specific heat are in good agreement with
the Chen-Ma predictionsEqs.s10d and s9dd,

C

T
.

T→0
h2sm−1d/s2+md, s27d

as well as the susceptibility,

xsTd .
T→0

h−2/s2+md. s28d

FIG. 4. Rescaled probability distributionsPmsl= l / lCMshdd of the
length between two frustrated bonds of the ground state, for various
initial disorder distributions characterized by the exponentsm=1
sfull lined, m=1/2 sdashed lined, andm=1/4 scirclesd.

FIG. 5. Rescaled probability distributionsQmfv=m/mCMshdg of
the magnetization between two frustrated bonds of the ground state,
for various initial disorder distribution characterized by the expo-
nentm=1 sfull lined m=1/2 sdashed lined, m=1/4 scirclesd.

FIG. 6. Low-temperautre behaviors of the specific heatC, of the
Edwards-Anderson order parameterq and of the susceptibilityx as
a function of the external field in a log-log plot for the special value
m=1. The exponents are, respectively,20.04 for the specific heat,
20.66 forq, and20.6 for x ssee text for more detailsd.
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We have also computed the Edwards-Anderson order pa-
rameter and have found the same exponent as for the suscep-
tibility s28d,

1 − qEA

T
.

T→0
h−2/s2+md, s29d

which can be explained from the analysis in terms of the
low-energy two-level excitations, as we now explain.

B. Interpretation in terms of low-energy two-level excitations

We have already given the expressions10d of the specific
heat in terms of the densityrsE=0d of excitations near zero
energy. Similar expressions for the Edwards-Anderson order
parameter and the susceptibility read,4

1 − qEA

T
.

T→0
2E

0

+`

dllrsE = 0,ld, s30d

x .
T→0

2E
−`

+`

dmm2rsE = 0,md, s31d

where rsE=0,ld represents the density of excitations of
length l, and wherersE=0,md represents the density of ex-
citations of magnetizationm. Note that in the random field
chain,4 the magnetization of a ferromagnetic domain is equal
to its length, whereas here in the spin-glass chain, that is not
the case, since the magnetization of an unfrustrated domain
scales asÎl. This is why the scaling inh is the same here for
these two observables.

We have numerically computed the probability density of
excitations, as a function of their sizel and of their type.
Indeed, we obtain by an exhaustive numerical enumeration
that the total density of low-energy excitations is exactly the
sum of three contributionsssee Fig. 7d,

rtotsE = 0,ld = rdisp
s1d sE = 0,ld + ranni

s2d sE = 0,ld + rcrea
s2d sE = 0,ld.

s32d

s1d The excitations of type 1, of densityrdisp
s1d sE=0,ld, in-

volve a single frustrated link of the ground state, of coupling

Ja, that can be displaced to another position of couplingJb
sinside the intervals defined by the two frustrated neighbors
of Jad with almost no energy cost. The energy difference,

DEs1d = − 2uJau + 2uJbu + 2hmab ø T, s33d

involves the defrustration ofJa, the frustration ofJb, and the
magnetizationmab between these two links.

s2d The excitations of type 2 involve a pair of neighbor
frustrated bonds that can be annihilatedfranni

s2d sE=0,ldg or
that can be createdfrcrea

s2d sE=0,ldg with almost no energy
cost,

DEanni
s2d = − 2uJ1u − 2uJ2u + 2hm12 ø T, s34d

DEcrea
s2d = 2uJ1u + 2uJ2u + 2hm12 ø T. s35d

These two types of excitations are symmetric and are thus
expected to correspond to the same distribution,

ranni
s2d sE = 0,ld = rcrea

s2d sE = 0,ld, s36d

which we have checked in our numerical results. The densi-
ties of these excitations in terms of their rescaled lengthl
= l / lCMshd are given in Fig. 8 form=1.

