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The problem of computing the effective frequency-dependent conductivity of heterogeneous materials at low
temperatures is studied. In this problem the activation energies and, therefore, the local conductivitiessor the
transition rates in a master equation formulationd are broadly distributed, varying over many orders of mag-
nitude. Such broad variations make the computations with large lattices that represent the materials very
difficult. We use an efficient method, based on computing the wavelet scale and detail coefficients of the local
conductivities, in order to compute the effective ac conductivity of such materials. The method identifies the
high-conductance paths in a large lattice and reduces it to one that requires far less computation. Using the
method, we compute the effective ac conductivity of a two-dimensional lattice in which the activation energies
are distributed according to a probability distribution functionsPDFd. Five distinct PDFs are used, and the
effective ac conductivity is computed over many orders of magnitude variations in the frequency. Depending
on the size of the initial system, the speedup in the computations for two-dimensional systems varies anywhere
from a factor of 35–40 to over 200.
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I. INTRODUCTION

Transport processes in heterogeneous materials constitute
an important set of phenomena that are relevant to a wide
variety of problems in natural and industrial processes. Ex-
amples include flow in porous media, conduction and hop-
ping transport in, and mechanical properties of, heteroge-
neous solid materials,1 and many more. In particular,
predicting the frequency-dependent effective conductivity of
electronically or ionically conducting heterogeneous materi-
als has been a problem of great interest for several
decades.2,4 Measurements of the ac conductivity of such dis-
ordered solids as amorphous semiconductors, polymers, and
ionically conductive glasses indicate a number of common
characteristics:2 For frequencies larger than a characteristic
frequency vm, the effective conductivitysesvd becomes
strongly frequency dependent and follows a power law

sesvd , vx, s1d

where the exponentx is a decreasing function of the tem-
perature with 0.6øxø1.0.2,4 The characteristic frequency
vm is proportional to the dc conductivity,vm~ses0d, a rela-
tion known as the Barton-Nakajima-Namikawa law.5,6 More-
over, examining the vast amount of experimental data for the
ac conductivity of a wide variety of disordered materials in-
dicates that most of the data follow a universal
representation7,8 given by

ŝ =
sesvd
ses0d

= FFe0De
v

ses0dG . s2d

Here,e0 is the vacuum permeativity,Fsxd is a universal func-
tion, andDe=es0d−e`, with es0d ande` being, respectively,
the zero-frequency and bound-charge dielectric constants of
the materials.

In order to explain the experimental data, several models
of ac conduction have been developed in the past. The most
thoroughly studied model is perhaps the hopping model2–4

which describes jumps of charge carriers in a stochastic me-
dium, typically represented by a lattice. The model is de-
scribed by the following master equation for the probability
Pistd of finding a charge carrier at sitei:

]Pistd
]t

= o
h jj

fWij Pjstd − WjiPistdg, s3d

whereWij is the transition rate, i.e., the probability of making
a jump from sitei to site j , andh jj denotes the set of all the
sites to which a jump occurs. To take into account the effect
of a material’s disorder, it is usually assumed that the transi-
tion rates are exponential functions of an activation energy
and/or a tunneling distance, and that they are nonzero only
for nearest-neighbor jumps. Hopping models, described by
Eq. s3d, are complex. Except for one-dimensionals1Dd ma-
terials, no exact solution of Eq.s3d is known. Thus, to esti-
mate the effective ac conductivity several approximations
have been developed. An early and relatively simple one
was the continuous-time random walk model of Scher and
Lax,9 which is similar to a mean-field Hartree-type
approximation.10,11A widely used approach is the effective-
medium approximation10,12,13and the related methods.14 Al-
though such approximations provide a qualitative picture of
many properties of the ac conductivity, they are not very
accurate for obtaining precise estimates ofsesvd.

We also point out that although hopping models have
been used for describing ac conduction in disordered solids,
the physics behind such models and that of the macroscopic
continuum-type models are quite different.2–4 However, sub-
ject to certain assumptions, the formal mathematical formu-
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lations of the hopping models and the macroscopic ap-
proaches are rather similarssee also belowd.

