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Microscopic theory of dipole-exchange spin-wave excitations in ferromagnetic nanowires
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A microscopic theory is developed for the spin-wave excitations in ferromagnetic nanowires. Both the
long-range magnetic dipole-dipole interactions and the Heisenberg-exchange interactions between nearest
neighbors are included in the Hamiltonian, as well as effects of an applied magnetic field, which may be
directed parallel or perpendicular to the wire axis. Our formalism can be applied to ferromagnetic nanowires of
arbitrary cross section to deduce both the energy spectrum of the discrete dipole-exchange spin-wave modes
and the relative intensities as a function of position. The long-range dipole sums in the wire geometry are
evaluated numerically and spin-wave calculations are presented for nanowires with approximately circular
cross section. When the applied field is perpendicular to the wire axis, there is a canting of the net spin
orientation away from the axis, and the magnetization is spatially nonuniform due to the dipolar interactions.
We find that typically there are two phases and two distinct regimes of spin-wave behavior, corresponding to
the applied field being less than or greater than a critical value.
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I. INTRODUCTION or Brillouin light scattering(BLS). While the former is usu-
The dynamical properties of regular arrays of ally used to study the dependence of the uniform precession

submicrometer-scale magnetic dots and wires are current§!ode on the pumping field orientatidh;" the latter tech-
attracting great attention due to their interesting fundamentd}'d4€ 'S employed extens_lvely to investigate the excitation
physics and potential technological applicatidngxperi- ~ SPEctrum in laterally confined structuresee, e.g., Ref.)1
mentally, laterally confined magnetic structures in submi-Recently, Wangt al=* have applied BLS to study SW exci-
crometer and nanometer scale can be fabricated by variof@lions in highly ordered arrays of ferromagnetic nickel
methods. For example, arrays of magnetic strips with rectarflanowires, _fabricated by electrodeposition in ;@4
gular cross sections as well as rectangular prisms and cylif€MPIates:® The results reveal three quantized SW modes in

drical dots can be created by using lithographic patternin ipole-exchange regime, which were strongly influenced by

: . . ire diameter and interwire coupling. More interestingly, the
rocedures. Static and dynamic properties of such system S ; '
Eave been studied intensi¥/ely in rgcerr)n ydatsanother in)1/- r@sults show that when the external field is applied perpen-

tant cat f . ires is fabricated by el dicular to the wires, there exist two different phases of dy-
portant catégory of magnetic nanowires IS fabricated by €1€Ca,mica| pehavior corresponding to the applied field less than
trodeposition into porous templat&s. These templates con-

: : Co . or greater than a critical value.
sist of nanometer-wide cylindrical pores which allow one to Theoretically, the dipole-exchange SW in ferromagnetic

create magnetic nanowires of uniform diameter with eX-nanowires and nanodots have been studied by a number of
tremely large aspect ratios of length to diametes large as  aquthorst4-17For example, Arias and Millé have applied the
10°). Other methods which combine electrodeposition andsontinuum model to develop a theory for spin waves in a
electron-beam or x-ray lithography have also been applied tiong cylindrical ferromagnetic nanowire where the magneti-
create template materials where the position of the nanopilzation is assumed to be uniform and parallel to the wire axis.
lars and the spacing between them can be controlle@he theory has been applied successfully by Weinal1? to
precisely? In this case, the aspect ratio is smalfgipically  explain their data at zero field. However, this theory cannot
less than b and therefore some structures may have properbe extended to the transverse case where the external field is
ties of a system of magnetic nanodots. applied perpendicular to the wire as in the BLS
In addition to the magnetotransport properties and dynamexperiments? In this orientation, due to the dipole-dipole
ics of the magnetization reversal which have been investiinteractions the magnetization is canted relatively to the
gated intensively in both experimental and theoretical modsymmetry axes and distributed nonuniformly throughout the
els, the spin-wave excitations in low-dimensional magnetiovire cross section. Also the macroscopic method, which de-
systems are also of fundamental importance due to their rolpends on a continuum approximation, breaks down for suf-
in defining the time scale of the magnetization reversal proficiently thin nanowires and/or for large SW wave vectors.
cess. Also, other important information on magnetic properThis fact, plus the absence of a macroscopic theory in the
ties, such as the homogeneity of the internal field, contributransverse-field case, has motivated our present work.
tions due to magnetic anisotropy, and the dipolar interactions In this paper we develop a microscopic theory for spin
between magnetic elements can be obtained from spin-waweaves in ferromagnetic nanowires with approximately circu-
measurements. lar cross section. We concentrate on the regime where both
The spin-wave(SW) excitations or small amplitude dy- exchange and dipolar interactions may provide comparable
namics are usually investigated by ferromagnetic resonanasontributions to the dynamical processes. The operator
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spins in a particular layer. The exchange interaction between
v, Ho the spin operators at sit¢s n) and(j,m) is Jiy j,. For sim-
plicity, the exchange will be taken to hkbetween nearest
neighbors along thg direction,J, between nearest neigh-
N bors in thexz plane, and zero otherwise. The second term
represents the Zeeman energy due to the external field, which
z can be applied parallel or perpendicular to the wire. The final
term in Eq.(1) describes the long-range dipole-dipole inter-
actions with thea and B labels denoting Cartesian compo-
nentsx, y, or z and

[V in jml” B, = 3T i il o jm
o . . . Difim = Tr- iml® ’ @
FIG. 1. A nanowire withN=7 in a longitudinal applied mag- in,jm
netic field. where rin im=Xm=Xn,Y;~Yi.Zn=2,) and the case(i=j,n