We have, moreover, checked the relationss10d,s30d,s31d
between, on the one hand, the specific heat, the Edwards-
Anderson order parameter, and the susceptibility obtained
from the low-temperature transfer-matrix calculations, and,
on the other hand, the total number of excitations, their av-
eraged length, and their averaged square magnetization. The
agreement shows that the excitations described above are the
only ones that play a role in the low-temperature behavior of
these observables. The present analysis in terms of the sta-
tistics of low-energy excitations thus gives a microscopic
interpretation of the low-temperature equilibrium properties.

FIG. 7. Nature of the low-energy excitations. The ground state is
made of long unfrustrated intervals separated by frustrated bonds
called¯i0, j0,k0, l0¯. Low-energy excitations may be of several
typessdisplacement, annihilation, or creation of frustrated bondsd.

FIG. 8. Densities of the three types of low-energy excitations
present in Eq.s32d in terms of their rescaled lengthl= l / lCMshd in
the casem=1.
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IV. RENORMALIZATION PROCEDURES IN EACH
SAMPLE

As already mentioned in the Introduction, in the bimodal
case ±J, there exists a real-space RG procedure that allows
us to compute exactly the statistical properties of the ground
state3 ssuch as the domain length distributiond as well as the
statistics of low-energy excitations.4 A natural question is as
follows: Is there a generalized RG procedure that would be
valid for the spin glass beyond the bimodal caseJi = ±J?
Before trying to answer this question for thersJd,AuJum−1

case, let us first briefly recall the principle of the RG proce-
dure for the bimodal case.

A. Bimodal distribution

The RG procedure defined in Ref. 3 for the bimodal case
consists of an optimization from small scales towards large
scales. One starts, for instance, from the completely magne-
tized statesi = +1, which contains many frustrated bonds,
and one flips iteratively the unfrustrated domain presenting
the smallest magnetization, as long as the energy is lowered,
i.e., as long as the balance between the energy gained from
the suppression of the two boundary-frustrated bonds is big-
ger than the energy losss2hmd from the negative orientation
with respect to the external field,

DEflip = − 4J + 2humu , 0. s37d

So the RG procedure has to be stopped when all unfrustrated
domains have magnetizationsmù2J/h; the state obtained
then corresponds to the ground state. What makes the renor-
malization tractable in this case is that, due to the constant
costs2Jd of any domain wall, the renormalization concerns a
one-dimensional potential, namely the magnetization as a
function of the running point.

B. General distribution: hierarchical RG based on the energy

In this case, the problem cannot be reformulated as the
renormalization of a one-dimensional potential, since in ad-
dition to the magnetization, one has to take into account that
the couplingsJi vary along the chain. Moreover, we have
seen with the Chen-Ma argument that the frustrated links are
concentrated on small couplings.

As a first step, we can thus formulate the following renor-
malization that optimizes from the biggest scales towards
smaller scales:

sid One starts from the state with no frustrated links that
presents a positive magnetizationsof orderÎN for a chain of
size Nd. It corresponds to one of the two mirror zero-field
ground states.

sii d At each step, we flip the intervalssi+1,… ,s jd that
allows the maximal decrease of energyE=min

i, j

DEsi , jd,0

where

DEsi, jd = 2fsJiduJiu + 2fsJjduJju + 2h o
k=i+1

j

sk, s38d

where fsJid=1 if Ji becomes frustrated during the flip, and
fsJid=−1 if Ji becomes unfrustrated during the flip. If we find

no interval to flip, we have obtained the ground state, since
by definition the ground state is stable upon the flip of any
interval.

We have indeed checked that this procedure allows us to
obtain the exact ground state computed independently via the
zero-temperature transfer matrix. We have moreover ob-
tained that, actually, the links that become frustrated during
the procedure never get “unfrustrated” later in this proce-
dure. And in fact the following hierarchical RG procedure,
where at generationn the chain is cut into a certain number
of subchains, gives the exact ground state:sid same initial
state as before andsii d once the first intervalsi1, j1d to be
flipped is found, we can find the next intervals to be flipped
independently within the three subchainss1,i1d, si1, j1d, and
s j1,Nd. And we iterate until there is no interval to flip any-
more.

