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Finite-size effects and compensation temperature of a ferrimagnetic small particle
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In this work we study the magnetic properties of a ferrimagnetic small particle on a hexagonal substrate. The
particle is described by a mixed-spin Ising model in which thel/2 andS=1 spins are distributed in
concentric and alternate hexagonal rings. We consider particles with different number of rings and show that
particles with more than 11 shells can be considered as infinite systems. For a particle in which the finite-size
effect is relevant, we investigated the role of the different parameters of the Hamiltonian in the appearance of
a compensation temperature. As the model incorporat€so-o and S-S nearest-neighbor interactions, we
observe the existence of a compensation point without the necessity of any next-nearest-neighbor interaction.
The appearance of a compensation point depends only on the value @fah@S intrasublattice couplings.

The o intrasublattice interaction should be ferromagnetic and above a threshold value. On the other hand, the
Sintrasublattice interaction should be mostly antiferromagnetic and restricted to a narrow range of values.
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[. INTRODUCTION spins. The consideration of next-nearest-neighbor interac-
tions in the case of interpenetrating sublattices is the only

The appearance of a compensation point near room temwvay to take into account the interactions betweespins in
perature in some ferrimagnetic materials, has a crucial ima square lattice, where the coordination number=d. The
portance in the area of the thermomagnetic recordin%f'ff exchange coupling enhances the critical temperature of
devicesl The compensation temperatu.o,) appears he system and trleigefore can give rise a compensation point.
due to the different temperature dependences of the subldfl @ recent work!2we considered a ferrimagnetic model
tice magnetizations that form the ferrimagnetic material. AN & hexggonal Iatt|_céz:6_) formed by alternate. layers of :
Teomp the sublattice magnetizations cancel each other and tH%nd S spins. For this spin arrangement, the .|ntraspblatt|c'e
total magnetization vanishédn addition at this point it has interactions are aways between nearest-neighboring spins

. . .and the compensation point appears by taking into account
been found th&.‘t some physical properties present a peculi {Titable range of values for the o and S-S exchange cou-
behavior. For instance, the coercive figld.) is strongly

lings.
: .. 156 ¢ P _ . . : : ,
temperature dependent only in the vicinity Dby ™" it is In this work we consider a two-dimensional ferrimagnetic

maximum afT o,y falling to a minimum below the compen-  gmg|i particle described by a spin arrangement similar to that
sation temperature, before rising again at low temperaturegydied in Ref. 11. This particle is formed by a central spin,
This peculiar temperature dependenceHeftogether with a  syrrounded by alternate rings @fandS spins. If we imagine
local heating by a focused laser beam, can be applied tghis model extended to three dimensions it could describe
attain a direct overwrite capability in magneto-optical re-some properties of real ferrimagnetic materials. For instance,
cording media. the work of Cherret alX2 reports some measurements of the
Mixed-spin Ising systems were introduced as the simplestompensation point and phase diagram of¥éMn;0, su-
models that exhibit a ferrimagnetic behavior. For an infiniteperlattices, which is a system grown by a deposition of alter-
system, formed by two interpenetrating sublattices cof nate layers of F€, and Mn,O, coupled antiferromagneti-
=+1/2 andS=#%1, 0 spins, many studies have been per-cally. If these layers were grown cilindrically our model
formed to describe the appearance of a compensation poirtould be seen as a perpendicular cut to the axis of the cil-
The existence off ;,n, in this system was already investi- inder.
gated by mean-field,renormalization-group calculatiofis, As already have been observed, the effects of the surface
Monte Carlo simulationd° and numerical transfer-matrix and size of the particle are manifested through a wide variety
techniques® The mean-field calculations show the appear-of anomalous magnetic properties with respect to those of
ance of a compensation point considering a model with onlypulk material. These small systems are prototype of magnetic
nearest-neighbor couplings and a crystal field interaction. Onanoparticles and they have been intensively studied in the
the other hand, in Refs. 8-10 was shown that a compensatioecent yeard*~*"In the specific case of a ferrimagnetic small
temperature appears only when the model incorporates feparticle, some studies have been performed through the mi-
romagnetic next-nearest-neighbor interactions between cromagnetic formalisAt and by Monte Carlo simulatior$.
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that is, the intersublattice coupling is antiferromagnetic. In
order to study this model in the mean-field approximation,
we consider the dynamic equations for the average spin mag-

