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Employing realistic many-body potentials for a series of simple melts, including Ag, Al, Au, Co, Cu, Mg, Ni,
Pb, Pd, Pt, Rh, and Si, we tested by molecular-dynamics simulation the scaling laws of diffusion coefficients
with different expressions of the reduction parameters. Our simulation results give sound support to the
universal excess entropy scaling laws proposed by RosenfeldfPhys. Rev. A15, 2545s1977dg and Dzugutov
fNaturesLondond 381, 137s1996dg for transport coefficients in liquid metals. In particular, we find that excess
entropysSexd universally scales with temperature asSex=−ES/T. When the diffusion coefficient is scaled as
Dzugutov suggested,ES is essentially identical to the Arrhenius activation energy, indicating that the entropic
component in the Arrhenius activation energy is solely responsible for controlling the diffusion rate. Thus,
there exists a link between the scaling law and the Arrhenius law, i.e., the excess entropy scaling law for the
diffusion coefficient can be interpreted as a straightforward extension of the Arrhenius law.

DOI: 10.1103/PhysRevB.71.094209 PACS numberssd: 66.10.2x, 61.20.Ja

I. INTRODUCTION

Transport coefficients, such as diffusion coefficient of liq-
uids, are of immense importance not only for understanding
liquid structures and thermophysical behaviors of liquids, but
also for studying their flow behavior in practical engineering
applications. Despite their fundamental importance, how-
ever, the transport coefficients remain elusive quantities. For
example, the liquid diffusion coefficient is very difficult to be
measured experimentally for high-temperature melts such as
liquid metals and liquid semiconductors. It is not fully un-
derstood how the diffusion coefficient depends on the struc-
ture and thermodynamics of the liquid. To find a relation
between liquid transport coefficients and structural properties
remains one of the most challenging tasks in the field of
condensed matter. A first attempt in this direction was prob-
ably made by Rosenfeld in 1977,1 where the transport coef-
ficients are expressed in terms of the corresponding internal
entropies to reveal some universal characteristics.
Rosenfeld1,2 defined the reduced coefficient of self-diffusion,
D, which is scaled by the macroscopic reduction parameters
sdensity and temperatured, namely a mean interparticle dis-
tance,d=r−1/3, and the thermal velocity,v=skBT/md1/2:

DR
* = D

r1/3

skBT/md1/2, s1d

wherer is the number density,T is the absolute temperature,
kB is the Boltzmann constant, andm is the atomic mass. The
reduced diffusion coefficient was shown to be correlated to
the excess entropysSexd in a quasi-universal behavior:

DR
* < 0.6e0.8Sex, s2d

whereSex is in units ofkB. Note that the reduction parameter
of the diffusion coefficient by Rosenfeld is

DR
0 =

skBT/md1/2

r1/3 . s3d

A few years ago, Dzugutov3 proposed a similar universal
scaling law on the basis of two main propositions. First, the
transfer of energy and momentum in the liquid is mainly
governed by the uncorrelated binary collisions described by
the Enskog theory. Then, the diffusion coefficient is ex-
pressed in dimensionless units via

DD
* =

D

s2G
, s4d

that is, the reduction parameter of the diffusion coefficient is

DD
0 = s2G, s5d

where s is the hard sphere diameter that corresponds
practically to the position of the first peak of the pair
correlation functiongsrd and G is the collision frequency
according to the Enskog theory of atomic transport,G
=4s2gssdrÎpkBT/m. Second, the frequency of the local
structural relaxations, which defines the rate of the cage dif-
fusion, is obviously proportional to the number of accessible
configurations. In an equilibrium system, the constraints im-
posed by the structural correlations reduce this configuration
number by a factor ofeSex. Thus,DD

* and eSex must be con-
nected by a universal linear relationship. For several model
liquids including Pb, Cu, Lennard-JonessLJd, and hard
sphere systems, Dzugutov demonstrated that the universal
scaling law of the diffusion coefficient is expressed by

DD
* = 0.049eSex. s6d

In the original Dzugutov work,Sex was approximated by the
two-body contribution which is denoted byS2 and is given
by
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S2 = − 2prE
0

