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A microscopic theory is developed for the spin-wave excitations in ferromagnetic nanowires. Both the
long-range magnetic dipole-dipole interactions and the Heisenberg-exchange interactions between nearest
neighbors are included in the Hamiltonian, as well as effects of an applied magnetic field, which may be
directed parallel or perpendicular to the wire axis. Our formalism can be applied to ferromagnetic nanowires of
arbitrary cross section to deduce both the energy spectrum of the discrete dipole-exchange spin-wave modes
and the relative intensities as a function of position. The long-range dipole sums in the wire geometry are
evaluated numerically and spin-wave calculations are presented for nanowires with approximately circular
cross section. When the applied field is perpendicular to the wire axis, there is a canting of the net spin
orientation away from the axis, and the magnetization is spatially nonuniform due to the dipolar interactions.
We find that typically there are two phases and two distinct regimes of spin-wave behavior, corresponding to
the applied field being less than or greater than a critical value.
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I. INTRODUCTION

The dynamical properties of regular arrays of
submicrometer-scale magnetic dots and wires are currently
attracting great attention due to their interesting fundamental
physics and potential technological applications.1 Experi-
mentally, laterally confined magnetic structures in submi-
crometer and nanometer scale can be fabricated by various
methods. For example, arrays of magnetic strips with rectan-
gular cross sections as well as rectangular prisms and cylin-
drical dots can be created by using lithographic patterning
procedures. Static and dynamic properties of such systems
have been studied intensively in recent years.1–5Another im-
portant category of magnetic nanowires is fabricated by elec-
trodeposition into porous templates.6–8 These templates con-
sist of nanometer-wide cylindrical pores which allow one to
create magnetic nanowires of uniform diameter with ex-
tremely large aspect ratios of length to diametersas large as
103d. Other methods which combine electrodeposition and
electron-beam or x-ray lithography have also been applied to
create template materials where the position of the nanopil-
lars and the spacing between them can be controlled
precisely.9 In this case, the aspect ratio is smallerstypically
less than 5d, and therefore some structures may have proper-
ties of a system of magnetic nanodots.

In addition to the magnetotransport properties and dynam-
ics of the magnetization reversal which have been investi-
gated intensively in both experimental and theoretical mod-
els, the spin-wave excitations in low-dimensional magnetic
systems are also of fundamental importance due to their role
in defining the time scale of the magnetization reversal pro-
cess. Also, other important information on magnetic proper-
ties, such as the homogeneity of the internal field, contribu-
tions due to magnetic anisotropy, and the dipolar interactions
between magnetic elements can be obtained from spin-wave
measurements.

The spin-wavesSWd excitations or small amplitude dy-
namics are usually investigated by ferromagnetic resonance

or Brillouin light scatteringsBLSd. While the former is usu-
ally used to study the dependence of the uniform precession
mode on the pumping field orientation,10,11 the latter tech-
nique is employed extensively to investigate the excitation
spectrum in laterally confined structuresssee, e.g., Ref. 1d.
Recently, Wanget al.12 have applied BLS to study SW exci-
tations in highly ordered arrays of ferromagnetic nickel
nanowires, fabricated by electrodeposition in Al2O3
templates.7,8 The results reveal three quantized SW modes in
dipole-exchange regime, which were strongly influenced by
wire diameter and interwire coupling. More interestingly, the
results show that when the external field is applied perpen-
dicular to the wires, there exist two different phases of dy-
namical behavior corresponding to the applied field less than
or greater than a critical value.

Theoretically, the dipole-exchange SW in ferromagnetic
nanowires and nanodots have been studied by a number of
authors.14–17For example, Arias and Mills14 have applied the
continuum model to develop a theory for spin waves in a
long cylindrical ferromagnetic nanowire where the magneti-
zation is assumed to be uniform and parallel to the wire axis.
The theory has been applied successfully by Wanget al.12 to
explain their data at zero field. However, this theory cannot
be extended to the transverse case where the external field is
applied perpendicular to the wire as in the BLS
experiments.12 In this orientation, due to the dipole-dipole
interactions the magnetization is canted relatively to the
symmetry axes and distributed nonuniformly throughout the
wire cross section. Also the macroscopic method, which de-
pends on a continuum approximation, breaks down for suf-
ficiently thin nanowires and/or for large SW wave vectors.
This fact, plus the absence of a macroscopic theory in the
transverse-field case, has motivated our present work.

In this paper we develop a microscopic theory for spin
waves in ferromagnetic nanowires with approximately circu-
lar cross section. We concentrate on the regime where both
exchange and dipolar interactions may provide comparable
contributions to the dynamical processes. The operator
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method that we employ here is analogous to that developed
in recent work on ultrathin films of ferromagnets18 and
antiferromagnets.19

The paper is arranged as follows. Section II describes the
theoretical model for a cylindrical ferromagnetic nanowire.
The Hamiltonian includes the exchange, dipolar, and Zeeman
terms, where the external magnetic field is applied either
parallel or perpendicular to the wire axis. Results for linear
SW dispersion relation are then derived in Sec. III, where
numerical examples are provided to illustrate the theory for
the dependence of the discrete SW frequencies on wave vec-
tor, applied magnetic field and nanowire radius. Numerical
results are also given for the spatial distribution of the mode
intensities. In an appropriate limit of the general theory, we
are also able to deduce in Sec. IV some preliminary results
for arrays of nanowires with dipolar interwire coupling. Sec-
tion V is devoted to further discussion and overall conclu-
sions.

