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Feynman’s formula for the effective mass of the Fröhlich polaron is rederived from the formalism of
projected partition functions. The mass is calculated as inverse of the diffusion coefficient of the polaron
trajectory in imaginary time. It is shown that correlation between the electron and phonon boundary conditions
in imaginary time is necessary for consistent derivation of the Feynman result.
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I. INTRODUCTION

Fifty years ago Feynman published his seminal paper1 on
the Fröhlich polaron, in which he combined path integration
and an action variational principle to obtain the polaron en-
ergy and effective mass. Subsequently, Feynman’s method
was generalized by many authors,2–5 for a comprehensive
review see, for example, Refs. 6–8. When the exact polaron
energy and mass were calculated by Fourier quantum Monte
Carlo9,10 and diagrammatic quantum Monte Carlo11,12 meth-
ods, Feynman’s polaron energy was found to be remarkably
accurate deviating from the exact value by less than 0.5% for
all couplings. In contrast, Feynman’s mass formula1,13 over-
estimated the exact mass by as much as 50% leaving room
for possible improvements. Generalizations of the original
calculation2,3,14,15produced either no or very small, less than
1%, numerical correction to the mass.sIn some instances, the
correction was of the wrong sign.3,14d Thus the generaliza-
tions did not improve the agreement between the analytical
and numerical masses. The much larger error in the mass was
not regarded as something unexpected. It was known since
Feynman’s paper that the mass did not satisfy a variational
principle, and therefore the accuracy of the approximate
treatment was expected to be somewhat uncontrolled.

In Feynman’s method,1,16,17 phonon variables are inte-
grated out analytically resulting in a self-interacting retarded
one-electron action. Phonon integration is performed under
periodic boundary conditions in imaginary time. Periodic
boundary conditions are also assumed for the electron trajec-
tory. Both conditions are perfectly appropriate for the energy
calculation, since the ground-state energy is obtained from a
full thermodynamic partition function. However, later, in the
mass calculation the electron trajectory is broken and itst
=0 andt=b ends are displaced relative to each other. The
effective mass is inferred from variation of the polaron en-
ergy with real space separation of the two ends of the trajec-
tory. In Feynman’s approach, the retarded polaron action is
not corrected for this displacement. In other words, the ac-
tion resulted from phonon integration for a periodic electron
trajectory is carried over to an open electron trajectory.

In a parallel research on the Holstein polaron18–20 it was
realized that the boundary conditions for the phonon and
electron variables must be synchronized for consistent calcu-
lation of the polaron mass. That is, they are either both pe-
riodic or both open. And when they are both open they are
correlated. The correlation follows because the electron and

phonons are coupled in one system and share a common
integral of motion, the polaron momentum. Accurate account
of the correlation results in a polaron action different from
the periodic phonon action derived by Feynman. Thus the
question arises of whether this difference is significant
enough to yield a correction to the Feynman mass formula.
Such a correction might account for the deviation from the
Monte Carlo mass.

This question is investigated in the present paper. It is
shown that proper boundary conditions in imaginary time do
not produce a numerical correction to the Feynman result.
However, the original mass calculation is found to be inter-
nally inconsistent. The terms in the polaron action that are
small in the energy calculationsand rightly neglected by
Feynmand are not small in the mass calculation and cannot
be neglected. But if the boundary conditions are properly
taken into account, those terms are small in both calcula-
tions. Thus the correlation between the electron and phonon
boundary conditions restores the consistency of the mass cal-
culation and leads to the correct final formula.

II. EFFECTIVE MASS FROM SHIFTED BOUNDARY
CONDITIONS

The polaron mass can be calculated as the inverse diffu-
sion coefficient of an open-ended polaron path in imaginary
time. This section contains a derivation of this relation. The
derivation is general and valid for any nonrelativistic com-
posite particle. The momentum"K of a translation invariant
system is a constant of motion. In the polaron case, this is the
sum of an electron momentum and momenta of all excited
optical phonons. One defines theprojected partition function
as a Gibbs sum restricted to states with the sameK :

