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Internal consistency of the path-integral calculation of the mass of the Fréhlich polaron
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Feynman’s formula for the effective mass of the Fréhlich polaron is rederived from the formalism of
projected partition functions. The mass is calculated as inverse of the diffusion coefficient of the polaron
trajectory in imaginary time. It is shown that correlation between the electron and phonon boundary conditions
in imaginary time is necessary for consistent derivation of the Feynman result.
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[. INTRODUCTION phonons are coupled in one system and share a common

Fifty years ago Feynman published his seminal paper integral of motion, the polaron momentum. Accurate account
the Frohlich polaron, in which he combined path integration®f the correlation results in a polaron action different from
and an action variational principle to obtain the polaron enthe periodic phonon action derived by Feynman. Thus the
ergy and effective mass. Subsequently, Feynman's metho@uestion arises of whether this difference is significant
was generalized by many authdr§,for a comprehensive €nough to yield a correction to the Feynman mass formula.
review see, for example, Refs. 6—8. When the exact polarofuch a correction might account for the deviation from the
energy and mass were calculated by Fourier quantum Montilonte Carlo mass.
Carlo>1° and diagrammatic quantum Monte Caté” meth- This question is investigated in the present paper. It is
ods, Feynman'’s polaron energy was found to be remarkablghown that proper boundary conditions in imaginary time do
accurate deviating from the exact value by less than 0.5% fonot produce a numerical correction to the Feynman result.
all couplings. In contrast, Feynman’s mass formidfeover-  However, the original mass calculation is found to be inter-
estimated the exact mass by as much as 50% leaving roonally inconsistent. The terms in the polaron action that are
for possible improvements. Generalizations of the originasmall in the energy calculatiotand rightly neglected by
calculatiort31*415produced either no or very small, less than Feynman are not small in the mass calculation and cannot
1%, numerical correction to the magk some instances, the be neglected. But if the boundary conditions are properly
correction was of the wrong sigit¥) Thus the generaliza- taken into account, those terms are small in both calcula-
tions did not improve the agreement between the analyticdions. Thus the correlation between the electron and phonon
and numerical masses. The much larger error in the mass whsundary conditions restores the consistency of the mass cal-
not regarded as something unexpected. It was known singgllation and leads to the correct final formula.
Feynman’s paper that the mass did not satisfy a variational
principle, and therefore the accuracy of the approximate
treatment was expected to be somewhat uncontrolled. Il. EFFECTIVE MASS FROM SHIFTED BOUNDARY

In Feynman's metho#!6” phonon variables are inte- CONDITIONS

grated out analytically resulting in a self-interacting retarded i )
one-electron action. Phonon integration is performed under The polaron mass can be calculated as the inverse diffu-

periodic boundary conditions in imaginary time. Periodic Sion coefficient of an open-ended polaron path in imaginary

boundary conditions are also assumed for the electron traje@Me: This section contains a derivation of this relation. The

tory. Both conditions are perfectly appropriate for the energyf€rvation is general and valid for any nonrelativistic com-
caliculation, since the ground-state energy is obtained from BOSite particle. The momentufiK of a translation invariant
full thermodynamic partition function. However, later, in the SYStem is a constant of motion. In the polaron case, this is the
mass calculation the electron trajectory is broken and-its SUm Of an electron momentum and momenta of all excited
=0 and 7= ends are displaced relative to each other. ThePptical _phonons. One_deflnes thmjecte_d partition function
effective mass is inferred from variation of the polaron en-2S & Gibbs sum restricted to states with the s&me

ergy with real space separation of the two ends of the trajec- _ _BH

tory. In Feynman’s approach, the retarded polaron action is Zk _zn: (nle”|ny) K - (1)

not corrected for this displacement. In other words, the ac-

tion resulted from phonon integration for a periodic electronHere |n) are eigenstates of the Hamiltoni&h 7K, is the
trajectory is carried over to an open electron trajectory. ~ momentum of statén), and B=(kgT)™* is inverse tempera-