netizations
m, (1) = > oiP(a,Si1) 2)
(0,9
and
mg (1) :<ES> SP(a,Si1), &)

where the sums are over all the possible spin configurations,
andP(o,S;t) is the probability to find the system in a given
state(o,S) at timet. In this case, as we are considering a
finite system, we must compute the average magnetization
for each spin(this is the reason for the indexn m,; and in
Mg;).
The calculation of these averages is straightforward in the
dynamic equations of motion for the site approximation,
FIG. 1. Schematic representation of a hexagonal ferrimagnetigvhere we have
particle with six shells. The particle is formed by alternate shells of

o (open circley and S (solid circles spins. d%m‘fi =-m, + %tan’_{g(‘hz msﬁ + 322 mgj)} (4)
j j

Up to now, no model was studied in order to investigate the d
role of the finite-size effect on the compensation point of 2N
ferrimagnetic small particle. In this work we consider a par- ¢
ticle with perfect surface, and we investigate the effects of—tmg
the reduced coordination number of the surface spins on théj
determination of the compensation temperature. Particularly, 2 sinf| B[ 3,2 m, +J:>, m

. . . . 1 oy 3 S
we find the threshold parameters of the Hamiltonian to give k k

a compensation point in a ferrimagnetic small particle. =-mg + _ '
This paper is organized as follows. In Sec. Il the model 2 cosHi,B(lek, mk+‘J3% m%)] + expl- D)

and the dynamic equations of motion for the magnetizations

are determined in the mean-field approximation. In Sec. I, (5)

we describe the Monte Carlo simulations. In Sec. IV Weyhere the sums in Eqg¢4) and (5) are over the nearest-
present our results, and finally, we draw our conclusions itheighbor of spinss; ands, respectively. For instance, if the

Sec. V. central spin is of the type, the dynamic equation far, can
be written as
Il. THE MODEL d 1
. . . . . . _m(ro == mrro + _tam—{ E(le mS):| y (6)
The ferrimagnetic small particle is described by a mixed- dt 2 2\ 777

spin Ising model on a hexagonal substrate. As we can see in

Fig. 1, the different layers of spins are disposed in alternat&"d the sum is over the six spigs at the first shell of the
rings, that is, if the central spin is of thetype, the first ring particle. On the other hand, if the central spin is of the type

is of theStype, the second is of thetype, etc. The spins are S, we have forg,

described by Ising variables, which can take the valoes 5 sim{/g’ IS m

=+1/2 andS=%1, 0. With this particular arrangement of ( ! ” "k)]

spins, the model presents intersublattice and intrasublattice —mg =—-mg + (7)
nearest-neighbor interactions of the typeS, o-o, and S-S. dt 2 0051,3<312 mok>J +exp(— BD)

We also take into account a crystal field contribution associ- k

ated with theS spins. The Hamiltonian of the model is and now, the sum is over the six spimgat the first shell of

the particle. Then the equation of motion of a given spin
H=- ‘]12 Soj - JZZ gioj ~ ‘332 SS- DE S5 @ localized between the first and last shell of the particle, takes
W L i ' in account four nearest-neigbor spins of the same type of the
where J;, J,, and J; are the exchange couplings betweenspin considered and two of the other type. At the surface,
nearest-neighbor pairs of spinsS,o-0, and S-S, respec- because of the lower coordination number, each spin has
tively. D is the crystal field parameter. The exchange paramenly three(spin at the corner of the partigler four nearest-
eterJ, will be taken negative in all the subsequent analysesneighbors spins.
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FIG. 2. Critical temperature obtained as a function of the num-
ber of shells of the particlen). The mean-field results are shown by T T T T
the line with squares and the Monte Carlo simulations are repre- o0}
sented by the line with triangles. For particles witks 11 shells, A
the critical temperature reaches the expected value for the corre 44|
sponding infinite system. The parameters usedJgre-J;, J3=J;,
andD=-0.75J,]. Temperature is measured in units|af|/kg.