=m) is excluded from the sums in EL).
method that we employ here is analogous to that developed In some cases we may want to take=J for the two
in recent work on ultrathin films of ferromagn&tsand exchange constants. In other cageg., to model an array of
antiferromagnet$’ 1D wires as in Sec. IYwe may choose to sét, =0, so that
The paper is arranged as follows. Section Il describes thinterwire coupling is due to the dipolar term only. We now
theoretical model for a cylindrical ferromagnetic nanowire.examine separately the distinct types of physical behavior
The Hamiltonian includes the exchange, dipolar, and Zeemaabtained when the magnetic field is parallel or perpendicular
terms, where the external magnetic field is applied eitheto they axis.
parallel or perpendicular to the wire axis. Results for linear o
SW dispersion relation are then derived in Sec. Ill, where A. Longitudinal case
numerical examples are provided to illustrate the theory for When the magnetic field is applied parallel to the wire,
the dependence of the discrete SW frequencies on wave vethe magnetization is uniform and the equilibrium orientation
tor, applied magnetic field and nanowire radius. Numericabf each spin is along the wire axis. In this case the approxi-
results are also given for the spatial distribution of the modenate SW excitation spectrum can be calculated by using a
intensities. In an appropriate limit of the general theory, wemacroscopic continuum model. In fact, SW theories for a
are also able to deduce in Sec. IV some preliminary resultfong cylindrical ferromagnetic nanowire were developed by
for arrays of nanowires with dipolar interwire coupling. Sec- Sharon and Maradudifiand by Arias and Mill&* using this
tion V is devoted to further discussion and overall conclu-method for the magnetostatic and dipole-exchange regimes,
sions. respectively. The latter theory was applied successfully by
Wanget al'? to explain some of their experimental results at
zero external field. As mentioned above, the microscopic
A nanowire can be modeled by specifying a cross-theory is needed for small-diameter wires and/or for larger
sectional layefof a chosen shape and sizmd then stacking SW wave vectors, where a continuum approximation is un-
these atomic layers vertically on one another to form a longatisfactory.
nanowire with translational symmetry along the stacking di- We start with the assumption that the equilibrium orienta-
rection. Specifically we consider here nanowires having dion of all the spins is along thg axis, which is parallel to
hexagonal cross sectidin the xz plang, each with a finite the symmetry axis of the nanowire. To examine the SW
numberN spins arranged on a triangular lattiGacinga). properties at low temperatur€6<<T.) we first transform the
These layers are stacked vertically to form a long nanowirespin Hamiltonian into an equivalent form in boson operators.
extending in they direction from -c to «. This geometry is There are several ways to carry out this step, but in the
illustrated in Fig. 1. The simplest case N1 corresponds present paper we uséollowing Refs. 18 and 1P the
to a single line of spins, whereas wires of “radiua’(where  Holstein-Primakoff transformation. Corresponding to our
r=1,2,3,..) corresponds tdN=3r(r+1)+1=7,19,37,etc.  choice of coordinate axes, the components of a spin vector
An external magnetic field of magnitudé, can be applied Si, are represented in terms of boson creation and annihila-
along or perpendicular to the wire axis, with the latter casdion operatorsal, and a;, by the expressiongdenoting S,
allowing comparison with the experimental situation in Ref.=S,%iS})
12. Thus the Hamiltonian can be expressed generally as

Il. THEORETICAL MODEL

S, =281 -a a,/29 Y2, 3)
H==>3 JynSn- S GeHo- 2§ e
2ipgm e m . S, = V254d,(1 -a}a/29)"?, (4)
1 o —o_ .t
+592M§2 > Db sish. (1) Sh=S= apain. (5)

njm a8 The transformed Hamiltonian can then be expanded, apart

Herei,j are layer indices, while,m label the position of the from a constant, aH=H®+H®@+H®+H@+--. where
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H™ denotes a term withm boson operators. The constant 6 7
term has no role in dynamical properties while the first order y
term HY vanishes by symmetry in the present longitudinal-
field case. The noninteractirfinear SW excitations will be

obtained from the quadratic Hamiltoni&#?. After making S\ N\ 2 zH
a 1D Fourier transform along the wire axis, it has the form
H? = 2 (AT (Kag s+ Bin(Ka) @tk m = Ho 4 3
k,n,m (a) {b)
(2)*
+ Bn,m(k)ak,nELk,m}v (6) FIG. 2. Schematic view of the canted spins in a transverse ap-

wherek is a wave number along the wire axis. The termsp”ed magnetic field(a) The spinS, is cantgd relative to the glgbal
H® and H® describe leading-order effects of SW interac- axes in the case dﬂ0<_HC._(b) Cross section of &=7 nanowire
tions and will not be considered further in the present pape's_,howmg the canted spins in the casep>He.
In the above result we have written the boson operators
aln anda, , in terms ofk and the site indices andmin a  netization becomes spatially nonuniform. As a consequence
particular layer. The coefficients in E6f) are given explic- We use a microscopic rather than macroscopic theory. We
itly by now assume that the equilibrium orientation of the spin at
. site (i,n) is characterized by two angleg, and 6, so that
@ (1) = _ _= 2nYY Sihn=S(sin a,, sin ,,, cosa,,, Sina, C0sH,), as represented in
Aim(K) = Andhm = Shum(k ZS(g’uB) Dm0, () Fig. 2a). The total free energy obtained from the Hamil-
tonian(1) can be written as