Numerical simulation of ac conduction in heterogeneous
materials is a difficult problem. The difficulty is twofold.s1d
Hopping models usually assume noninteracting charge carri-
ers, as they ignore the self-exclusion effect that allows at
most one charge carrier per site of the lattice, as well as the
Coulomb interactions between the carriers. When such ef-
fects are explicity accounted for, the resulting model be-
comes very complex.15 s2d The exponential dependence of
the transition rates on the activation energy and/or a tunnel-
ing distance implies that they are very broadly distributed,
often over many orders of magnitude variations. Under these
conditions, computer simulation of ac conduction is difficult,
particularly in 3D for which there is still a lack of precise
numerical results obtained with large systems.2 Although
Dyre16 carried out numerical simulation of ac conduction in
both 2D and 3D in which the effect of the Coulombic inter-
action was taken into account, her simulations were re-
stricted to relatively small systems. The transfer-matrix
method has also been used17 for computing the ac conduc-
tivity. However, the system studied was restricted to one near
the percolation threshold in which the local conductivities
were either zero or 1.

In this paper, we use a highly efficient method for numeri-
cal simulation of ac conduction in heterogeneous materials.
The method is ideally suited for the cases in which the tran-
sition rates are distributed over many orders of magnitude,
and can be used with very large lattices in both 2D and 3D.
The method is based on two key facts.s1d In a heterogeneous
material in which the local conductivities are distributed over
many orders of magnitude, only a small subset of the mate-
rial contributes significantly to its overall effective conduc-
tivity. s2d If portions of the material are characterized by low
local conductivities, there is no need to represent them in the
model by a detailed lattice structure; instead, one can coarsen
such zones of the system. The method used in this paper
takes advantage of these two facts. We show that, starting
with a large lattice for which a very large number of equa-
tions must be solved in order to determine the electrostatic
potential distribution and estimate its effective ac conductiv-
ity, we can systematically reduce the system to one for which
only a relatively small number of equations should be
solved, hence drastically reducing the computation time.

The plan of this paper is as follows. In the next section we
formulate the problem that we wish to solve in this paper.
Section III describes the method that we propose for solving
the governing equations, while the results are presented and
discussed in Sec. IV.

II. THE MODEL

In this section we set up the governing equations for
ac conduction in a heterogeneous material with spatially
varying sfrequency-independentd conductivities,18 following
Dyre.16 We assume that the material has free charge carriers
characterized by a local conductivitygsr d, as well as bound
charges described by a fixed dielectric constante`

=eesv→`d. The basic constitutive equations are given by

Dsr ,td = − e` = Vsr ,td, s4d

Jsr ,td = − gsr d = Vsr ,td. s5d

Here,D and J are, respectively, the displacement and free-
charge-carrier current flux, andV is the electrostatic poten-
tial. If rsr ,td is the density of the free charge carriers, we
must havesGauss’s lawd,

= ·Dsr ,td = rsr ,td, s6d

which, together with the continuity equation

]rsr ,td
]t

+ = ·Jsr ,td = 0, s7d

yields the governing equation for the electrostatic potential
Vsr ,td,

= ·Fe`

]

]t
= Vsr ,td + gsr d = Vsr ,tdG = 0. s8d

Note that using Gauss’s law implies that Coulombic interac-
tions aresimplicitly d taken into account. In a periodically
varying potential field, all the quantities are written as func-
tions of r times expsivtd. Thus, Eq.s8d becomes

= · hfs+ gsr dg = Vsr ,sdj = 0, s9d

where s= ive`. If we now use a standard finite-difference
approximation to discretize Eq.s9d, we obtain a
d-dimensional simple-cubic lattice in which each bond con-
sists of a resistor and a capacitor in parallel. A bond’s admit-
tance isysr d=afs+gsr dg=afive`+gsr dg, wherea is a con-
stant. It is not difficult to show thata=,d−2, where, is the
lattice constant. If the local conductivitygsr d varies continu-
ously, then the above discretization is exact when the lattice
constant,→0.