In a parallel research on the Holstein poldfoi’it was  ture. The system is assumed to occupy a finite volirend
realized that the boundary conditions for the phonon andhe wave vector is quantized to a discrete set of vakigs
electron variables must be synchronized for consistent calcufo transform Zy, introduce real-space configuratioh®)
lation of the polaron mass. That is, they are either both pewhich are direct products of all the degrees of freedom in the
riodic or both open. And when they are both open they aresystem. For the Frohlich polarofQ)=|r)II,,|P(r’)), where
correlated. The correlation follows because the electron and is the electron position an@(r’) is the polarization at
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point r’. The stateQ form a complete orthogonal basis 1 _

=[dQIQXQ| and(Q;|Q,)=48(Q;-Q,), where the unity op- Zx = v f d(Ar)e" A - Zy,. (7)

erator and the delta function are also direct products between

different degrees of freedom. Inserting two unity operators inThis relation is valid at any temperatu® In the low-

Eqg. (1) the partition function is rewritten as follows: temperature limitZ, is dominated by the lowest energy ei-
genvalue with given wave vector, which allows derivation of
a useful formula for the effective mass. At smil| the en-

Z :J dQ,dQxQzleQy) - Wk, (2)  ergy is approximated b, =Eg+#:2K2/2m’, and the pro-

jected partition functiorZ, — e ¥« asT — 0. Expanding Eq.
(7) to the second order iK one obtains

W = 2 (QunX(nQa) Sk, = (QuIKXKIQ).  (3) BHPK?) 1
n ( o >:Vf d(Ar)[1+i(KAr)—

The meaning of the last expression is that both configura- (8)
tions Q, and Q, have to be projected on the same wave

vectorK. To perform projection consider a parallel shift of On the right, the linear term i vanishes after integration
configurationQ by a three-dimensional vect&. The result- by inversion symmetryZ_,, =Z,,. The rest is transformed as
ing state will be denoted d9+R). (Note that summation is

(KAr)?

Zyr.

only symbolic herg.An arbitrary configuratiorQ generates 212 J d(Ar)(KAr)2Z,,

a family of state§Ko)=V*[dRe®R|Q+R). Inversely,|Q B _ — (KA (9)
+R)=3 X RIK o). In Wi only the respective components ! shift

|Kq,) and|K o)) of [Qp) and|Qy) survive projection orK. As f d(Ar)Zy,

a result, one obtains o S )
The definition ofZ,,, Eq. (6), implies that the ratio of two

W = (Ko |Ko) integrals in the last expression is the mean valuékokr)?
v evaluated with shifted boundary conditions in imaginary
time. The latter means the initiéht imaginary time=pand
final (at imaginary time3) configurations are the same, see
L Eqg. (6), but they can be shifted relative to each other by a
- = iK Ar three dimensional vectahr. This shift vector is arbitrary.
Y, J d(AnNeTH(Q, + Ar|Q Averaging under shifted boundary conditions is understood

1 ; _
- V2 f dR;dRx(Q; + R4|Qy + R,)eK(RimR2)

1 hereafter as averaging ovér, with the weight given byZ,,.
== f d(Ar)eRar . 5 (Q, + Ar) - Q,], (4)  Upon expansion of the square in E®), the mixed terms
\4 average to zero by symmetr§(Ar;)(Arj))shir=0, while the
diagonal terms are equal(Ar;)?snin=1/3((Ar)?)nin. That

whereAr =R;—-R,. The resulting delta function ensures that results in

a many body configuratio®, is identical to a configuration

Q; shifted byAr. Substitution in Eq(2) and integration over J 2
: d(Ar)(Ar)<Z
Q, yield 1 1 (Ar(Ar) 2y _ (A1) ghin
. m o 3p#H2 fd A7 T 3pK2 (10
ze= [ aaness [ aa@rade™io.  ©) (A2

