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We present here a reciprocal space formulation of the augmented space recursion which uses the lattice
translation symmetry in the full augmented space to produce configuration-averaged quantities, such as spectral
functions and complex band structures. Since the real space part is taken into accountexactlyand there is no
truncation of this in the recursion, the results are more accurate than recursions in real space. We have also
described the Brillouin zone integration procedure to obtain the configuration-averaged density of states. We
apply the technique to the Ni50Pt50 alloy in conjunction with the tight-binding linear-muffin-tin orbital basis.
These developments in the theoretical basis were necessitated by our future application to obtain optical
conductivity in random systems.
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I. INTRODUCTION

The augmented space recursionsASRd carried out in a
minimal basis set representation of the tight-binding linear-
muffin-tin orbital methodsTB LMTOd has been proposed
earlier by us1,2 as an interesting technique for incorporation
of the effects of configuration fluctuations about the mean
field fthe coherent potential approximationsCPAdg for ran-
dom substitutionally disordered alloys. This can be achieved
without the usual problems of violation of the Herglotz ana-
lytic properties3 of the approximated configuration-averaged
Green’s functions for the Schrödinger equation for these ran-
dom alloys. Earlier we had used this technique to look at
short-ranged ordering in such systems,4,5 as well as local
lattice distortions caused by size difference between the con-
stituents of the alloy.6

One of the dissatisfying features of the method, and this
has to do with the recursion part, is the truncation of the
continued fraction expansion of the Green’s function. Trun-
cation in the configuration space part of the problem can be
handled easily. We truncate out only those configurations that
occur with low probability and contribute to the tail of the
continued fraction. It is on the truncation in real space that
we do not have a controllable handle. Any truncation in real
space means that our recursion has been carried out on a
finite cluster and edge effects become important. Quantities
that converge fast are integrals of the density of states mul-
tiplied by well-behaved functions of energy. We can also
estimate the errors committed by truncating at a particular
step.7 However, the errors in the density of states itself can-
not be controlled. This is because even a small perturbation
slike truncation after a large number of recursive stepsd has a
profound effect on the spectrum of the Hamiltonianssee
Haydock8d. The problem of truncation has always been laid
at the door of the recursion method.

Is it not possible to modify the TB LMTO ASR in such a
way that the truncation is carried out only in configuration

space? One way of reducing the gigantic rank of the Hamil-
tonian in a real-space-labeled basis is to go over to reciprocal
space. In thek-labeled basis, for a basis involving onlys, p,
and d states, the operators in reciprocal space have rank 9.
However, to do this we require lattice translational symme-
try. In a random binary alloy, for instance, this is not imme-
diately possible. However, the full augmented space, which
is the direct product of the real space spanned by the site-
labeled basishRp ij and the configuration space spanned by the
configurations of the system, possesses translational as well
as point group symmetries.9 Configurations of a binary alloy
can be labeled by a binary sequence of 0 and 1sor ↑ and↓ if
Ising models appeal to you mored and uniquely described by
the cardinality sequencehCj, i.e., the sequence of positions
where we have a 1 or a↓ state. We had shown earlier that in
the subspace spanned by the reference statesh0”j, in which
the configuration average is described, we have full lattice
translation symmetry provided the disorder is
homogeneous.10 The same statement would be true if there is
short-ranged order or local lattice distortions, provided the
short-ranged order or local lattice distortions is probabilisti-
cally identical anywhere in the system. A consequence of this
is that probability densities are independent of the site label
and the configuration-averaged quantity

o
Ri

o
Rj

exphisk ·Ri − k8 ·RjdjkkGsRi,Rj,zdll

= Gsk,zddsk − k8d.

Based on this, we had proposed a TB LMTO recursion in the
reciprocal augmented space.11 The recursion, as we shall
show subsequently, is entirely in configuration space for each
k label. The truncation is also in configuration space alone
and leads to calculation of the configuration-averaged spec-
tral densities. These spectral densities are not a bunch ofd
functions, as in the case of ordered systems, but the complex
self-energies, in general both energy andk dependent, shift
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the peaks as well as broaden them, leading to fuzzy, complex
band structures.