ZK = o
n

knue−bHunl · dKK n
. s1d

Here unl are eigenstates of the HamiltonianH, "K n is the
momentum of stateunl, and b=skBTd−1 is inverse tempera-
ture. The system is assumed to occupy a finite volumeV, and
the wave vector is quantized to a discrete set of valuesK n.
To transform ZK , introduce real-space configurationsuQl
which are direct products of all the degrees of freedom in the
system. For the Fröhlich polaron,uQl= ur lPr8uPsr 8dl, where
r is the electron position andPsr 8d is the polarization at
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point r 8. The statesQ form a complete orthogonal basisI
=edQuQlkQu and kQ1uQ2l=dsQ1−Q2d, where the unity op-
erator and the delta function are also direct products between
different degrees of freedom. Inserting two unity operators in
Eq. s1d the partition function is rewritten as follows:

ZK =E dQ1dQ2kQ2ue−bHuQ1l ·WK , s2d

WK = o
n

kQ1unlknuQ2ldKK n
= kQ1uK lkK uQ2l. s3d

The meaning of the last expression is that both configura-
tions Q1 and Q2 have to be projected on the same wave
vector K . To perform projection consider a parallel shift of
configurationQ by a three-dimensional vectorR. The result-
ing state will be denoted asuQ+Rl. sNote that summation is
only symbolic here.d An arbitrary configurationQ generates
a family of statesuK Ql=V−1edRe−iK ·RuQ+Rl. Inversely,uQ
+Rl=oKeiK ·RuK Ql. In WK only the respective components
uK Q1

l anduK Q2
l of uQ1l anduQ2l survive projection onK . As

a result, one obtains

WK = kK Q1
uK Q2

l

=
1

V2 E dR1dR2kQ1 + R1uQ2 + R2leiK sR1−R2d

=
1

V
E dsDr deiKDrkQ1 + Dr uQ2l

=
1

V
E dsDr deiKDr · dfsQ1 + Dr d − Q2g, s4d

whereDr =R1−R2. The resulting delta function ensures that
a many body configurationQ2 is identical to a configuration
Q1 shifted byDr . Substitution in Eq.s2d and integration over
Q2 yield

ZK =
1

V
E dsDr deiKDr E dQkQ + Dr ue−bHuQl. s5d

The matrix element under thedQ integral is the density ma-
trix operator taken between an arbitrary real-space configu-
ration Q and thesameconfiguration shifted byDr . SinceQ
is a many body state all particles shift in parallel. In the
polaron system the electron coordinater and polarization
profile Psr 8d shift together. Equations5d suggests defining
the shift partition function

ZDr =E dQkQ + Dr ue−bHuQl, s6d

which is characterized by the shift vectorDr . The zero-shift
partition function,ZDr=0, coincides with the usual thermody-
namic partition function. Equations5d states that the pro-
jected partition function and the shift partition function sat-
isfy a Fourier-type relation

ZK =
1

V
E dsDr deiKDr ·ZDr . s7d

This relation is valid at any temperatureT. In the low-
temperature limit,ZK is dominated by the lowest energy ei-
genvalue with given wave vector, which allows derivation of
a useful formula for the effective mass. At smallK , the en-
ergy is approximated byEK =EG+"2K 2/2m* , and the pro-
jected partition functionZK →e−bEK asT→0. Expanding Eq.
s7d to the second order inK one obtains

e−bEGS1 −
b"2K 2

2m* D =
1

V
E dsDr dF1 + isKDr d −

sKDr d2

2
GZDr .

s8d

On the right, the linear term inK vanishes after integration
by inversion symmetry:Z−Dr =ZDr . The rest is transformed as

b"2K 2

m* =
E dsDr dsKDr d2ZDr

E dsDr dZDr

; ksKDr d2lshift. s9d

The definition ofZDr , Eq. s6d, implies that the ratio of two
integrals in the last expression is the mean value ofsKDr d2

evaluated with shifted boundary conditions in imaginary
time. The latter means the initialsat imaginary time=0d and
final sat imaginary time=bd configurations are the same, see
Eq. s6d, but they can be shifted relative to each other by a
three dimensional vectorDr . This shift vector is arbitrary.
Averaging under shifted boundary conditions is understood
hereafter as averaging overDr , with the weight given byZDr .
Upon expansion of the square in Eq.s9d, the mixed terms
average to zero by symmetry,ksDr idsDr jdlshift=0, while the
diagonal terms are equal,ksDr id2lshift= 1/3ksDr d2lshift. That
results in