The fact that the first linkssi1, j1d that become frustrated
indeed belongs to the final ground state can be justified via a
“reductio ad absurdum,”7 and then it is valid for all stages of
the procedure.

This hierarchical procedure thus defines an energy-driven
fragmentation process of the chain, whose statistical proper-
ties can be studied and compared to other fragmentation
models.8 In particular, we have studied the numbernsplit of
splitting and the numberngeneof generations as a function of
the sizeN of the chain, forN=500 to N=8000. For the
disorder distributions11d with m=1 and external fieldh
=0.02, which corresponds to the length on Chen-Ma scale
lCMshd,13.5…, we obtain, as expected, that the number of
splittings grows linearly inN,

nsplitsNd
N

.
N→`

8 3 10−3, s39d

and that the number of generations grows logarithmically in
N,

ngenesNd
ln N

.
N→`

2.1 s40d

This RG analysis reveals a hierarchical structure among
the frustrated links of the ground state. This hierarchy has a
spatial meaning, but also an energy meaning. Indeed, since
an interval created inside another interval has, by definition
of the RG procedure, a smaller energy, it is clear that the
low-energy excitations of the type “annihilation” introduced
in s32d can only concern a pair of frustrated bonds that have
been created together and that have no descendent in the
hierarchy. Similarly, the low-energy excitations of the type
“creation” introduced ins32d correspond to a pair of frus-
trated bonds that would have been created next if the proce-
dure had been applied a bit beyondDEø0. Finally, the only
remaining excitations are the “displacements”s32d that actu-
ally also preserve the hierarchical structure since a link can
move only between its two frustrated neighbors.

C. RG based on the weakest link at each step

Since the frustrated links concentrate on the links that are
weak, i.e., of orderJCMshd, it is tempting to try to define a
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RG procedure based on the weakest link at each step. In the
Appendix, we show that a simple RG procedure based on
this idea becomes exact in the limitm→0, which corre-
sponds to an infinitely broad distributions11d nearJ→0.

V. CONCLUSION

For the spin-glass chain in an external fieldh, we have
first studied via zero-temperature transfer-matrix calculations
the statistical properties of the ground-state configuration.
We have then studied the nature and the statistics of the
low-energy two-level excitations via a direct enumeration,
and we have analyzed their contributions to the specific heat,
the Edwards-Anderson order parameter, and the susceptibil-
ity in the low-temperature regime. Finally, we have shown
that an extended RG procedure, based on the iterative flip-
ping of the best energetic interval, could be used to obtain
the exact ground state in the external field. This RG proce-
dure reveals a hierarchical structure among the frustrated
links present in the ground state.

The possible relation of this hierarchical picture with
higher dimensional disordered models is clearly of interest.
In the two-dimensionals2Dd random field Ising model, a
spatial hierarchical picture has been identified long ago,9

based on the existence of the Imry-Ma domain length scale.
We tend to think that this hierarchy is energetic in nature.
More precisely, we believe that in a RG procedure that
would start from the ferromagnetic pure state and flip itera-
tively at each step the most advantageous domain—
regardless of its size—will ultimately converge towards the
ground state. After the initial flipping of the most advanta-
geous domainswhich, through the Imry-Ma argument, is also
the largestd, one has to search separately for the next advan-
tageous domain inside and outside the initial one. These
flipped domains will then display a disjointed or hierarchi-
cally nested structure. Another related problem, where an
iterative optimization procedure starts from the largest scale
and hierarchically proceeds towards smaller scales, has been
studied by Binder10 for interfaces.