`

hgsrdlnfgsrdg − fgsrd − 1gjr2dr. s7d

In addition, the scaling law also remains applicable to atomic
transport in a quasicrystal and to silver-ion diffusion in the
solid-state ionic conductora-AgI.3 For liquid metals mod-
eled by the embedded atom potentials, some scatter in the
data is observed, especially for liquid silicon modeled by the
Stillinger-Weber potential; however, with the use of the more
accurate excess entropy calculation rather than theS2 form,
there appears to be less scatter in the data.4

If true, in view of the absence of a unifying quantitative
description of atomic transport in liquids, the scaling law is
important for estimating unknown diffusion coefficients from
diffraction measurements and for providing guidelines for
theoretical analysis. So, it needs us to perform further studies
in order to confidently label the universal scaling law and use
it. On the one hand, lots of simulation results give the sup-
port to the scaling law,3–7 and using mode coupling theory
Samanta and co-workers8 derived a new universal scaling
relation of diffusion and reproduced the scaling law of
Dzugutov. However, on the other hand, little is known of the
nature of the scaling law and it is difficult to perform an
experimental test because at certain temperatures both the
diffusion data and the diffraction data are unavailable.

As mentioned above, using different reduction parameters
of the diffusion coefficients, both Rosenfeld and Dzugutov
obtained similar scaling laws relating the transport coeffi-
cients to the excess entropy, which means the choice of the
reduction parameters is not unique. On the basis of the cor-
responding states principle, the reduced form of the diffusion
coefficient could be formulated as the following:9,10

DC
0 =

«1/2s

m1/2 . s8d

Here« is the energy characteristic for the interatomic poten-
tial. It is interesting to see whether or not there exists the
similar scaling relation on the diffusion, which may help us
to understand the inside of the scaling law.

In the present work, using realistic many-body potentials
for a series of simple melts, including Ag, Al, Au, Co, Cu,
Mg, Ni, Pb, Pd, Pt, Rh, and Si, we first examine the scaling
laws for different expressions of the reduction parameters as
shown in Eqs.s3d, s5d, ands8d, and then further explore the
temperature dependence of the original and reduced diffu-
sion coefficients and the excess entropy in order to throw
light on the inside of the scaling laws. The rest of the paper
is organized as follows: in Sec. II, the computational meth-
ods are described; in Secs. III and IV, the results are pre-
sented and discussed, respectively; and finally, the conclu-
sions are given in Sec. V.

II. COMPUTATIONAL METHODS

The second-moment approximation of the tight-binding
schemesTB-SMAd11 is a well-studied semi-empirical many-
body interaction potential that has been widely used in nu-
merical simulation studies in metals and alloys. For example,

the melting and the dynamic properties such as the diffusion
constants and viscosities of the fcc transition metalssinclud-
ing Ni, Pd, Pt, Cu, Ag, and Aud and simple fcc metalssin-
cluding Al, Pbd in the liquid phase,12 the cooling rate depen-
dence of crystallization for liquid Cu,13 the high temperature
hcp-bcc transition in Zr,14 and the structural and dynamic
properties of Cu-Au bimetallic clusters15 have been well in-
vestigated by using this potential. In the present paper, we
employed TB-SMA to study the transport and structure prop-
erties of a series of simple and transition metals, including
Ag, Al, Au, Co, Cu, Mg, Ni, Pb, Pd, Pt, and Rh. To make a
comparison and test the effect of the interparticle interaction,
the glue potential16 was also employed to study Al, and the
Stillinger-WebersSWd potential17 and the Tersoff potential18

were employed to study liquid Si. The glue potential16 can
correctly reproduce many basic properties of Al in crystalline
and noncrystalline phases. Using this potential, Sun and
Gong have successfully studied the structural properties and
glass transition in Al clusters;19 Liu et al.20 have investigated
the cooling rate dependence of some microscopic and mac-
roscopic quantities of liquid Al during rapid solidification.
Using the Stillinger-Weber potential, Yu, Wang, and Stroud21

have studied the structure and dynamics of liquid Si. The
Tersoff potential has been used to investigate the validity of
this potential for liquid Si22,23 and it is found that this poten-
tial is very useful for the structural analysis of liquid Si,
though the Tersoff potential overestimates greatly the melt-
ing temperature.