We assume that the local conductivitygsr d is thermally
activated, and that its spatial variation is due to the activation
energyE varying in space, so that

gsr d = g0 expf− bEsr dg, s10d

whereb=skBTd−1, with kB andT being the Boltzmann con-
stant and the temperature. The activation energyEsr d
changes spatially because the local structure of the solid ma-
terial varies. In many cases one expectsEsr d to vary little.
However, our focus in this paper is the low-temperature limit
wheregsr d varies over orders of magnitude. In addition, the
local activation energies are typically not random, but corre-
lated with a correlation lengthjE. However, we set the lattice
constant,=jE and ignore all the correlations beyond the
lattice constant,. In this way, the local conductivitiesgsr d
become uncorrelated. This assumption can, of course, be re-
laxed, if need be. If two opposing faces of the lattice are
identified with two electrodes and short circuited, and if a
potential dropDV is imposed between the two electrodes, the
resulting current isIssd=YessdDV, whereYessd is the effec-
tive admittance of the lattice. The effective conductivity
sessd is then given by
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sessd = L2−dYessd − s, s11d

whereL is the length of the system.

III. NUMERICAL SIMULATION

Consider, first, the problem of ac conduction in a continu-
ous system. We define the wavelet transformationsWTd of
the admittanceysr d by

Dsa,bd =E
−`

`

ysr dcabsr ddr . s12d

Here, cabsr d=cfsr −bd /ag /Îa, with a.0 being a rescaling
parameter andb representing translation of the wavelet. The
function csr d is called themother wavlet. Equations12d in-
dicates that, by using a WT transformation ofysr d, utilizing
a shifted and rescaled wavelet, one can analyze its distribu-
tion at increasingly coarsersa.1d or finer sa,1d length
scales. This implies that, given an appropriate scheme, one
can compress information on the spatial distribution ofysr d
at any length scale of interest since, as is well known, the
WT of ysr d contains information on thedifferencebetween
two approximations of the same admittance function in two
successivesone finer and one coarserd length scales. On the
other hand, the most accurate estimate of the average ofysr d
at afixedscale is obtained by using thewavelet scaling func-
tion fsr d, which is orthogonal tocsr d. Then, the wavelet
approximate or scale coefficients ofysr d are defined by

Ssa,bd =E
−`

`

fabsr dysr ddr , s13d

where the definition offabsr d is similar to that ofcabsr d.
cabsr d and fabsr d are related, so that specifying one yields
the other.19

In this paper we represent a disordered material by an
M 3M square lattice in which the conductivitiesgsr d, and
thus the admittancesysr d, are distributed randomlyfby dis-
tributing the activation energiesEsr dg. Hence, we must use a
discrete WTsDWTd fso that the parametersa and b of the
wavelet cabsr d take on discrete valuesg. We number the
bonds and represent them by their centers which, hereafter,
are referred to as the “nodes.” Alternatively, we may view
the system as a lattice of square blocks, each of which is
characterized by an admittanceysr d. Then, if r =sk1,k2d rep-
resents the node of bond numbern, associated with the DWT
at r are four wavelet coefficients, three of which are given by

Dj
s,dsk1,k2,nd =E

V

ysr ,ndc j ,k1,k2

s,d sr ddr , s14d

with ,=1, 2, and 3 measuring the contrasts betweenysr d in
the coarser scalefthe one in which the length of a bond of
admittanceysr d is twice larger than the initial lattice that we
start withg and those of its neighbors in the previous finer
scale in thex, y, and diagonal directions, respectively. Here,
j sthe analog of the parametera in the continuous WTd is the
level of compression, such that the large lattice that models

the system is represented byj =1, andV is the domain of the
problem. The fourth wavelet coefficient is defined by