02

We considered in our calculations, particles with a num-g° _
ber of shells ranging from 2 to 12. In any case, due to the
hexagonal symmetry of the particle, we had to solve a sys-

tem of P<N coupled equations, wheiis the total number o4r

of spins of the particle. For example, we hake4 andN

=19 in a particle with 2 shells, and=49 andN=469 in a 08

particle with 12 shells. To solve these equations we consid- 00 ' m ' s * 12
ered only the equilibrium states, and the magnetizations were T

found as a function of the temperature, for different values of °

the Hamiltonian parameters. FIG. 3. Shell magnetizations of a particle with a central spin

Despite the mean-field calculations give only a crudeyng seven shells, fal,=-J;, J3=—J;, andD=0, obtained through
evaluation of the critical and compensation temperatures ofean-field calculationga) From top to bottom: bulk, shell 1, 3, 5,
this model, as we will see next, they still exhibit the sameand 7.(b) From bottom to top: bulk, central spin, shell 2, 4, and 6.
essential features observed in the Monte Carlo simulations.

As in this study we are not interested in the calculation of Ne

critical exponents, the mean-field approximation is the sim- M= 1 D S 9)
plest analytical method that can be used to extract the gen- S Ns\ o ’

eral qualitative behavior of the system, and as expected, it

establishes the upper bound values to the critical and co

pensation temperatures Mind the total magnetization

- N
Myt = —2 M,y + —Ms, (10)

IlI. MONTE CARLO SIMULATIONS N N

The model described in the last section was simulated by
using the heat-bath algorithf.In each Monte Carlo step WhereN, andNs are the number of spins and S, respec-
(MCS), we performedN trials to flip the spins. We per- tively. In addition we also evaluate the shell magnetizations
formed around 6000 MCS, where the first 1000 were disOf the particle.
carded for the thermalization process. In order to get reliable At the compensation point the total magnetization must
results, we also considered averages over 100 differetanishe. Then, the compensation temperature can be deter-
samples in our calculations. Although not shown in the fig-mined by the crossing point between the absolute values of

ures, the error bars are smaller than the symbol sizes.  the magnetizations and S. Therefore, at the compensation
Our algorithm calculates the magnetizatiangndS, de-  Point, we must have
fined as
N |Nama(Tcomp)| = |NSmS(Tcomp)|1 (11)
1
ma': NS E gj [, (8)
Ny \i-1 and
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00 02 oa pye o8 0 12 andD=-2.0J4|. In the insets we show the crossing of the sublattice

magnetizationsT ;,m, and T are shown in the figure. Temperature

T/T, is measured in units df|/kg.

FIG. 4. The same legend as in Fig. 3 but for Monte Carlo

. . obtained through Monte Carlo simulations. The results indi-
simulations.

cate an increase in the critical temperature of the particle
with the number of shells considered. When the number of
SgMM,(Teomp ] = = sgAMS(Teomp ] (12)  shells of the particle increases, the ratio between surface and
volume of the particle decreases and, the finite-size effects
become negligible. For the particle we are studying, in the
case ofn=11 shells, the critical temperature reaches the
andS cancel each other, whereasTatboth are zero. As we expected valu_e of the correspon_dlng infinite. systé,
o : .~ which are T,=1.37J,|//kg and T.=0.62+0.02J,|/kg by
have seen for an infinite systethat the compensation point
s ! ean-field calcula'uons and Monte Carlo simulations, respec-
the model does not present any critical phenomenon; only eﬁ\‘/el
T, the critical behavior is really observed. For instance, while Y- .
It is important to stress that the critical temperature ob-

at T, the susceptibility and specific heat are singular funCtamed in the Monte Carlo simulations for the finite ferrimag-