The computer simulations are based on constant-pressure
molecular dynamicssMDd simulation24 except for liquid Si.
The simulated system consists of 500 atoms in a cubic cell
with periodic boundary conditions. The Newtonian equations
of motion are integrated using the velocity-Verlet algorithm.
First, the system is heated up to liquid state. Then the system
is run for 50 000 time steps to guarantee an equilibrium liq-
uid state. Next the temperature is decreased for 30 000 time
steps and run for 50 000 time steps to get another equilib-
rium state. For each of the recorded configurations, another
run of 12 000 time steps at the given temperature is per-
formed in order to collect data for analyzing the diffusion
coefficient and the excess entropy. The MD calculations of
liquid Si were performed under constant volume and con-
stant temperature conditions. For the case of Tersoff poten-
tial, the temperatures studied are 3000, 3200, 3400, 3600,
and 3800 K. For the case of the SW potential, the tempera-
tures studied are 1700, 1800, 1900, 2000, and 2100 K. The
corresponding densities are 2.61, 2.59, 2.57, 2.55, and
2.53 g cm−3, which agree with the experimental data of liq-
uid Si. The system consists of 512 atoms. First, we melted
the diamond lattice to obtain an initial configuration. Then,
the system was heated up to a desired temperature by rescal-
ing the velocities of the particles. The system is run for
30 000 time steps to guarantee an equilibrium liquid state.
Another run of 12 000 time steps at the given temperature is
performed for analyzing the diffusion coefficient and the ex-
cess entropy. The diffusion coefficient is calculated from the
integral of the velocity-velocity correlation functions. The
excess entropy,Sex, is approximately calculated from Eq.s7d,
where gsrd are obtained by averaging 20 configurations
sampled during the run of 12 000 time steps.
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III. RESULTS

Figure 1 shows the reduced diffusion coefficients as a
function of the excess entropy for three different choices of
reduced parameters, respectively. We find that, based on
three different choices of the reduction parametersD0 as de-
fined by Eqs.s3d, s5d, ands8d, the scaling laws of diffusion
coefficients hold rather well for all simulated liquids but liq-
uid Si. So the present results not only give the sound support
to early attempts at finding the universal scaling laws by
Rosenfeld and Dzugutov for transport coefficients in liquid
metals, but also tell us that there are many choices of the
reduction parameters to find the scaling laws of the type
D* =AeBSex. The magnitude ofA andB depends on the choice
of the reduction parameters. In addition, the difference of
results for liquid Al modeled by TB-SMA and glue potentials
is very small, but the difference of the results for liquid Si
modeled by SW and Tersoff potentials is large, which results
from the Tersoff potential overestimating greatly the melting

temperature. From this figure, we can also observe that the
slope of the line for the case of liquid Si is higher than that
for liquid metals.

As is well known, the temperature dependence of the dif-
fusion coefficient in liquid phase exhibits an Arrhenius-type
relationship even though no rigorous theoretical explanation
has been given,

D = D0 expS−
E

kBT
D , s9d

whereD0 andE are constants;D0 is generally referred to as
the diffusion preexponential factor, andE is called the acti-
vation energy. We plotted the natural logarithm of original
diffusion coefficientssDd and reduced diffusion coefficients
sDR

* , DD
* , andDC

* d against the reciprocal temperature in Fig.
2. It is interesting that not only the original diffusion data but
also the reduced diffusion coefficients can be linearly fitted
with a high degree of accuracy. A glance at Figs. 2sbd–2sdd

FIG. 1. The reduced diffusion
coefficientsD* as a function of the
excess entropySex. DR

* , DD
* and

DC
* are scaled by Eqs.s3d, s5d, and

s8d, respectively. Entropy is ex-
pressed in units ofkB. The solid
lines, being the best fit to the data,
represent the present scaling law
of equations given insad, sbd, and
scd.

FIG. 2. The Arrhenius plots
for the original diffusion coefficiet
and reduced diffusion coefficients
via three different reduction pa-
rametersD0 as defined by Eqs.
s3d, s5d, ands8d.
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shows that the reduced diffusion coefficientsDR
* , DD

* , andDC
*

exhibit the identical temperature dependence for all studied
liquids. These linear fits of semilog curves ofD, DR

* , DD
* , and

DC
* yield the interceptssIun, IR, ID, and ICd and the slopes

sEun, ER, ED, andECd, which are shown in Fig. 4. Figure 3
shows the excess entropy versus the reciprocal temperature.
This figure indicates that there exists a linear relationship
betweenSex and 1/T, similar to that between the natural
logarithm ofD sor D*d and 1/T. For every studied liquid, the
interceptIS and the absolute value of slopeES obtained by
the linear fitting ofSex and 1/T are also shown in Fig. 4.
Note thatES has the dimensionality of energy. It is natural
that the functional form linking the diffusion coefficient and
the excess entropy isD sor D*d ,expsSexd, becauseD sor D*d
,exps−1/Td andSex,−1/T.