II. THEORETICAL MODEL

A nanowire can be modeled by specifying a cross-
sectional layersof a chosen shape and sized and then stacking
these atomic layers vertically on one another to form a long
nanowire with translational symmetry along the stacking di-
rection. Specifically we consider here nanowires having a
hexagonal cross sectionsin the xz planed, each with a finite
numberN spins arranged on a triangular latticesspacingad.
These layers are stacked vertically to form a long nanowire
extending in they direction from −̀ to `. This geometry is
illustrated in Fig. 1. The simplest case ofN=1 corresponds
to a single line of spins, whereas wires of “radius”ra swhere
r =1,2,3, . . .d corresponds toN=3rsr +1d+1=7,19,37,etc.
An external magnetic field of magnitudeH0 can be applied
along or perpendicular to the wire axis, with the latter case
allowing comparison with the experimental situation in Ref.
12. Thus the Hamiltonian can be expressed generally as

H = −
1

2 o
in,jm

Jin,jmSin ·Sjm − gmBH0 ·o
in

Sin

+
1

2
g2mB

2 o
in,jm

o
a,b

Din,jm
a,b Sin

a Sjm
b . s1d

Herei , j are layer indices, whilen,m label the position of the

spins in a particular layer. The exchange interaction between
the spin operators at sitessi ,nd and s j ,md is Jin,jm. For sim-
plicity, the exchange will be taken to beJ between nearest
neighbors along they direction, J' between nearest neigh-
bors in thexz plane, and zero otherwise. The second term
represents the Zeeman energy due to the external field, which
can be applied parallel or perpendicular to the wire. The final
term in Eq.s1d describes the long-range dipole-dipole inter-
actions with thea and b labels denoting Cartesian compo-
nentsx, y, or z and

Din,jm
a,b =

ur in,jmu2da,b − 3r in,jm
a r in,jm

b

ur in,jmu5
, s2d

where r in,jm=sxm−xn,yj −yi ,zm−znd and the casesi = j ,n
=md is excluded from the sums in Eq.s1d.

In some cases we may want to takeJ'=J for the two
exchange constants. In other casesse.g., to model an array of
1D wires as in Sec. IVd we may choose to setJ'=0, so that
interwire coupling is due to the dipolar term only. We now
examine separately the distinct types of physical behavior
obtained when the magnetic field is parallel or perpendicular
to they axis.

A. Longitudinal case

When the magnetic field is applied parallel to the wire,
the magnetization is uniform and the equilibrium orientation
of each spin is along the wire axis. In this case the approxi-
mate SW excitation spectrum can be calculated by using a
macroscopic continuum model. In fact, SW theories for a
long cylindrical ferromagnetic nanowire were developed by
Sharon and Maradudin13 and by Arias and Mills14 using this
method for the magnetostatic and dipole-exchange regimes,
respectively. The latter theory was applied successfully by
Wanget al.12 to explain some of their experimental results at
zero external field. As mentioned above, the microscopic
theory is needed for small-diameter wires and/or for larger
SW wave vectors, where a continuum approximation is un-
satisfactory.

We start with the assumption that the equilibrium orienta-
tion of all the spins is along they axis, which is parallel to
the symmetry axis of the nanowire. To examine the SW
properties at low temperaturessT!Tcd we first transform the
spin Hamiltonian into an equivalent form in boson operators.
There are several ways to carry out this step, but in the
present paper we usesfollowing Refs. 18 and 19d the
Holstein-Primakoff transformation. Corresponding to our
choice of coordinate axes, the components of a spin vector
Sin are represented in terms of boson creation and annihila-
tion operatorsain

† and ain by the expressionssdenotingSin
±

=Sin
z ± iSin

x d

Sin
+ = Î2Ss1 − ain

† ain/2Sd1/2ain, s3d

Sin
− = Î2Sain

† s1 − ain
† ain/2Sd1/2, s4d

Sin
y = S− ain

† ain. s5d

The transformed Hamiltonian can then be expanded, apart
from a constant, asH=Hs1d+Hs2d+Hs3d+Hs4d+¯, where

FIG. 1. A nanowire withN=7 in a longitudinal applied mag-
netic field.
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Hsmd denotes a term withm boson operators. The constant
term has no role in dynamical properties while the first order
term Hs1d vanishes by symmetry in the present longitudinal-
field case. The noninteractingslineard SW excitations will be
obtained from the quadratic HamiltonianHs2d. After making
a 1D Fourier transform along the wire axis, it has the form

Hs2d = o
k,n,m

hAn,m
s2d skdak,n

† ak,m + Bn,m
s2d skdak,n

† a−k,m
†

+ Bn,m
s2d*skdak,na−k,mj, s6d

wherek is a wave number along the wire axis. The terms
Hs3d and Hs4d describe leading-order effects of SW interac-
tions and will not be considered further in the present paper.

In the above result we have written the boson operators
ak,n

† andak,m in terms ofk and the site indicesn andm in a
particular layer. The coefficients in Eq.s6d are given explic-
itly by

An,m
s2d skd = Dndn,m − SJn,mskd −

1

2
SsgmBd2Dn,m

y,y skd, s7d

Bn,m
s2d skd =

1

4
SsgmBd2hDn,m

z,z skd − Dn,m
x,x skd + 2iDn,m

x,z skdj, s8d

where

Dn = gmBH0 + So
l

fJn,ls0d − sgmBd2Dn,l
y,ys0dg. s9d

We have also introduced the 1D Fourier transformsJn,mskd
and Dn,m

a,bskd of the exchange and dipole-dipole interactions
respectively, defined, e.g., by

Jn,mskd = o
j

Jin,jm expfiksyi − yjdg. s10d

In the case of nearest-neighborsNNd coupling the functions
Jn,mskd have a simple form and are

Jn,mskd = 52J cosskad if n = m,

J' if n andm are NN,

0 otherwise.
6 s11d

As mentioned, to model a single composite nanowire of ra-
dius R=ra, we simply takeJ'=J in most of our numerical
calculations. The functionsDn,m

a,bskd are defined in an analo-
gous way to Eq.s10d. They are nonzero in general for alln
andm, although they vanish by symmetry for some choices
of a andb. They will later be evaluated numerically, taking
care of their slow convergence in they direction. In the Sec.
III, we show how the Hamiltonians6d can be diagonalized
using a matrix method to obtain the linear SW spectrum.