Sjsk1,k2,nd =E
V

ysr ,ndf j ,k1,k2
sr ddr . s15d

To carry out the numerical simulations, we proceed as
follows. Since at a fixed frequency the imaginary part of the
complex admittanceysr d=afive`+gsr dg is constant, it is
more convenient to work directly with the conductivities
gsr d. Therefore, we first compute the scale and detail coeffi-
cients of the conductivities, and normalize them by their cor-
responding maximum values in the lattice. Two thresholds
0, ts,1 and 0, td,1 are then defined for the wavelet scale
and detail coefficients. Thesnormalizedd scale coefficient
Sjsk1,k2,nd of each bond, represented by a node atr
=sk1,k2d, is then examined. IfSjsk1,k2,nd. ts simplying that
the conductivity, and therefore the admittance, atr is larged,
we examine the scale coefficient of the next bond in the list.
If, however, Sjsk1,k2,nd, ts, we examine thesnormalizedd
wavelet detail coefficients associated with that bond, and
set to zero those for whichDj

s,dsk1,k2,nd, td. Physically,
Dj

s,dsk1,k2,nd=0 means that the neighbor of the bond cen-
tered atsk1,k2d and corresponding to the directions,d, which
is just one bondsor one diagonald away from the one cen-
tered atsk1,k2d, is combined with its neighborssee belowd.
This procedure then eliminates many nodessbondsd and
combines them with their neighbors, the number of which
depends on the broadness of the spatial distribution ofgsr d.
If the statistical distribution ofgsr d is broad, the compressed
parts of the system are scattered throughout the lattice. The
newly compressed lattice represents the system at the level
j =2, and is referred to as thecurrent lattice.

The current lattice is again compressed by applying the
DWT to its scale coefficients and calculating a new set of
four wavelet coefficients for each of its nodes. The new de-
tail coefficients are again set to zero if they are smaller than
td, and the corresponding nodes in the currentslevel j =2d
lattice are combined with their neighbors. This process is
repeated again until no significant number of the nodes are
eliminated. The resulting lattice represents the system at the
compression levelj =3. Typically, the lattice at the compres-
sion level j =4 or 5 can no longer be effectively compressed,
hence yielding very efficiently the final reduced lattice for
fixed ts and td. The numerical values of the thresholds are
fixed by the desired precision of the results and, hence, the
amount of computation time that we can afford. Note that the
final compressed lattice is usually a mixture of larger and
smaller square blocks, since some parts of the lattice for
which Dj

s,d, td join up and form larger square blocks. One
must carefully treat those regions of the lattice in which the
smaller and larger square blocks are neighbors, so as to avoid
generating unphysical features, such as disconnected smaller
and larger blockssor nodesd that in reality are connected,
since a bond or node is not physically eliminatedsthat is, its
admittance is not set to zerod; rather, it is simply combined
with its neighbors.

Each time the current lattice is compressed, one must as-
sign new effective admittances to the bondssor the corre-
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sponding nodesd of the newly compressed system. This can
be done by reconstructing the distribution of the bonds’ con-
ductivities or admittances in the reduced lattice, i.e., by com-
puting the inverseDWT of the conductivity or admittance
distributionafter the reduction and assigning the local admit-
tances based on the reconstructed distribution. A simpler
method, which is what we used in this paper, is based on the
law of electrical circuits. In effect, each time a node in each
direction is removed, one must compute the equivalent ad-
mittance of four nodes representing a simple four-blocksor
four-noded configuration, with each of the blocks having
their own admittances, which are then replaced, after com-
pression, by an equivalent admittance.

IV. RESULTS AND DISCUSSION

We have carried out computer simulations using 1024
31024 lattices. In all the cases, we have solved the problem
using both the original 102431024 lattices, as well as those
obtained by applying the DWT which reduces drastically the
number of equations to be solvedssee belowd. A comparison
between the two sets of results provides an indication for the
accuracy of the method. To solve the governing equations for
the electrostatic potentialsVsr ,sd throughout the latticefthe
discretized version of Eq.s9dg, we used the biconjugate-
gradient method. All the results presented below represent
averages over ten different realizations of the lattices, repre-
senting, to our knowledge, the largest 2D systems and the
most extensive simulations for estimating the ac conductivity
of 2D disordered materials. The most extensive simulations
were carried out for the results presented below which were
obtained at temperatureb=skBTd−1=60, using the thresholds
td= ts=0.7, and many orders of magnitude variations in the
frequency, although less extensive simulations were also car-
ried out at a few other low temperatures and usingtd=0.5
and ts=0.9. The qualitative features of the results in all the
cases were the same as those presented below. Following
Dyre,16 five distinct probability distribution functionssPDFsd
PsEd of the activation energiesE were utilized, which are as
follows.