For the 2D or three-dimensionals3Dd spin-glass case at
zero magnetic field, there is no equivalent of the Imry-Ma or
Chen-Ma length scale. The existence of a hierarchical orga-
nization in ground-state or low-temperature properties has
nevertheless been found along various lines: rigidity
properties,11 distance between spin configurations subject to
the same thermal noise,12,13 calculations on small systems,14

and extensive data clustering analysis.15 This hierarchical or-
ganization pertains to spin clusters, and it is nota priori
linked to a hierarchy in its flipping energy.16
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APPENDIX: SIMPLE SOLUBLE RG PROCEDURE IN THE
LIMIT m\0

In the limit m→0, the disorder distributionrsJd Eq. s11d
becomes an infinitely broad distribution nearJ→0. It is thus

tempting to define a RG procedure based on the weakest link
at each step. In the following, we consider the simplified RG
procedure.

sid The same initial state as before; one starts from the
state with no frustrated links that presents a positive magne-
tization

sii d The first iteration; we choose the smallest coupling in
absolute valueG= uJminu. The chain is thus decomposed into
two subchains. We consider the magnetizations of the two
subchainsm1+m2=M .0. If one of the two magnetizations
sm1,m2d is negative, for instance,m1,0, we will flip the
subchain 1 if it lowers the energy, i.e., if the balance between
the cost 2G of introducing a frustrated bond between the two
subchains is less than the energy gained by the orientation of
the subchain 1 along the external field,

DEflip = − 2hum1u + 2G , 0. sA1d

Otherwise, ifDEflip .0, we do not flip the subchain 1. After
this, the two subchains will evolve as two independent sub-
chains with free boundary conditions, so we iterate the pro-
cedure.

This very simple RG procedure is of course not exact,
since at each step we neglect the weak bond at the other
boundary of the interval that has been previously decimated
uJu,G. Indeed, at each step, we consider that the cost of
flipping an interval is exactly 2G, whereas it should be
2sG±ed, wheree,G is the absolute value of the coupling at
the other boundary, which was previously decimated, and
where the signs6d depends on the state of this couplinge,
frustrated or not, in the renormalized chain at the RG scaleG.
However, we will show below that it becomes exact in the
limit m→0, where the distribution becomes infinitely broad
nearJ→0.

1. Statistical properties of the intervals between weak bonds at
RG scaleG

In this section, we study the RG procedure defined above
in the thermodynamic limit of an infinite chain. At the renor-
malization scaleG, the chain is split into independent, un-
frustrated intervals separated by weak bonds that can be ei-
ther frustrated or not. We now derive some statistical
properties of these intervals between weak bonds.

The distributionPGsld of the lengths j − id between two
weak bondsJi,j ,G is simply exponential, since it corre-
sponds to the probability thatl independent couplings have
uJkuùG,

PGsld .
1

lG

e−l/lG, sA2d

with the characteristic length,

lG =
1

− lnF1 −E
uJuøG

dJrsJdG .
G→0

m

2AGm . sA3d

The magnetization of an unfrustrated interval of lengthl
is simply the summ= ±oi=1

l sgn sJid. Since l is large, the
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distribution of m, when l is given, is a Gaussian in the
ground state ath=0, and thus we obtain after averaging with
respect to the lengthl with sA2d the following a priori dis-
tribution,

PG
a priorismd . E

0

+`

dl
1

lG

e−l/lG
e−m2/s2ld

Î2pl
=

1

2mG

e−umu/mG,

sA4d

with the characteristic magnetization,

mG =Î lG

2
.

G→0

1

2Gm/2Sm

A
D1/2

. sA5d

Now from this a priori distribution that describes the
magnetizations of these domains in theh=0 ground state, we
wish to compute the distribution of domain magnetizations
obtained via the renormalization procedure, where we have
tried to flip intervals in an iterative way.