B. Transverse case

We now consider the more interesting case where the ex-
ternal magnetic field is applied along thez axis, which is
perpendicular to the wire. Due to the competition between
the applied field and the demagnetizing field, the spins are
canted relative to the symmetry axes and therefore the mag-

netization becomes spatially nonuniform. As a consequence
we use a microscopic rather than macroscopic theory. We
now assume that the equilibrium orientation of the spin at
site si ,nd is characterized by two anglesan and un so that
Sin=Sssinan sinun,cosan,sinan cosund, as represented in
Fig. 2sad. The total free energy obtained from the Hamil-
tonian s1d can be written as

E = −
1

2
S2Lo

n,m
Jn,ms0dfsinan sinun sinam sinum

+ cosan cosam + sinan cosun sinam cosumg

− gmBH0So
n

sinan cosun

+
1

2
sgmBd2S2Lo

n,m
fDn,m

x,x s0dsinan sinun sinam sinum

+ Dn,m
y,y s0dcosan cosam

+ Dn,m
z,z s0dsinan cosun sinam cosum

+ 2Dn,m
x,z s0dsinan sinun sinam cosumg, s12d

where L is the smacroscopically larged number of layers
along the wire. We have chosen the coordinate system such
that the y axis is parallel to the wire, which implies
Dn,m

x,y s0d=Dn,m
y,z s0d=0. In order to minimizeE the canting

angleshan,unj must satisfy the conditions

dE/dan = 0 and dE/dun = 0, s13d

which yield sfor n=1,2, . . . ,Nd

gmBH0 cosan cosun + So
m

Jn,ms0d

3fcosan sinun sinam sinum − sinan cosam

+ cosan cosun sinam cosumg

− sgmBd2So
m

fDn,m
x,x s0dcosan sinun sinam sinum

− Dn,m
y,y s0dsinan cosam

+ Dn,m
z,z s0dcosan cosun sinam cosum

+ Dn,m
x,z s0dcosan sinam sinsun + umdg = 0 s14d

and

FIG. 2. Schematic view of the canted spins in a transverse ap-
plied magnetic field.sad The spinSin is canted relative to the global
axes in the case ofH0,Hc. sbd Cross section of aN=7 nanowire
showing the canted spins in the case ofH0.Hc.
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sinanFgmBH0 sinun − So
m

Jn,ms0dhcosun sinam sinum

− sinun sinam cosumj + sgmBd2So
m

hDn,m
x,x s0d

3cosun sinam sinum − Dn,m
z,z s0dsinun sinam cosum

+ Dn,m
x,z s0dsinam cossun + umdjG = 0. s15d

By solving these coupled equations we can obtain the set
of angleshan,unj that minimize the total free energy and
hence determine the equilibrium configuration. Except in the
case ofN=1 sa single line of spinsd, this will require making
an approximation, and we return to this matter later. To pro-
ceed with the SW calculation, the Holstein-Primakoff trans-
formation is now applied relative to thelocal coordinates
sx8 ,y8 ,z8d assigned to each spin individually such that they8
axis is along the equilibrium direction of that spin. In term of
the global coordinatessx,y,zd, the transformations have the
following form sretaining only those terms that will contrib-
ute to the linear SW approximationd:

Sin
x = Ssinun sinan + ÎS/2ssinun cosan + i cosundain

†

+ ÎS/2ssinun cosan − i cosundain

− sinun sinanain
† ain + ¯ ,

Sin
y = Scosan − ÎS/2 sinansain

† + aind − cosanain
† ain + ¯ ,

s16d

Sin
z = Scosun sinan + ÎS/2scosun cosan − i sinundain

†

+ ÎS/2scosun cosan + i sinundain

− cosun sinanain
† ain + ¯ .

We now substitute the transformations16d into the Hamil-
tonian s1d and expand it in terms of boson operators as was
done for the longitudinal case. As a consequence of Eq.s13d
the first order termHs1d is found to vanish. The quadratic
HamiltonianHs2d, after a 1D Fourier transform with respect
to the globaly coordinate, is represented by the same formal
expression as Eq.s6d. The modified coefficientsAn,m

s2d skd and
Bn,m

s2d skd now depend on the canting angleshan,unj and they
are quoted in the Appendix. Information about the linear SW
spectrum will next be obtained directly by diagonalizing the
quadratic Hamiltonian, following an analysis of the longitu-
dinal case.

III. SPIN-WAVE DISPERSION RELATIONS

A. Longitudinal case

In order to obtain the linear SW spectrum, the quadratic
Hamiltonians6d must be diagonalized. This can be done by
applying a generalized Bogoliubov transformation, and thus
following Refs. 18 and 20 we first rewrite the quadratic
HamiltonianHs2d in matrix form as

Hs2d = −
1

2o
k

TrfAskdg +
1

2o
k

C̃k
+FskdCk, s17d

where

Fskd = S Askd 2Bskd

2B*s− kd Ãs− kd
D , s18d

with the tilde denoting a transpose matrix. HereAskd and
Bskd are N3N matrices with elements given by the coeffi-
cients An,m

s2d and Bn,m
s2d of the HamiltonianHs2d, respectively,

and we have also defined operatorsCk
+ andCk as

Ck
+ = S ak

+

a−k
D, Ck = S ak

a−k
+ D , s19d

whereak
+ andak areN-component column matrices with their

nth elements equal toak,n
† andak,n, respectively.