1 .
Bi2(k) = ZS(QMB)Z{Dﬁ’fn(k) - Dym(k) + 2iDRT(K)},  (8) E=-— %SZLE Jnm(O)[sin a, sin 6, sin ay, Sin 6;,
n,m
where + COSay, COSam, + Sin a, C0Sf, Sin @y, COS O,
An = g/J“BHO + S; [‘Jn,l(o) - (gMB)ZD*}/(O)] (9) - gMBHOSZ sin a, C0SH,
n
We have also introduced the 1D Fourier transforipg(k) 1 peo o . . _
and D%(k) of the exchange and dipole-dipole interactions + E(g’uB) SLY [DF(0)sin a, sin 6, Sin ap, sin by,
respectively, defined, e.qg., by nm
. +DYY (0)cosa, cose,
(k) = 2 Jin jm XHIK(Y; = yp)]. (10) e
j +Dy(0)sin a, cos 6, sin ay, COS Oy,
In the case of nearest-neighb@N) coupling the functions + 2D§:ﬁ1(0)sin a;, Sin 6, sin o, COS 6], (12

Jnm(k) have a simple form and are . .
n(K) P where L is the (macroscopically largenumber of layers

2Jcogka) if n=m, along the wire. We have chosen the coordinate system such

_ ; that they axis is parallel to the wire, which implies

Jnmk)=1J if nandmare NN, 11 i :
(k)= (D DY (0)=D}%(0)=0. In order to minimizeE the canting

angles{«,, 6.} must satisfy the conditions
As mentioned, to model a single_ composite nanowire_ of ra- 8E/Sa,=0 and OE/S56,=0, (13)
dius R=ra, we simply takeJ, =J in most of our numerical _ _
calculations. The functionB (k) are defined in an analo- Which yield (for n=1,2,... N)
gous way to Eq(10). They are nonzero in general for all
andm, although they vanish by symmetry for some choicesg’u“BHO cosap, coSfy + S% Jnm(0)
of a and 8. They will later be evaluated numerically, taking _ . _ _
care of their slow convergence in tigedirection. In the Sec. X[cosa, sin 6, sin apy, Sin 6, = sina, cosapy,
[ll, we show how the Hamiltoniari6) can be diagonalized
using a matrix method to obtain the linear SW spectrum.

0 otherwise.

+ COSay, COS A, SiN ay, COS b,
- (gue)?S. [DXX,(0)cosay, Sin 6, Sin ay, Sin 6,
m

B. Transverse case v (0)
. . . - DY7(0)sin «, OS¢y
We now consider the more interesting case where the ex- nm " m

ternal magnetic field is applied along tlzeaxis, which is + D}7(0)cosa, cos b, Sin apy, COS O,
perpendicular to the wire. Due to the competition between Xz . . _

the applied field and the demagnetizing field, the spins are + Dri(0)cosay sinay sin(6, + 6] =0 (14)
canted relative to the symmetry axes and therefore the magnd

094406-3



T. M. NGUYEN AND M. G. COTTAM PHYSICAL REVIEW B 71, 094406(2005

sin a,| guaHo Sin 6, — S, J, m(0){cos b, sin ay, sin 6, H@ = _ }2 THA®K)]+ }2 SIEMOC, 17)
m 2% 27 ,

~ sin 6, Sin @, cos )} + (gup)?SY, {DY,(0)
m where

X €0s 6, sin ay, sin 6, — D;7.(0)sin 6, sin ay, oS O,

+DX%(0)sin ag, COS( 6y + 0} | = 0. (19 F(k):(zl::?j)k) ;?(kk))) (18

By solving these coupled equations we can obtain the S&lith the tilde denoting a transpose matrix. Hekék) and

of angles{an,_an} that minimize the t_otal ffee energy _and B(k) are NX N matrices with elements given by the coeffi-
hence determine the equilibrium configuration. Except in the .

2 2 . . .
case ofN=1 (a single line of spins this will require making cients Agw)n and Bfw?n Of. the HamiltonianH'®, respectively,
an approximation, and we return to this matter later. To pro—and we have also defined operat@sandCy as
ceed with the SW calculation, the Holstein-Primakoff trans-
formation is now applied relative to thiecal coordinates a ay
(x",y’,Z') assigned to each spin individually such that yhe Cy= ( ) K= ( + )
axis is along the equilibrium direction of that spin. In term of k
the global coordinateg,y,2), the transformations have the \ynerea’ anda, areN-component column matrices with their
following fqrm (retaining only thqse terms that will contrib- ity elements equal taln anday,, respectively.
ute to the linear SW approximatign The first term in Eq.(17) is just a constant, while the
second term can be diagonalized to provide the noninteract-
ing SW spectrum. To achieve this we introduce a new set of
boson operatork; andb,, which satisfy the usual commu-

(19

ay

S, = Ssin 6, sin ey, + VS/2(sin 6, cosay, + i cosé,)a;

+ V’@(sin 6, cosay, — i cosb,)ai, tation relations and are defined by
-sing,sinaalan+ -, N .
ak,n = E Sn,m(k)bk,m + Sn,m+N(k)b—k,m* (20)
S, = Scosa, - V92 sinay(al, + a,) - cosayalan+ - m=l
(16) N
EDY (K)by m + (k)b! (21)
J— ik,n S’I+N,m k,m Sr1+N,m+N —-k,m»
&, = Scos#, sin a, + \S2(cos b, cosa, - i sin 6,)al, m=1
+1/S/2(cos 6, cosa, +i sin 6,)a;, where §, (k) is an element of the X 2N transformation
] + matrix S,. The transformation can be written in matrix form
— COSO, SIN @y @jn + -+ . as C,=SDy and C;=S,D;, whereD, and D; are defined
We now substitute the transformatighé) into the Hamil-  Similarly to Cy andCy but in terms of the new boson opera-