1

m* =
1

3b"2

E dsDr dsDr d2ZDr

E dsDr dZDr

=
ksDr d2lshift

3b"2 . s10d

This equation allows an elegant interpretation of the effective
mass in terms ofimaginary time diffusion. Since the shift
vector is not fixed, the system evolution from the initial to
the final configuration can be regarded as diffusion during
time t="b. In normal three-dimensional diffusion, the mean
squared displacement is proportional to the time interval,
ksDr d2l=6Dt, whereD is the diffusion coefficient. Thus Eq.
s10d is rewritten as

1

m* =
2D

"
. s11d

Note, that Eq.s10d can also be regarded as a fluctuation-
dissipation relation. The effective mass characterizes dy-
namical response, while the mean squared displacement is an
equilibrium property.

Equations10d is especially useful in understanding mass
enhancement of composite particles such as the polaron. In-
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teraction with various fieldsse.g., phononsd increases the sta-
tistical weight of trajectories with smallksDr d2l thereby
slowing down the diffusion and increasing the particle’s
mass. Thus the mass enhancement is conveniently visualized
as the increased “stiffness” of the trajectories. Equations10d
or its analogues were used in Monte Carlo calculations of the
effective masses of polarons,9,10,18–20bipolarons,21 and de-
fects in superfluid helium.22

III. POLARON ACTION

The results of the previous section have important impli-
cations for the Fröhlich polaron. As soon as the two ends of
the electron path are allowed to shift relative from each other
to obtain the mass, the polarization profile must shift accord-
ingly. Thus phonon integration has to be performed under
more general boundary conditions in imaginary time than
periodic. In general, this should modify the polaron action.
The modified polaron action is calculated in this section.

A starting point is the polaron action as formulated by
Fröhlich23 and Schultz:16

Sfr std;Psr 8,tdg = −E
0

b

dt
mṙ 2

2"2

+ ueuE
0

b

dtE dr 8S¹r8
1

ur 8 − r uDPsr 8d

−
m

2
E

0

b

dtE dr 8F Ṗ2sr 8d
"2 + V2P2sr 8dG ,

s12d

m =
4p

V2

«0«`

«0 − «`

. s13d

Here V is the optical phonon frequency,«0 and «` are the
static and high-frequency electric permittivities of the crys-
tal, ueu is the unit charge, andm is the band mass of the
electron. r std is the imaginary-time electron trajectory.
Psr 8 ,td is the imaginary-time polarization trajectory. A dot
above a variable denotes partial derivative with respect to
imaginary timet. The action is supplemented by shifted
boundary conditions

r sbd = r s0d + Dr , s14d

Psr 8,bd = Psr 8 − Dr ,0d, s15d

whereDr is an arbitrary three-dimensional vector. Except for
the boundary conditions phonon integration proceeds along
the lines outlined by Schultz.16 The polarization field is ex-
panded in a Fourier series with real amplitudesA andB:

Psr 8,td =Î2

V
o

sqx.0d

q

uqu
fAqstdcosq · r 8 + Bqstdsinq · r 8g.

s16d

Note that the sum overq extends only over half of momen-
tum space, which is indicated by “sqx.0d.” The Fourier-

transformed polaron actions12d and boundary conditions15d
become

Sfr std;Aqstd,Bqstdg

= −E
0

b

dt
mṙ 2

2"2

+ o
sqx.0d

E
0

b

dtH−
m

2"2fȦq
2 + Ḃq

2g

−
mV2

2
fAq

2 + Bq
2g

+
4pueu

uqu
Î2

V
fAqstdsinq · r std − Bqstdcosq · r stdgJ ,

s17d

AqsbdcosqDr + BqsbdsinqDr = Aqs0d, s18d

− AqsbdsinqDr + BqsbdcosqDr = Bqs0d. s19d

Since actions17d is diagonal in amplitudesA and B, path
integration can be performed for each component indepen-
dently. Using the standard methods1,16,17 one obtains in the
low-temperature limite"Vb@1:

Sfr std;Aqs0d,Aqsbd,Bqs0d,Bqsbdg = −E
0

b

dt
mṙ 2

2"2 + o
sqx.0d

Sq,

s20d

Sq = −
m

2"2"VfAq
2s0d + Aq

2sbd + Bq
2s0d + Bq

2sbdg

+
"2

2m

s4pueud2

q2

2

V
E

0

b E
0

b

dt8dt9Gst8,t9d

3cosqfr st8d − r st9dg

+
s4pueud

q
Î2

V
E

0

b

dthe−"VtfAqs0dsinq · r std

− Bqs0dcosq · r stdg + e−"Vsb−tdfAqsbdsinq · r std

− Bqsbdcosq · r stdgj , s21d

Gst8,t9d

=
1

"V sinh"Vb
Hsinh"Vt8 sinh"Vsb − t9d, t8 , t9,

sinh"Vsb − t8dsinh"Vt9, t8 . t9.

s22d

The action is still a functional of two end polarizations, at
t=0 andt=b. However, those are related by the conditions
s18d ands19d. Final integration over the end variables leads,
after straightforward algebra, to
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SDrfr stdg = −E
0

b

dt
mṙ 2

2"2

+
a

2Î2
S"5V3

m
D1/2E

0

b E
0

b

dt8dt9H e−"Vut8−t9u

ur st8d − r st9du

+
e−"Vsb−ut8−t9ud

ufr st8d − r st9dgsgnst8 − t9d − Dr uJ , s23d

a =
ueu2

2"V
S 1

«`

−
1

«0
DÎ2mV

"
, s24d

wherea is the Fröhlich coupling constant.Dr in the denomi-
nator of the last term in Eq.s23d is a direct consequence of
the shifted boundary conditions for the polarization field. It
is convenient to perform a linear transformationr std=r 8std
+st /bdDr , which transforms path integration to periodic
boundary conditions. The resulting action is

SDrfr stdg = −
m

2"2

sDr d2

b
−E

0

b

dt
mṙ 2

2"2 +
a

2Î2
S"5V3

m
D1/2E

0

b E
0

b

dt8dt95 e−"Vut8−t9u

Ur st8d − r st9d +
t8 − t9

b
DrU

+
e−"Vsb−ut8−t9ud

Ufr st8d − r st9dgsgnst8 − t9d −
b − ut8 − t9u

b
DrU6 . s25d

The bar overS indicates that the action is a functional of a
path periodic in imaginary time. The full shift partition func-
tion s6d is given by

ZDr = ZphE
sr ,0d

sr ,bd

DreSDr fr stdg, s26d

whereDr is path integration over electron coordinates.Zph is
the partition function of a free polarization field. This is a
multiplicative constant that cancels out in the mass calcula-
tion, see Eq.s10d.

The polaron mass originates from explicit dependence of
actions25d on the shift vectorDr . The first term corresponds
to the bare electron mass. Phonon-induced mass enhance-
ment comes from the double integral. The two integrands
have similar functional dependence onr std, but make differ-
ent contributions to the action. The first integrand exponen-
tially decays away from the diagonalt8=t9. Since the odd
powers ofDr vanish in path integration, the first fraction’s
contribution isOsbd+OfsDr d2b−1g+OfsDr d4b−3g+¯. The
first term of this expansion adds to the polaron energy, while
the second one adds to the mass.

Consider the second fraction in the double integral
s25d, which is the main focus of the present study.
The exponential numerator limits integration to finite
intervals around the pointss0,bd and sb ,0d. In the de-
nominator, the combinationsb− ut8−t9ud=Os1d. There-
fore the second fraction’s contribution to the action is
Os1d+OfsDr d2b−2g+OfsDr d4b−4g+¯ . In the b→` limit,
each term in this expansion is small in comparison with the
corresponding term from the previous series with the same
power ofDr . Thus theentire second fraction can be omitted
in favor of the first one.

