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Efficient numerical simulation of ac conduction in heterogeneous materials at low temperatures
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The problem of computing the effective frequency-dependent conductivity of heterogeneous materials at low
temperatures is studied. In this problem the activation energies and, therefore, the local conductivities
transition rates in a master equation formulatiane broadly distributed, varying over many orders of mag-
nitude. Such broad variations make the computations with large lattices that represent the materials very
difficult. We use an efficient method, based on computing the wavelet scale and detail coefficients of the local
conductivities, in order to compute the effective ac conductivity of such materials. The method identifies the
high-conductance paths in a large lattice and reduces it to one that requires far less computation. Using the
method, we compute the effective ac conductivity of a two-dimensional lattice in which the activation energies
are distributed according to a probability distribution functi®DPF. Five distinct PDFs are used, and the
effective ac conductivity is computed over many orders of magnitude variations in the frequency. Depending
on the size of the initial system, the speedup in the computations for two-dimensional systems varies anywhere
from a factor of 35-40 to over 200.
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[. INTRODUCTION In order to explain the experimental data, several models
f ac conduction have been developed in the past. The most
oroughly studied model is perhaps the hopping nfodel

fhich describes jumps of charge carriers in a stochastic me-

dium, typically represented by a lattice. The model is de-
scribed by the following master equation for the probability
ePi(t) of finding a charge carrier at site

Transport processes in heterogeneous materials constit
an important set of phenomena that are relevant to a wid
variety of problems in natural and industrial processes. Ex
amples include flow in porous media, conduction and hop
ping transport in, and mechanical properties of, heterog
neous solid materiafs,and many more. In particular,
predicting the frequency-dependent effective conductivity of
electronically or ionically conducting heterogeneous materi- IPi(t) = [W,Pi(t) - Wi Py()] 3)
als has been a problem of great interest for several ot 0 ! e
decadeg:* Measurements of the ac conductivity of such dis-

prd_ered solids as amorphous. se_m|conductors, polymers, aWnereWij is the transition rate, i.e., the probability of making
lonically gonductlve glasses. indicate a number of common, jump from sitei to sitej, and{j} denotes the set of all the
characteristicg: For frequencies larger than a characterlstlcSites to which a jump occurs. To take into account the effect
frequency wp, the effective conductivityoe(w) becomes ¢ o' iarials disorder, it is usually assumed that the transi-
strongly frequency dependent and follows a power law tion rates are exponential functions of an activation energy
oo(@) ~ o, (1) and/or a tunneling distance, and that they are nonzero only
for nearest-neighbor jumps. Hopping models, described by
where the exponent is a decreasing function of the tem- Eg. (3), are complex. Except for one-dimensioriaD) ma-
perature with 0.6x<1.0>* The characteristic frequency terials, no exact solution of Eq3) is known. Thus, to esti-
wp, is proportional to the dc conductivity,,« 04(0), a rela- mate the effective ac conductivity several approximations
tion known as the Barton-Nakajima-Namikawa [afWore-  have been developed. An early and relatively simple one
over, examining the vast amount of experimental data for th&vas the continuous-time random walk model of Scher and
ac conductivity of a wide variety of disordered materials in-Lax,” which is similar to a mean-field Hartree-type
dicates that most of the data follow a universalapproximationt®! A widely used approach is the effective-
representatiorf given by medium approximatio?*?>13and the related method$Al-
though such approximations provide a qualitative picture of
many properties of the ac conductivity, they are not very
o.0) |’ 2 accurate for obtaining precise estimatesrgfw).
We also point out that although hopping models have
Here, ¢, is the vacuum permeativit§;(x) is a universal func-  been used for describing ac conduction in disordered solids,
tion, andAe=¢(0) - €,,, with €(0) ande,, being, respectively, the physics behind such models and that of the macroscopic
the zero-frequency and bound-charge dielectric constants @ontinuum-type models are quite differént.However, sub-
the materials. ject to certain assumptions, the formal mathematical formu-
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lations of the hopping models and the macroscopic ap- D(r,t)=- €. VV(r,1), (4)
proaches are rather similésee also beloyw
Numerical simulation of ac conduction in heterogeneous I H=-g(r) VV(r b (5)

materials is a difficult problem. The difficulty is twofoldl)