tions of temperature, at the compensation point these func-
Fetic particle is not a true critical temperature, but a pseudo-
tions are regular.
critical one. As is well known, a finite system cannot exhibit
a true singularity at a nonzero temperature, but a pseudocriti-
IV RESULTS cal tgrpperature can.be related to the sharp peak in the sus-
ceptibility and specific hea&t
First, let us consider the finite-size effects on the equilib- Figures 3 and 4 show the shell magnetizations for a par-
rium magnetic properties of the ferrimagnetic particle. Inticle with a centralos spin and seven shells, for the particular
Fig. 2 we show the critical temperature obtained for a parset of parameterd,=-J,, J;=-J;, andD=0. As we can see
ticle with the number of shells ranging from 2 to 12, for the in this plot, the magnetizations of the more internal shells
parametersl,=-J;, J;=J; and D=-0.79J,|. The critical have a behavior closer to the infinite system than the shells
temperatures obtained by mean-field approximation andear to the surface. For this particle with seven shells, the
Monte Carlo simulations are drawn in the same plot as aatio surface/volume is near 0.25, and as can be seen, it still
matter of comparison. As expected, the critical temperaturexhibits some of the effects due to its finite size. The surface
found in the mean-field calculations are higher than thosapins have a lower coordination number and therefore expe-

We also require thalc,m,<Tc, whereT, is the critical tem-
perature.
These conditions show that &,,,, the magnetizations
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FIG. 6. Specific heat and susceptibilitw) and (b) mean-field calculationd,c) and (d) Monte Carlo simulations. We used the same
parameters as in Fig. $¢,mpandT. are shown in the figure. Temperature is measured in uniti |okg, the specific heat in units &g, and
the susceptibility in units ofJ,| ™.

rience a reduced mean field. This is the only surface effecT,ym,=(0.19+0.02|J;|/kg andT.=(0.66+0.02|Jy|/kg. If we
considered in this work, and it is responsible for the differentwould have applied the same set of parameters employed in
values we found for the layer magnetizations. Another sceFig. 5a), which gives rise to a compensation point in the
nario would arise if we had chosen exchange couplings at thmean-field approximation, to the case of Monte Carlo simu-
surface layer different from those of the core, or consideredations, we would get a configuration whearg > mg for any
some kind of disorder at the topmost layers. To stress theemperature below the critical. Figure 6 shows the suscepti-
surface effects in our model, in what follows, we will refer to bility and specific heat for the seven shell particle as a func-
a particle composed of seven shells. tion of temperature, for the same set of parameters as in Fig.
To see the presence of a compensation point in this ferri5. This figure serves to illustrate the monotonic behavior of
magnetic small particle, we show in Fig. 5 the total magnethese thermodynamic functions&f,,,, compared with those
tization and the magnetizatiomsand S as a function of the observed af., where they present their maximum values.
temperature, for selected values of the Hamiltonian param- Let us consider now for what values of the Hamiltonian
eters. In this figure, we havd,=-J;, J;=J;, and D= couplings a compensation point is possible. Figure 7 shows
-0.9J,|, in the mean-field calculations, and,=-J;, J;  the threshold of the ferromagnetie-o interactionJ, as a
=0.2J;, andD=-2.0J,], in the Monte Carlo simulations. As function of D, in the mean-field approximation and Monte
we will explain below we had to take different values of the Carlo simulations forJ;=J;. For values ofJ, below the
parameters in the mean-field and Monte Carlo analyses ithreshold, the magnetizatidis always larger than the mag-
order to see clearly the occurence of a compensation point inetization o for any temperature for whiclf <T.. This
each method. From Fig.(&, from the mean-field calcula- threshold depends on the crystal-field intensity and, as we
tions, we findTgom=0.67J|/kg andT,=1.313,|/kg, for the  can see, it is an increasing function@fAs D decreases, the
compensation and critical temperatures, respectively. On theublattice magnetizatiomg decays faster, and the crossing
other hand, in Fig. ®), Monte Carlo simulations gives point between the two sublattice magnetizations moves to
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FIG. 7. Threshold values aJ, as a function ofD, to find a
compensation poinia Mean-field calculations fod;=J; and (b)
Monte Carlo simulations fod;=0.9J;. In the regionA, mg>m,, for
any temperaturd <T,. B is the region where the compensation
point can appead, andD are measured in units &J].