This equation allows an elegant interpretation of the effective
The matrix element under thaQ integral is the density ma- mass in terms ofmaginary time diffusionSince the shift
trix operator taken between an arbitrary real-space configusector is not fixed, the system evolution from the initial to
ration Q and thesameconfiguration shifted byAr. SinceQ  the final configuration can be regarded as diffusion during
is a many body state all particles shift in parallel. In thetimet=7%g. In normal three-dimensional diffusion, the mean
polaron system the electron coordinateand polarization squared displacement is proportional to the time interval,
profile P(r’) shift together. Equatiort5) suggests defining ((Ar)?)=6Dt, whereD is the diffusion coefficient. Thus Eq.
the shift partition function (10) is rewritten as

1 _20
ZAr:fdQ<Q+Af|e_BH|Q>, (6) m &

Note, that Eqg.(10) can also be regarded as a fluctuation-
which is characterized by the shift vectar. The zero-shift  dissipation relation. The effective mass characterizes dy-
partition function,Z,,-q, coincides with the usual thermody- namical response, while the mean squared displacement is an
namic partition function. Equatiof) states that the pro- equilibrium property.
jected partition function and the shift partition function sat- Equation(10) is especially useful in understanding mass
isfy a Fourier-type relation enhancement of composite particles such as the polaron. In-
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teraction with various field&.g., phononksincreases the sta- transformed polaron actiaii2) and boundary conditiofiL5)

tistical weight of trajectories with smal(Ar)?) thereby become

slowing down the diffusion and increasing the particle’s

mass. Thus the mass enhancement is conveniently visualizedSr (7);Aq(7),By(7)]

as the increased “stiffness” of the trajectories. Equatidh B

or its analogues were used in Monte Carlo calculations of the =- f drm

effective masses of polarofd?18-20pipolarons’! and de- 2h?

fects in superfluid heliur®

> {— ol 2]
0

Ill. POLARON ACTION (a>0)

The results of the previous section have important impli- _ M_QZ[A2+ B2]
cations for the Frohlich polaron. As soon as the two ends of
the electron path are allowed to shift relative from each other
to obtain the mass, the polarization profile must shift accord- = 47T|e| ([%(r)smq r(7) - By(7)c0Sq - r(r)]}
ingly. Thus phonon integration has to be performed under |al
more general boundary conditions in imaginary time than (17)
periodic. In general, this should modify the polaron action.
The modified polaron action is calculated in this section.

A starting point is the polaron action as formulated by Ay (B)cosqAr +By(B)singAr = Aq(0), (18)
Frohlich?® and Schult8

, B mi2 — A(B)SINGAr + By (B)cosqAr =By(0). (19
9r(7);P(r’,7)]= fo d72ﬁ2
Since action(17) is diagonal in amplitude#\ and B, path
|e|f de dr’ ( )P(r’) integration can be performed for each component indepen-
f’ —r| dently. Using the standard methéd&1” one obtains in the
——f drf dr’ l +QZP2(r’)]

low-temperature limig"*#> 1:

B
Sr(7);A4(0),A4(B).By(0), B, B)]——f th ot 2 S,

(12 (ax>0)
(20
A gpe.,
e (13)
07 Ex 2 2
Here Q) is the optical phonon frequency, and ., are the S=- thhQ[Aq(O +Aq(ﬂ) + B30+ By(A)]
static and high-frequency electric permittivities of the crys- ﬁz (47-r|e|)2 B (B
! i : _ ) dr'd7'G(7,7")
electron. r(7) is the imaginary-time electron trajectory. 2# q 0 Jo
P(r’,7) is the imaginary-time polarization trajectory. A dot Ny f
above a variable denotes partial derivative with respect to xcoslr(r) =r(#)]
imaginary time 7. The action is supplemented by shifted (4nle)) |2 [ _ .
boundary conditions + q v, dr{e™*TAy(0)sing -r(7)
r(B)=r(0)+Ar, (14) - By(0)cosq - (D] + e MEI[A (B)sing -1 (7)
P(r',f) = P(r" -~ Ar,0), as " ByBcosa-r(ml}, (20