Although our method allows us to carry our augmented
space recursion into reciprocal space, for many physical
problems we need to carry our integration over the Brilluoin
zone. For instance, to obtain the density of states or optical
conductivity12

kknsEdll =E
BZ

d3k

8p3TrkkAsk,Edll,

kkssvdll =E dEE
BZ

d3k

8p3TrfJeffsk,E,vd

3kkAsk,EdllJeffsk,E,vd†kkAsk,E + vdllg.

Here kkAsk ,Edll is the configuration-averaged spectral den-
sity and disorder scattering renormalizes the current term in
the Kubo-Greenwood formula toJeffsk ,E,vd.

Another contribution of this paper is to modify the tetra-
hedral method of Brilluoin zone integration, so that we may
carry out a similar integration technique for integrands which
are smoother than the highly singular spectral functions of
the ordered systems. The proposed Brilluoin zone integration
is closely related to that of Jepsen and Andersen13 or Leh-
mann and Taut14 for ordered systems.

II. AUGMENTED SPACE RECURSION IN k SPACE

The augmented space recursion based on the tight-binding
linear muffin-tin orbitals method has been described thor-
oughly in a series of articles,1,2,16–19We shall introduce the
salient features of the ASR which will be required by us in
our subsequent discussions.

We shall start from a first-principles tight-binding linear-
muffin-tin orbitals20,21in the most localized representationsa
representationd. This is necessary, because the subsequent re-
cursion requires a sparse representation of the Hamiltonian.
In this representation, the second-order alloy Hamiltonian is
given by

H s2d = En + h − hoh,

where

h = o
R

sCR − EnRdPR + o
R

o
R8

DR
1/2SRR8DR8

1/2TRR8,

o = o
R

oRPR. s1d

CR,EnR,DR, andoR are diagonal matrices in angular momen-
tum space:

CR = CRLdLL8, EnR = EnRLdLL8,

DR = DRLdLL8, oR = oRLdLL8,

and SRR8 is a matrix of rankLmax. PR= uRlkRu and TRR8
= uRlkR8u are projection and transfer operators in the Hilbert
spaceH spanned by the tight-binding basishuRlj. Here, R

refers to the position of atoms in the solid andL is a com-
posite labelh, ,m,msj for the angular momentum quantum
numbers.C, D, and o are potential parameters of the TB
LMTO method;o−1 has dimension of energy and theEn’s are
the reference energies about which the muffin-tin orbitals are
linearized.

For a disordered binary alloy we may write

CRL = CL
AnR + CL

Bs1 − nRd,

DRL
1/2 = sDL

Ad1/2nR + sDL
Bd1/2s1 − nRd,

oRL = oL
AnR + oL

Bs1 − nRd. s2d

Here hnRj are the random site-occupation variables which
take values 1 and 0 depending upon whether the muffin-tin
labeled byR is occupied by anA or B type of atom. The
atom sitting athRj can be of either typeAsnR=1d with prob-
ability x or BsnR=0d with probability y. The augmented
space formalismsASFd now introduces the space of configu-
rations of the set of binary random variableshnRj :F.

In the absence of short-ranged order, each random vari-
ablenR has associated with it an operatorM R whose spectral
density is its probability density:

psnRd = xdsnR − 1d + ydsnRd = −
1

p
lim
d→0

Imk↑RufsnR + iddI

− M Rg−1u↑Rl, s3d

whereM R is an operator whose eigenvalues 1, 0 correspond
to the observed values ofnR and whose corresponding eigen-
vectorshu1Rl , u0Rlj span a configuration spacefR of rank 2.
We may change the basis tohu↑Rl , u↓Rlj ssee Appendix Ad
and in this new basis the operatorM R is:

nR → M R = xPR
↑ + yPR

↓ + ÎxysTR
↑↓ + TR

↓↑d. s4d

Two new vectors span the spacefR. The full configuration
spaceF=pR

^fR is then spanned by vectors of the form
u↑↑↓↑↓¯l. These configurations may be labeled by the se-
quence of siteshCj at which we have a↓. For example, for
the state just quotedhCj= uh3,5, . . .jl. This sequence is called
the cardinality sequence. If we define the configuration
u↑↑¯↑¯l as thereferenceconfiguration, then the cardinality
sequence of the reference configuration is the null sequence
h0”j.