A domain existing at scaleG was created at some previous
scaleG8 representing the biggest of the couplings at the two
boundaries. Since the distribution of the already decimated
coupling reads,

rG
smallsuJud =

usuJu , GdrsuJud

E dJusuJu , GdrsuJud
= usuJu , Gd

muJum−1

Gm ,

sA6d

the distribution of the creation scaleG8 is simply,

rG
creationsG8d = 2rG

smallsG8dE
uJ8u,G8

duJ8urG
smallsuJ8ud

= usG8 , Gd
2msG8d2m−1

G2m . sA7d

The stability conditionm.−G8 /h at the scaleG8 of its
creation immediately yields the simple properties for the
probability distributionPGsmd of the domain magnetization
at scaleG

uSm.
G

h
DPGsmd = 2PG

a priorismd, sA8d

uS−
G

h
. mDPGsmd = 0. sA9d

For the valuesumu,G /h, the probability distribution
fPGsmdgstable induced by the only condition to have been
stable at the creation scaleG8 reads,

uSG

h
. m. 0DfPGsmdgstable

= PG
a priorismdE

0

G

dG8
2msG8d2m−1

G2m F1 + uSm.
G8

h
DG
sA10d

=PG
a priorismdF1 +Smh

G
D2mG , sA11d

uS0 . m. −
G

h
DfPGsmdgstable

= PG
a priorismdE

0

G

dG8
2msG8d2m−1

G2m FuS0 . m. −
G8

h
DG

sA12d

=PG
a priorismdF1 −S umuh

G
D2mG . sA13d

In the limit m→0, we have thus the simplification that
negativem become negligible, because two bonds weaker
thanG are typically much weaker thanG, as a consequence
of the broadness of distribution. So at the leading order inm,
we have the simple property,

fPGsmdgstable .
m→0

= usmù 0d2PG
a priorismd sA14d

=usmù 0d
1

mG

e−umu/mG. sA15d

2. Probability measure for the fragmentation process
at scaleG

The probability measure to find a bond of strengthG in-
side an intervalsL ,Md existing at scaleG− that becomes
fragmented into two subintervalssl1,m1d and sl2,m2d reads,

NGsL,M ; l1,m1; l2,m2ddGdLdl1dl2dm1dm2 sA16d

=dGrGsGd
dL

lG

e−L/lGdl1dl2dfL − sl1 + l2dgdM2u

3sM ù 0ddm1
e−m1

2/s2l1d

Î2pl1
dm2

e−m2
2/s2l2d

Î2pl2
dfM − sm1 + m2dg.

sA17d

Indeed, we have the following properties for the integration
over some variables. After the integration oversm1,m2d, the
distribution ofM is a Gaussian as it should be,

E dm1E dm2NGsL,M ; l1,m1; l2,m2d sA18d

=rGsGd
1

lG

e−L/lGdfL − sl1 + l2dg2usM ù 0d
e−M2/s2Ld

Î2pL

sA19d

After the integration over all magnetizationssm1,m2Md, the
distribution for sl1, l2d is uniform except for the constraint
l1+ l2=L,

E dME dm1E dm2NGsL,M ; l1,m1; l2,m2d sA20d
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=rGsGd
1

lG

e−L/lGdfL − sl1 + l2dg. sA21d

After the integration oversl1, l2d, the probability of finding a
bondG in an interval of lengthL,

E dl1E dl2E dME dm1E dm2NGsL,M ; l1,m1; l2,m2d

= LrGsGd
1

lG

e−L/lG, sA22d

is proportional toLPGsLd since they areL possible positions.
In the following, when computing observables concerning

the flips at scaleG, it will be more convenient to integrate
first over the lengths that play no direct role in the flip con-
dition, to keep the magnetizations that enter the flip condi-
tion,

NGsM ;m1,m2d ; E dLE dl1E dl2NGsL,M ; l1,m1; l2,m2d

sA23d

=rGsGd
1

lG

2usM ù 0ddfM − sm1 + m2dg

3E
0

+`

dl1e
−l1/lG

e−m1
2/2l1

Î2pl1
E

0

+`

dl2e
−l2/lG

e−m2
2/2l2

Î2pl2
, sA24d

=rGsGdusM ù 0ddfM − sm1 + m2dge−um1u/mGe−um2umG.

sA25d

3. Flipping probability at scale G

The number of bonds of strengthG that becomes frus-
trated at scaleG is proportional to