Let us now evaluate the relationshipsSex,−1/T and D
sor D*d ,exps−1/Td. As can be seen from Fig. 4sad, for
various liquidsIS fluctuates around zero and is close to zero,
which indicates that the expressionsSex=−ES/Td provides a
universal link betweenSex and 1/T; in other words, the ex-
cess entropySex universally scales with temperature as
−ES/T. IR, ID, and IC for various liquids, with a notable ex-

ception of liquid Si modeled by SW potential, fluctuate
around −0.94, −3.24, and −1.16, respectively. Compared to
IR, ID, andIC, Iun fluctuates more strongly. In a word, for all
studied liquids, with the exception of SW-modeled liquid Si,
IS, IR, ID, andIC are nearly independent on the element spe-
cies. As can be seen from Fig. 4sbd, for liquid elements ex-
cept liquid SiEun, ED, EC, and ES are almost equal to the
same magnitude.ER is always smaller thanEun, ED, EC, and
ES. The ratio of the activation energyEun, ER, ED, and EC
obtained from the diffusion coefficients to the activation en-
ergy ES obtained from the entropy for various liquid ele-
ments shown in Fig. 5 indicates a much clearer relationship.
For various liquids, with the exception of liquid Si,Eun/ES,
ER/ES, ED /ES, and EC/ES keep constants 0.90, 0.72, 0.96,
and 0.90, respectively, that is,Eun/ES, ER/ES, ED /ES, and
EC/ES exhibit the independence of liquid species.

Figure 6 presents the reduction parametersD0 as defined
by Eqs.s3d, s5d, ands8d for various liquids as a function of
temperature. It is apparent that with the increase of tempera-
ture, DR

0 increases,DD
0 slightly decreases, andDC

0 keeps a
constant. Therefore, for three different choices of the reduc-
tion parameters, they are different from the parameterssA
and Bd entering the scaling law of diffusion coefficients
sD* =AeBSexd: for DR

0 =skBT/md1/2/r1/3, B=0.72; for DD
0

=s2G, B=0.96; and forDC
0 =«1/2s /m1/2, B=0.90.

IV. DISCUSSIONS

What is the nature and the origin of the scaling law
sD* =AeBSexd for the transport coefficients? Why doA andB
depend on the choice of the reduction parameters? Why does
the scaling law in liquid metals not hold for liquid Si? Keep-
ing these questions in mind, we make the following discus-
sions.

On the basis of the obtained results as shown in Figs. 2–5,
we think that there are four reasons for the scaling law of
diffusion coefficients asD* =AeBSex in liquid metals.s1d The
original and reduced diffusion coefficients hold the Arrhen-
ius relationshipfD=D0 exps−E/kBTdg; note that the diffusion

FIG. 3. The excess entropySex sin units ofkBd versus reciprocal
temperature.

FIG. 4. The interceptssIun, IR,
ID, IC, andISd and the slopessEun,
ER, ED, EC, and ESd for various
liquids. These linear fits of semi-
log curves of the original and re-
duced diffusion coefficientssD,
DR

* , DD
* , and DC

* d yield the inter-
ceptssIun, IR, ID, and ICd and the
slopessEun, ER, ED, andECd.
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preexponential factorD0 and the activation energyE are de-
pendent on liquid species.s2d The excess entropySex univer-
sally scales with temperature asSex=−ES/T; note thatES
depends on liquid species, too.s3d The reduction parameters
D0 as defined by Eqs.s3d, s5d, ands8d eliminate the element
dependence of the diffusion preexponential factor, which is
suggested by the element independence ofIR, ID, andIC. s4d
ER/ES, ED /ES, andEC/ES exhibit the element independence,
even though the activation energies obtained from the re-
duced diffusion coefficients and the excess entropy are de-
pendent on liquid species. Our present results show that the
scaling laws for the diffusion coefficient and the Arrhenius
law are linked via the relationship connecting the excess en-
tropy and the temperature asSex=−ES/T. That is, if
D* =AeBSex plus Sex=−ES/T, then it is natural that the
diffusion coefficient exhibits an Arrhenius relationship; if
D=D0 exps−E/kBTd and Sex=−ES/T, then the diffusion co-
efficient scales with the excess entropy aseSex. There is an
additional result in the supercooled liquids by Dzugutov5,25

that supports the present finding. In a supercooled liquid the
Arrhenius law is no longer observed; Dzugutov showed that
the scaling law is not obeyed.

