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In this work we study the magnetic properties of a ferrimagnetic small particle on a hexagonal substrate. The
particle is described by a mixed-spin Ising model in which thes=1/2 andS=1 spins are distributed in
concentric and alternate hexagonal rings. We consider particles with different number of rings and show that
particles with more than 11 shells can be considered as infinite systems. For a particle in which the finite-size
effect is relevant, we investigated the role of the different parameters of the Hamiltonian in the appearance of
a compensation temperature. As the model incorporatess-S,s-s and S-S nearest-neighbor interactions, we
observe the existence of a compensation point without the necessity of any next-nearest-neighbor interaction.
The appearance of a compensation point depends only on the value of thes andS intrasublattice couplings.
The s intrasublattice interaction should be ferromagnetic and above a threshold value. On the other hand, the
S intrasublattice interaction should be mostly antiferromagnetic and restricted to a narrow range of values.
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I. INTRODUCTION

The appearance of a compensation point near room tem-
perature in some ferrimagnetic materials, has a crucial im-
portance in the area of the thermomagnetic recording
devices.1–3 The compensation temperaturesTcompd appears
due to the different temperature dependences of the sublat-
tice magnetizations that form the ferrimagnetic material. At
Tcomp, the sublattice magnetizations cancel each other and the
total magnetization vanishes.4 In addition at this point it has
been found that some physical properties present a peculiar
behavior. For instance, the coercive fieldsHcd is strongly
temperature dependent only in the vicinity ofTcomp:

1,5,6 it is
maximum atTcomp, falling to a minimum below the compen-
sation temperature, before rising again at low temperatures.
This peculiar temperature dependence ofHc, together with a
local heating by a focused laser beam, can be applied to
attain a direct overwrite capability in magneto-optical re-
cording media.

Mixed-spin Ising systems were introduced as the simplest
models that exhibit a ferrimagnetic behavior. For an infinite
system, formed by two interpenetrating sublattices ofs
= ±1/2 andS= ±1, 0 spins, many studies have been per-
formed to describe the appearance of a compensation point.
The existence ofTcomp in this system was already investi-
gated by mean-field,7 renormalization-group calculations,8

Monte Carlo simulations,9,10 and numerical transfer-matrix
techniques.10 The mean-field calculations show the appear-
ance of a compensation point considering a model with only
nearest-neighbor couplings and a crystal field interaction. On
the other hand, in Refs. 8–10 was shown that a compensation
temperature appears only when the model incorporates fer-
romagnetic next-nearest-neighbor interactions betweens

spins. The consideration of next-nearest-neighbor interac-
tions in the case of interpenetrating sublattices is the only
way to take into account the interactions betweens spins in
a square lattice, where the coordination number isz=4. The
s-s exchange coupling enhances the critical temperature of
the system and therefore can give rise a compensation point.
In a recent work,11,12 we considered a ferrimagnetic model
on a hexagonal latticesz=6d formed by alternate layers ofs
and S spins. For this spin arrangement, the intrasublattice
interactions are always between nearest-neighboring spins
and the compensation point appears by taking into account
suitable range of values for thes-s andS-S exchange cou-
plings.

In this work we consider a two-dimensional ferrimagnetic
small particle described by a spin arrangement similar to that
studied in Ref. 11. This particle is formed by a central spin,
surrounded by alternate rings ofs andSspins. If we imagine
this model extended to three dimensions it could describe
some properties of real ferrimagnetic materials. For instance,
the work of Chernet al.13 reports some measurements of the
compensation point and phase diagram of Fe3O4/Mn3O4 su-
perlattices, which is a system grown by a deposition of alter-
nate layers of Fe3O4 and Mn3O4 coupled antiferromagneti-
cally. If these layers were grown cilindrically our model
could be seen as a perpendicular cut to the axis of the cil-
inder.

As already have been observed, the effects of the surface
and size of the particle are manifested through a wide variety
of anomalous magnetic properties with respect to those of
bulk material. These small systems are prototype of magnetic
nanoparticles and they have been intensively studied in the
recent years.14–17In the specific case of a ferrimagnetic small
particle, some studies have been performed through the mi-
cromagnetic formalism18 and by Monte Carlo simulations.19
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Up to now, no model was studied in order to investigate the
role of the finite-size effect on the compensation point of a
ferrimagnetic small particle. In this work we consider a par-
ticle with perfect surface, and we investigate the effects of
the reduced coordination number of the surface spins on the
determination of the compensation temperature. Particularly,
we find the threshold parameters of the Hamiltonian to give
a compensation point in a ferrimagnetic small particle.

