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A detailed investigation of the scaling relations recently proposedfJ. d’Albuquerque e Castro, D. Altbir, J.
C. Retamal, and P. Vargas, Phys. Rev. Lett.88, 237202s2002dg to study the magnetic properties of nanopar-
ticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of
the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles
upon scaling of the exchange interaction is discussed. The exponenth in scaling relations is shown to be
dependent on the geometry of the vortex core, and results for specific cases are presented.
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I. INTRODUCTION

In recent years, a great deal of attention has been focused
on the study of regular arrays of magnetic particles produced
by nanoimprint lithography. Besides the basic scientific in-
terest in the magnetic properties of these systems, there is
evidence that they might be used in the production of new
magnetic devices, or as media for high density magnetic
recording.1 One of the main points in the study of such sys-
tems concerns the internal magnetic structure of the nanopar-
ticles as a function of their shape and size. For example, in
the case of cylindrically shaped particles produced by elec-
trodeposition, the internal arrangements of the magnetic mo-
ments have been identified as being close to one of the fol-
lowing three sidealizedd characteristic configurations:
ferromagnetic with the magnetization parallel to the basis of
the cylindersF1d, ferromagnetic with the magnetization par-
allel to the cylinder axissF2d, and a vortex state, in which
most of the magnetic moments lie parallel to the basis of the
cylinder sVd.2,3 The occurrence of each of these configura-
tions depends on geometrical factors, such as the linear di-
mensions of the cylinders and their aspect ratio. Clearly, for
the development of magnetic devices based on those arrays,
knowledge of the internal magnetic structure of the particles
is of fundamental importance.

Experimentally, attempts have been made to determine,
from the analysis of hysteresis curves,4,5 the range of values
of diameterD and heightH of cylindrically shaped particles
for which the internal arrangement of the magnetic moments
is close to either one of the two ferromagnetic configurations
sF1 or F2d or to the vortex onesVd. However, such an ap-
proach does not allow a clear description of the magnetic
structure of individual cylinders, since in many cases the
internal magnetic configurations are not readily identifiable
from magnetization curves.

On the other hand, theoretical determination of the con-
figuration of lowest energy of particles in the size range of
those currently produced, based on a microscopic approach
and using present standard computational facilities, is out of
reach. The reason is the exceedingly large number of mag-
netic moments within such particles, which may exceed 109.
Recently, d’Albuquerque e Castroet al.6 have proposed a
scaling technique for determining the phase diagram giving
the configuration of lowest energy among the three above-
mentioned characteristic magnetic configurations. They have
shown that such a diagram can be obtained from those for
much smaller particles, in which the exchange interactionJ
has been scaled down by a factorx,1; i.e., forJ8=xJ. The
diagram for the full strength of the exchange interaction is
then obtained by scaling up theD8 andH8 axes in the phase
diagram forJ8 by a factor 1/xh. In their work, the exponent
h has been determined numerically from the position, as a
function of x, of a triple pointsDt ,Htd in the phase diagram
where the three configurations have equal energy. The scal-
ing technique has been applied to the determination of the
phase diagram of cylindrically shaped6 and truncated
conical7 particles. In both cases,h turned out to be approxi-
mately equal to 0.55.

We recall that the vortex configuration exhibits a core
region within which the magnetic moments have a nonzero
component parallel to the axis of either the cylinder or the
truncated cone. We remark that the determination of the ge-
ometry of the coresi.e., its shape and sized, on the basis of a
microscopic model in which the individual magnetic mo-
ments are considered, would require a prohibitively large
computational effort. For this reason, d’Albuquerque e Cas-
tro et al.6 and Escriget al.7 adopted a simplified representa-
tion of the vortex core, consisting of a single line of mag-
netic moments along the axis of either the cylinders or the
truncated cones. The phase diagrams thus obtained are in
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good agreement with experimental data, provided appropri-
ate values of the exchange are considered.

The scaling technique represents a useful tool for studying
the magnetic properties of nanosized particles. It is concep-
tually simple and rather interesting from the theoretical point
of view. Its implementation depends on the determination of
the exponenth in the scaling factor, which so far has been
done numerically. The agreement, within error bars, between
the values ofh for cylinders and truncated conical particles
suggests that this parameter does not depend on the shape of
the particles. However, there still remains the question re-
garding the possible dependence ofh on the geometry of the
vortex core. The present work aims precisely at clarifying
this point.

We focus on cylindrically shaped particles, for which a
large amount of experimental data is available. We adopt a
continuous model for the internal magnetic structure of the
particles, on the basis of which analytical results for the total
energy in each configuration can be obtained. We use these
results to investigate the behavior of the phase diagrams un-
der scaling transformation, from which the value ofh can be
determined. We find that the value ofh does depend on the
geometry of the vortex core. This point is discussed at length
below.