The parameterssA and Bd entering the scaling law that
connectsD* and Sex depend on the choice for the reduced
diffusion coefficient. When the reduced parameter was pos-
tulated to beDR

0 =skBT/md1/2/r1/3 by Rosenfeld,1 B=0.72;
when it was assumed to beDD

0 =s2G by Dzugutov,3

B=0.96; when it was formulated asDC
0 =«1/2s /m1/2 on the

basis of the corresponding states principle,9,10 B=0.90. DR
0,

DD
0 , and DC

0 exhibit different temperature dependence as
shown in Fig. 6, soB has different values in the different
cases. Let us restate the details of the different postulates of
the reduced parameterD0 by Rosenfeld1,2 and Dzugutov.3

Rosenfeld defined the dimensionless diffusion coefficient as
Eq. s1d by choosing macroscopic reduction parameters,
namely, a mean interparticle distanced=sV/Nd1/3=r−1/3

and the thermal velocityyth=skBT/md1/2, which lead to
DR

0 =r−1/3skBT/md1/2. Dzugutov defined the dimensionless
diffusion coefficient as Eq.s4d by choosing the hard-sphere
diameter s fbeing replaced by the position of the first
peak of gsrdg and the Enskog collision frequency

G=4s2gssdrÎpkBT/m, which provide a natural unit of
length and a natural time scale for dynamics, respectively,
thus leading toDD

0 =s2G=4Îpgssds4rskBT/md1/2. An im-

FIG. 5. Eun/ES, ER/ES, ED /ES, EC/ES for
various liquids andEun, ER, ED, EC, andES are
described as in Fig. 4 and in the text.

FIG. 6. The different reduction
parametersD0 as defined by Eqs.
s3d, s5d, and s8d as a function of
temperature.
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portant distinction ofDR
0 and DD

0 is that DD
0 includesgssd,

which changes with temperature. In consequence,DR
0 andDD

0

show a different temperature dependence. It should be em-
phasized that, as demonstrated in Figs. 3 and 5, if the diffu-
sion coefficient is scaled withDD

0 , ED /ES is essentially equal
to 1, namely,ES becomes identical to the Arrhenius activa-
tion energy. This makes it possible to avoid the empirical or
fitting constantB in the general formulation of the scaling
laws. Moreover, it indicates that the entropic component in
the Arrhenius activation energy, which turns out to beTSex, is
solely responsible for controlling the diffusion rate. A similar
conclusion was reported in the case of a hard sphere by
Dzugutov.25

Besides the above-mentioned distinction of reduced pa-
rametersDR

0 and DD
0 , it should be stressed again that, as

indicated in Sec. I, there exists a principal difference be-
tween the two scaling laws by Dzugutov and Rosenfeld.
Dzugutov’s scaling law is based on the postulate that both
the diffusion rate and the rate of structural relaxation are
proportional to the available phase-space volume which
scales with the excess entropy aseSex. As shown in Figs. 2
and 3, the diffusion coefficient holds the Arrhenius relation-
ship and the excess entropySex universally scales with tem-
perature asSex=−ES/T. Thus the diffusion coefficient scales
with the excess entropy aseSex, which directly supports this
postulate.