This paper is organized as follows. In Sec. II the model
and the dynamic equations of motion for the magnetizations
are determined in the mean-field approximation. In Sec. III,
we describe the Monte Carlo simulations. In Sec. IV we
present our results, and finally, we draw our conclusions in
Sec. V.

II. THE MODEL

The ferrimagnetic small particle is described by a mixed-
spin Ising model on a hexagonal substrate. As we can see in
Fig. 1, the different layers of spins are disposed in alternate
rings, that is, if the central spin is of thes type, the first ring
is of theS type, the second is of thes type, etc. The spins are
described by Ising variables, which can take the valuess
= ±1/2 andS= ±1, 0. With this particular arrangement of
spins, the model presents intersublattice and intrasublattice
nearest-neighbor interactions of the types-S,s-s, andS-S.
We also take into account a crystal field contribution associ-
ated with theS spins. The Hamiltonian of the model is

H = − J1o
ki j l

Sis j − J2o
ki j l

sis j − J3o
ki j l

SiSj − Do
i

Si
2, s1d

where J1, J2, and J3 are the exchange couplings between
nearest-neighbor pairs of spinss-S,s-s, and S-S, respec-
tively. D is the crystal field parameter. The exchange param-
eterJ1 will be taken negative in all the subsequent analyses,

that is, the intersublattice coupling is antiferromagnetic. In
order to study this model in the mean-field approximation,
we consider the dynamic equations for the average spin mag-
netizations

msi
std = o

ks,Sl
siPss,S;td s2d

and

mSi
std = o

ks,Sl
SiPss,S;td, s3d

where the sums are over all the possible spin configurations,
andPss ,S; td is the probability to find the system in a given
statess ,Sd at time t. In this case, as we are considering a
finite system, we must compute the average magnetization
for each spinsthis is the reason for the indexi in msi and in
mSid.

The calculation of these averages is straightforward in the
dynamic equations of motion for the site approximation,
where we have

d

dt
msi

= − msi
+

1

2
tanhFb

2SJ1o
j

mSj
+ J2o

j

ms jDG s4d

and

d

dt
mSj

= − mSj
+

2 sinhFbSJ1o
k

msk
+ J3o

k

mSkDG
2 coshfbSJ1o

k

mk + J3o
k

mSkDg + exps− bDd
,

s5d

where the sums in Eqs.s4d and s5d are over the nearest-
neighbor of spinssi andSj, respectively. For instance, if the
central spin is of the types, the dynamic equation fors0 can
be written as

d

dt
ms0

= − ms0
+

1

2
tanhFb

2SJ1o
j

mSjDG , s6d

and the sum is over the six spinsSj at the first shell of the
particle. On the other hand, if the central spin is of the type
S, we have forS0

d

dt
mS0

= − mS0
+

2 sinhFbSJ1o
k

mskDG
2 coshFbSJ1o

k

mskDG + exps− bDd
s7d

and now, the sum is over the six spinssk at the first shell of
the particle. Then the equation of motion of a given spin
localized between the first and last shell of the particle, takes
in account four nearest-neigbor spins of the same type of the
spin considered and two of the other type. At the surface,
because of the lower coordination number, each spin has
only threesspin at the corner of the particled or four nearest-
neighbors spins.

FIG. 1. Schematic representation of a hexagonal ferrimagnetic
particle with six shells. The particle is formed by alternate shells of
s sopen circlesd andS ssolid circlesd spins.
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We considered in our calculations, particles with a num-
ber of shells ranging from 2 to 12. In any case, due to the
hexagonal symmetry of the particle, we had to solve a sys-
tem ofP,N coupled equations, whereN is the total number
of spins of the particle. For example, we haveP=4 andN
=19 in a particle with 2 shells, andP=49 andN=469 in a
particle with 12 shells. To solve these equations we consid-
ered only the equilibrium states, and the magnetizations were
found as a function of the temperature, for different values of
the Hamiltonian parameters.