FIG. 8. Range of values 083 giving rise to compensation
points, as a function ob, for J,=-J,. () Mean-field calculations,
(b) Monte Carlo simulations. For the regioAsand C, we always
havemg>m, andm,>m;, respectivelyB is the region where we
can have compensation poinds.is measured in units of; andD

lower temperatures. For the set of parameters considered if units of [Jy].

these plots, the model does not exhibit any compensation

point for D<-1.0J,], in both, mean-field and Monte Carlo appearance of the interesting regiBnwhere the compensa-

calculations. For this range of valuesDf the magnetization tion points can occur. For example, with the parameters used

S is lower than the magnetization for any value of the in Figs. 5a) we cannot observe a compensation point for

intrasublatticeo-o interaction. particles withn<6 shells in the mean-field calculations. On
Finally, as can be seen in Fig. 8, the mean-field and Monténhe other hand, with the parameters used in Fidp) $he

Carlo results, predict a small range of values for the antifercompensation point is not present for particles witk 5

romagnetic intrasublattic8-S interaction,J;, in order to ap-  shells throught Monte Carlo simulations. In both cases, these

pear a compensation point fab=-J;. Below the lower sets of parameters would represent points in the correspond-

bound curve we haves>m,, for any temperature below the ing regionsC.

critical, because thél;| is not large enough to decrease the

sublattice magnetizatio® sufficiently. On the other hand,

a}bove the upper bound curve, the antiferromagnetic interac— V. CONCLUSIONS
tion between spins of th8 sublattice is so large thatg is _ _ _ _
always lower tham, for any temperature below the critical. In this work we have considered mean-field calculations

Only in the intermediate region between these two boundand Monte Carlo simulations to study the finite-size effects
aries, a compensation point can appear. It is worthwhile t®f a ferrimagnetic small particle on its compensation point.
stress that the Monte Carlo simulations give a much mordhe particle is described by a mixed-spin Ising system,
narrow range of values af; that the corresponding range Where thes=1/2 andS=1 spins occupy alternate rings of a
found in the mean-fiel approximation. hexagonal lattice. The Hamiltonian of the model includes
In spite of Figs. 7 and 8 being related to a particle withintersublattice(o-S), intrasublattice(o-o,S-S), and crystal-

seven shells, the same kind of picture is also observed fdield (D) interactions for the particle. In order to have a fer-
other particle sizes. The location of the threshold curvesimagnetic behavior, the intersublattice interaction must be
changes but the qualitative behavior remains the same for trantiferromagnetic.
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We focused our attention on the role played by the differ-we have seen in Fig. 2 it is easy to drawn the curve of the
ent couplings in the Hamiltonian to predict a compensatiorcritical temperature as a function of the particle size for a
point for a small particle. Our results show that, as it happen§ixed set of Hamiltonian parameters. The same task is not so
for the infinite system, the compensation point appears onlgasy for the compensation temperature, as we have discussed
when the intrasublattice interaction betweespins is ferro-  in the final paragraph of the last section. As we move along
magnetic. There is a minimum value for this coupling, whichthe size axis with the same set of parameters we can get out
depends on the other Hamiltonian parameters, for the omf the region B of the possible compensation points. The
curence of a compensation point. On the other hand, theegion of the parameters where the compensation point can
sublattice magnetizatio8 must decrease enough in order to appear changes with the size of the particle. For the smaller
cross the curve of the sublattice magnetizatioat a finite  particles the ferromagnetic interaction between spins
temperature below the critical. This can be achieved by twahould be larger and the antiferromagnetic coupling between
different ways: decreasing the crystal-field couplidbgor  Sspins should not be very strong. These are the appropriated
increasing the antiferromagnetic coupling between spins ofonditions to have a high critical temperature and at the same
the sublatticeS. We have shown that there is a very narrowtime a compensation point.
range of values of this intrasublattice coupling in order to
find a compensation point. Finally, we have seen as in the ACKNOWLEDGMENTS
case of the hexagonal infinite system, we need only nearest-
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