s1d Asymmetric Gaussiandistribution,

PsEd =Î 2

p
expS−

1

2
E2D, 0 , E , `; s16d

s2d Cauchydistribution,

PsEd =
2

p

1

1 + E2, 0 , E , `; s17d

s3d exponentialdistribution,

PsEd = exps− Ed, 0 , E , `; s18d

s4d power-lawdistribution,

PsEd = 3s1 + Ed−4, 0 , E , `; s19d

s5d uniform distribution,

PsEd = 1, 0, E , 1. s20d

These PDFs result, in all the cases, in conductivities that
are distributed over at least 5–6 orders of magnitude varia-

tions. Note that since the conductivitiesgsr d are distributed
at random, the percolation threshold of the system ispc
=1/2. Therefore, the critical energyEc at which a sample-
spanning cluster of the conducting bonds is formed is given
by 1/2=e−`

Ec PsEddE, which results in16 Ec=0.674, 1, 0.693,
0.26, and 0.50 for the distributionss16d–s20d, respectively.

Figure 1 compares the frequency-dependent conductivity
ŝ=sessd /ses0d, computed using the 102431024 lattice,
with those calculated based on the reduced lattices, using the
asymmetric Gaussian distribution of the activation energies.
The quantitys= iv has been made dimensionless through,ŝ
=fb /dses0dgs. In this figure and those discussed below the
continuous and dashed curves represent, respectively, guide
to the eyes for the numerical resultssrepresented by the sym-
bolsd obtained with the 102431024 and the reduced lattices.
As can be seen, over eight orders of magnitude variations in
the frequency, there is very little difference between the two
sets of results. Figure 2 presents the same, but obtained with
the Cauchy distribution of the activation energies. Once
again, the agreement between the two sets of results is ex-
cellent. This case is particularly important, as the Cauchy
distribution has a divergent variance and, therefore, is diffi-
cult to use in the numerical simulations.

The results obtained with the exponential, power-law, and
uniform distributions of the activation energies are presented,
respectively, in Figs. 3–5. The largest difference between the
two sets of results is for the power-law distribution, and is no
more than 1–3 %. The agreement between the two sets of

FIG. 1. Comparison of thesdimensionlessd effective conductiv-
ity ŝ, computed using the initial 102431024 latticesdiamonds,
connected by the continuous curved, with that obtained with the
rescaled latticestriangles, connected by the dashed curved. The PDF
of the activation energies is asymmetric Gaussian.

FIG. 2. Same as in Fig. 1, but for the Cauchy distribution of the
activation energies.
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results in all the cases demonstrates the accuracy of the
method. Moreover, as the results indicate, the method’s ac-
curacy is independent of the range of the frequency and the
PDF of the activation energies.

In Fig. 6 we rescale all the results of Figs. 1–5 according
to Eq. s2d, where v̂=fe0De /ses0dgv. All the results have
collapsed onto an essentially single curve which, over a
broad range ofv̂, appears to be a straight line, hence sup-
porting Eq.s1d. Figure 6 provides further strong support for
the universality of ac conductivity of a broad class of hetero-
geneous materials.2,4,7,8

How efficient is the method that we have used in this
paper? Computing the wavelet transformation of the conduc-
tivity gsr d is done highly efficiently, and represents only
about 1% of the total computation time. Hence, the greatest
savings are obtained through compressing and rescaling the
lattice and, therefore, by reducing the number of equations
that one must solve in order to determine the potential dis-
tribution in the lattice. In Fig. 7 we present the frequency
dependence of the quantityNc/N, whereNc is the number of
equations that we solved in the reduced lattice, whileN
=1 046 528 is the number of equations that were solved to
determine the electrostatic potential distribution in the initial
102431024 lattice. It is seen that, over a very broad range
of the frequencies and for the five distinct PDFs of the acti-
vation energies, the ratioNc/N is at most about 0.029. That
is, instead of solving over a million equations for each fre-
quency, one solvesat mostabout 30 000 equations, if the
thresholdstd= ts=0.7 are used, a factor of 35 reduction in the
number of the equations to be solved and, hence, a compu-

tational speedup by at least the same factor. Usingtd= ts
=0.9 reduces the number of equations to be solved to only
about 5 000, with the accuracy of the results being compa-
rable with what is shown in Figs. 1–5. This would represent
a factor of about 200 in savings in the computation time. In
fact, the larger is the initial lattice model, the larger will be
the computational speedup.