NG
frussGd =E dME dm1E dm2NGsM ;m1,m2d

3FuSm1 , −
G

h
D + uSm2 , −

G

h
DG , sA26d

=rGsGdE dMusM ù 0d

3E dm1e
−um1u/mGe−uM−m1u/mG2uSm1 , −

G

h
D

sA27d

=2rGsGdE
0

+`

dMe−M/mGE
G/h

+`

dm18e
−2m18/mG

sA28d

=rGsGdmG
2e−G/shmGd, sA29d

that should be compared with the total number of bonds of
strengthG proportional to the normalization,

NG
totsGd =E dME dm1E dm2NGsM ;m1,m2d sA30d

=rGsGdE
0

+`

dMFE
−`

0

dm1e
m1/mGe−M−m1/mG

+E
0

M

dm1e
−m1/mGe−M−m1/mG

+E
M

+`

dm1e
−m1/mGe−m1−M/mGG sA31d

=2rGsGdmG
2 . sA32d

The flipping probabilityFGsGd of a bondG at scaleG is
given by the ratio of the two,

FGsGd =
NG

frussGd
NG

totsGd
=

1

2
e−G/shmGd =

1

2
e−x, sA33d

where the rescaled variable

x =
G

hmG

=
2

h
SA

m
D1/2

G1+m/2 sA34d

represents the ratio between the quantityG /h appearing in
the flip condition and the typical scalemG of the magnetiza-
tion of a domain existing at scaleG. At the beginning of the
procedurex!1, there is a finite probability of a flip, of order
1/2, whereas forx@1, the probability of a flip becomes
exponentially small.

4. Magnetization per spin at the end of the procedure

To compute the magnetization per spinmspinshd, we have
to integrate over all the flips done at various scales and keep
track of the associated magnetization gain,

mspinshd = o
G

o
i

Dmi

o
i

l i
=E

0

+` sDmdG,G+dG

lG

, sA35d

wheresDmdG,G+dG is the mean magnetization gain associated
with a domain flip at scaleG, which can be expressed in
terms of the measuresA25d,

sDmdG,G+dG =E dME dm1E dm2NGsM ;m1,m2d

3FuSm1 , −
G

h
D2um1u + uSm2 , −

G

h
D2um2uG

sA36d

=rGsGdE dMusM ù 0dE dm1e
−um1u/mGe−uM−m1u/mGu

3Sm1 , −
G

h
D4um1u sA37d
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=4rGsGdE
0

+`

dMe−M/mGE
G/h

+`

dm18m18e
−2m18/mG, sA38d

=rGsGdmG
3s1 + 2xde−2x, sA39d

wherex is the scaling variable defined insA34d.
Finally, usingrGsGd=2AGm−1 and the new variablex as an

integration variable instead ofG, we obtain the magnetiza-
tion per spinsA35d as

mspinshd = s1/2dE
0

+`

dGrGsGdmGf1 + 2xge−2x, sA40d

and the result,

mspinshd = hm/sm+2dS4A

m
D1/sm+2d

csimplesmd. sA41d

The exponents inh andA agree with the exact results of Ref.
5, whereas the prefactor reads,

csimplesmd =
m

2sm + 2dE0

+`

dxxm/sm+2d−1s1 + 2xde−2x

=
1 + m

2 + m
2−m/sm+2dGS1 +

m

m + 2
D sA42d

=
1

2
+ m

1 − gEuler − ln 2

4
+ m2F sgEuler + ln 2d2

16

−
12 −p2

96
G + Osm3d, sA43d

instead of the exact prefactor obtained via the transfer-matrix
computations5 that reads in our notations,

cexactsmd = sm + 2d−2/sm+2dsm + 1d
Gsm+1

m+2d
Gs 1

m+2d

=
1

2
+ m

1 − gEuler − ln 2

4
+ m2sgEuler + ln 2d2

16

+ Osm3d, sA44d

so the discrepancy with the exact prefactorsA44d only ap-
pears at orderm2.
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