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Magnetic vortices in thermal equilibrium in two-dimensional magnets are studied here in the presence of a
low concentration of nonmagnetic impuritiessspin vacanciesd. A nearest-neighbor HeisenbergsXXZd spin
model with easy-plane exchange anisotropy is used to determine static thermodynamic properties and vortex
densities via combined cluster and over-relaxation Monte Carlo simulations. Especially at low temperatures, a
large fraction of the thermally generated vortices nucleate centered on vacancies, where they have a lower
energy of formation. This fact is responsible for the reduction of the vortex-unbinding transition temperature
with increasing vacancy concentration, similar to that seen in the planar rotator model. Spin vacancies also
present the possibility of the appearance of vortices with double topological chargess±4p change in in-plane
spin angled, stable only when centered on vacancies.
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I. INTRODUCTION

The vortex-unbinding transition in two-dimensionals2Dd
spin models with planar symmetryfBerezinski�-Kosterlitz-
ThoulesssBKTd transition1–3g has attracted interest recently
with respect to the influence of nonmagnetic impurities or
spin vacancies in the lattice. In any real physical system,
some fraction of the atoms could be substituted by impuri-
ties, and if these are nonmagnetic, the spins neighboring the
impurity will be strongly affected by the missing exchange
interactions. Not only could missing bonds cause locally
lower energy densities, but they give the neighboring spins
more freedom of motion, which can be expected to increase
the local spin fluctuations. This can be expected to affect the
static configurations, the thermal equilibrium properties, and
the dynamic correlations, such as in electron paramagnetic
resonancesEPRd measurements on antiferromagnets.4,5

Significant vacancy effects on the static vortexsor anti-
vortexd configurations of ferromagnetssand antiferromagnets
with two sublatticesd have already been found for a 2D easy-
plane Heisenberg modelsthree spin componentsd. Zaspelet
al.6 found that the critical anisotropy strengthsdc;1−lc, see
the Hamiltonian belowd needed to stabilize a vortex in the
planar configuration on a square lattice is reduced fromdc
<0.2966 to the much lower valuedcv<0.0429 when the
vortex is centered on a vacancy. Wysin7 found a similar re-
sult at higher precisionsdcv<0.0455d and determined that a
vacancy at the center of a circular system with free bound-
aries produces an attractive potential for a vortex. Using dy-
namic relaxation and Monte Carlo simulations, Pereiraet al.8

found that a single vacancy in a square system with antipe-
riodic boundary conditions provides an attractive potential
for a vortex. These works demonstrated a significant energy
reduction for a vortex formed on a vacancy, compared to one
formed in the center of a cell of the lattice, whose value
depends on the type of lattice and the boundary conditions.
The resulting vortex-on-vacancy binding energy was found
to increase with increasing easy-plane anisotropy strength.
Both analytic and numerical calculations by Paulaet al.9

show that holes cut out of a spin lattice similarly produce
interesting, attractive effects on vortices.

The continuum model calculations for the closely related
planar rotator model10,11 were interpreted to suggest a repul-
sive potential between a planar vortex and a nonmagnetic
impurity; however, this seems contradictory to later calcula-
tions. Studies of a 2D isotropic Heisenberg antiferromagnet
by Mól et al.12 and Pereira and Pires13 found oscillatory dy-
namic modes of solitons pinned to vacancies, confirming the
presence of an attractive restoring potential. Considering
these most recent calculations for several models,7–9,12,13in
general it has been seen that a spin vacancy attracts vortices
sor antivorticesd and lowers their energy of formation.

In terms of equilibrium thermodynamics, the effect of a
concentration of vacancies on the BKT transition tempera-
ture Tc of the easy-plane Heisenberg model has not been
studied. On the other hand, Leonelet al.11 performed Monte
Carlo sMCd simulations of the planar rotator modelstwo-
component spinsd and found a lowering of the transition tem-
perature with increasing vacancy density. It was argued that
vacancies produce an effective repulsive potential for vorti-
ces, thereby increasing the nucleation of pairs and lowering
the transition temperature, but the vortex density was not
measured in the MC simulations. Using the helicity modulus
to determineTc, they found thatTc goes to zero when the
vacancy concentration of a square lattice reaches about 30%.
A similar lowering ofTc also appears in the MC simulations
of Bercheet al.14 for the same model, determined by fitting
the exponent of the spin-spin correlation function to the criti-
cal point value,h=1/4. These latter authors found thatTc
did not fall to zero until the vacancy concentration reached
41%, a number related to the percolation threshold for a
square lattice. In a related bond-diluted planar rotator model,
Castroet al.15 used a self-consistent harmonic approximation
with vortex corrections, determining the reduction ofTc with
dilution, and the temperature variation of the correlation
function and its exponenth.