Here comes the critical observation. Such a nice term-by-
term domination of the first fraction over the second one
takes placeonly as a result of the shifted boundary condi-
tions for the polarization. Indeed, without the latter the com-
bination in the denominator of the second fraction in Eq.s25d
would have been sut8−t9u /bdDr =OsDr d instead of
fsb− ut8−t9ud /bgDr =OfsDr db−1g. As a result, the second ex-
pansion would have beenOs1d+OfsDr d2g+OfsDr d4g+¯.
The first term is still small compared to the corresponding
term from the first fraction, which leads to the correct po-
laron energy. However, thesDr d2 term now dominates its
counterpart from the first fraction, which totally confuses
calculation of the effective mass. Thus the neglect of the
shifted boundary conditions in phonon integration results in
a serious internal inconsistency in the mass calculation. Ap-
parently, Feynman avoided this difficulty by omitting the
second fraction in Eq.s23d from the outset. Had he retained
the full form of the phonon propagator, including the second
parte−"Vsb−ut8−t9ud, he would have faced the problem outlined
here.

The analysis presented in this section enables to safely
neglect the second fraction in Eq.s25d. However, it will still
be included in the forthcoming mass calculation in order to
illustrate further the above argument.

IV. POLARON MASS

The polaron actions25d is real. Therefore the shifted par-
tition function satisfies the Jensen-Feynman inequality

E
r 0

r 0

Dr ·eSDr fr stdg ù ekSDr fr stdg − SDr
0 fr stdgl0E

r 0

r 0

Dr ·eSDr
0 fr stdg,

s27d

wherek¯l0 denotes averaging with the trial actionS0. Fey-
nman’s trial model consists of two particles with massesm
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andM, which are elastically coupled with a spring constant
k. Note that if the first particle’s mass is different from the
electron massm, the differencekS−S0l0 diverges. The sec-
ond particle’s massM andk are variational parameters. It is
customary to replace them with two parametersw="Îk /M
andv=wÎ1+M /m which both have units of energy. Calcu-
lation of the right-hand side of Eq.s27d is tedious, but pro-
ceeds along essentially the same lines as the original Feyn-
man calculation. Therefore the intermediate steps are not
presented here. An important note concerns theDr depen-
dence of the trial action. It is fully represented by the term
−fsm+Md /2"2gfsDr d2/bg, reflecting the fact that the total
mass of the trial model ism+M. As a result of the calcula-
tion, inequalitys27d takes the form

ZDr ù ZphS m

2p"2b
D3/2

expH− bEF + Os1d −
mF

2"2

sDr d2

b

+ OfsDr d4b−3g + ¯J , s28d

EF =
3

4

sv − wd2

v

−
a

2Îp
s"Vd3/21

b
E

0

b E
0

b

dt8dt9
e−"Vut8−t9u + e−"Vsb−ut8−t9ud

fFst8,t9dg1/2 ,

s29d

mF = mH1 +
a

6Îp
s"Vd3/21

b
E

0

b E
0

b

dt8dt9

3
ut8 − t9u2e−"Vut8−t9u + sb − ut8 − t9ud2e−"Vsb−ut8−t9ud

fFst8,t9dg3/2 J ,

s30d

Fst8,t9d =
1

1 +
M

m

Hut8 − t9u −
st8 − t9d2

b
J +

1

vS1 +
m

M
D

3H1 −
1

2
e−2vt8 −

1

2
e−2vsb−t8d −

1

2
e−2vt9

−
1

2
e−2vsb−t9d + e−vst8+t9d + e−vf2b−st8+t9dg

− e−vut8−t9uJ . s31d

EF andmF stand for the Feynman energy and Feynman mass,
respectively. These definitions are understood as functional
dependencies only, the optimal values of parametersv andw
are yet to be determined. BothEF andmF contain terms that
originate from the last fraction in the actions25d. The critical
question is about the order of their contribution in the low-
temperature limitb→`. In Eq. s29d the two double integrals
areOsbd andOs1d, respectively. The second one can there-
fore be omitted. The same is true about the two double inte-
grals in Eq.s30d. In the second one, the integration region is