whereAr is an arbitrary three-dimensional vector. Except for
the boundary conditions phonon integration proceeds alond(7',7")
the lines outlined by Schult? The polarization field is ex- 1 {sinhﬁﬂr’ sinh#Q(B- ), « <,

panded in a Fourier series with real amplitudeand B: = . )
Q) sinhaQ B | sinhaQ(B - 7')sinhaQ 7, 7 > 7.

1) = \/7 > [Aq(r)cosq r'+By(Dsing-r']. (22
(q >0)
(16) The action is still a functional of two end polarizations, at

7=0 andr=. However, those are related by the conditions
Note that the sum oveg extends only over half of momen- (18) and(19). Final integration over the end variables leads,
tum space, which is indicated by(d,>0).” The Fourier- after straightforward algebra, to
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B mr 2
S [r(¢)]=—f dr —
ar o 2h?
#503\12 (B (B ~H Q|7 -7
+%( ) ffdquﬂ —_—
22\ m 0 Jo Ir(7") = r ()|

g hB-l7' =)
+
IIr(7") = r(#")]sgn(7’ — 7) — Ar|

}, (23)
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_ Jef?

- ZhQ(

wherea is the Frohlich coupling constanir in the denomi-
nator of the last term in Eq23) is a direct consequence of
the shifted boundary conditions for the polarization field. It
is convenient to perform a linear transformatioi)=r’'(7)
+(7/B)Ar, which transforms path integration to periodic
boundary conditions. The resulting action is

1

€

1

2=

€0

(24)

a

_ m (Ar)? B mi2 o [#5Q3\V2 (B (B o e
SAr[r(T)]:_% 5 —f d7%+ﬁ - dr’ d+ T
0 N 0J0 r(T’)—r(TN)+ Ar
~hQ(B-|7-7))
' i B-|r -7 (25)
| -
[r() = r(#lsorts = ) = == ar

The bar overS indicates that the action is a functional of a
path periodic in imaginary time. The full shift partition func-
tion (6) is given by

ZAr = th J(

whereDr is path integration over electron coordinatés, is
the partition function of a free polarization field. This is a

.y
Dr eSAr[r(T)],

r,0)

(26)

multiplicative constant that cancels out in the mass calcula

tion, see Eq(10).

The polaron mass originates from explicit dependence og

action(25) on the shift vectoAr. The first term corresponds
to the bare electron mass. Phonon-induced mass enhan

Here comes the critical observation. Such a nice term-by-
term domination of the first fraction over the second one
takes placeonly as a result of the shifted boundary condi-
tions for the polarization. Indeed, without the latter the com-
bination in the denominator of the second fraction in &)
would have been (|7 —7'|/B)Ar=0(Ar) instead of
[(B—|7 —7"|)/ B]Ar =O[(Ar)B71]. As a result, the second ex-
pansion would have bee®(1)+O[(Ar)2]+O[(Ar)*]+---.
The first term is still small compared to the corresponding
term from the first fraction, which leads to the correct po-
laron energy. However, théAr)? term now dominates its
counterpart from the first fraction, which totally confuses
alculation of the effective mass. Thus the neglect of the
hifted boundary conditions in phonon integration results in
a serious internal inconsistency in the mass calculation. Ap-

arently, Feynman avoided this difficulty by omitting the

ment comes from the double integral. The two integrandsecong fraction in Eq23) from the outset. Had he retained

have similar functional dependence ifr), but make differ-
ent contributions to the action. The first integrand exponen
tially decays away from the diagonal=7". Since the odd
powers ofAr vanish in path integration, the first fraction’s
contribution isO(B)+O[(Ar)?8 1+O[(Ar)*83]+---. The

the full form of the phonon propagator, including the second
parte -7 'he would have faced the problem outlined
here.