tonian (1) and expand it in terms of boson operators as wadors: Thelth column of the matrbS,, which we denote by
done for the longitudinal case. As a consequence of E3). (k). as well as the noninteracting SW frequencies, which
the first order termH® is found to vanish. The quadratic We denote byw,, can be found by solving the following
HamiltonianH @, after a 1D Fourier transform with respect €igenvalue equation:

to the globaly coordinate, is represented by the same formal

expression as Ed6). The modified coefficients\f’;(k) and A(K) 2B(K)
Bff?n(k) now depend on the canting anglgs,, 6} and they ( . N )S,(k) =+ wy, S(K), (22
are quoted in the Appendix. Information about the linear SW —~2B(-k -A(-k

spectrum will next be obtained directly by diagonalizing the
quadratic Hamiltonian, following an analysis of the longitu- where the+ sign is taken fod=1,... N and the— sign for
dinal case. I=N+1,...,2N. The quadratic Hamiltonian then assumes the
diagonalized form given by
Ill. SPIN-WAVE DISPERSION RELATIONS 1 1 N N
A. Longitudinal case H? = EEK‘; TrlAK)] + Ek%l o+ k%l oy b by

In order to obtain the linear SW spectrum, the quadratic ' ' (23
Hamiltonian(6) must be diagonalized. This can be done by
applying a generalized Bogoliubov transformation, and thus Some numerical examples are now presented to illustrate
following Refs. 18 and 20 we first rewrite the quadratic this theory. In particular, we show dispersion relation dgy
HamiltonianH@ in matrix form as versus wave vectok for the N brancheql=1, ... N). Nu-
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FIG. 3. SW frequency versus wave numierfor a nanowire FIG. 4. The same as in Fig. 3, but takihg 2.5 andR3=0.5.
with N=91 in a longitudinal applied field, taking, =J, h=0.5, and
Ry=0.1. equal to 5, so that in effect the only parameter which we

really vary is the length scale, and therefore the nanowire
merical calculations are carried out for the reduced frequencyadius. The SW frequencies show not only a minimum for
w/SJin terms of two dimensionless parameters the lowest curves at nonzero wave vector as in Fig. 3, but
also there is strong evidence of mode-repulsion effects in the
range of smalka. For comparison, we note that in the case
h = gugHy/SJand Ry = (gug)?Ja®, (24 of a thin film with in-plane magnetization similar features
have been observed when the SWs are propagating normally
where the latter measures the relative strengths of the dipol&p_ the direction of magnetizatich?? The mode repulsion
and exchange interactions. might be mterprgted asa manlfes_ta_tlon of the strong conflr_le-
For a general description of SW dispersion relation, weMent effects which result in a mixing of the magnetostatic
first consider nanowires with the effective radiirs units of ~ (dipolan surface mode with the lowest-lying perpendicular

a) of r=1 andr=5, corresponding ttN=7 andN=91, re- Standing SW modes. o
spectively. Note that the lattice constaatis an effective We note that information about the spatial distribution of

value and the spil$ at each “lattice” site may be chosen to relative inte_nsities of normal mode_s can be qleduced from the
represent either a single spin or a “cluster” of spins. We willransformation matri§,. More precisely, we introduce
discuss later how the values afand R; may be selected in
order to make comparisons with real nanowires. Calculations _ 2 2
have been performed using a stand-alone Pentium PC to Pr(@) = VIS, (K[* + [Shn, (K] (25
study nanowires with radius up to=20 (corresponding to as defining the probability amplitude for the mode with fre-
N=1261J. guencywy, propagating along theth spin line. To illustrate

In Fig. 3, forRy=0.1 andh=0.5, we show just the lowest this concept, we present here some numerical results for a
of theN discrete SW modes in a nanowire wikh=91. Some  simple case of a nanowire witN=7 in zero applied mag-
of the modes show a minimum at nonzero wave vector, arisnetic field. The spins in each cross section are numbered as
ing as a consequence of interplay between the dipolar anitdicated in Fig. 2b). The corresponding SW frequencies as
exchange interactions. This feature has been pointed otiinctions of wave vector are shown in Fig. 5, takifRy
within a continuum model by Arias and Millé,who evalu- =0.1. There are seven modes as expected, which we number
ate the dipolar contribution to the dispersion at small value$n increasing value of the frequency. Note that there are near
of the wave vector. At small values &k (e.g., where either degeneracies between the second and third modes, and be-
the wave length or the nanowire radius is much larger thamween the fourth and fifth modes. The relative intensities and
the so-called exchange lengtthe magnetic dipolar interac- their spatial dependence, as measured Fayw,;) for n
tion and the effect of the boundary confinement are large=1,2,...,7, arerepresented in Table |, where we choose
compared to the influence of the exchange interaction. Thisvave numbeik=0 and the results are quoted for all seven
leads to a decrease of the lowest SW frequencies with inmodes. From this table we can see that the lowest mode is
creasingka, which is similar to the behavior found for mag- distributed almost uniformly among the spin lines, while the
netostatic modes in the wire geometfyAt larger values of  highest mode is concentrated mainly on the center line. The
ka, the exchange interaction dominates and the SW frequenelative intensities of the second, third, and the sixth modes
cies increase. Figure 4 is similar to Fig. 3, but ®y=0.5 have identical pattern and are distributed equally between the
andh=2.5. Here we have fixed the ratio bfto Ry to be  outer lines.
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10

are still valid, provided the appropriate form of méf;](k)

and Bfr)n in Egs.(Al) and(A2) are substituted. However, to
carry through with this calculation, it is a necessary first step
to determine the equilibrium configuration. As mentioned be-
fore, the equilibrium configuration is characterized by the set
6 of angles{«,, 6,}. These angles can be obtained by solving
numerically the nonlinear equatiorid¢4) and (15 as de-

3 scribed below.