Despite the mean-field calculations give only a crude
evaluation of the critical and compensation temperatures of
this model, as we will see next, they still exhibit the same
essential features observed in the Monte Carlo simulations.
As in this study we are not interested in the calculation of
critical exponents, the mean-field approximation is the sim-
plest analytical method that can be used to extract the gen-
eral qualitative behavior of the system, and as expected, it
establishes the upper bound values to the critical and com-
pensation temperatures.

III. MONTE CARLO SIMULATIONS

The model described in the last section was simulated by
using the heat-bath algorithm.20 In each Monte Carlo step
sMCSd, we performedN trials to flip the spins. We per-
formed around 6000 MCS, where the first 1000 were dis-
carded for the thermalization process. In order to get reliable
results, we also considered averages over 100 different
samples in our calculations. Although not shown in the fig-
ures, the error bars are smaller than the symbol sizes.

Our algorithm calculates the magnetizationss andS, de-
fined as

ms =
1

Ns
Ko

i=1

Ns

siL , s8d

mS=
1

NS
Ko

i=1

NS

SiL , s9d

and the total magnetization

mtot =
Ns

N
ms +

NS

N
mS, s10d

whereNs and NS are the number of spinss and S, respec-
tively. In addition we also evaluate the shell magnetizations
of the particle.

At the compensation point the total magnetization must
vanishe. Then, the compensation temperature can be deter-
mined by the crossing point between the absolute values of
the magnetizationss andS. Therefore, at the compensation
point, we must have

uNsmssTcompdu = uNSmSsTcompdu, s11d

and

FIG. 2. Critical temperature obtained as a function of the num-
ber of shells of the particlesnd. The mean-field results are shown by
the line with squares and the Monte Carlo simulations are repre-
sented by the line with triangles. For particles withnù11 shells,
the critical temperature reaches the expected value for the corre-
sponding infinite system. The parameters used areJ2=−J1, J3=J1,
andD=−0.75uJ1u. Temperature is measured in units ofuJ1u /kB.

FIG. 3. Shell magnetizations of a particle with a central spins
and seven shells, forJ2=−J1, J3=−J1, andD=0, obtained through
mean-field calculations.sad From top to bottom: bulk, shell 1, 3, 5,
and 7.sbd From bottom to top: bulk, central spin, shell 2, 4, and 6.
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sgnfmssTcompdg = − sgnfmSsTcompdg. s12d

We also require thatTcomp,Tc, whereTc is the critical tem-
perature.

These conditions show that atTcomp, the magnetizationss
andS cancel each other, whereas atTc both are zero. As we
have seen for an infinite system,11 at the compensation point
the model does not present any critical phenomenon; only at
Tc the critical behavior is really observed. For instance, while
at Tc the susceptibility and specific heat are singular func-
tions of temperature, at the compensation point these func-
tions are regular.

IV. RESULTS

First, let us consider the finite-size effects on the equilib-
rium magnetic properties of the ferrimagnetic particle. In
Fig. 2 we show the critical temperature obtained for a par-
ticle with the number of shells ranging from 2 to 12, for the
parametersJ2=−J1, J3=J1 and D=−0.75uJ1u. The critical
temperatures obtained by mean-field approximation and
Monte Carlo simulations are drawn in the same plot as a
matter of comparison. As expected, the critical temperature
found in the mean-field calculations are higher than those

obtained through Monte Carlo simulations. The results indi-
cate an increase in the critical temperature of the particle
with the number of shells considered. When the number of
shells of the particle increases, the ratio between surface and
volume of the particle decreases and, the finite-size effects
become negligible. For the particle we are studying, in the
case ofnù11 shells, the critical temperature reaches the
expected value of the corresponding infinite system,11,12

which are Tc=1.37uJ1u /kB and Tc=0.62±0.02uJ1u /kB by
mean-field calculations and Monte Carlo simulations, respec-
tively.