Hopping models usually assume noninteracting charge carrHere, D andJ are, respectively, the displacement and free-

ers, as they ignore the self-exclusion effect that allows atharge-carrier current flux, and is the electrostatic poten-

most one charge carrier per site of the lattice, as well as thgal. If p(r,t) is the density of the free charge carriers, we

Coulomb interactions between the carriers. When such efnust havegGauss’s lay,

fects are explicity accounted for, the resulting model be-

comes very comple¥ (2) The exponential dependence of V-D(r,t) = p(r,1), (6)

the transition rates on the activation energy and/or a tunne|- , . . Lo .

ing distance implies that they are very b?gadly distributed,lNthh’ together with the continuity equation

often over many orders of magnitude variations. Under these ap(r 1)

conditions, computer simulation of ac conduction is difficult, T

particularly in 3D for which there is still a lack of precise

numerical results obtained with large systemailthough yields the governing equation for the electrostatic potential

Dyre'® carried out numerical simulation of ac conduction in \/(r ,t),

both 2D and 3D in which the effect of the Coulombic inter-

action was taken into account, her simulations were re-

stricted to relatively small systems. The transfer-matrix

method has also been udédor computing the ac conduc-

tivity. However, the system studied was restricted to one nedNote that using Gauss's law implies that Coulombic interac-

the percolation threshold in which the local conductivitiestions are(implicitly) taken into account. In a periodically

were either zero or 1. varying potential field, all the quantities are written as func-
In this paper, we use a highly efficient method for numeri-tions of r times expiwt). Thus, Eq.(8) becomes

cal simulation of ac conduction in heterogeneous materials.

The method is ideally suited for the cases%]in which the tran- V Als+9(nN]VV(r,s)}=0, ©

sition rates are distributed over many orders of magnitudeyhere s=iwe.. If we now use a standard finite-difference
and can be used with very large lattices in both 2D and 3Dapproximation to discretize Eq.(9, we obtain a

The method is based on two key fadth). In a heterogeneous  y_gimensional simple-cubic lattice in which each bond con-
material in which the local conductivities are distributed overgisis of a resistor and a capacitor in parallel. A bond’s admit-

many orders of magnitude, only a small subset of the mateqce isy(r)=a[s+g(r)]=afiwe.+g(r)], wherea is a con-
rial contributes significantly to its overall effective conduc- giant 1tis not difficult to show that=£92 wheref is the
tivity. (2) If portions of the material are characterized by I0W |yitice constant. If the local conductivig(r),
local conductivities, there is no need to represent them in th
model by a detailed lattice structure; instead, one can coars

such zones of the system. The method used in this paper We assume that the local conductivityr) is thermally

ta_kes advantagg of these_ two facts. We show that, Startlngctivated, and that its spatial variation is due to the activation
with a large lattice for which a very large number of equa_energyE varying in space, so that

tions must be solved in order to determine the electrostatic
potential distribution and estimate its effective ac conductiv- g(r) = go exp - BE(r)], (10)

ity, we can systematically reduce the system to one for which

only a relatively small number of equations should bewhere 8=(kgT) ™%, with kg and T being the Boltzmann con-
solved, hence drastically reducing the computation time. stant and the temperature. The activation enekfy)

The plan of this paper is as follows. In the next section wechanges spatially because the local structure of the solid ma-
formulate the problem that we wish to solve in this paperterial varies. In many cases one expegfs) to vary little.
Section Il describes the method that we propose for solvingHowever, our focus in this paper is the low-temperature limit
the governing equations, while the results are presented awhereg(r) varies over orders of magnitude. In addition, the
discussed in Sec. IV. local activation energies are typically not random, but corre-
lated with a correlation lengté:. However, we set the lattice
constant¢ =& and ignore all the correlations beyond the
lattice constant. In this way, the local conductivitieg(r)

In this section we set up the governing equations forbecome uncorrelated. This assumption can, of course, be re-
ac conduction in a heterogeneous material with spatiallyaxed, if need be. If two opposing faces of the lattice are
varying (frequency-independentonductivities'® following identified with two electrodes and short circuited, and if a
Dyre1® We assume that the material has free charge carriegsotential dropAV is imposed between the two electrodes, the
characterized by a local conductivigfr), as well as bound resulting current id(s)=Y(s)AV, whereYq(s) is the effec-
charges described by a fixed dielectric constagt tive admittance of the lattice. The effective conductivity
=e.(w— ). The basic constitutive equations are given by o.(s) is then given by

+V -Jr,t)=0, (7)

V. em%VV(r,tHg(r)VV(r,t) =0. (8)

varies continu-
8usly, then the above discretization is exact when the lattice
nstantf — 0.