Here it is interesting to consider whether a similar
vacancy-induced reduction ofTc occurs in the anisotropic
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Heisenberg model, which is a more realistic spin model that
has true time dynamics. An analysis of the vortex densities in
thermal equilibrium, in the presence of vacancies, helps to
explain the role of vacancies in generating spin disorder
around the transition temperature. The vortices in the aniso-
tropic Heisenberg model also can be expected to have planar
or out-of-plane structure, depending on the anisotropy
strength.16–22At stronger anisotropyfi.e., for theXY model,
l=0, see Eq.s1dg, the stable, static vortices are planar,
whether pinned on vacancies or free from the vacancies.6,7

Alterntively, at weak anisotropy, both the stable pinned and
free vortices have nonzero out-of-plane spin components,
which might be expected to significantly modify some equi-
librium properties as well as dynamic correlations. There-
fore, here we present MC simulations for three different
anisotropies, calculating the changes inTc and the behavior
of the vortex densities, as well as other thermodynamic prop-
erties.

It has been customary to search only for singly charged
vortices appearing in MC simulations of pure easy-plane
spin systems. Looking in individual unit cellssplaquettesd of
the lattice, a net rotation of the in-plane spin angles through
±2p as one moves around the cell indicates the presence of a
singly charged vortexsq= ±1d. When vacancies are present,
however, the searching for vorticity must be modified. Here,
we searched for net vorticity also in the four unit cells sur-
rounding any vacancy of the square lattice. This allows for
the appearance of a new effect, namely, the presence ofq
= ±2 vortices, which always form centered on the vacancies.
They appear as a very small fraction of the total vorticity
density and are present regardless of the anisotropy strength.
Apparently, by pinning on vacancies,q= ±2 vortices lower
their energy sufficiently due to the missing spin site, leading
to greater ease in their thermal formation. In addition, at low
temperatures, it is found that most vorticesseitherq= ±1 or
q= ±2d form initially on the vacancies, which gives an inter-
esting view of how vacancies modify and even control the
BKT transition.

After further definition of the model, we describe the MC
simulations, determinations ofTc using finite-size scaling of
the in-plane susceptibility, and the vacancy effects at various
anisotropies. This is followed by some preliminary analysis
of the stability properties of the doubly charged vortices.

II. EASY-PLANE MODEL WITH RANDOM
REPULSIVE VACANCIES

The model to be investigated has classical three-
component spins defined at the sitesn of a 2D square
lattice with a unit lattice constant. The spins can be ana-
lyzed either in terms of their Cartesian components or by

using the polar spherical coordinate angles,SW =sSx,Sy,Szd
=Sssinu cosf ,sinu sinf ,cosud. The system is anL3L
square with periodic boundary conditions. We consideredL
ranging from 16 to 128, using the dependence of the thermo-
dynamic averages onL to get estimates of the critical tem-
perature in the infinite-size system.

A small vacancy densityrvac is introduced into the lattice
as follows. An occupation numberpn for each site is set to

the static values 1 or 0, depending on whether the siten is
occupied by a spin or is vacant. The fractionrvac of the sites
haspn set to zero.sEquivalently, one can keep the spins at
the vacant sites but set their lengths to zero.d In order to have
the most simplified situation, the vacant sites are chosen ran-
domly, but no two are allowed to be within the second
nearest-neighbor distance ofÎ2 sthe diagonal separation
across a unit cell of the latticed. In this way, the immediate
neighborhoods of all vacancies are equivalent; each vacant
site is surrounded by eight occupied sites. This condition
greatly simplifies the algorithm for searching for localized
vorticity around the vacant sites. On the other hand, it limits
the possible density of vacancies to be less than 0.25 of the
lattice sitessachieved in the ordered configuration having
alternating rows of the lattice fully occupied and half-
occupied by spinsd. In actual practice, by choosing the vacant
sites randomly and enforcing this constraintsi.e., quenched
repulsive vacanciesd, the maximum achievable vacancy den-
sity is rvac<0.1872. As a result, a vacancy density needed to
push the BKT transition temperature down to zero cannot be
achieved, and we do not consider this aspect of the model
here. Instead, we are more interested in the role the vacancies
play in controlling where the vortices are forming.

Nearest-neighbor unit length spinssS=1d in this model
interact ferromagneticallysexchange constantJ.0d accord-
ing to a Hamiltonian with easy-plane anisotropy specified by
parameterl,

H =
− J

2 o
n,a

pnpn+a[Sn
xSn+a

x + Sn
ySn+a

y + lSn
zSn+a

z ] , s1d

the XY model results forl=0. Values ofl below 1 describe
a system wherez is the hard axis andxy is the easy plane,
allowing for the appearance of vortices. The total number of
spins in the system is

N = Nocc= s1 − rvacdL2. s2d

In general, calculated thermodynamic quantities are quoted
here as per-occupied-site average values, i.e., normalized
by N.