The first term in Eq.s17d is just a constant, while the
second term can be diagonalized to provide the noninteract-
ing SW spectrum. To achieve this we introduce a new set of
boson operatorsbk

+ and bk, which satisfy the usual commu-
tation relations and are defined by

ak,n = o
m=1

N

Sn,mskdbk,m + Sn,m+Nskdb−k,m
† , s20d

a−k,n
† = o

m=1

N

Sn+N,mskdbk,m + Sn+N,m+Nskdb−k,m
† , s21d

whereSn,mskd is an element of the 2N32N transformation
matrix Sk. The transformation can be written in matrix form
as Ck=SkDk and Ck

+=Sk
*Dk

+, whereDk and Dk
+ are defined

similarly to Ck andCk
+ but in terms of the new boson opera-

tors. Thelth column of the matrixSk, which we denote by
Slskd, as well as the noninteracting SW frequencies, which
we denote byvk,l, can be found by solving the following
eigenvalue equation:

S Askd 2Bskd

− 2B*s− kd − Ãs− kd
DSlskd = ± vk,lSlskd, s22d

where the1 sign is taken forl =1, . . . ,N and the2 sign for
l =N+1, . . . ,2N. The quadratic Hamiltonian then assumes the
diagonalized form given by

Hs2d = −
1

2o
k

TrfAskdg +
1

2 o
k,l=1

N

vk,l + o
k,l=1

N

vk,lbk,l
† bk,l .

s23d

Some numerical examples are now presented to illustrate
this theory. In particular, we show dispersion relation forvk,l
versus wave vectork for the N branchessl =1, . . . ,Nd. Nu-
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merical calculations are carried out for the reduced frequency
v /SJ in terms of two dimensionless parameters

h = gmBH0/SJandRd = sgmBd2/Ja3, s24d

where the latter measures the relative strengths of the dipolar
and exchange interactions.

For a general description of SW dispersion relation, we
first consider nanowires with the effective radiussin units of
ad of r =1 and r =5, corresponding toN=7 andN=91, re-
spectively. Note that the lattice constanta is an effective
value and the spinS at each “lattice” site may be chosen to
represent either a single spin or a “cluster” of spins. We will
discuss later how the values ofa andRd may be selected in
order to make comparisons with real nanowires. Calculations
have been performed using a stand-alone Pentium PC to
study nanowires with radius up tor =20 scorresponding to
N=1261d.

In Fig. 3, forRd=0.1 andh=0.5, we show just the lowest
of theN discrete SW modes in a nanowire withN=91. Some
of the modes show a minimum at nonzero wave vector, aris-
ing as a consequence of interplay between the dipolar and
exchange interactions. This feature has been pointed out
within a continuum model by Arias and Mills,14 who evalu-
ate the dipolar contribution to the dispersion at small values
of the wave vector. At small values ofka se.g., where either
the wave length or the nanowire radius is much larger than
the so-called exchange lengthd, the magnetic dipolar interac-
tion and the effect of the boundary confinement are large
compared to the influence of the exchange interaction. This
leads to a decrease of the lowest SW frequencies with in-
creasingka, which is similar to the behavior found for mag-
netostatic modes in the wire geometry.13 At larger values of
ka, the exchange interaction dominates and the SW frequen-
cies increase. Figure 4 is similar to Fig. 3, but forRd=0.5
and h=2.5. Here we have fixed the ratio ofh to Rd to be

equal to 5, so that in effect the only parameter which we
really vary is the length scalea, and therefore the nanowire
radius. The SW frequencies show not only a minimum for
the lowest curves at nonzero wave vector as in Fig. 3, but
also there is strong evidence of mode-repulsion effects in the
range of smallka. For comparison, we note that in the case
of a thin film with in-plane magnetization similar features
have been observed when the SWs are propagating normally
to the direction of magnetization.21,22 The mode repulsion
might be interpreted as a manifestation of the strong confine-
ment effects which result in a mixing of the magnetostatic
sdipolard surface mode with the lowest-lying perpendicular
standing SW modes.

We note that information about the spatial distribution of
relative intensities of normal modes can be deduced from the
transformation matrixSk. More precisely, we introduce

Pnsvk,ld = ÎuSn,lskdu2 + uSn+N,lskdu2 s25d

as defining the probability amplitude for the mode with fre-
quencyvk,l propagating along thenth spin line. To illustrate
this concept, we present here some numerical results for a
simple case of a nanowire withN=7 in zero applied mag-
netic field. The spins in each cross section are numbered as
indicated in Fig. 2sbd. The corresponding SW frequencies as
functions of wave vector are shown in Fig. 5, takingRd
=0.1. There are seven modes as expected, which we number
in increasing value of the frequency. Note that there are near
degeneracies between the second and third modes, and be-
tween the fourth and fifth modes. The relative intensities and
their spatial dependence, as measured byPnsv0,ld for n
=1,2, . . . ,7, arerepresented in Table I, where we choose
wave numberk=0 and the results are quoted for all seven
modes. From this table we can see that the lowest mode is
distributed almost uniformly among the spin lines, while the
highest mode is concentrated mainly on the center line. The
relative intensities of the second, third, and the sixth modes
have identical pattern and are distributed equally between the
outer lines.

FIG. 3. SW frequency versus wave numberka for a nanowire
with N=91 in a longitudinal applied field, takingJ'=J, h=0.5, and
Rd=0.1.