limited to where the combinationsb− ut8−t9udø s"Vd−1

=Os1d. Since the pre-exponential factor is exactly the same
combination squared, it isOs1d throughout the essential in-
tegration region. As a result, the entire second double inte-
gral is Os1d. Therefore it can be omitted in favor of the first
integral, which isOsbd. Now recall that the pre-exponential
factor sb− ut8−t9ud2 derives from the shifted boundary con-
ditions of the phonon integration. Without the latter, the pre-
exponential factor would have beenut8−t9u2, that is the same
as in the first integral. Therefore, it would have beenOsb2d
in the essential integration region. That would have resulted
in the second integral beingOsb2d and its contribution to the
massOsbd, which, of course, makes no sense. Thus the
shifted boundary conditions in phonon integration are essen-
tial for the correct form of the pre-exponential factor and, in
the end, for the consistency of the entire mass calculation.
Once the second integrals in Eqs.s29d and s30d are safely
omitted, the first ones can be transformed according to the
relation

E
0

b E
0

b

dt8dt9gsut8 − t9ud < 2bE
0

b

dtgstd, s32d

which is valid for any functiong in the limit b→`. The
Feynman energy and mass assume their final forms

EF =
3

4

sv − wd2

v
−

a

Îp
s"Vd3/2E

0

`

dt
e−"Vt

fFstdg1/2, s33d

mF = mH1 +
a

3Îp
s"Vd3/2E

0

`

dt
t2e−"Vt

fFstdg3/2J , s34d

Fstd =
w2

v2 t +
v2 − w2

v3 s1 − e−vtd. s35d

The last step is choosing optimal values ofv andw. The
standard approach has always been to minimizeEF first and
then substitute the obtained values into the expression for
mF. However, the variational theorems28d is valid for any
Dr and not for just the zero shift vector. The question there-
fore is whether the other terms in the polaron action change
the optimal values of the variational parameters. Letv0 and
w0 minimize functionEFsv ,wd defined by Eq.s33d. As such,
they satisfy the equations]EF /]v=0 and]EF /]w=0 and a
necessary concavity condition. With other terms included,
one has to minimizeEF+const/b+smF /2"2dsDr /bd2+¯ .
Note that the second and third terms are of the same order
Osb−1d. Minimization yields v=v0+dv, and w=w0+dw,
wheredv, dw=Osb−1d. Some parts of the correctionsdv and
dw depend explicitly onDr . However, theminimum energy
itself receives a correction that is only quadratic indv and
dw. The leadingDr correction to the minimal polaron action
is OfsDr /bd2g, which does not affect the effective mass term
−smF /2"2dsDr d2/b in the b→` limit. To conclude, the po-
laron mass is still determined by the original Feynman pro-
cedure: minimize the energys33d first, and then use the op-
timal parameters to calculate the mass from Eq.s34d.
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V. SUMMARY

In this paper, calculation of the Fröhlich polaron effective
mass has been analyzed for robustness to boundary condi-
tions in imaginary time. It has been shown that a consistent
mass calculation must involve a correlation between the
boundary conditions of the electron and phonon coordinates.
The t=b end points of all paths have to be shifted by the
same vectorDr relative to theirt=0 end points. Then the
effective mass is found as inverse diffusion coefficient of the
many body path, see Eq.s11d, whereDr is used as a diffu-
sion distance andb→` as a diffusion time. This conclusion
is not limited to the polaron system but is valid for any
composite nonrelativistic quantum particle.

It has also been shown that the correlation between the
electron and phonon boundary conditions is critical for the
consistency of the polaron mass calculation. It results in the

correct form of a prefactor in the intermediate expression for
mass, Eq.s30d, which allows dropping the second double
integral altogether. In the original Feynman calculation, the
second double integral was omitted from the beginning, i.e.,
during the energy calculation, and therefore did not cause
any problems in the mass calculation. Such an approach was
internally inconsistent. It has been shown here that the con-
sistency is restored via correct treatment of the shifted
boundary conditions.

Finally, it has been shown that all the above consider-
ations do not change the numerical values of the polaron
effective mass obtained in Refs. 1 and 13. The optimal val-
ues of the variational parameters are still determined by
minimization of the ground-state energys33d alone. The ef-
fective mass then follows from expressions34d evaluated at
the optimal values ofv andw.
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