III. MC SIMULATIONS

Classical Monte Carlo algorithms were used to estimate
static thermodynamic quantities as functions of temperature
T, with emphasis on the internal energye=E/N, specific heat
c=C/N, and magnetic susceptibility of the in-plane spin
components,x, all per-occupied-site quantities, as well as the
vorticity densities per occupied site. It is understood that a
certain percent of vacanciesrvac has been produced in the
L3L lattice under study, at randomly selected positions as
described above. We found there to be very little variation in
the results with the choice of equivalent systems with differ-
ent vacancy positions, especially for the larger latticessi.e., a
large system is self-averagingd. Therefore, no averaging over
different systems at a givenL was performed.

A. MC algorithm

The MC techniques used here have been described in Ref.
23 and are based partly on simulation methods developed in
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Refs. 24–27. We applied a combination of Metropolis single-
spin moves and over-relaxation moves28 that modify all three
spin components, and in addition, Wolff single-cluster
operations29,30 that modifyonly thexy spin components. The
single-spin moves and over-relaxation moves were applied to
sites selected randomly in the lattice; similarly, the initial
sites for cluster generation were selected randomly.

In the single-spin moves, randomly selected spins were
modified by adding small increments in random directions
and then renormalizing the spins to unit length, accepting or
rejecting each change according to the Metropolis algorithm.

The over-relaxation and cluster moves are important at
low temperatures, where thexy spin components tend to
freeze and single-spin moves become inefficient. Over-
relaxation and cluster moves have the tendency to change
spin directions with no or very small changes in energy,
hence, their efficacy at low temperature.

The over-relaxation moves used here consist of reflecting
a randomly selected spin across the effective magnetic field
due to its neighbors,

BW n = Jo
a

pn+afSn+a
x x̂ + Sn+a

y ŷ + lSn+a
z ẑg, s3d

while preserving the spin length. All spin components are
involved in the process, and thez components become more
greatly involved when the anisotropy parameterl ap-
proaches 1. This spin change exactly conserves the energy,
while effectively mixing up the spin directions.

The Wolff cluster algorithmsand computer subroutined
used here is identical to that used for the pure system without
vacancies. In the actual computations, the spins of the vacant
lattice sites are set to zero lengthsequivalent to setting occu-
pation pn=0d, and the calculations proceed normally. No
other significant changes are needed to implement the Wolff
algorithm. This means that the Wolff clusters being formed
could actually span across vacant sites. Clearly, this means
that a large cluster being formed might actually be composed
from several subclusters connected by vacant sites, a situa-
tion that probably enhances the mixing produced by the al-
gorithm.

For a single MC stepsan MC pass through the latticed, we
attempted Nover-relaxation moves, followed byN single-
spin moves, followed byN cluster moves. An initial set of
5000 MC steps was used to equilibrate the system. The av-
erages shown here result from a sequence of 300,000 MC
steps at each individual lattice size and temperature. For
most of the data, the error bars are smaller than the symbols
used; hence, error bars have not been displayed.

B. MC measurements

In terms of temperatureT and Boltzmann’s constantk, the
system’s thermodynamic energyE and heat capacityC are
defined via usual relations,

E = kHl, C = kfkH2l − kHl2g/T2. s4d

The instantaneous total magnetization of the system is the
sum over all spins,

MW = o
n

pnSWn. s5d

For purposes of findingTc, it is important to calculate the
associated per-spin susceptibilityxaa of any componenta,
derived from the magnetization fluctuations,

xaa = skMa
2l − kMal2d/sNTd. s6d

Both xxx andxyy were computed bys6d and then averaged to
get the in-plane susceptibility,

x = sxxx + xyyd/2. s7d

Finite-size scaling ofx was found to be the best method to
determineTc preciselyssee belowd.

In the thermodynamic limit, according to the Mermim-

Wagner theorem,kMW l→0 at any temperature, and this holds
in an approximate sense in the MC averages of finite sys-
tems. Therefore it is also interesting to calculate the system’s
total in-plane absolute valued magnetic momentsorder pa-
rameter M*d, which only tends to zero in the high-
temperature phase, and its associated per-spin susceptibil-
ity x* ,

M* = kÎMx
2 + My

2l, x* = fkMx
2 + My

2l − M*2g/sNTd. s8d

Related per-spin energy, specific heat, and order parameter
se,c,m*d, are obtained by dividing each by the number of
occupied sites,N.

For example, atl=0, L=64, typical results for the energy,
absolute in-plane magnetization, and specific heat per spin
are shown in Fig. 1, comparing the pure system with that at
16% vacancy concentration. Note that the energy and spe-
cific heat per spin have rather a weak dependence on the
system sizeL, while m* acquires a sharper dropoff with in-
creasingL. The most obvious effect ofrvac.0 is the lower-
ing of the BKT transition temperature. A less obvious effect
is the lowering of the per-spin energy and specific heat in the
high-temperature phase. This quite possibly results because a
large fraction of the vortices produced in the high-
temperature disordered phase are localized on the vacancies,

FIG. 1. For the model with edgeL=64, at theXY limit, the
internal energy, absolute magnetization, and specific heat per spin
for the uniform system and with 16% vacancy density.
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as found below. When thus formed, vortices require a lower
nucleation energy, and the system can reach a specified en-
tropy at a lower overall energy cost.