FIG. 4. The same as in Fig. 3, but takingh=2.5 andRd=0.5.
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In this particular example, whereN is relatively small, we
can usefully make comparisons with analytic results which
we obtained in an exchange-dominated limit. We find in this
limit that the SW frequencies atk=0 correspond simply to
v /SJ=0,2,2,4,4,5,7 inascending order. This, together
with the degeneracy scheme, is very similar to the behavior
depicted in Fig. 5, except that the dipolar terms have led to
an upward shiftsof order 0.7 atk=0d. Moreover, for the
spatial distribution in the exchange limit, we find that the
lowest SW modesmode 1d has equal intensity at all sitesn,
and this is similar to Table I. Also the highest SW mode
smode 7d is found to have essentially the same intensity dis-
tribution irrespective of the inclusion of dipole-dipole inter-
actions. This is because exchange effects are particularly im-
portant for mode 7. The SW modes 2 to 6 have zero intensity
at n=1 in the exchange limit, and this similar overall behav-
ior is found in Table I where the dipole-dipole effects are
included.

B. Transverse case

The same matrix formalism to diagonalizeHs2d can be
applied in the transverse field case also. Thus Eqs.s17d–s23d

are still valid, provided the appropriate form of theAn,m
s2d skd

andBn,m
s2d in Eqs.sA1d and sA2d are substituted. However, to

carry through with this calculation, it is a necessary first step
to determine the equilibrium configuration. As mentioned be-
fore, the equilibrium configuration is characterized by the set
of angleshan,unj. These angles can be obtained by solving
numerically the nonlinear equationss14d and s15d as de-
scribed below.

We first obtain an approximate analytic solution. Using
the fact that the azimuthal angleshunj relative to the mag-
netic field direction are very small in most cases, we can
linearize Eq.s15d, which becomes

gmBH0un − So
m

sinamhJn,ms0dsum − und + sgmBd2fDn,m
x,x s0dum

− Dn,m
z,z s0dun + Dn,m

x,z s0dgj = 0. s26d

The polar angleshanj can then be approximated from Eq.
s14d by assuming thatan.a for every n. Neglecting small
terms inun we obtain

sina = Hh/hc if h , hc,

1 otherwise,
J s27d

wherehc=gmBHc/SJ defines a critical fieldHc. Its approxi-
mate value is

hc .
Rda

3

N
o
n,m

fDn,m
z,z s0d − Dn,m

y,y s0dg. s28d

The linear equationss26d for hunj can be solved numerically
by using standard methods, and they are found to depend on
n. We note that the critical field given by Eq.s28d represents
the demagnetizing field caused by a transverse component of
the magnetization. In the continuum model,Hc is approxi-
mated as 2pMs, whereMs is the saturation magnetizationsin
our notationMs=hgmBS/a3, whereh is a scalar factor of
order unityd.

In a more precise calculation we use the values ofhanj
approximated by Eq.s27d and hunj values obtained from
solving the linear equationss26d as trial solutions to solve
Eqs.s14d ands15d numerically in an iterative approach. The
critical field hc can also be evaluated numerically to justify
the approximation made in obtaining Eq.s28d. We assume

FIG. 5. SW frequency versus wave numberka for a nanowire
with N=7 in zero applied magnetic field, takingJ'=J and Rd

=0.1. The numbering of the modes is indicated.

TABLE I. Relative intensities of SW resonance frequenciessat k=0d in a nanowire withN=7, taking
J'=J, Rd=0.1, andh=0.

n Pnsv0,1d Pnsv0,2d Pnsv0,3d Pnsv0,4d Pnsv0,5d Pnsv0,6d Pnsv0,7d

1 0.382 0.000 0.000 0.046 0.001 0.000 0.924

2 0.377 0.408 0.408 0.420 0.396 0.408 0.157

3 0.377 0.408 0.408 0.402 0.414 0.408 0.157

4 0.377 0.408 0.408 0.402 0.414 0.408 0.157

5 0.377 0.408 0.408 0.420 0.396 0.408 0.157

6 0.377 0.408 0.408 0.402 0.414 0.408 0.157

7 0.377 0.408 0.408 0.402 0.414 0.408 0.157
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that whenh.hc the demagnetizing fields are compensated
and all the spins are canted perpendicular to the wire axis
salthough theun angles will still varyd. As the applied fieldh
approaches the valuehc from below, the polar angles ap-
proach p /2 and therefore can be written asan=p /2−dn,
wheredn!p /2. Equations14d can then be linearized with
respect tohdnj, as well asun, and it has the following form in
leading order:

Cn,ndn + o
mÞn

Cn,mdm = 0, s29d

where

Cn,n = gmBHc + So
mÞn

Jn,ms0d + sgmBd2SFDn,n
y,ys0d

− o
m

Dn,m
z,z s0dG , s30d

Cn,m = − SJn,ms0d + sgmBd2SDn,m
y,y s0d, n Þ m. s31d

The value ofhc is then extracted numerically from the
requirement that detsCd=0, which is the condition for the
nontrivial solution exists. For example, for nanowires with
N=7, 19, 37, 61, and 91, and choosingRd=0.1, we get
hc/Rd=6.48s6.46d, 6.27s6.24d, 6.18s6.14d, 6.13s6.09d, and
6.11 s6.05d, respectively. The values in parentheses are the
approximate values given by Eq.s28d, and all values are seen
to be close to the 2p of the continuum theory.

As in the longitudinal case, we carry out numerical calcu-
lations for the reduced SW frequencyv /SJ in terms of wave
numberk and the two dimensionless parametersh and Rd
defined in Eq.s24d. We consider here a nanowire having
effective radius ofr =4 sin unit of ad, corresponding toN
=61. The value ofRd is chosen to be 0.1 in all the calcula-
tions.