3 4,5 We first obtain an approximate analytic solution. Using
the fact that the azimuthal angl¢g,} relative to the mag-

1 23 netic field direction are very small in most cases, we can
linearize Eq.(15), which becomes

0 . T . T . T .
00 05 10 15 20

ka = D5(0) 6+ DY7(0)1} =0, (26)
FIG. 5. SW frequency versus wave numikerfor a nanowire )
with N=7 in zero applied magnetic field, taking, =J and Ry The polar angled«,} can then be approximated from Eq.

=0.1. The numbering of the modes is indicated. (14) by assuming thaty,= a for everyn. Neglecting small
terms in g, we obtain

g/-LBHogn - SE sin am{‘]n,m(o)(gm - en) + (gMB)Z[DE’,):n(O) Om
m

can usefully make comparisons with analytic results which (27)
we obtained in an exchange-dominated limit. We find in this
limit that the SW frequencies &=0 correspond simply to whereh.=gugH./SJ defines a critical fieldH.. Its approxi-
wl/SJF0,2,2,4,4,5,7 inascending order. This, together mate value is

with the degeneracy scheme, is very similar to the behavior

depicted in Fig. 5, except that the dipolar terms have led to he = Rda32 [DZZ(0) - DYY.(0)] (28)
nm n,m .
n,m

In this particular example, whel¢ is relatively small, we _ h/h, if h< h,
sina= .
“T1 otherwise,

an upward shift(of order 0.7 atk=0). Moreover, for the N

spatial distribution in the exchange limit, we find that the ) ) .

lowest SW modémode 1 has equal intensity at all sites The Il_near equation&6) for {6,} can be solved numerically
and this is similar to Table I. Also the highest SW modePY using standard methods, and they are found to depend on
(mode 7 is found to have essentially the same intensity dis-"- We note that the critical field given by E(28) represents
tribution irrespective of the inclusion of dipole-dipole inter- the demagnetizing field caused by a transverse component of
actions. This is because exchange effects are particularly in{b€ magnetization. In the continuum model, is approxi-
portant for mode 7. The SW modes 2 to 6 have zero intensitjated as ZMs, whereM; is the saturation magnetizatigim
atn=1 in the exchange limit, and this similar overall behay-OUr notationM=7gugS/a’, where 7 is a scalar factor of

ior is found in Table | where the dipole-dipole effects are©rder unity. . .
included. In a more precise calculation we use the value§w}

approximated by Eq(27) and {6,} values obtained from
solving the linear equation&6) as trial solutions to solve
Egs.(14) and(15) numerically in an iterative approach. The
The same matrix formalism to diagonalit#? can be critical field h, can also be evaluated numerically to justify
applied in the transverse field case also. Thus Eg8—23)  the approximation made in obtaining E@8). We assume

B. Transverse case

TABLE |. Relative intensities of SW resonance frequendigisk=0) in a nanowire withN=7, taking
J, =J, Ry=0.1, andh=0.

>

Pr(wp 1) Pn(wo,2) Pn(wo,3) Pn(wo,4) Pn(wo,) Pn(wo,e) Pn(wo,7)

1 0.382 0.000 0.000 0.046 0.001 0.000 0.924
2 0.377 0.408 0.408 0.420 0.396 0.408 0.157
3 0.377 0.408 0.408 0.402 0.414 0.408 0.157
4 0.377 0.408 0.408 0.402 0.414 0.408 0.157
5 0.377 0.408 0.408 0.420 0.396 0.408 0.157
6 0.377 0.408 0.408 0.402 0.414 0.408 0.157
7 0.377 0.408 0.408 0.402 0.414 0.408 0.157
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that whenh>h, the demagnetizing fields are compensated 30
and all the spins are canted perpendicular to the wire axis
(although thed, angles will still vary. As the applied fieldh 25+
approaches the value. from below, the polar angles ap-
proach /2 and therefore can be written ag=m/2-4,,

%

where 5,< /2. Equation(14) can then be linearized with 207
respect td 8.}, as well asf,, and it has the following form in -
leading order: 915
Condnt 2 Comdn=0, (29)

m#n 1.0 4

where 0.5 4
Con=GugHe + S Jnm(0) + (grs)’S DYA(0)
m#n 0.0 . T . ; . ;
. 0.0 05 10 15 20
- E Dn’,m(o) ) (30) g”l’BHo/SJ
m

FIG. 6. SW frequencyat k=0) versus transverse applied field
Chm=~Sdm(0) + (gMB)ZSD’n%(O), n#m. (31 for a nanowire withN=61, takingd, =J andRy=0.1.

The value ofh, is then extracted numerically from the In Fig. 7 we show the frequencies of the lowest SW
requirement that dé€)=0, which is the condition for the branches plotted versusa, choosing the applied fieldh
nontrivial solution exists. For example, for nanowires with =0.3, which is less than the critical value. Similarly to the
N=7, 19, 37, 61, and 91, and choosify=0.1, we get longitudinal case, the lowest curve also has a minimum at a
h./Ry=6.48(6.46), 6.27(6.24), 6.18(6.14), 6.13(6.09, and  nonzero value of wave vector. Figure 8 is similar to Fig. 7,
6.11 (6.09, respectively. The values in parentheses are théut for the applied fieldh=0.8 which is greater than the
approximate values given by E@8), and all values are seen critical value. In this case, the direction of propagation of the
to be close to the # of the continuum theory. SW is perpendicular to the magnetization. Note that there is

As in the longitudinal case, we carry out numerical calcu-a precursor of a mode-repulsion effect ket~ 0.2 for the
lations for the reduced SW frequenay SJin terms of wave lowest curves, and no minima occur at nonzée The
numberk and the two dimensionless parametarand Ry curves increase monotonically with increaskey
defined in Eq.(24). We consider here a nanowire having
effective radius ofr=4 (in unit of a), corresponding td\
=61. The value oR; is chosen to be 0.1 in all the calcula-
tions. In the previous sections, we have calculated the SW dis-

The lowest branches of the SW resonance frequeriaies persion relation of a single, isolated nanowire. However,
k=0) are shown versus the applied magnetic field in Fig. 6.