Il. THE MODEL
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o8 = LZ‘dYe(s) -s, (1) the system is represented py1, and() is the domain of the

_ problem. The fourth wavelet coefficient is defined by
wherelL is the length of the system.

Si(k1,kz,1n) :J y(r,n) e k,(1)dr. (15
Q

I1l. NUMERICAL SIMULATION
) ) o . To carry out the numerical simulations, we proceed as
Consider, first, the problem of ac conduction in a continu-qo\s, Since at a fixed frequency the imaginary part of the
ous syst_em. We define the wavelet transformatfT) of complex admittancey(r)=afiwe,+g(r)] is constant, it is
the admittancey(r) by more convenient to work directly with the conductivities
o g(r). Therefore, we first compute the scale and detail coeffi-
D(a,b) =f y(r) ap(r)dr. (12 cients of the conductivities, and normalize them by their cor-
- responding maximum values in the lattice. Two thresholds
0<t;<1 and 0<ty<1 are then defined for the wavelet scale
and detail coefficients. Thénormalized scale coefficient
Si(ky,ko,n) of each bond, represented by a node rat
=(kq,kp), is then examined. I§;(k;,k,,n) >t (implying that
l}he conductivity, and therefore the admittancer, & large,
we examine the scale coefficient of the next bond in the list.
nlé however, S(k;,k;,n) <ts, we examine thgnormalized

Here, 4,(r)=4¢{(r —b)/a]/va, with a>0 being a rescaling
parameter ant representing translation of the wavelet. The
function y(r) is called themother wavlet Equation(12) in-
dicates that, by using a WT transformationydf), utilizing
a shifted and rescaled wavelet, one can analyze its distrib
tion at increasingly coarsdia>1) or finer (a<1) length
scales. This implies that, given an appropriate scheme, o ! - ) .
; ; Al it i wavelet detail coefficients associated with that bond, and
can compress mformatl.on on thg spatial @stnbuﬂory@i) ot 1o zero those for whiclﬁ)@(k k. <t Physical
at any length scale of interest since, as is well known, thé 0 j 2 d y Y
WT of y(r) contains information on thdifferencebetween Dj (ki,kz,n)=0 means that the neighbor of the bond cen-
two approximations of the same admittance function in twotered at(k;,kp) and corresponding to the directi¢), which
successivéone finer and one coargdength scales. On the IS just one bondor one diagonalaway from the one cen-
other hand, the most accurate estimate of the average pf tered at(k;,ky), is combined with its neighboisee below:.
at afixedscale is obtained by using theavelet scaling func- This procedure then eliminates many nodésnds and
tion ¢(r), which is orthogonal taj(r). Then, the wavelet combines them with their neighbors, the number of which

approximate or scale coefficients yffr) are defined by depends on the broadness of the spatial distributiog(iof
_ If the statistical distribution ofj(r) is broad, the compressed
_ parts of the system are scattered throughout the lattice. The
S(a,b) = f_@ Pap(r)y(r)dr, (13 newly compressed lattice represents the system at the level
j=2, and is referred to as treirrent lattice.
where the definition ofp,,(r) is similar to that ofy(r). The current lattice is again compressed by applying the
an(r) and ¢,,(r) are related, so that specifying one yields DWT to its scale coefficients and calculating a new set of
the other? four wavelet coefficients for each of its nodes. The new de-