The lowest branches of the SW resonance frequenciessat
k=0d are shown versus the applied magnetic field in Fig. 6.
The most significant feature is that all the curves have a
sharp minimum at the critical fieldhc=0.613, and the spin
waves show distinct behavior for the applied field being less
than or greater than this value. At larger values of applied
field, the spins are perpendicular to the wire axis, and the SW
frequencies increase monotonicallysmainly due to the Zee-
man energy termd. The behavior of the SW modes is also
interesting for the small values ofH0. In this case the spins
are canted slightly with respect to the wire axis. The contri-
bution of the Zeeman energy to the SW modes is over-
whelmed by the demagnetizing energy and the curves de-
crease slowly with increasing field. Note that the lowest
mode has a very sharp minimum but the frequency does not
vanish. We interpret this as a consequence of nonuniform
magnetization. As the spins are canted relative to the direc-
tion of applied field, though the canting anglesun are small,
the exchange energy contained in the mode becomes greater
than the demagnetizing energy. A qualitatively similar behav-
ior to that in Fig. 6 has been observed in ferromagnetic films
and multilayers with large out-of-plane anisotropy, as we
shall discuss later.

In Fig. 7 we show the frequencies of the lowest SW
branches plotted versuska, choosing the applied fieldh
=0.3, which is less than the critical value. Similarly to the
longitudinal case, the lowest curve also has a minimum at a
nonzero value of wave vector. Figure 8 is similar to Fig. 7,
but for the applied fieldh=0.8 which is greater than the
critical value. In this case, the direction of propagation of the
SW is perpendicular to the magnetization. Note that there is
a precursor of a mode-repulsion effect atka,0.2 for the
lowest curves, and no minima occur at nonzeroka. The
curves increase monotonically with increasingka.

IV. DIPOLE-COUPLED ARRAYS

In the previous sections, we have calculated the SW dis-
persion relation of a single, isolated nanowire. However,

FIG. 6. SW frequencysat k=0d versus transverse applied field
for a nanowire withN=61, takingJ'=J andRd=0.1.

FIG. 7. SW frequency versus wave numberka for a nanowire
with N=61 in a transverse applied field, takingJ'=J, h=0.3
s,hcd, andRd=0.1.
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nanowire arrays fabricated using a method of combining li-
thography and electrodeposition techniques might be very
dense, where the interwire distances as well as wire diam-
eters can be controlled as desired. Also, the systems can be
made to be ordered or disordered by varying the porosity of
the templates. In such cases the dipolar interactions between
wires may have significant effects on the SW spectrum.10–12

As mentioned earlier, we can choose to setJ'=0 to
model an array of nanowires with dipolar interwire cou-
plings. Here each wire is represented by a single line of
spins. This simple model is aimed to describe the problem of
ferromagnetic nanowires incorporated into a dense array. In
the experiments carried out by Wanget al.12 the nanowire
arrays were, in fact, arranged in a hexagonal lattice, as in our
theoretical model.

The results for the SW frequencies versuska in the lon-
gitudinal case are presented in Fig. 9, taking the same pa-
rameters as in Fig. 4. We see that the behavior of the lowest
curves is similar as in Fig. 4, but the upper curves are dra-
matically reduced in frequency, as expected, since there is no
interwire exchange energy. The frequencies of SW resonance
sat k=0d become almost a quasicontinuum. The repulsion of
modes is also evident, though it is now more subtle.

We next present results for the SW frequencies of a nano-
wire array in a transverse applied field. It is, however, more
complicated than the longitudinal case because the magnetic
moments are canted from the symmetry axes and the demag-
netizing field may cause the formation of domains in thexz
plane. We first consider the case ofN=61. The applied field
is chosen ash=1.2, which is strong enough to overcome the
demagnetizing fields. The results of SW frequencies versus
ka are presented in Fig. 10. Note that the frequencies of all
curves increase monotonically with increasingka. This is
because the propagation direction of the SW are perpendicu-
lar to the magnetization, so that the influence of dipole-
dipole interactions becomes very weak and thek dependence
is dominated by the intrawire exchange interaction. Another
interesting feature that one can note from the figure is that
the highest two modes are nearly degenerate with one an-

other and are split off from a quasicontinuum formed by
lower modes. This effect is similar to the case of splitting of
optical surface modes from a band of bulk modes in a ferro-
magnetic slab.22 To investigate the dependence of the SW
resonance frequencies of a nanowire array on the magnitude
of the applied field, it is appropriate to consider samples with
small N in order to avoid here the possible formation of
domain walls. The results for the case ofN=7 are given in
Fig. 11, takingRd=0.1. Note that the four lowest modes go
soft near the critical field. This type of phenomenon has been
observed in ferromagnetic thin films and multilayers with
out-of-plane anisotropies by Stamps and Hillebrands,23,24

who made applications to Co/Pd and Co/Pt superlatices.
The mode-repulsion effect are evident in our calculations for
applied fields both below and abovehc.

As in the previous sections, the question again arises of
how the intensities of the SW modes of a nanowire array are

FIG. 8. The same as in Fig. 7, but takingh=0.8 s.hcd andRd

=0.1.

FIG. 9. SW frequency versus wave numberka for a nanowire
array with N=91 in a longitudinal applied field, takingJ'=0, h
=2.5, andRd=0.5.