Our preliminary simulations in 3D indicate that even
larger savings in the computation time than those reported
here for 2D systems can be obtained. This is particularly
important, as there is currently a lack of precise numerical
results for the effective ac conductivity of 3D systems, ob-
tained using large lattices.2

At this point, two important aspects of the method that we
use in this paper are worth discussing.

s1d In a previous paper,20 we suggested a method for ef-
ficient simulation of transport in heterogeneous media based
on grid coarsening, which also used a WT. However, in that
method only the wavelet detail coefficients were computed
for grid compression, as the method was intended for disor-
dered media in which there is long-range correlation between
the local transport properties. Due to the correlation, clusters
of large or small conductivities are formed, as a result of
which compressing the lattice based only on the wavelet de-
tail coefficients sufficed, since the wavelet detail coefficients

FIG. 5. Same as in Fig. 1, but for the uniform distribution of the
activation energies.

FIG. 6. Rescaled conductivities of Figs. 1–5 versus rescaled
frequencies. Symbols represent the results for asymmetric Gaussian
sdiamonds and squaresd, Cauchysopen and filled circlesd, exponen-
tial s1 and black2d, power-lawsgray 2 and circlesd, and uniform
striangles and3d PDFs, where the symbols in parentheses repre-
sent, respectively, the results for the initial and rescaled lattices.

FIG. 3. Same as in Fig. 1, but for the exponential distribution of
the activation energies.

FIG. 4. Same as in Fig. 1, but for the power-law distribution of
the activation energies.
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characterize thecontrastbetween different clusters or zones
of the system in two consecutive scales, which for correlated
media is the most important property. However, when we
applied the method proposed in Ref. 20 to the present prob-
lem, it yielded poor results, since the bond conductivities in
the problem studied in this paper are distributed randomly
swithout any correlationd. The reason is that in the present
problem not only are the contrasts between the conductivities
important, but so also are themagnitudesof the localgsr d or
ysr d, which necessitate computing the wavelet scale coeffi-
cients that characterize the average magnitude ofg or y at a
fixed scale.

s2d The lattice compression that the WT carries out, which
generates a grid with fewer but larger blocks, is reminiscent
of the rescaling of the lattice models of critical and percola-
tion phenomena by the position-space renormalization group
sPSRGd methods.21 In fact, we believe that the method that

we describe in this paper can be thought of as a type of
inhomogeneousPSRG method in that the blocks of the initial
lattice are rescaled as in a PSRG method, but by different
rescaling factors that the method chooses “intelligently”
based on the wavelet scale and detail coefficients. Therefore,
it should be interesting to make a qualitative comparison
between the present method and the PSRG techniques. For
2D systems, the PSRG methods provide accurate estimates
of the effective conductivity of materials with percolation
disorder.22 However, they are not easy to extend to
frequency-dependent properties, or to media in which the
local conductivities are distributed according to a broad PDF.
On the other hand, as demonstrated in the present paper, the
WT-based method provides accurate estimates ofsesvd at
any frequency and for any PDF of the local conductivities or
admittances. At the same time, the PSRG methods are not
very accurate for 3D media, unless they are combined with
Monte Carlo simulations, whereas the WT-based method is
as accurate and efficient in 3D as it is in 2D systems.

The WT-based method offers another important advantage
over all of the previous methods in that it provides a way of
generating grids of unequal block sizes for simulation of
transport processes in any complex systems, so long as a
property of the system varies spatially. For example, one can
use the WT-based method for simulation of turbulent trans-
port and photochemical reactions in the atmosphere over a
vast area23 sof the order of several thousands of square kilo-
metersd and involving tens of reactants, or for simulation of
multiphase flows in field-scale porous media,24 and obtain
numerical results with accuracies that are comparable with
those obtained with massively parallel computational strate-
gies.
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