C. Critical temperature

Initially, the fourth-order in-plane magnetization cumulant
UL due to Binder31,32 was calculated to aid in the location of
the transition temperature in the thermodynamic limit. It is
defined using a ratio,

UL = 1 −
ksMx

2 + My
2d2l

2kMx
2 + My

2l2 . s9d

This quantity becomes 0.5 in the low-temperature ordered
limit and tends towards zero in the disordered high-
temperature limit. When measured at the critical tempera-
ture, its value is expected to be approximately independent
of the system size. Therefore,Tc can be estimated by plotting
UL vs T for different system sizes and observing the common
crossing point of the data. This definition ofUL is analogous
to the more familiar form that would be applied to a single
in-plane spin component or single-component model, viz.,

UL
sxd = 1 −

kMx
4l

3kMx
2l2 . s10d

An example application ofUL for finding Tc for the XY
model at 16% vacancy concentration is shown in Fig. 2. The
transition temperature is lowered toTc<0.48J, considerably
less thanTc<0.70J that holds at zero vacancy concentration.

It is seen, however, thatUL requires an excessive amount
of calculations even to get two-digit precision forTc. Follow-
ing Cuccoliet al.33 and their analysis of the pureXXZmodel,
a finite scaling analysis of the in-plane susceptibilityx is
seen to be much more precise and efficient for findingTc.
The essential feature needed here is that near and belowTc,
the susceptibility scales with a power of the system size,

x ~ L2−h, s11d

where the exponenth describes the long-distance behavior
of in-plane spin correlations belowTc ssee Ref. 33 for de-
tailsd. Importantly, at the transition temperature for theXY
model, one hash=1/4. Here we make the assumption that
h=1/4 atTc also for the models withl.0 and with vacan-
cies present. The validity of this assumption is partially
tested by the quality of the scaling that it produces.

Using h=1/4, we plotted x /L7/4 versusT for the data
from different system sizes,L=16,32,64,128, together on
one graph. The common crossing point of the curves locates
the critical temperature, for example, the resultTc/J
<0.699±0.001 is easily reproduced for the vacancy-freeXY
model. An example of this is given in Fig. 3, forl=0 at 16%
vacancy concentration. An exceptionally tight crossing point
occurs at the critical temperature,Tc/J<0.478±0.001. The
clarity of the crossing point gives considerable confidence in
the h=1/4 assumption, even when vacancies are present.
Similar results hold for the other models studiedsnonzerol
and nonzerorvac, see Sec. III Ed, where the scaling estimates
of Tc give a dramatic improvement upon the more approxi-
mate estimates usingUL from thesameMC data.

D. Vortex densities

In a system with vacancies, the presence of unit-charged
and doubly charged vortices is determined as follows.

If a unit cell or plaquette is found to be fully occupied by
spins, then the vortex search takes place in the usual way,
counting the net vorticity there by summing the in-plane an-
gular changes around the cell and normalizing by 2p:

q =
1

2p
o

edge bonds
Dfbond. s12d

It is understood that each difference between two in-plane
spin angles along one edge segment must be taken on the
primary branch: −p /2,Dfbond,p /2. Thenq within a cell

FIG. 2. Application of theL dependence of the fourth-order
cumulantUL on various system sizes to estimateTc/J<0.48scom-
mon crossing point of the datad at 16% vacancy density in theXY
model.

FIG. 3. Application of the finite-size scaling of in-plane suscep-
tibility to estimate Tc/J<0.478 scommon crossing point of the
datad at 16% vacancy density in theXY model, using exponent
h=1/4.
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is forced to be an integer. In practice, the possible outcomes
for q are 0 and ±1, as higher charged vortices are unstable
within a single cell of the lattice and never occur in Monte
Carlo simulations.

Additionally, the search for vorticity can also be per-
formed easily around the quartet of unit cells that surrounds
an individual vacancy. A vacancy is surrounded automati-
cally by eight occupied sites, connected by eight bondssun-
der our assumption of repulsive vacanciesd. Then, again, Eq.
s12d can be applied to determine the total vorticity within
these four cells nearest the vacancy, summing over the in-
plane angular changes in all eight bonds. Now it is seen that
the result forq can take the additional possible valuesq
= ±2, i.e., doubly charged vorticesare found to be stable
entities when localized on the vacancies, but never are found
to occur separated from a vacancy.