FIG. 10. SW frequency versus wave numberka for a nanowire
array with N=61 in a transverse applied field, takingJ'=0, h
=1.2 s.hcd, andRd=0.1.
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distributed among the wiressi.e., their spatial dependenced.
To have a qualitative understanding, we evaluate numerically
the probability amplitudePnsv0,ld. This was defined in Eq.
s25d and it provides a measure of the intensity for the reso-
nance modev0,l propagating along thenth wire. Results for
the case of a nanowire array withN=7 are presented
in Tables II and III forh=0.1 sh,hcd and 1.0sh.hcd, re-
spectively. The behavior is seen to be quite distinct in the
two cases, due to the different equilibrium configurations of
the spins.

V. DISCUSSION AND CONCLUSIONS

We have developed a microscopic theory describing the
dipole-exchange SW excitations in a single ferromagnetic
nanowire and/or arrays of these nanowires. The two different
cases of external magnetic fields applied parallel or perpen-
dicular to the wires have been treated separately. In the lon-
gitudinal case, the magnetization is uniform and directed
along the symmetry axis. This fact simplifies the problem,
and one can obtained the SW spectrum by applying the
Holstein-Primakoff transformation directly to the Hamil-
tonian. Our results are qualitatively in agreement with results

of the macroscopic theory developed by Arias and Mills14 in
the appropriate limiting cases. Moreover, from the theory we
are able to investigate in detail the relative intensities of each
discrete SW mode, which is spatially distributed among the
spin lines.

The case of transverse applied field is more complicated
because one needs to take into account the effects of nonuni-
form magnetization. We first find the equilibrium configura-
tion of spins by minimizing the classical free energy, which
is deduced from the microscopic Hamiltonian, with respect
to the canting angles of spins. The Holstein-Primakoff trans-
formation is now applied to thelocal coordinates of each
spins. The SW spectrum is obtained following the diagonal-
ization procedure used in the longitudinal case. The depen-
dence of SW resonance frequencies on the magnitude of the
applied field has been investigated, showing that there is a
sharp minimum of all frequency curves at a critical valuehc,
and the behavior of the SW is different for the applied field
being less than or greater than this value. This feature is
characteristic of unsaturated ferromagnetic systems,21 where
there is a strong competition between the exchange and the
demagnetizing energies. Also, when the direction of the ex-
ternal magnetic field is not parallel to the easy axis, the mag-
netization will deviate from the easy axis and eventually line
up with the applied field. The demagnetizing energy, which
is proportional to the magnetization component in the direc-
tion of applied field, will first decrease with increasing mag-
netic field and reach its minimum when the magnetization is
in the direction of applied field. This adds up with the mono-
tonically increasing Zeeman and exchange energies to result
in a sharp minimum of the SW frequency curves as we men-
tioned before. The value ofhc is found to decrease slightly
with increasing wire radius. In a case of nanowire arrays
when the interwire exchange interactions are switched off,
the lowest modes go soft in a range of applied field around
hc.

In the calculations, we have been using a model of nano-
wires having hexagonal cross section. The aim here is to
mimic the experimental situation,12 where arrays of metallic
ferromagnetic nanowires of circular cross section were em-
ployed. As mentioned before, the lattice constanta in any
realistic application is an effective value and needs to be
chosen appropriately for a particular nanowire. The exchange
couplingJ, or more preciselySJ, will be scaled accordingly,
provided that the exchange stiffnessD=SJa2/gmB is known.

FIG. 11. SW frequencysat k=0d versus transverse applied field
for a nanowire array withN=7, takingJ'=0 andRd=0.1.

TABLE II. Relative intensities of SW resonance frequenciessat k=0d in a nanowire array withN=7,
taking J'=0, Rd=0.1, andh=0.1 s,hcd.

n Pnsv0,1d Pnsv0,2d Pnsv0,3d Pnsv0,4d Pnsv0,5d Pnsv0,6d Pnsv0,7d

1 0.000 0.903 0.416 0.058 0.000 0.070 0.000

2 0.436 0.182 0.436 0.424 0.519 0.269 0.157

3 0.394 0.172 0.334 0.399 0.339 0.461 0.488

4 0.394 0.172 0.334 0.399 0.339 0.461 0.488

5 0.436 0.182 0.436 0.424 0.519 0.269 0.157

6 0.394 0.172 0.334 0.399 0.339 0.461 0.488

7 0.394 0.172 0.334 0.399 0.339 0.461 0.488
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Also, the connection between the microscopic and macro-
scopic theories can be inferred from the definition of the
magnetizationMs=hgmBS/a3, whereh is a geometrical fac-
tor sof order unityd depending on the lattice structure. In our
model,h=f3rsr +1d+1g / spr2d. The parametersRd andh can
be written in terms ofD andMs as follows:

Rd = Msa
2/hD, s32d

h = H0a
2/D. s33d

Knowing the values ofD andMs of a particular nanowire,
we can then choose the parameterRd appropriately. For ex-
ample, a nickel nanowire of radiusR=25 nm as studied by
Wang et al.12 can be modeled as havinga=5 nm andr =5,
corresponding toN=91. Using values of the magnetization
Ms.0.0480 T and the exchange stiffnessD.3.13
310−14 T cm2,12 the effective parameterRd can be deduced
approximately asRd.0.33 whileh=1 corresponding to the
applied fieldH0.0.13 T. Also, takinggmB=28 GHz/T the
scaledvalue ofSJ sin frequency unitsd is ,3.5 GHz.