The most significant feature is that all the curves have a 44
sharp minimum at the critical field;=0.613, and the spin J
waves show distinct behavior for the applied field being less 35
than or greater than this value. At larger values of applied 1
field, the spins are perpendicular to the wire axis, and the SW 301

frequencies increase monotonicallyainly due to the Zee-
25

man energy terpn The behavior of the SW modes is also
interesting for the small values &f,. In this case the spins ~ _ ]

are canted slightly with respect to the wire axis. The contri- § z'oi/
bution of the Zeeman energy to the SW modes is over- . |
whelmed by the demagnetizing energy and the curves de —’/

IV. DIPOLE-COUPLED ARRAYS

crease slowly with increasing field. Note that the lowest 44
mode has a very sharp minimum but the frequency does no ]
vanish. We interpret this as a consequence of nonuniform o5
magnetization. As the spins are canted relative to the direc: 1
tion of applied field, though the canting anglésare small, 00 y T T T T T T T T
the exchange energy contained in the mode becomes great:  %° 02 04 ko 06 08 10
than the demagnetizing energy. A qualitatively similar behav-

ior to that in Fig. 6 has been observed in ferromagnetic films FIG. 7. SW frequency versus wave numbherfor a nanowire
and multilayers with large out-of-plane anisotropy, as wewith N=61 in a transverse applied field, taking =J, h=0.3
shall discuss later. (<hy), andRy=0.1.
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FIG. 8. The same as in Fig. 7, but takihg 0.8 (>h,) andRy FIG. 9. SW frequency versus wave numikerfor a nanowire

=0.1. array with N=91 in a longitudinal applied field, taking, =0, h
=2.5, andRy=0.5.

nanowire arrays fabricated using a method of combining li-

thography and electrodeposition techniques might be verpther and are split off from a quasicontinuum formed by
dense, where the interwire distances as well as wire diamower modes. This effect is similar to the case of splitting of
eters can be controlled as desired. Also, the systems can B®tical surface modes from a band of bulk modes in a ferro-
made to be ordered or disordered by varying the porosity ofnagnetic slaB8? To investigate the dependence of the SW
the templates. In such cases the dipolar interactions betwedfsonance frequencies of a nanowire array on the magnitude
wires may have significant effects on the SW specttert?  of the applied field, it is appropriate to consider samples with

As mentioned earlier, we can choose to Sgt=0 to small N in order to avoid here the possible formation of
model an array of nanowires with dipolar interwire cou- domain walls. The results for the case#7 are given in
plings. Here each wire is represented by a single line ofig. 11, takingR;=0.1. Note that the four lowest modes go
spins. This simple model is aimed to describe the problem o$0ft near the critical field. This type of phenomenon has been
ferromagnetic nanowires incorporated into a dense array. Iabserved in ferromagnetic thin films and multilayers with
the experiments carried out by Wareg all? the nanowire —out-of-plane anisotropies by Stamps and Hillebratids,
arrays were, in fact, arranged in a hexagonal lattice, as in os¥ho made applications to Co/Pd and Co/Pt superlatices.
theoretical model. The mode-repulsion effect are evident in our calculations for

The results for the SW frequencies verdasin the lon- ~ applied fields both below and abohg
gitudinal case are presented in Fig. 9, taking the same pa- As in the previous sections, the question again arises of
rameters as in Fig. 4. We see that the behavior of the lowedtow the intensities of the SW modes of a nanowire array are
curves is similar as in Fig. 4, but the upper curves are dra-
matically reduced in frequency, as expected, since there is n«
interwire exchange energy. The frequencies of SW resonanc
(atk=0) become almost a quasicontinuum. The repulsion of
modes is also evident, though it is now more subtle.

We next present results for the SW frequencies of a nano- 154
wire array in a transverse applied field. It is, however, more
complicated than the longitudinal case because the magneti,
moments are canted from the symmetry axes and the demag%
netizing field may cause the formation of domains in tize
plane. We first consider the casef61. The applied field 10 E
is chosen afi=1.2, which is strong enough to overcome the
demagnetizing fields. The results of SW frequencies versus
ka are presented in Fig. 10. Note that the frequencies of all
curves increase monotonically with increasikg This is
because the propagation direction of the SW are perpendicu 05 T T T T T T T T T
lar to the magnetization, so that the influence of dipole- 0.0 02 04 Ka 06 08 10
dipole interactions becomes very weak andkltiependence
is dominated by the intrawire exchange interaction. Another FIG. 10. SW frequency versus wave numkarfor a nanowire
interesting feature that one can note from the figure is thaérray with N=61 in a transverse applied field, takidg =0, h
the highest two modes are nearly degenerate with one a1.2 (>h), andRy=0.1.