It is important to stress that the critical temperature ob-
tained in the Monte Carlo simulations for the finite ferrimag-
netic particle is not a true critical temperature, but a pseudo-
critical one. As is well known, a finite system cannot exhibit
a true singularity at a nonzero temperature, but a pseudocriti-
cal temperature can be related to the sharp peak in the sus-
ceptibility and specific heat.21

Figures 3 and 4 show the shell magnetizations for a par-
ticle with a centrals spin and seven shells, for the particular
set of parametersJ2=−J1, J3=−J1, andD=0. As we can see
in this plot, the magnetizations of the more internal shells
have a behavior closer to the infinite system than the shells
near to the surface. For this particle with seven shells, the
ratio surface/volume is near 0.25, and as can be seen, it still
exhibits some of the effects due to its finite size. The surface
spins have a lower coordination number and therefore expe-

FIG. 4. The same legend as in Fig. 3 but for Monte Carlo
simulations.

FIG. 5. Sublattice and total magnetizations as a function of tem-
perature.sad Mean-field calculcations forJ2=−J1, J3=J1, and D
=−0.9uJ1u and sbd Monte Carlo simulations forJ2=−J1, J3=0.2J1,
andD=−2.0uJ1u. In the insets we show the crossing of the sublattice
magnetizations.Tcomp andTc are shown in the figure. Temperature
is measured in units ofuJ1u /kB.
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rience a reduced mean field. This is the only surface effect
considered in this work, and it is responsible for the different
values we found for the layer magnetizations. Another sce-
nario would arise if we had chosen exchange couplings at the
surface layer different from those of the core, or considered
some kind of disorder at the topmost layers. To stress the
surface effects in our model, in what follows, we will refer to
a particle composed of seven shells.

To see the presence of a compensation point in this ferri-
magnetic small particle, we show in Fig. 5 the total magne-
tization and the magnetizationss andS as a function of the
temperature, for selected values of the Hamiltonian param-
eters. In this figure, we haveJ2=−J1, J3=J1, and D=
−0.9uJ1u, in the mean-field calculations, andJ2=−J1, J3
=0.2J1, andD=−2.0uJ1u, in the Monte Carlo simulations. As
we will explain below we had to take different values of the
parameters in the mean-field and Monte Carlo analyses in
order to see clearly the occurence of a compensation point in
each method. From Fig. 5sad, from the mean-field calcula-
tions, we findTcomp=0.67uJ1u /kB andTc=1.31uJ1u /kB, for the
compensation and critical temperatures, respectively. On the
other hand, in Fig. 5sbd, Monte Carlo simulations gives

Tcomp=s0.19±0.02duJ1u /kB andTc=s0.66±0.02duJ1u /kB. If we
would have applied the same set of parameters employed in
Fig. 5sad, which gives rise to a compensation point in the
mean-field approximation, to the case of Monte Carlo simu-
lations, we would get a configuration wherems.mS for any
temperature below the critical. Figure 6 shows the suscepti-
bility and specific heat for the seven shell particle as a func-
tion of temperature, for the same set of parameters as in Fig.
5. This figure serves to illustrate the monotonic behavior of
these thermodynamic functions atTcompcompared with those
observed atTc, where they present their maximum values.

Let us consider now for what values of the Hamiltonian
couplings a compensation point is possible. Figure 7 shows
the threshold of the ferromagnetics-s interactionJ2 as a
function of D, in the mean-field approximation and Monte
Carlo simulations forJ3=J1. For values ofJ2 below the
threshold, the magnetizationS is always larger than the mag-
netization s for any temperature for whichT,Tc. This
threshold depends on the crystal-field intensity and, as we
can see, it is an increasing function ofD. As D decreases, the
sublattice magnetizationmS decays faster, and the crossing
point between the two sublattice magnetizations moves to

FIG. 6. Specific heat and susceptibility.sad and sbd mean-field calculations,scd and sdd Monte Carlo simulations. We used the same
parameters as in Fig. 5.TcompandTc are shown in the figure. Temperature is measured in units ofuJ1u /kB, the specific heat in units ofkB, and
the susceptibility in units ofuJ1u−1.
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lower temperatures. For the set of parameters considered in
these plots, the model does not exhibit any compensation
point for D,−1.0uJ1u, in both, mean-field and Monte Carlo
calculations. For this range of values ofD, the magnetization
S is lower than the magnetizations for any value of the
intrasublattices-s interaction.