An example of a state with doubly charged vortices is
given in Fig. 4, produced in the MC simulations withL
=32, l=0, rvac=0.16, atT=0.85J, well above the critical
temperaturesTc<0.478Jd for this vacancy concentration.
The locations of theq=2 vortices are indicated by the larger
plus signs; two near the top center and one in the lower left
section of the system. Other singly charged vortices are in-
dicated by the smaller6 signs. One can also note the con-
siderable number of vorticessof any charged that form ex-
actly centered on the vacancies.

For a state in which there aren1 singly charged vortices
sq either11 or 21d andn2 doubly charged vorticessq either

12 or 22d, the total absolute vorticity density was defined
relative to the occupied spin sites, and giving a double
weight to the double charges,

r =

o
i

uqiu

N
=

n1 + 2n2

N
. s13d

Additionally, the vorticity fraction fdbl that corresponds to
doubly charged vortices was tracked,

fdbl =
2n2

n1 + 2n2
. s14d

Indeed, both theq= ±1 andq= ±2 vortices are commonly
found centered on the vacancies. Therefore, we also calcu-
lated the fractionfpin of the total absolute vorticity that is
found centered on vacancies or pinned on the vacancies,

fpin =

o
i

uqi
spinneddu

o
i

uqiu
, s15d

where the sum in the denominator is over all the vortices
found in the system. As already mentioned above, the doubly
charged vortices are always found pinned on the vacancies.
Furthermore, at low temperatures with very low vortex den-
sity, essentially all vortices nucleate on vacancies.

Typical results for these various vorticity densities in the
XY model at L=64 are shown in Fig. 5. Considering the
curves for 16% vacancy concentration, it is significant that
for temperatures nearTc, the pinned vorticity fraction is
around 75%. This is reasonable, because pinnedq=1 vorti-
ces have considerably lower energy than free ones and there-
fore will dominate at the lower temperatures. On the other
hand, doubly charged vorticity does not appear with signifi-
cant population until well into the high-temperature phase,
when it composes up to several percent of the total vorticity
in the system.

FIG. 4. A spin configuration from MC simulations forL=32,
l=0, rvac=0.16, atT=0.85J, with vortices indicated by6 signs.
The projections of thexy spin components are shown as arrows,
with line striangulard heads indicating positivesnegatived z spin
components. The three larger plus signs are vortices of chargeq
= +2 centered on vacancies. Many vortices have formed centered
on vacancies.

FIG. 5. Thermally induced vorticity density for the uniformXY
modelfrs0dg and at 16% vacancy densityfrs0.16dg. Also displayed
are the vorticity fraction pinned on vacanciesffping and the fraction
with doubled chargesffdblg, both whenrvac=0.16.
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E. Variations with l

The previous sections presented vacancy effects in theXY
model, l=0. MC simulations were also carried out at two
nonzero values of the anisotropy parameter:sid the vortex-
in-plaquette critical anisotropyslc=0.70d andsii d the vortex-
on-vacancy critical anisotropyslcv=0.9545d. At lc large out-
of-plane magnetization fluctuations might be expected if free
vortices were dominating the dynamics. Also, atlcv large
out-of-plane magnetization fluctuations might be expected if
vortices pinned on vacancies were dominating the dynamics.

At these nonzerol, the effects due to vacancies are simi-
lar to those found atl=0: reduction ofTc, significant frac-
tion of pinned vorticity in the low-temperature phase, and
appearance of doubly charged vorticity in the high-
temperature phase.

These limited results forTc as determined by scaling ofx
are summarized in Table I. At 16% vacancy concentration,
the general dependence ofTc on l mimics that found for the
pure model;Tc changes very little untill becomes very close
to 1.

The per-spin energy, absolute in-plane magnetization, and
specific heat atl=lc are shown in Fig. 6, where a mildy
different result is seen compared to theXY model.

At lcv, stronger effects are found, as seen in Fig. 7. The
transition temperature is reduced toTc/J<0.404 when 16%
vacancies are presentsFig. 8d compared toTc/J<0.608 for
the pure system. The vorticity density results are shown in
Fig. 9, and they mimic those found for theXY model. Com-

paring the results at the different anisotropies, there is no
sudden change in the vacancy effects, as far as can be seen
from these limited data. The out-of-plane fluctuations vsT
for these nonzerol do not exhibit any particularly significant
features due to the presence of vacancies. Generally, in the
low-temperature phase,xzz increases with vacancy density,
but even more so with increasingl, as summarized in Fig.
10. It is clear that the out-of-plane fluctuations are aided by
the presence of vacancies, but from the limited data here, no
significant conclusion about the role of pinned vortices vs
free vortices can be drawn.

IV. DOUBLY CHARGED VORTEX CONFIGURATIONS
FROM SPIN RELAXATIONS

Having seen the appearence, in general, of doubly
charged vorticity localized on the vacancies, it is important

TABLE I. Dependence of critical temperatureTcsrvacd on aniso-
tropy constantl, for the pure modelsrvac=0d and atrvac=0.16,
obtained by the scaling of in-plane susceptibility.

l Tcs0d /J Tcs0.16d /J

0.0 0.699±0.001 0.478±0.001

0.7 0.673±0.001 0.454±0.001

0.9545 0.608±0.001 0.404±0.001

FIG. 6. For the model with edgeL=64, at the vortex-in-
plaquette critical anisotropy, the internal energy, absolute magneti-
zation, and specific heat per spin for the uniform system and with
16% vacancy density.