20
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10 ; ; of the macroscopic theory developed by Arias and Milla
os] i ; the appropriate limiting cases. Moreover, from the theory we
1 i i are able to investigate in detail the relative intensities of each
°-8‘_ : ; discrete SW mode, which is spatially distributed among the
o7d : spin lines.
— ; The case of transverse applied field is more complicated
06 because one needs to take into account the effects of nonuni-
& 0.5 form magnetization. We first find the equilibrium configura-
3 04 tion of spins by minimizing the classical free energy, which
] is deduced from the microscopic Hamiltonian, with respect
0.3+ to the canting angles of spins. The Holstein-Primakoff trans-
02 formation is now applied to thécal coordinates of each
~ ] spins. The SW spectrum is obtained following the diagonal-
0.1+ ization procedure used in the longitudinal case. The depen-
oo ; dence of SW resonance frequencies on the magnitude of the
0.0 02 o4 0B 08  1n 12 applied field has been investigated, showing that there is a

arH/SJ sharp minimum of all frequency curves at a critical valhye
and the behavior of the SW is different for the applied field
FIG. 11. SW frequencyat k=0) versus transverse applied field being less than or greater than this value. This feature is
for a nanowire array witiN=7, takingJ, =0 andRy=0.1. characteristic of unsaturated ferromagnetic syst&msere
there is a strong competition between the exchange and the

distributed among the wire§.e., their spatial dependence demagnetizing energies. Also, when the direction of the ex-
To have a qualitative understanding, we evaluate numericall{ernal magnetic field is not parallel to the easy axis, the mag-
the probability amplitudeP,(wg,). This was defined in Eq. netization will deviate from the easy axis and eventually line
(25) and it provides a measure of the intensity for the resoUP With the applied field. The demagnetizing energy, which
nance modev,, propagating along theth wire. Results for 1S proportional to the magnetization component in the direc-
the case of a nanowire array witN=7 are presented tion of applied field, will first decrease with increasing mag-
in Tables Il and Il forh=0.1 (h<h,) and 1.0(h>h,), re- netic field and reach its minimum when the magnetization is
spectively. The behavior is seen to be quite distinct in thd" the direction of applied field. This adds up with the mono-

two cases, due to the different equilibrium configurations offonically increasing Zeeman and exchange energies to result
the spins. in a sharp minimum of the SW frequency curves as we men-

tioned before. The value di; is found to decrease slightly
with increasing wire radius. In a case of nanowire arrays
V. DISCUSSION AND CONCLUSIONS when the interwire exchar)ge interactions are syvitched off,
the lowest modes go soft in a range of applied field around
We have developed a microscopic theory describing thé,.
dipole-exchange SW excitations in a single ferromagnetic In the calculations, we have been using a model of nano-
nanowire and/or arrays of these nanowires. The two differentvires having hexagonal cross section. The aim here is to
cases of external magnetic fields applied parallel or perpermmimic the experimental situatiod,where arrays of metallic
dicular to the wires have been treated separately. In the lorferromagnetic nanowires of circular cross section were em-
gitudinal case, the magnetization is uniform and directechloyed. As mentioned before, the lattice constarin any
along the symmetry axis. This fact simplifies the problem,realistic application is an effective value and needs to be
and one can obtained the SW spectrum by applying thehosen appropriately for a particular nanowire. The exchange
Holstein-Primakoff transformation directly to the Hamil- couplingJ, or more preciselsJ will be scaled accordingly,
tonian. Our results are qualitatively in agreement with resultrovided that the exchange stiffndds SJ&/gug is known.

TABLE Il. Relative intensities of SW resonance frequendiask=0) in a nanowire array witiN=7,
takingJ, =0, Ry=0.1, andh=0.1(<h,).

n Pn(wo,2) Pr(@o,2) Pr(wg,3) Pr(@o,4) Pr(wo,5) Pr(wo,6) Pn(wo,7)

1 0.000 0.903 0.416 0.058 0.000 0.070 0.000
2 0.436 0.182 0.436 0.424 0.519 0.269 0.157
3 0.394 0.172 0.334 0.399 0.339 0.461 0.488
4 0.394 0.172 0.334 0.399 0.339 0.461 0.488
5 0.436 0.182 0.436 0.424 0.519 0.269 0.157
6 0.394 0.172 0.334 0.399 0.339 0.461 0.488
7 0.394 0.172 0.334 0.399 0.339 0.461 0.488
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TABLE Ill. The same as in Table Il, but taking=1.0 (>h).

n Pn(wo,2) Pn(wo,2) Pn(wo,3) Pr(wo 4) Pn(wo 5 Pn(wo,6) Pn(wo7)

1 0.000 0.000 0.188 0.642 0.000 0.000 0.722
2 0.162 0.000 0.066 0.519 0.000 0.676 0.475
3 0.487 0.500 0.489 0.110 0.500 0.147 0.081
4 0.487 0.500 0.489 0.110 0.500 0.147 0.081
5 0.162 0.000 0.066 0.519 0.000 0.676 0.475
6 0.487 0.500 0.489 0.110 0.500 0.147 0.081
7 0.487 0.500 0.489 0.110 0.500 0.147 0.081

Also, the connection between the microscopic and macromodel can be used to study SW excitations in ferromagnetic

scopic theories can be inferred from the definition of thestripes. These kind of structures have been fabricated and

magnetizatiorM = ngugS/ a3, wherez is a geometrical fac- studied extensively in recent years by many experimental

tor (of order unity depending on the lattice structure. In our groups. It should be remarked thatithin a continuum ap-

model, »=[3r(r+1)+1]/(@r?). The parameter®; andh can  proximation the problem of calculating a SW dispersion re-

be written in terms oD and Mg as follows: lation for a long ferromagnetic wire of rectangular cross sec-
tion has never been solved analytically, not even in the
magnetostatic limit:?