The analysis presented in this section enables to safely
neglect the second fraction in E@5). However, it will still

first term of this expansion adds to the polaron energy, whilgye included in the forthcoming mass calculation in order to

the second one adds to the mass.

Consider the second fraction in the double integral
(25), which is the main focus of the present study.
The exponential numerator limits integration to finite
intervals around the point$0,8) and (3,0). In the de-
nominator, the combination(8—|7 —7[)=0(1). There-
fore the second fraction’s contribution to the action is
O(1)+O[(Ar)?872]+O[(Ar)*8#]+---. In the B— o limit,

each term in this expansion is small in comparison with the
corresponding term from the previous series with the same

illustrate further the above argument.

IV. POLARON MASS
The polaron actiori25) is real. Therefore the shifted par-

tition function satisfies the Jensen-Feynman inequality

0 _ _ 0 "o <
Dr - el (D] = gSarlr(9] - Ar[r(T)Dof Dr -e Ar[r(r)],

r
fro o

(27)

power of Ar. Thus theentire second fraction can be omitted where(:--), denotes averaging with the trial actiéa. Fey-

in favor of the first one.

nman’s trial model consists of two particles with masees
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andM, which are elastically coupled with a spring constantlimited to where the combination(8—|r -7"|)<(AQ)™!
k. Note that if the first particle’s mass is different from the =O(1). Since the pre-exponential factor is exactly the same

electron massn, the difference(S-Sy), diverges. The sec-

combination squared, it i©(1) throughout the essential in-

ond particle’s mas# and« are variational parameters. It is tegration region. As a result, the entire second double inte-

customary to replace them with two parametarsfiyx/M

gral isO(1). Therefore it can be omitted in favor of the first

andv=wy1+M/m which both have units of energy. Calcu- integral, which isO(8). Now recall that the pre-exponential

lation of the right-hand side of Eq27) is tedious, but pro-

factor (8—|7' —7"|)? derives from the shifted boundary con-

ceeds along essentially the same lines as the original Feygitions of the phonon integration. Without the latter, the pre-

man calculation. Therefore the intermediate steps are na@dxponential factor would have beer — 7

presented here. An important note concerns Alnedepen-

2, that is the same
as in the first integral. Therefore, it would have be2(B?)

dence of theztrial a;:tion. It is fully represented by the termin the essential integration region. That would have resulted
—[(m+M)/27:7][(Ar)</ B], reflecting the fact that the total jn the second integral bein@(82) and its contribution to the

mass of the trial model imm+M. As a result of the calcula-
tion, inequality(27) takes the form

I O A1
Ar = 4ph 277%2,8 E 2ﬁ2 B
+0[(Ar)*B%] + } (28)
3(v-w)?
E. = 3@ZwW"
4 v
1 B (B e‘ﬁQlT/—T”‘ + e—ﬁﬂ(ﬁ—\r'—r”b
- =¥ f f dr'd7’ e
2\ BJo Jo [O(7,7")]
(29
1 (P (B
m==m 1+%(ﬁ9)3/2_J f drd+
6V BJo Jo
|7_I _ 7J/|Ze—ﬁﬂ‘7'/—7ﬂ‘ + (B_ |7_/ _ 7JI|)2e_ﬁQ(ﬁ_‘T/_TND
X
[ (', #)]? '
(30)
1 — 2 1
CD(T’,f'):—{|T’—7”|—(T ) }+
M B m
=l
m M
X131 - }e_ZUT, _ }e—Zv(ﬁ—’r') _ }e—Zmﬂ
2 2 2
L 20t 4 ol 47 4 grol2B-(r'+7)]
— — v +e o(T+77) 4 e v T
- e_”'M'}- (31)

mass O(B), which, of course, makes no sense. Thus the
shifted boundary conditions in phonon integration are essen-
tial for the correct form of the pre-exponential factor and, in
the end, for the consistency of the entire mass calculation.
Once the second integrals in Eq29) and (30) are safely
omitted, the first ones can be transformed according to the
relation