We now turn our attention to the failure of the scaling
laws in application liquid Si. As mentioned in Sec. I, Hoytet
al.4 recently reported that the scaling law does not hold in the
case of Si. They stressed the very different liquid structure
observed in liquid Si from that in the examined metallic
liquids: in liquid Si, besides the first peak ingsrd there exists
a small peak on the high-r side; in liquids characterized by
central force potentials the first peak ingsrd is very sharp.
So, in liquid Si, the first neighbor shell actually consists of
two closely spaced shells. They proposed that the collision
frequency Gf=4s2gssdrÎpkBT/mg developed for hard-
sphere systems is no longer appropriate. Thus the Dzugutov
scaling law fails for the case of Si. According to our present
simulation results, we obtained a different explanation for

the failure of the scaling law. As can be seen in Fig. 3, in
liquid Si the excess entropysSexd scales with temperature as
Sex=−ES/T, like that in simulated metallic liquids. The most
notable feature of Fig. 5 is that the values ofER/ES, ED /ES,
and EC/ES of liquid Si are much larger than those of the
examined metallic liquids, which results in the failure of the
scaling laws in presently simulated Si. The very different
behaviors ofER/ES, ED /ES, and EC/ES for the case of Si
from those for the case of metals may suggest the calculated
ER, ED, andEC may be inaccurate from the SW and Tersoff
potentials, and particularly the calculation of excess entropy
by the two-body approximation is not accurate for the case
of Si due to the complicated local structures in liquid Si,
which gives rise to the wrong result ofES. In other words, for
liquid metals it is reasonable to expect that the excess en-
tropy could be calculated approximately in terms of the two
body contribution, but for liquid Si it is unreasonable. This is
supported by the difference in the slope of the line for liquid
Si between our result and Hoytet al.’s result: The slope of
the line for liquid Si is higher than that for liquid metals in
our case, whereas the slopes of the line for liquid Si obtained
by Hoyt et al. is slightly lower.4 We calculated the excess
entropy by the two-body approximation given by Eq.s7d,
while Hoyt et al. calculated the actual excess entropy. Thus
further works are needed to explore the source of the failure
for the case of Si.

Based on our present results, we believe that a key reason
for the scaling law of diffusion in liquid metals is the ele-
ment independence ofER/ES, ED /ES, andEC/ES, namely,ES
is essentially identical to the Arrhenius activation energy.
This may provide an easy way to test the scaling law of
diffusion by experimental data. Using the self-difusivity data
in Tables 7.2 and 7.3 of Ref. 26 andgsrd data in Ref. 27, we
first calculated the excess entropy by the two-body approxi-
mation, then obtainedES through the plot ofSex against 1/T,
and finally picturedEun/ES for various liquid metals in Fig.
7. As can be seen from this figure, the magnitude ofEun/ES
is 0.68–1.46, fluctuating around 1.06 for various elements.
The result is in agreement with the simulation result to some
extent, but the fluctuation is stronger. This may result from

FIG. 7. The ratio of the experi-
mental activation-energyE sin
Ref. 26d to the activation energy
ES obtained from the experimental
gsrd data sin Ref. 27d for various
liquid elements.
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the error due to the limitedgsrd data. Thegsrd data are avail-
able at three to five different temperatures, andES is obtained
from the slope of the line ofSex versus 1/T. To make an
accurate comparison between the simulation and experiment
results, the experimental data ongsrd at more temperatures
are necessary.

V. CONCLUSIONS

Using realistic many-body potentials for a series of simple
melts, including Ag, Al, Au, Co, Cu, Mg, Ni, Pb, Pd, Pt, Rh,
and Si, we examined the scaling laws of diffusion with dif-
ferent expression of the reduction parameters. Then we fur-
ther explore the temperature dependence of the original and
reduced diffusion coefficients and the excess entropy. Our
simulation results give the sound support to early attempts at
finding the universal scaling laws by Rosenfeld and Dzugu-
tov for transport coefficients in liquid metals. Our analysis
indicates that there are four reasons for the scaling law of
diffusion. s1d The diffusion coefficient usually shows the
Arrhenius relationship.s2d The expressionsSex=−ES/Td pro-
vides a universal link between excess entropy and tempera-
ture.s3d The reduction parametersD0 as defined by Eqs.s3d,
s5d, and s8d eliminate the element dependence of the diffu-
sion preexponential.s4d The ratio of the activation energy
Eun, ER, ED, andEC to the activation energyES for various
metallic liquids exhibits the element independence, even

though all activation energies are dependent on liquid spe-
cies. So we can conclude that there exists a link between the
examined scaling law and the Arrhenius law from the excess
entropy universally scaling with temperature. When the dif-
fusion coefficient is scaled as Dzugutov suggested,ES is es-
sentially identical to the Arrhenius activation energy, indicat-
ing that the entropic component in the Arrhenius activation
energy is solely responsible for controlling the diffusion rate,
and this makes it possible to avoid the empirical constantB
in the general formulation of the scaling laws. Our present
results also directly support the postulate by Dzugutov that
both the diffusion rate and the rate of structural relaxation are
proportional to the available phase-space volume which
scales aseSex. The failure of liquid Si to obey the scaling law
may mainly be due to the unreasonable estimation of excess
entropy. Our present results not only help us understand the
nature of the scaling law of diffusion, but also provide an
easy way to test the scaling law of diffusion by experimental
data.