FIG. 7. For the model with edgeL=64, at the vortex-on-
vacancy critical anisotropy, the internal energy, absolute magnetiza-
tion, and specific heat per spin for the uniform system and with
16% vacancy density.

FIG. 8. Application of the finite-size scaling of in-plane suscep-
tibility to estimate Tc/J<0.404 scommon crossing point of the
datad at 16% vacancy density at the vortex-on-vacancy critical
anistropy.
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to consider the basic analysis of their energetics. Clearly, in
continuum theory, the static vortex energyfdependent on an
integral of the formJed2xu¹fu2<Jpq2 lnsR/adg is propor-
tional to the squared charge. Therefore, one expects that the
doubly charged vortices, even when pinned on vacancies,
should have considerably higher energy than singly charged
vorticesseither pinned or freed. Apparently, the absence of a
spin at the center of theq=2 vortex, and the missing four
interior bonds, significantly reduces the energy and allows
for stability.

Following the procedure in Ref. 7, some doubly charged
vortex configurations were investigated numerically for their
stability as a function of the anisotropy. For simplicity, a
circular system of radiusR, with sites defined on a square
lattice, was used. The vacant site was placed exactly at the

center of the circular system. Free boundary conditions ap-
plied at the edge of the system. The initial in-plane spin
angles were set to those for a chargeq vortex centered at
position sxv ,yvd,

fsx,yd = q tan−1Sy − yv

x − xv
D + f0. s16d

For aq= ±2 vortex at the center of the system, a convenient
way to implement this expression on thexy spin components
for arbitrary constantf0=0, without using trigonometric
functions is

Sxsx,yd =
x2 − y2

x2 + y2, Sysx,yd =
±2xy

x2 + y2 , s17d

the1 s2d sign producing vortexsantivortexd configurations.
In order to test the in-plane to out-of-plane stability, all

out-of-plane spin components were given small initial values
Sz=0.001, thereby biasing the spin configuration possibly to
go out-of-plane along the positivez axis. After this small
perturbation, all spins were normalized to unit length. The
spin configuration was relaxed iteratively by setting each
spin to point along the direction of the effective field due to
its neighbors, keeping the spin length fixed at unity. This
leads eventually to a final configuration that is a local energy
minimum of the Hamiltonian, i.e., some form of stable con-
figuration evolved from the original state, in some cases
with vorticity still present, and in other cases, with no net
vorticity.

A. q52 vortex relaxation for the XY model „l=0…

The first numerical relaxations were applied for theXY
limit, l=0, to get the general idea of the energy compared to
that for q=1 vortices. Typically, the energy found atl=0
should be expected to apply rather accurately to larger values
of l, as long as the vortex remains in the planar configura-
tion. These relaxations were performed for systems with ra-
dii ranging fromR=5a to R=500a, as the energy is expected
to have a logarithmic dependence onR. The energy results
Evv for a q=2 vortex centered on the vacancy are shown in
Fig. 11 and compared with similar results forq=1 vortices.
Additionally, the vortex energiesEvp are shown when cen-
tered in a plaquette. Forq=1, this energy was found by
relaxation to a stable vortex state, whereas, forq=2, expres-
sions16d was used to set the vortex centered in the plaquette,
after which the energy was directly evaluated. This latter
configuration forq=2 is unstable, but was used for estima-
tion of the vortex-on-vacancy binding energyssee belowd.

Inspection of Fig. 11 shows that, as expected, the doubly
charged vortices have considerably higher energy compared
to singly charged vortices and, furthermore, there is a nearly
constant energy gap between the vortex-in-plaquette and
vortex-on-vacancy states. Each data set fits extremely well to
a logarithmic dependence onR in the form E=A
+B lnsR/ad. For q=1, both curves have slope parameterB1

<3.17JS2. For q=2, both curves have slope parameterB2
<12.7JS2, a value very close to four times as large as that
for q=1, as might be expected. The extra energy requirement
for the q=2 vortices clearly leads to a restriction on their

FIG. 9. Thermally induced vorticity densityfrs0dg at the vortex-
on-vacancy critical anisotropy with 16% vacancy densityfrs0.16dg.
Also displayed are the vorticity fraction pinned on vacanciesffping
and the fraction due to double chargesffdblg, at 16% vacancy
density.

FIG. 10. Out-of-plane susceptibilitiesxzz vs temperature forL
=128, at the three anisotropies studied. The lower curves at lowT
sopen symbolsd correspond torvac=0, the upper curvesssolid sym-
bolsd correspond torvac=0.16. Unlikexxx or xyy, there is only a
very weak dependence ofxzz on L, mostly in the high-temperature
phase.