- 2
Ra=Mg/7D, (32) Another potential application of our theory is that it can

) straightforwardly be extended to more exotic structures such

h=Hea/D. (33)  as arrays of long ferromagnetic nanotubes and even to finite-

length nanorings. In the latter case, the nanorings fabricated

Knowing the values ob andM; of a particular nanowire, so faP?®> have length-to-diameter aspect ratios that can be as
we can then choose the parame®grappropriately. For ex- large as 5 in suitable cases, and therefore one would addi-
ample, a nickel nanowire of radit®=25 nm as studied by tionally need to take into account the end effects in these
Wang et al? can be modeled as havireg=5 nm andr=5,  structures.
corresponding tdN=91. Using values of the magnetization  The theory can also be extended to incorporate the effects
M;=0.0480 T and the exchange stiffnes®=3.13 of interwire dipolar interactions in a dense array of ferromag-
X 10714 T cn?,12 the effective parameteRy can be deduced netic nanowires. We note that in the longitudinal case, where
approximately asRy=0.33 whileh=1 corresponding to the the wires have magnetization parallel to their symmetry axis,
applied fieldHy;=0.13 T. Also, takinggug=28 GHz/T the this problem has been addressed by Arias and Millsing a
scaledvalue ofSJ(in frequency unitsis ~3.5 GHz. continuum model. The authors have provided numerical ex-

In order to have quantitative comparison with experi-amples for a pair of ferromagnetic cylindrical wires and a
ments, one needs to calculate the distribution of relative infinear array. In the latter case, the results show a new disper-
tegrated intensities among the discrete SW modes, whickive mode which crosses and hybridizes with the modes of
requires obtaining the spin-correlation functions. For ex-an individual nanowire. However, it is nontrivial to extend
ample, in the Brillouin scattering data of Ref. 12, the SWtheir theory to the transverse-field case, where the magneti-
were observed in three broad bands of frequency. Within ouzation in each wire is nonuniform. Also, their theory does not
formalism, this can be done by calculating the spin-spinapply to other systems with different geometry, such as ar-
Green’s functions corresponding to the Hamilton{ahand  rays of magnetic stripes. In the present work we have dis-
we intend to address this problem in future studies. Thisussed some preliminary results for finite arrays of nano-
would also enable a more complete comparison to be madgires in both longitudinal and transverse field, where each
with the continuum theory in the longitudinal field cdée. wire is represented by a long single line of spins and is
For example, we could calculate the density of states andrranged in a triangular lattice. However, it would be of in-
intensity distribution functions for the discrete SW modesterest to make further studies of such systems.
within our model, and the continuum lim{i{N—«~ and a
—0 such thaiNa? is constant could then be studied. There
would still be symmetry differences because we employ a ACKNOWLEDGMENTS
hexagonal cross section, whereas the continuum thtans
for a circular cross section.

Notice that our formulation can be applied to nanowires
with different size, shape, and lattice structure. In particular,
the theory can be extended to other systems of ferromagnetic APPENDIX A
nanowires of arbitrary cross section. For example, we can
choose to model a nanowire having a rectangular cross sec- The coefficients&ﬂ(k) and Bfr)n(k) in the transverse case
tion, where the spins are arranged on a square lattice. Thare given by
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1
Aﬁ??n(k) =N 6m— ES%,m(k){cos( 6, — 6 + Sina, Sin ay, + €0 6, — 6,)COS, COSay, + i €O 6, — 6, (COSa, + COSay)}

1
+ E(gMB)ZS{Dﬁjfn(k)[sin 6, CoSa, Sin 6, COSa,y, + C0SH, COSH,, +i(cosb, sin b, COSay, — Sin , COSa,, COSHy) ]

+ DY Y(K)sin a, sin apy + D (K)[ cOS 6, COSary COS b, COSary + SiN 6, SiN Gy + 1(COS 6, COSay, Sin b,
= sin 6, COS Oy, COSay,) | + Dy r(K)[Sin(6, + O)(CoSa, COSam, — 1) — i(COSa, — COSam)cos b, + O) ] — DiYi(K)
X[sin 6, cosay, sin ay, + sina;, sin 6y, Cosay, +i(COs G, Sin ay, — sin ay, €0s6y) | - DT (K)[cos b, cosay, sin ay,

+ Sinay, COS#, COSayy, + i(sin ay, Sin O, — sin 6, sin ey 1}, (Al)

B (k) = - %S%m(k){cos( 6, 6,)(cosa, CoSay,— 1) + sin a;, Sin a;, + 1(COSa;, — COSay)SIN(6, = 6} + %(gMB)ZS{Dﬁ',ﬁ(k)
X[sin 6, cosay, sin 6, COSay, — COS 6, COS b, + i(COS G, SiN 6y COSary, + SiN ay COSar, COSH) | + DY (K)sin ay, sin apy,
+ Dit(k)[cos b, cosay COS by, COSay, = Sin 6, Sin 6, — i(sin 6, Cos b, COSap, + CoSb, Cosay, Sin O,) ] + 2D 7 (K)
X[sin 6, cosay, oS 6, COSap, + COSH, Sin G, +i(COS G, COS by, COSay, = Sin 6, COSay, Sin 6,) ] — 2D1Y(K)
X[sin 6, cosay, sin ay, +i cos6, sin ay| - 2DY 1 (K)[sin &, COS 6y, COSay, — i SiN ay, Sin O}, (A2)
where

A= gugHo cosb, sina, + >, {S3,,(0)[cod 6, - 6)sin e, Sin oy + COSa, COSey | — (g,uB)ZS[Dﬁ'j‘(O)sin 0, sina, X sin g, sin g
|

+ D}/(0)cosay, cose + Dy(0)cos b, sin ay, cos 6, sin a; + DyT(0)sin(6, + 6)sin ay, sin o[} (A3)
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