II. CONTINUOUS MAGNETIZATION MODEL

We adopt a simplified description of the system, in which
the discrete distribution of magnetic moments is replaced

with a continuous one, defined by a functionMW srWd such that

MW srWddV gives the total magnetization within the element of
volumedV centered atrW. This model provides a fairly good
basis for the discussion of the magnetic properties of nano-
sized particles. For cylindrically shaped particles, the mag-

netization densityMW srWd in the two ferromagnetic configura-
tions, F1 and F2, is given byM0x̂ and M0ẑ, respectively.
HereM0 is the saturation magnetization density, andx̂ and ẑ
are unit vectors parallel to the basis and to the axis of the
cylinders, respectively. For the vortex configuration, we as-
sume that the magnetization density has the form

MW srWd = Mzsrdẑ+ Mwsrdŵ, s1d

whereẑ andŵ are unit vectors in cylindrical coordinates, and
Mz andMw satisfy the relationMz

2+Mw
2 =M0

2. Thus, the pro-
file of the vortex core is fully specified just by giving the
function Mzsrd. It is worth pointing out that the functional
form in Eq.s1d does not take into account the possibility of a
dependence of the core shape on coordinatez.

We then look at the total energy of the three configura-
tions under consideration, from which the magnetic phase
diagram can be obtained and its behavior under scaling in-
vestigated. We restrict our discussion to arrays in which the
separation between cylinders is sufficiently large for the in-
teraction between them to be ignored.8,9

The internal energy per unit of volumesEtotd of a single
cylinder is given by the sum of three terms corresponding to
the magnetostaticsEdipd, the exchangesEexd, and the aniso-
tropy sEKd contributions. However, in the case of particles

produced by electrodeposition, the crystalline anisotropy
term is much smaller than the other two,10 so that its inclu-
sion has little effect on the phase diagram. In view of this, it
will be neglected in our calculations.

A. Ferromagnetic configurations

Since the exchange term depends only on the relative ori-
entation of the magnetic moments, it has the same valueEex

sFd

in the two ferromagnetic configurations. Since it also appears
as an additive term in the expression for exchange energy in
the vortex configuration, it can be simply left out in our
calculations.

The magnetostatic term is generally given by11

Edip =
m0

2V
E MW srWd · s¹W UddV, s2d

whereUsrWd is the magnetostatic potential. In the above ex-
pression, an additive term independent of the configuration
has been left out. For the ferromagnetic configurations, we
find that

Edip
sad =

1

2
Nam0M0

2, s3d

where a=F1, F2, and Na are the demagnetizing factors,
given in SI units by12

NF1 = S1

2
D

2
F1F−

1

2
,
1

2
,2,−SD

H
D2G −

2D

3pH
, s4d

and

NF2 = 1 − 2F1F−
1

2
,
1

2
,2,−SD

H
D2G +

4D

3pH
. s5d

In the above two equations,2F1sa,b,c,dd is a hypergeomet-
ric function. Notice that demagnetizing factors depend on
just the ratioD /H.

B. Vortex configuration

Assuming thatMW srWd varies slowly on the scale of the lat-
tice parameter, the exchange term for this configuration can
be approximated by11

Eex
sVd =

A

V
E fs¹W mxd2 + s¹W myd2 + s¹W mzd2gdV,

whereA is the exchange stiffness constant, andmi =Mi /M0,
for i =x,y,z. We recall thatA is proportional to the exchange
interaction energyJ between the magnetic moments.11 Mak-

ing use of the expression forMW srWd in Eq. s1d, we find

Eex
sVd =

2A

R2E
0

R

fsrdr dr, s6d

where R=D /2, and fsrd=s]mz/]rd2/ s1−mz
2d+s1−mz

2d /r2,
with mzsrd=Mzsrd /M0. The additive termEex

sFd on the right-
hand side of the above equation has been omitted.
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The magnetostatic term can be also written in terms of

MW srWd. In the vortex configuration, the magnetostatic potential
is given by

UsrWd =
1

4p
E

S1

Mzsr1d
urW − rW1u

dS1 −
1

4p
E

S2

Mzsr2d
urW − rW2u

dS2,

whereS1 andS2 are the surfaces of the top and bottom basis
of the cylinder, respectively. After some manipulations, the
expression forUsrWd reduces to

Usr,zd =
1

2
E

0

R

r8dr8Mzsr8dE
0

`

dk J0skrdJ0skr8d

3s− e−kz+ e−ksH−zdd,

whereJ0sxd is the cylindrical Bessel function of order zero.
Taking this result into Eq.s2d, we find13