VACANCY EFFECTS IN AN EASY-PLANE HEISENBERG… PHYSICAL REVIEW B 71, 094423s2005d

094423-7



thermal population compared to theq=1 vortices. In all
cases shown, the final spin configuration was found to be
completely in-planesall Sz=0d.

The difference between the vortex-on-vacancy and
vortex-in-plaquette energies can be taken to define an energy
for binding or pinning the vortex on the vacancy,

DEq = Eq,vp − Eq,vv. s18d

Using the results shown, the binding energy for aq=1
vortex-on-vacancy isDE1<3.177JS2, using the asymptotic
value asR→`. For doubly charged vortices, the binding
energy is moderately higher,DE2<5.73JS2, in contrast to
the considerably higher creation energy for theq=2 vortices
compared to theq=1 vortices. This result, however, must be
taken with caution, since there is no actual stableq=2 vortex
free from a vacancy.

An alternative view of theq=2 vortex-on-vacancy energy
would be to compare it to twice the energy of a system with
a singleq=1 vortex centered in a plaquettes2E1vpd because
that is a stable state of the same total vorticity. However, the
energy of the twoq=1 vortices, in their own isolated sys-
tems, is always considerably less than that of a singleq=2
vortex. This is because 2E1vp does not include the interaction
potential that would be present between twoq=1 vortices
within the same system, which increases with the logarithm
of their separation. Thus it is not a good reference number
for estimation of theq=2 binding energy on a vacancy.

B. Anisotropy dependence ofq=2 vortex relaxation

A preliminary analysis of the stability of a doubly charged
vortex can be performed by looking at the dependence of the
relaxed configuration on the anisotropy parameterlù0. It
might be expected that aq=2 vortex could take on nonzero
out-of-plane components whenl becomes adequately close
to 1, i.e., at weak easy-plane anisotropy, in a manner similar
to the out-of-plane crossover forq=1 vortices. The critical
anisotropy could be expected to be different than the value
lcv<0.9545 for pinnedq=1 vortices. Therefore, a limited
number of numerical experiments were realized on a circular

system of radiusR=50a for various values ofl above zero.
Again, the initial condition was aq=2 vortex centered on the
vacancy at the center of the system, with small positive out-
of-plane componentssSz=0.001d at all sites.

Certain aspects of these results are summarized in Fig. 12,
where the energy of the state obtained after the relaxation is
plotted versus the anisotropy parameterl that was used.
There are several types of results, depending on the range of
l being considered.

For the whole range 0øl&0.545 sregion P2d, the iso-
latedq=2 vortex remains in a stable planar configuration on
the vacancy, with no out-of-plane magnetization and rela-
tively high energy. For the narrow range 0.545&l
&0.57 sregion O2d, the q=2 vortex remains stable on the
vacancy, but develops nonzero out-of-plane magnetization,
with an insignificant reduction in energy. The net out-of-
plane magnetization of the relaxed state is indicated in Fig.
12 by the bars extending above the energy curve. TotalMz
grows until l reaches about 0.57, at which point theq=2
vorticity concentrated on the vacancy becomes unstable and
breaks into oneq=1 in-plane vortex on the vacancy and a
nearby freeq=1 in-plane vortex. This situation holds for
0.57&l&0.66 sregion PPd; the configuration has zero out-
of-plane magnetization once again and lower energy than
that for theq=2 vortex pinned on a vacancy. Asl increases
within this range, the free vortex progressively moves farther
from the vacancy.

Whenl ranges from about 0.67 to 0.68sregionPOd, the
free vortex starts to develop a nonzero positive out-of-plane
component, while the pinned vortex remains planar. Finally,
at l<0.685 and abovesregion OOd, the relaxed configura-
tion consists of twoq=1 positively polarized out-of-plane
vortices centered symmetrically on opposite sides of the va-
cancy. For example, the relaxed configuration obtained for
l=0.7 is shown in Fig. 13. Asl increases, the separation of
the pair increases at the same time that their out-of-plane
component increases, while the energy decreases. Eventu-

FIG. 11. Various total system energies with a vortex present
versus system radiusR. FIG. 12. After relaxation of aq=2 vortex initially centered on

an isolated vacancy in a circular system of radiusR=50, the total
system energyssolid curved is shown as a function of the anisotropy
constantl. The vertical bars indicate the net out-of-plane magneti-
zation of the relaxed configuration, on the same numerical scale.
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ally, the separation surpasses the diameter of the system, and
the vorticity escapes out of the boundary, leaving a final
configuration with uniform magnetization and zero energy.
This occurred forl*0.77 in the system of radiusR=50.