B (B p
ffdr’dﬁ’g(lr'—vﬂl)ﬂﬁj drg(n, (32
0o J0 0

which is valid for any functiong in the limit 3—o. The
Feynman energy and mass assume their final forms

_§(U_W)2_i 3/2]00 i
T R T
_ Lo PeT
me = m{ 1+ 3v,;(ﬁQ) fo dr FP2 [ (34
> 2 i
F(T):FT'F 3 (1-€e7). (35

The last step is choosing optimal valuesvoandw. The
standard approach has always been to minirizéirst and
then substitute the obtained values into the expression for
me. However, the variational theore(@8) is valid for any
Ar and not for just the zero shift vector. The question there-
fore is whether the other terms in the polaron action change
the optimal values of the variational parameters. dgaind
wy minimize functionEg(v,w) defined by Eq(33). As such,
they satisfy the equationdE/dv=0 anddEg/ow=0 and a
necessary concavity condition. With other terms included,
one has to minimizeEg+const/B+(me/242)(Ar [ B)%+- - .
Note that the second and third terms are of the same order

Er andmg stand for the Feynman energy and Feynman mas$)(5™%). Minimization yields v=vo+ v, and w=wo+dw,
respectively. These definitions are understood as functionavheresv, sw=0(B1). Some parts of the correctiods and

dependencies only, the optimal values of parametensdw
are yet to be determined. BoHy andmg contain terms that
originate from the last fraction in the actig®5). The critical

ow depend explicitly omAr. However, theminimum energy
itself receives a correction that is only quadraticdm and
éw. The leadingAr correction to the minimal polaron action

question is about the order of their contribution in the low-is O[(Ar/g)?], which does not affect the effective mass term
temperature limif3— . In Eq.(29) the two double integrals —(mg/242)(Ar)?/ 8 in the B— o limit. To conclude, the po-
areO(B) andO(1), respectively. The second one can there-laron mass is still determined by the original Feynman pro-
fore be omitted. The same is true about the two double inteeedure: minimize the energ{3) first, and then use the op-
grals in Eq.(30). In the second one, the integration region istimal parameters to calculate the mass from &4).
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V. SUMMARY correct form of a prefactor in the intermediate expression for

In this paper, calculation of the Fréhlich polaron effective M2sS: Ed(30), which allows dropping the second double

mass has been analyzed for robustness to boundary condfitégral altogether. In the original Feynman calculation, the
tions in imaginary time. It has been shown that a consistentecond double integral was omitted from the beginning, i.e.,
mass calculation must involve a correlation between théluring the energy calculation, and therefore did not cause
boundary conditions of the electron and phonon coordinate@ny problems in the mass calculation. Such an approach was
The 7= end points of all paths have to be shifted by theinternally inconsistent. It has been shown here that the con-
same vectorAr relative to theirr=0 end points. Then the sistency is restored via correct treatment of the shifted
effective mass is found as inverse diffusion coefficient of theboundary conditions.
many body path, see E@L1), whereAr is used as a diffu- Finally, it has been shown that all the above consider-
sion distance an@— « as a diffusion time. This conclusion ations do not change the numerical values of the polaron
is not limited to the polaron system but is valid for any effective mass obtained in Refs. 1 and 13. The optimal val-
composite nonrelativistic quantum particle. ues of the variational parameters are still determined by
It has also been shown that the correlation between thainimization of the ground-state ener¢§3) alone. The ef-
electron and phonon boundary conditions is critical for thefective mass then follows from expressi(8¥) evaluated at
consistency of the polaron mass calculation. It results in théhe optimal values o andw.
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