Edip
sVd =

pm0

V
E

0

`

dkSE
0

R

rJ0skrdMzsrddrD2

s1 − e−Hkd. s7d

III. TOTAL ENERGY CALCULATION AND SCALING
TRANSFORMATION

At this point, it is necessary to specify the functionMzsrd.
Since no rigorous result regarding the shape of the vortex
core is available, we resort to a simple but physically plau-
sible approximation, given by

Mzsrd = HM0f1 − sr/rcd2gn, for r ø rc

0, otherwise
, s8d

where rcøR and n is a non-negative constant. Alternative
expressions for Mzsrd have been proposed in the
literature.14

The above functional form forMzsrd allows us to evaluate
the energy integrals in Eqs.s6d and s7d analytically. For in-
teger values ofn, the expression forEex

sVd in Eq. s6d then
reduces to

Eex
sVd =

2A

R2Sln
R

rc
+ gnD , s9d

wheregn= 1
2Hf2ng−nHf−1/2ng. Here,

Hfzg = o
i=1

` S1

i
−

1

i + z
D

is the generalized harmonic number function of the complex
variablez.15 For the dipolar energy term in Eq.s7d, we obtain

Edip
sVd =

6Wd
0rc

3

HR2 Fan −
rc

4H
bn FSn,

rc

H
DG , s10d

where

an =
22n−1Gsn + 1d3

GS3

2
+ nDGS5

2
+ 2nD , s11d

bn = 1/s1 + nd2, s12d

Wd
0 =

1

6
m0M0

2, s13d

FSn,
rc

H
D = 3F2FH1

2
,1,

3

2
+ nJ,hn + 2,2n + 3j,−

4rc
2

H2 G .

Here,3F2 denotes the generalized hypergeometric function.

IV. RESULTS

Having evaluated all relevant contributions to the total
energy in the three cases of interest, we are in a position to
investigate the magnetic phase diagram for cylinders. In par-
ticular, we can look at the position of the triple pointsDt ,Htd
as a function of the factorx, which scales the stiffness con-
stantA sor exchange interactionJd. We notice that since the
energy of the two ferromagnetic configurationsEtot

sF1d and
Etot

sF2d are equal at the triple point, we immediately get the
equation

NF1sjtd = NF2sjtd,

whose solution isjt=Dt /Ht=1.103 17. . .sindependent ofA
or Jd.12 As a consequence,Dt and Ht are proportional and
must exhibit the same functional dependence onx sor
equivalently, onAd.

We proceed in our analysis by looking at the case consid-
ered by d’Albuquerque e Castroet al.,6 in which the core
radius is independent ofx, and of the order of the lattice
spacingsfirst core modeld. This corresponds to taking the
limit rc!Rt=Dt /2 in the expressions for the total energy. In
this limit, lnsR/rcd becomes much larger in modulus thangn,
so that the latter can be safely neglected in Eq.s9d. Equa-
tions. s3d, s9d, ands10d then give the following equation for
Rt:

1

2
Nam0M0

2 =
2A

Rt
2 ln

Rt

rc
, s14d

where a is either F1 or F2. Now, if we scale down the
exchange interaction by a factorx,1; that is to say, if we
consider a reduced exchange stiffnessA8=xA, and assume
that Rt and the new radius at the triple pointRt8 are related
according toRt8=xhRt, we find

2A

Rt
2 ln

Rt

rc
= x1–2h2A

Rt
2 ln

xhRt

rc
.

This expression gives us the following equation forh:

ln
Rt

rc
=

h

x2h−1 − 1
ln x. s15d

It is clear from this equation thath must in all cases be
greater than 0.5. It approaches this lower bound only when
Rt is much larger than the lattice spacingsi.e., Rt@rcd, in
other words, when the particles have macroscopic sizes.

The behavior ofh in Eq. s15d is presented in Fig. 1.
Figure 1sad shows h as a function ofRt, for 20 nmøRt
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ø100 nm, andrc=0.2 nm. We notice that in this range ofRt,
0.54,h,0.58. It is also interesting to look at the behavior
of h as a function ofx. Figure 1sbd showsh as a function of
x, for 0.01øxø1, Rt=44 nm, andrc=0.2 nm. From the
curves in Figs. 1sad and 1sbd, we find that forxù0.05, h
turns out to be close to 0.55, as numerically obtained by
d’Albuquerque e Castroet al.6

It is worth commenting on the effect of using a single
value of h, say 0.55, to scale phase diagrams for the core
model considered just above. As already pointed out, the
diagram for the full strength of the exchange interaction can
be obtained from the one corresponding to a reduced inter-
actionJ8=xJ swith x,1d by multiplying the axesH8 andD8
of the latter by 1/xh. Thus, an inaccuracydh in the value of

h results in inaccuraciesdH anddD in the coordinates in the
scaled diagram. Indeed, if we writeh=h0±dh, with dh /h0
!1, we immediately get

UdH

H0
U = − sh0 ln xdUdh

h0
U ,

where H0=xh0H8. Since h0<0.55 anddh /h0<0.01 festi-
mated from Fig. 1sadg, we find that, even forx as small as
0.05, the relative errordH /H0 is smaller than 2%. Thus, we
do not expect large discrepancies between the calculated
phase diagram and the experimental data resulting from such
inaccuracy inh since a relative error of 2% should not ex-
ceed the experimental error.