It is apparent that a localizedq=2 vorticity has severely
limited stability, compared toq=1 vortices. Theq=2 vortic-

ity even tends to grow out-of-plane components as a way to
enhance its stability, but this has a very limited range of
utility sregion O2d. Once the vorticity splits into individual
q=1 vortices, they are seen to influence each other, probably
via an interaction with the vacancy. This is apparent because
out-of-plane components begin forming forl belowthe criti-
cal anisotropy parameterlc relevant for vortices far from
vacancies. Furthermore, the pairs of out-of-planeq=1 vorti-
ces in regionOO appear to repel each other, while at the
same time being attracted to the vacancy, which would lead
to a mechanically stabilized configuration. Inspection of the
spin configurations in regionOO sas in Fig. 13d shows spin
components of one vortex to be completely symmetrical to
the spin components in the other vortex, when reflected
across the center of the system.

V. CONCLUSIONS

In the Monte Carlo and spin dynamics calculations pre-
sented here for a 2D easy-plane anisotropic Heisenberg
model, the presence of vacancies has been seen to affect the
details of the BKT transition and the types of vorticity
present.

As seen in the planar rotator model,Tc is lowered by the
presence of vacancies. This naturally results because the dis-
order in the transition becomes dominated by the generation
of vortices pinned on the vacancies. When formed centered
on vacancies, the vortex energy is significantly lower than
that for vortices centered in plaquettes. Indeed,q=1 vortices
pinned on vacancies in a square lattice have a formation
energy of about 3.17JS2 less than when centered in
plaquettes, while the transition temperature corresponds to
an energy less than 1JS2. Thus, at temperatures near and
below Tc, the small amount of vorticity that is present is
predominantly pinned on vacancies, such as in Fig. 14. These
pinned vortices are initiating and controlling the transition.
The vacancies are the nucleation sites for the spin disorder-
ing. On the other hand, vacancies reduce the rate at which
total vorticity density rises in the high-temperature phase
sFigs. 5 and 9d.

At larger anisotropy parameterlc, it is known that the
vortex-on-vacancy energy is much closer to the vortex-in-
plaquette energy.7 For example, atl=0.99, the difference in
these energies is only 0.23JS2. Then one might expect a
lesser dominance of pinned vorticity; however, that does not
appear to be the case atl=lcv. There is no substantial quali-
tative change in the fraction of pinned vorticity when com-
pared to theXY model. Qualitatively speaking, the details of
the BKT transition at higherl, with vacancies, are not sig-
nificantly different than those found for theXY model.

The presence of vacancies leads to a new effect, namely,
the generation of doubly charged vorticity that is stable when
centered on vacancies. In thermal equilibrium, this effect ap-
parently occurs regardless of the easy-plane anisotropy
strength. In general, these would be thermodynamically pro-
hibited, due to their larger energy, based on the usual depen-
dence of vortex creation energy on charge squared. They still
have significantly higher energy than singly charged vortices
centered on vacancies; however, the missing bonds in the

FIG. 13. Final state of relaxation of aq=2 vortex initially cen-
tered on an isolated vacancy in a circular system of radiusR=50
with l=0.7 sonly the central region of the system is shownd. sad
shows the projection ofxy spin components on the plane, as ex-
plained in Fig. 4. Insbd the lengths of the arrows are equal to thez
spin components, while the directions are still given by thexy
projections.
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core region help to reduce their total energy compared to
what they would have if centered in a plaquette.

A spin-relaxation energy minimization shows that an in-
dividual doubly charged vortex centered on a vacancy in a
circular system may be stable only for a limited range of

anisotropy constants. Theq=2 vortex-on-vacancy stays
stable and planar for 0øl&0.545. In a very narrow range,
0.545&l&0.57, theq=2 vortex-on-vacancy still remains
stable, but with a small out-of-plane component. Forl
*0.57, it does not appear to be stable, but instead breaks
apart into twoq=1 vortices that repel each other while being
attracted to the vacancy. One might define a lower critical
anisotropylcv,1<0.545 for the in-plane to out-of-planeq
=2 stability and an upper critical anisotropylcv,2<0.57 for
the breakdown into lower charged vortices. In contrast, there
is no choice of anisotropy constant that stabilizes aq=2
vortex in the center of a plaquette.

These results are intriguing, because even though they
show a limited range of stability for doubly charged vortic-
ity; nevertheless, these excitations appear in the MC simula-
tions atl=0.7 andl=0.9545, above the critical anisotropy
parameters. Of course, one could always search groups of
four plaquettes in the pure model also to find a localized
vorticity of double chargestwo q=1 vortices in neighboring
plaquettesd, although it would appear very rarely, due to the
mutual repulsion of the vortices. The difference here is that
the presence of a vacancy attracts vorticity and certainly en-
hances the chances to find doubled vorticity within the area
of four neighboring plaquettes. In addition, the spin relax-
ations show that the doubly charged vortex can be a static
object, which can never be expected forq=1 vortices in
neighboring fully occupied plaquettes.
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