In this paper we represent a disordered material by amail coefficients are again set to zero if they are smaller than
M XM square lattice in which the conductivitiegr), and  t4, and the corresponding nodes in the currdavel j=2)
thus the admittanceg(r), are distributed randomliby dis-  lattice are combined with their neighbors. This process is
tributing the activation energié&(r)]. Hence, we must use a repeated again until no significant number of the nodes are
discrete WT(DWT) [so that the parametessandb of the  eliminated. The resulting lattice represents the system at the
wavelet ¢,(r) take on discrete valugsWe number the compression level=3. Typically, the lattice at the compres-
bonds and represent them by their centers which, hereafte§ion levelj=4 or 5 can no longer be effectively compressed,
are referred to as the “nodes.” Alternatively, we may viewhence yielding very efficiently the final reduced lattice for
the system as a lattice of square blocks, each of which i§xed ts andty. The numerical values of the thresholds are
characterized by an admittangé ). Then, ifr =(k;,k,) rep-  fixed by the desired precision of the results and, hence, the
resents the node of bond numiremssociated with the DWT amount of computation time that we can afford. Note that the
atr are four wavelet coefficients, three of which are given byfinal compressed lattice is usually a mixture of larger and
smaller (.?)quare blocks, since some parts of the lattice for
0 _ (0 which D;" <ty join up and form larger square blocks. One
D" (ky ko) = L V() () (14) must ca]refully treat those regions of the lattice in which the
smaller and larger square blocks are neighbors, so as to avoid
with €=1, 2, and 3 measuring the contrasts betwg@h in  generating unphysical features, such as disconnected smaller
the coarser scalghe one in which the length of a bond of and larger blockgor node$ that in reality are connected,
admittancey(r) is twice larger than the initial lattice that we since a bond or node is not physically eliminatéht is, its
start with] and those of its neighbors in the previous fineradmittance is not set to zeraather, it is simply combined
scale in thex, y, and diagonal directions, respectively. Here,with its neighbors.
j (the analog of the parametaiin the continuous WTYis the Each time the current lattice is compressed, one must as-
level of compression, such that the large lattice that modelsign new effective admittances to the bor(ds the corre-
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sponding nodesof the newly compressed system. This can 5
be done by reconstructing the distribution of the bonds’ con-
ductivities or admittances in the reduced lattice, i.e., by com-
puting theinverse DWT of the conductivity or admittance
distributionafter the reduction and assigning the local admit-
tances based on the reconstructed distribution. A simpler
method, which is what we used in this paper, is based on the 1
law of electrical circuits. In effect, each time a node in each
direction is removed, one must compute the equivalent ad- 14 04 06 16 26 35 46 56 66
mittance of four nodes representing a simple four-bl¢mk
four-node configuration, with each of the blocks having
their own admittances, which are then replaced, after com- F|G. 1. Comparison of thédimensionlesseffective conductiv-
pression, by an equivalent admittance. ity o, computed using the initial 10241024 lattice (diamonds,
connected by the continuous cuyyevith that obtained with the
IV. RESULTS AND DISCUSSION rescaled latticétriangles, connected by the dashed curfée PDF
We have carried out computer simulations using 1024f the activation energies is asymmetric Gaussian.

X 1024 lattices. In all the cases, we have solved the problem
using both the original 1024 1024 lattices, as well as those tions. Note that since the conductivitigér) are distributed
obtained by applying the DWT which reduces drastically theat random, the percolation threshold of the systenpds
number of equations to be solvéske below. A comparison  =1/2. Therefore, the critical energi, at which a sample-
between the two sets of results provides an indication for thgpanning cluster of the conducting bonds is formed is given
accuracy of the method. To solve the governing equations fasy 1/2=/5 P(E)dE, which results it E,=0.674, 1, 0.693,
the electrostatic potentialé(r ,s) throughout the latticgthe  0.26, and 0.50 for the distributior{46)—(20), respectively.
discretized version of Eq(9)], we used the biconjugate-  Figure 1 compares the frequency-dependent conductivity
gradient method. All the results presented below represerfi=g(s)/0,(0), computed using the 10241024 lattice,
averages over ten different realizations of the lattices, reprepith those calculated based on the reduced lattices, using the
senting, to our knowledge, the largest 2D systems and thgsymmetric Gaussian distribution of the activation energies.
most extensive simulations for estimating the ac conductivityThe quantitys=iw has been made dimensionless through,
of 2D disordered materials. The most extensive simulations[g/do(0)]s. In this figure and those discussed below the
were carried out for the results presented below which Wer@ontinuous and dashed curves represent, respective'y, guide
obtained at temperatug@= (kgT)"*=60, using the thresholds g the eyes for the numerical resultepresented by the sym-
t4=t,=0.7, and many orders of magnitude variations in thepols) obtained with the 1024 1024 and the reduced lattices.
frequency, although less extensive simulations were also caxs can be seen, over eight orders of magnitude variations in
ried out at a few other low temperatures and usigg0.5  the frequency, there is very little difference between the two
andts=0.9. The qualitative features of the results in all thesets of results. Figure 2 presents the same, but obtained with
cases were the same as those presented below. Followifige Cauchy distribution of the activation energies. Once
Dyre,'® five distinct probability distribution functioné®DF9  again, the agreement between the two sets of results is ex-
P(E) of the activation energiel were utilized, which are as cellent. This case is particularly important, as the Cauchy