We remark that the above results forh hold also when the
core radius corresponds to several interatomic distances and
is kept fixed as the exchange interaction is scaled up or
down.

We next consider the case in whichrc is adjusted so as to
minimize the energy of the vortex configurationssecond core
modeld. From Eqs.s9d and s10d, we obtain the following
equation forrc:

3an

rc
3

H3 − bn

rc
4

H4Fsn,rc/Hd +
bn

2sn + 2d
rc

6

H6Gsn,rc/Hd

=
2A

m0M0
2H2 ,

where

Gsn,rc/Hd = 3F2FH3

2
,2,

5

2
+ nJ,h3 + n,4 + 2nj,−

4rc
2

H2 G .

Equations15d can be solved numerically forrc in terms ofH,
A, andn. We remark that for the core model under consid-
eration, rc does not depend on the radiusR. This follows
from the fact that the outer region of the cylinder does not
interact with the coresapart from the exchange interaction
across the interface between the two regionsd. As a conse-

FIG. 2. Reduced magnetizationmz=Mz/M0 as a function ofr,
for n=2 sdotted lined, 4 sdashed lined, and 10ssolid lined. The two
sets of curves correspond toH=20 nm and 100 nm. Values ofA
andM0 have been taken from Ref. 16, and correspond to those for
Co.

FIG. 1. Exponenth given by Eq.s15d plotted as a function ofRt,
for x=0.1 ssolid lined and 0.2sdashed lined sad, and as a function of
x, for Rt=44 nmsbd.
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quence, for a given value ofrc, the difference between the
total energy of two cylinders of the same height but different
radii does not depend onrc; hence, it does not contribute to
the derivative ofEtot

sVd with respect torc. That is to say, the
equation forrc that minimizes the total energy of the vortex
configuration is independent ofR.

Figure 2 illustratesMzsrd for A=87.39 meV/nm,M0
=1.43106 A/m, and two values ofH: 20 and 100 nm. For
eachH, results are presented forn=2 sdotted lined, 4 sdashed
lined, and 10ssolid lined. The values ofA andM0 correspond
to those for Co, and have been taken from Ref. 16. The value
of rc in each case has been obtained from Eq.s15d.

In order to investigate the behavior of magnetic phase
diagram upon scaling of the exchange interaction for this
second core model, we taken=4, which according to Fig. 2
provides a physically sound description of the core profile,
and calculate the phase diagrams for distinct values ofx.
Figure 3 shows results for cylinders of CosA
=87.39 meV/nm andM0=1.43106 A/md corresponding to
x=0.12 sdashed linesd andx=24 sdotted linesd.

We then find that, for the present core model, the coordi-
natessDt ,Htd of the triple point follow the relations

Dtsxd = 25.61x0.5, s16d

Htsxd = 23.22x0.5, s17d

in which h=0.5. The diagram for the the full strength of the
exchange interaction,x=1, is represented by solid line.

We remark that these results holds for any other integer
values ofn, due to the fact that sincerc is adjusted so as to
minimize the energy in the vortex configuration, the effective
radius of the core turns out to be independent ofn, as clearly
shown in Fig. 2.

V. CONCLUSIONS

We have carried out a detailed analysis of scaling tech-
nique recently proposed by d’Albuquerque e Castroet al.6 to
investigate the magnetic phase diagram of nanoparticles. As
already pointed out, this technique enables us to obtain the
phase diagram for particles in the nanometer size range from
those corresponding to much smaller particles, in which the
exchange interaction has been reduced. The scaling tech-
nique is easily implemented and represents a rather useful
tool for dealing with nanoparticle systems. In addition, the
existence of scaling relations and their connection with the
model adopted to describe the magnetic particles bring about
interesting theoretical considerations.

The present work sheds light on a very interesting feature
of the scaling relations; namely, the dependence of the expo-
nent h on the model adopted for describing the core of the
vortex configuration. Based on a continuous magnetization
model, we were able to derive analytical expressions for the
total energy in each configuration, which allowed us to de-
termine the exponenth. We found that in the case of nano-
particles for which the core dimensions, and consequently its
contribution to the total energy, can be either neglected or do
not change much upon scaling ofA, h turns out to be weakly
dependent onx and quite close to 0.55. Nevertheless, when
the contribution from the core is relevant and its size upon
scaling ofA changes so as to minimize the total energy in the
vortex configuration, thenh becomes exactly equal to 0.5.
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