ACKNOWLEDGMENTS

We thank Dr. D. Y. Sun for valuable discussions. This
work was supported through the National Natural Sciences
Foundation of China under Grant Nos. 10174082 and
10374089, and by the Center for Computational Science,
Hefei Institutes of Physical Sciences.

*Author to whom correspondence should be addressed. E-mail:
csliu@issp.ac.cn

1Y. Rosenfeld, Phys. Rev. A15, 2545s1977d.
2Y. Rosenfeld, J. Phys.: Condens. Matter11, 5415s1999d.
3M. Dzugutov, NaturesLondond 381, 137 s1996d.
4J. J. Hoyt, M. Asta, and B. Sadigh, Phys. Rev. Lett.85, 594

s2000d.
5M. Dzugutov, J. Phys.: Condens. Matter11, A253 s1999d.
6I. Yokoyama, Physica B269, 244 s1999d.
7T. Arai and T. Shirasuna, J. Non-Cryst. Solids312–314, 208

s2002d.
8A. Samanta, Ali Sk. Musharaf, and S. K. Ghosh, Phys. Rev. Lett.

87, 245901s2001d; 92, 145901s2004d.
9E. Helfand and S. A. Rice, J. Chem. Phys.32, 1642s1960d.

10J. L. Bretonnet, J. Chem. Phys.120, 11100s2004d.
11F. Cleri and V. Rosato, Phys. Rev. B48, 22 s1993d.
12L. Gomez, A. Dobry, and H. T. Diep, Phys. Rev. B55, 6265

s1997d; M. M. G. Alemany, O. Dieguez, C. Rey, and L. J. Gal-
lego, ibid. 60, 9208s1999d.

13C. S. Liu, J. Xia, Z. G. Zhu, and D. Y. Sun, J. Chem. Phys.114,
7506 s2001d.

14F. Willaime and C. Massobrio, Phys. Rev. Lett.63, 2244s1989d.
15M. J. Lopez, P. A. Marcos, and J. A. Alonso, J. Chem. Phys.104,

1056 s1996d.
16F. Ercolessi and J. B. Adams, Europhys. Lett.26, 583 s1994d.
17F. H. Stillinger and T. A. Weber, Phys. Rev. B31, 5262s1985d.
18J. Tersoff, Phys. Rev. B38, 9902s1988d; 39, 5566s1989d.
19D. Y. Sun and X. G. Gong, Phys. Rev. B57, 4730s1998d.
20C. S. Liu, Z. G. Zhu, J. Xia, and D. Y. Sun, J. Phys.: Condens.

Matter 13, 1873s2001d.
21W. Yu, Z. Q. Wang, and D. Stroud, Phys. Rev. B54, 13 946

s1996d.
22M. Ishimaru, K. Yoshida, and T. Motooka, Phys. Rev. B53, 7176

s1996d; M. Ishimaru, K. Yoshida, T. Kumamoto, and T. Mo-
tooka, ibid. 54, 4638s1996d.

23C. S. Liu, Z. G. Zhu, J. Xia, and D. Y. Sun, Phys. Rev. B60,
3194 s1999d; Z. G. Zhu and C. S. Liu, Phys. Rev. B61, 9322
s2000d.

24H. C. Andersen, J. Chem. Phys.72, 2383s1980d; D. Brown and
J. H. R. Clarke, Mol. Phys.51, 1243s1984d.

25M. Dzugutov, Phys. Rev. E65, 032501s2002d.
26T. Iita and R. I. L. Guthrie,The Physical Properties of Liquid

Metals sClarendon, Oxford, 1988d.
27Y. Waseda,The Structure of Non-Crystalline MaterialssMcGraw-

Hill, New York, 1980d.

SCALING LAW FOR DIFFUSION COEFFICIENTS IN… PHYSICAL REVIEW B 71, 094209s2005d

094209-7