In order to have quantitative comparison with experi-
ments, one needs to calculate the distribution of relative in-
tegrated intensities among the discrete SW modes, which
requires obtaining the spin-correlation functions. For ex-
ample, in the Brillouin scattering data of Ref. 12, the SW
were observed in three broad bands of frequency. Within our
formalism, this can be done by calculating the spin-spin
Green’s functions corresponding to the Hamiltonians1d and
we intend to address this problem in future studies. This
would also enable a more complete comparison to be made
with the continuum theory in the longitudinal field case.14

For example, we could calculate the density of states and
intensity distribution functions for the discrete SW modes
within our model, and the continuum limitsN→` and a
→0 such thatNa2 is constantd could then be studied. There
would still be symmetry differences because we employ a
hexagonal cross section, whereas the continuum theory14 was
for a circular cross section.

Notice that our formulation can be applied to nanowires
with different size, shape, and lattice structure. In particular,
the theory can be extended to other systems of ferromagnetic
nanowires of arbitrary cross section. For example, we can
choose to model a nanowire having a rectangular cross sec-
tion, where the spins are arranged on a square lattice. This

model can be used to study SW excitations in ferromagnetic
stripes. These kind of structures have been fabricated and
studied extensively in recent years by many experimental
groups. It should be remarked that,within a continuum ap-
proximation, the problem of calculating a SW dispersion re-
lation for a long ferromagnetic wire of rectangular cross sec-
tion has never been solved analytically, not even in the
magnetostatic limit.2,21

Another potential application of our theory is that it can
straightforwardly be extended to more exotic structures such
as arrays of long ferromagnetic nanotubes and even to finite-
length nanorings. In the latter case, the nanorings fabricated
so far5,25 have length-to-diameter aspect ratios that can be as
large as 5 in suitable cases, and therefore one would addi-
tionally need to take into account the end effects in these
structures.

The theory can also be extended to incorporate the effects
of interwire dipolar interactions in a dense array of ferromag-
netic nanowires. We note that in the longitudinal case, where
the wires have magnetization parallel to their symmetry axis,
this problem has been addressed by Arias and Mills15 using a
continuum model. The authors have provided numerical ex-
amples for a pair of ferromagnetic cylindrical wires and a
linear array. In the latter case, the results show a new disper-
sive mode which crosses and hybridizes with the modes of
an individual nanowire. However, it is nontrivial to extend
their theory to the transverse-field case, where the magneti-
zation in each wire is nonuniform. Also, their theory does not
apply to other systems with different geometry, such as ar-
rays of magnetic stripes. In the present work we have dis-
cussed some preliminary results for finite arrays of nano-
wires in both longitudinal and transverse field, where each
wire is represented by a long single line of spins and is
arranged in a triangular lattice. However, it would be of in-
terest to make further studies of such systems.
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APPENDIX A

The coefficientsAn,m
s2d skd andBn,m

s2d skd in the transverse case
are given by

TABLE III. The same as in Table II, but takingh=1.0 s.hcd.

n Pnsv0,1d Pnsv0,2d Pnsv0,3d Pnsv0,4d Pnsv0,5d Pnsv0,6d Pnsv0,7d

1 0.000 0.000 0.188 0.642 0.000 0.000 0.722

2 0.162 0.000 0.066 0.519 0.000 0.676 0.475

3 0.487 0.500 0.489 0.110 0.500 0.147 0.081

4 0.487 0.500 0.489 0.110 0.500 0.147 0.081

5 0.162 0.000 0.066 0.519 0.000 0.676 0.475

6 0.487 0.500 0.489 0.110 0.500 0.147 0.081

7 0.487 0.500 0.489 0.110 0.500 0.147 0.081

T. M. NGUYEN AND M. G. COTTAM PHYSICAL REVIEW B 71, 094406s2005d

094406-10



An,m
s2d skd = Dndn,m −

1

2
SJn,mskdhcossun − umd + sinan sinam + cossun − umdcosan cosam + i cossun − umdscosan + cosamdj

+
1

2
sgmBd2ShDn,m

x,x skdfsinun cosan sinum cosam + cosun cosum + iscosun sinum cosam − sinun cosan cosumdg

+ Dn,m
y,y skdsinan sinam + Dn,m

z,z skdfcosun cosan cosum cosam + sinun sinum + iscosun cosan sinum

− sinun cosum cosamdg + Dn,m
x,z skdfsinsun + umdscosan cosam − 1d − iscosan − cosamdcossun + umdg − Dn,m

x,y skd

3fsinun cosan sinam + sinan sinum cosam + iscosun sinam − sinan cosumdg − Dn,m
y,z skdfcosun cosan sinam

+ sinan cosum cosam + issinan sinum − sinun sinamdgj, sA1d

Bn,m
s2d skd = −

1

4
SJn,mskdhcossun − umdscosan cosam − 1d + sinan sinam + iscosan − cosamdsinsun − umdj +

1

4
sgmBd2ShDn,m

x,x skd

3fsinun cosan sinum cosam − cosun cosum + iscosun sinum cosam + sinan cosan cosumdg + Dn,m
y,y skdsinan sinam

+ Dn,m
z,z skdfcosun cosan cosum cosam − sinun sinum − issinun cosum cosam + cosun cosan sinumdg + 2Dn,m

x,z skd

3fsinun cosan cosum cosam + cosun sinum + iscosun cosum cosam − sinun cosan sinumdg − 2Dn,m
x,y skd

3fsinun cosan sinam + i cosun sinamg − 2Dn,m
y,z skdfsinan cosum cosam − i sinan sinumgj, sA2d

where

Dn = gmBH0 cosun sinan + o
l

hSJn,ls0dfcossun − uldsinan sinal + cosan cosalg − sgmBd2SfDn,l
x,xs0dsinun sinan 3 sinul sinal

+ Dn,l
y,ys0dcosan cosal + Dn,l

z,zs0dcosun sinan cosul sinal + Dn,l
x,zs0dsinsun + uldsinan sinalgj. sA3d
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