Log1o(a)

Logqq(s)

follows. _ o distribution has a divergent variance and, therefore, is diffi-
(1) Asymmetric Gaussiadistribution, cult to use in the numerical simulations.
5 1 The results obtained with the exponential, power-law, and
P(E) = \/jexp(— —EZ>, 0<E< (16) uniform distributions of the activation energies are presented,
g 2 respectively, in Figs. 3-5. The largest difference between the
(2) Cauchydistribution two sets of results is for the power-law distribution, and is no
' more than 1-3 %. The agreement between the two sets of
2 1
P(E)—;ﬁ, O<E<ox; (17) 553 -
(3) exponentialdistribution, 491
3.93 4
P(E)=exp—E), 0<E<c; (18 g,
8-, .93 4
(4) power-lawdistribution, = 1931
P(E)=3(1+E)™ 0<E<; (19 0.83 1
(5) uniform distribution, T
P(E)=1, O<E<1. (20) Logids)

These PDFs result, in all the cases, in conductivities that FIG. 2. Same as in Fig. 1, but for the Cauchy distribution of the
are distributed over at least 5—6 orders of magnitude variaactivation energies.
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Logyi(o?)

06 04 14 24 34 44 54 64 1 0 1 2 3 4 5 6 7
Log(s) Logy(s)

FIG. 3. Same as in Fig. 1, but for the exponential distribution of

s . FIG. 5. Same as in Fig. 1, but for the uniform distribution of the
the activation energies.

activation energies.

results in all the cases demonstrates the accuracy of thational speedup by at least the same factor. Usjgs
method. Moreover, as the results indicate, the method’s ac0.9 reduces the number of equations to be solved to only
curacy is independent of the range of the frequency and thabout 5 000, with the accuracy of the results being compa-
PDF of the activation energies. rable with what is shown in Figs. 1-5. This would represent
In Fig. 6 we rescale all the results of Figs. 1-5 accordinga factor of about 200 in savings in the computation time. In
to Eq. (2), where w=[¢e)Ae/o4(0)]w. All the results have fact, the larger is the initial lattice model, the larger will be
collapsed onto an essentially single curve which, over ghe computational speedup.
broad range ofv, appears to be a straight line, hence sup- Our preliminary simulations in 3D indicate that even
porting Eq.(1). Figure 6 provides further strong support for larger savings in the computation time than those reported
the universality of ac conductivity of a broad class of hetero-here for 2D systems can be obtained. This is particularly
geneous materiafs®78 important, as there is currently a lack of precise numerical
How efficient is the method that we have used in thisresults for the effective ac conductivity of 3D systems, ob-
paper? Computing the wavelet transformation of the conductained using large lattices.
tivity g(r) is done highly efficiently, and represents only  Atthis point, two important aspects of the method that we
about 1% of the total computation time. Hence, the greatedtSe in this paper are worth discussing.
savings are obtained through compressing and rescaling the (1) In a previous papef, we suggested a method for ef-
lattice and, therefore, by reducing the number of equation§cient simulation of transport in heterogeneous media based
that one must solve in order to determine the potential dison grid coarsening, which also used a WT. However, in that
tribution in the lattice. In Fig. 7 we present the frequencymethod only the wavelet detail coefficients were computed
dependence of the quantity./N, whereN_ is the number of for grid compression, as the method was intended for disor-
equations that we solved in the reduced lattice, winle dered media in which there is long-range correlation between
=1 046 528 is the number of equations that were solved téhe local transport properties. Due to the correlation, clusters
determine the electrostatic potential distribution in the initialof large or small conductivities are formed, as a result of
1024x 1024 lattice. It is seen that, over a very broad rangavhich compressing the lattice based only on the wavelet de-
of the frequencies and for the five distinct PDFs of the actitail coefficients sufficed, since the wavelet detail coefficients