Finally, as can be seen in Fig. 8, the mean-field and Monte
Carlo results, predict a small range of values for the antifer-
romagnetic intrasublatticeS-S interaction,J3, in order to ap-
pear a compensation point forJ2=−J1. Below the lower
bound curve we havemS.ms for any temperature below the
critical, because theuJ3u is not large enough to decrease the
sublattice magnetizationS sufficiently. On the other hand,
above the upper bound curve, the antiferromagnetic interac-
tion between spins of theS sublattice is so large thatmS is
always lower thanms for any temperature below the critical.
Only in the intermediate region between these two bound-
aries, a compensation point can appear. It is worthwhile to
stress that the Monte Carlo simulations give a much more
narrow range of values ofJ3 that the corresponding range
found in the mean-fiel approximation.

In spite of Figs. 7 and 8 being related to a particle with
seven shells, the same kind of picture is also observed for
other particle sizes. The location of the threshold curves
changes but the qualitative behavior remains the same for the

appearance of the interesting regionB, where the compensa-
tion points can occur. For example, with the parameters used
in Figs. 5sad we cannot observe a compensation point for
particles withnø6 shells in the mean-field calculations. On
the other hand, with the parameters used in Fig. 5sbd the
compensation point is not present for particles withnø5
shells throught Monte Carlo simulations. In both cases, these
sets of parameters would represent points in the correspond-
ing regionsC.

V. CONCLUSIONS

In this work we have considered mean-field calculations
and Monte Carlo simulations to study the finite-size effects
of a ferrimagnetic small particle on its compensation point.
The particle is described by a mixed-spin Ising system,
where thes=1/2 andS=1 spins occupy alternate rings of a
hexagonal lattice. The Hamiltonian of the model includes
intersublatticess-Sd, intrasublatticess-s ,S-Sd, and crystal-
field sDd interactions for the particle. In order to have a fer-
rimagnetic behavior, the intersublattice interaction must be
antiferromagnetic.

FIG. 7. Threshold values ofJ2 as a function ofD, to find a
compensation point.sad Mean-field calculations forJ3=J1 and sbd
Monte Carlo simulations forJ3=0.9J1. In the regionA, mS.ms for
any temperatureT,Tc. B is the region where the compensation
point can appear.J2 andD are measured in units ofuJ1u.

FIG. 8. Range of values ofJ3 giving rise to compensation
points, as a function ofD, for J2=−J1. sad Mean-field calculations,
sbd Monte Carlo simulations. For the regionsA andC, we always
havemS.ms andms.ms, respectively.B is the region where we
can have compensation points.J3 is measured in units ofJ1 andD
in units of uJ1u.
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We focused our attention on the role played by the differ-
ent couplings in the Hamiltonian to predict a compensation
point for a small particle. Our results show that, as it happens
for the infinite system, the compensation point appears only
when the intrasublattice interaction betweens spins is ferro-
magnetic. There is a minimum value for this coupling, which
depends on the other Hamiltonian parameters, for the oc-
curence of a compensation point. On the other hand, the
sublattice magnetizationS must decrease enough in order to
cross the curve of the sublattice magnetizations at a finite
temperature below the critical. This can be achieved by two
different ways: decreasing the crystal-field couplingD or
increasing the antiferromagnetic coupling between spins of
the sublatticeS. We have shown that there is a very narrow
range of values of this intrasublattice coupling in order to
find a compensation point. Finally, we have seen as in the
case of the hexagonal infinite system, we need only nearest-
neighbor exchange interactions to find a compensation point
in this ferrimagnetic small particle.

Our results indicate that a particle with more than eleven
shells can be assumed to be in the thermodynamic limit. As

we have seen in Fig. 2 it is easy to drawn the curve of the
critical temperature as a function of the particle size for a
fixed set of Hamiltonian parameters. The same task is not so
easy for the compensation temperature, as we have discussed
in the final paragraph of the last section. As we move along
the size axis with the same set of parameters we can get out
of the region B of the possible compensation points. The
region of the parameters where the compensation point can
appear changes with the size of the particle. For the smaller
particles the ferromagnetic interaction betweens spins
should be larger and the antiferromagnetic coupling between
Sspins should not be very strong. These are the appropriated
conditions to have a high critical temperature and at the same
time a compensation point.
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