vation energies, the ratid./N is at most about 0.029. That

is, instead of solving over a million equations for each fre- 5 1 .
quency, one solveat mostabout 30 000 equations, if the
thresholdg,=t,=0.7 are used, a factor of 35 reduction in the B

number of the equations to be solved and, hence, a compu-

log (@)

* ’ ou——«#‘/‘.' T T T T .

)
<
g 2 14 04 06 16 26 36 46 56 6.6
; A
14 I°gw( w)
0 . . . . . FIG. 6. Rescaled conductivities of Figs. 1-5 versus rescaled
12 02 08 18 28 38 48 frequencies. Symbols represent the results for asymmetric Gaussian
Logy(s) (diamonds and squarnesCauchy(open and filled circles exponen-

tial (+ and black—), power-law(gray — and circle$, and uniform
FIG. 4. Same as in Fig. 1, but for the power-law distribution of (triangles andx) PDFs, where the symbols in parentheses repre-
the activation energies. sent, respectively, the results for the initial and rescaled lattices.
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we describe in this paper can be thought of as a type of
inhomogeneouBSRG method in that the blocks of the initial
lattice are rescaled as in a PSRG method, but by different
rescaling factors that the method chooses “intelligently”
based on the wavelet scale and detail coefficients. Therefore,
it should be interesting to make a qualitative comparison
between the present method and the PSRG techniques. For
¥y vV v v v v v v 2D systems, the PSRG methods provide accurate estimates
of the effective conductivity of materials with percolation
R disorder? However, they are not easy to extend to
frequency-dependent properties, or to media in which the
local conductivities are distributed according to a broad PDF.
On the other hand, as demonstrated in the present paper, the
T T S e WT-based method provides accurate estimates Ob) at
0 2 " 4 6 any frequency and for any PDF of the local conductivities or
log, (W) admittances. At the same time, the PSRG methods are not
very accurate for 3D media, unless they are combined with
FIG. 7. Dependence dfl./N on the rescaled frequency, where Monte Carlo simulations, whereas the WT-based method is
N andN are, respectively, the number of equations solved with theds accurate and efficient in 3D as it is in 2D systems.
compressed and initial lattices. Symbols are the same as in Fig. 6. The WT-based method offers another important advantage
over all of the previous methods in that it provides a way of

characterize theontrastbetween different clusters or zones 9€nerating grids of unequal block sizes for simulation of
of the system in two consecutive scales, which for correlatedf@nSPOrt processes in any complex systems, so long as a
media is the most important property. However, when weProperty of the system varies spatially. For example, one can

applied the method proposed in Ref. 20 to the present prol}ise the WT-based method for simulation of turbulent trans-
lem, it yielded poor results, since the bond conductivities inPCrt @nd photochemical reactions in the atmosphere over a

the problem studied in this paper are distributed randomlyast are#’ (of the order of several thousands of square kilo-
(without any correlation The reason is that in the present metgrs and |nvoIV|_ng tens of reactants, or for S|mulat|o_n of
problem not only are the contrasts between the conductivitie§'ultiphase flows in field-scale porous meéfizand obtain
important, but so also are tmeagnitudesf the localg(r) or numerical _results. with accuracies that are comparable with
y(r), which necessitate computing the wavelet scale Coefﬁihose obtained with massively parallel computational strate-
cients that characterize the average magnitudg afy at a
fixed scale

(2) The lattice compression that the WT carries out, which ACKNOWLEDGMENTS
generates a grid with fewer but larger blocks, is reminiscent The authors are grateful to many colleagues, and in par-
of the rescaling of the lattice models of critical and percola-ticular Ramin Golestanian, Amir Heidarinasab, M. R. H.
tion phenomena by the position-space renormalization groughajehpour, and Ehsan Nedaaee Oskoee, for very useful dis-
(PSRQ methods?! In fact, we believe that the method that cussions and help in the computations.
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