The augmented space theorem16 states that

kkAshnRjdll = kh0”juÃ uh0”jl, s5d

where

ÃshM Rjd =E . . .E AshlRjd p dPslRd.

PslRd is the spectral density of the self-adjoint operatorM R.
Applying s5d to the Green’s function we get
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kkGsk,zdll = kk ^ h0”juszĨ − H̃ s2dd−1uk ^ h0”jl, s6d

whereG andH s2d are operators which are matrices in angu-
lar momentum space, and the augmentedk space basis
uk ,L ^ h0”jl has the form

s1/ÎNdo
R

exps− ik ·RduR,L ^ h0”jl.

The augmented space HamiltonianH̃ s2d is constructed from
the TB LMTO HamiltonianH s2d by replacing each random
variable nR by operatorsM R. It is an operator in the aug-
mented spaceC=H ^ F. The ASF maps a disordered
Hamiltonian described in a Hilbert spaceH onto an ordered
Hamiltonian in an enlarged spaceC, where the spaceC is
constructed as the outer product of the spaceH and configu-
ration spaceF of the random variables of the disordered
Hamiltonian. The configuration spaceF is of rank 2N if there
areN muffin-tin spheres in the system. Another way of look-

ing at H̃ s2d is to note that it is thecollection of all possible
Hamiltonians for all possible configurations of the system.

The resolvent of the Hamiltonian can be expressed in the
following way:

szI − H s2dd−1 = szI − C − D1/2SD1/2 + hohd−1

= D−1/2FzI − C

D
− S+ SC − En

D
+ SDsD1/2oD1/2d

3SC − En

D
+ SDG−1

D−1/2.

Expressions in bold are matrices in angular momentum space
and all others exceptS, H s2d, andG are diagonal matrices.

In the above expression, since

D̃−1/2 = o
R

hAsD−1/2dPR ^ I + BsD−1/2dPR ^ PR
↓

+ FsD−1/2dPR ^ sTR
↑↓ + TR

↓↑dj,

where for any diagonalsin angular momentum spaced opera-
tor V

AsVd = AsVLddLL8, AsVLd = xVL
A + yVL

B,

BsVd = BsVLddLL8, BsVLd = sy − xdsVL
A − VL

Bd,

FsVd = FsVLddLL8, FsVLd = ÎxysVL
A − VL

Bd,

we get

D̃−1/2uk ^ h0”jl = AsD−1/2duk ^ h0”jl + FsD−1/2duk ^ hRjl = u1j.

The ket u1j is not normalized and we define the normalized
ket asu1l=fAsD−1dg−1/2u1j. Then we may rewrites6d as

kkGsk,zdll = k1ufzĨ − Ã + B̃ + F̃ − S̃+ sJ̃ + S̃dõsJ̃ + S̃dg−1u1l,

where

Ã = o
R

hAsCD−1d/AsD−1djPR ^ I,

B̃ = o
R

hBfszI − CdD−1g/AsD−1djPR ^ PR
↓ ,

F̃ = o
R

hFfszI − CdD−1g/AsD−1djPR ^ hTR
↑↓ + TR

↓↑j, s7d

J̃= J̃A+ J̃B+ J̃F, andõ= õA+ õB+ õF, where

J̃A = o
R

hAfsC − EndD−1g/AsD−1djPR ^ I,

J̃B = o
R

hBfsC − EndD−1g/AsD−1djPR ^ PR
↓ ,

J̃F = o
R

hFfsC − EndD−1g/AsD−1djPR ^ hTR
↑↓ + TR

↓↑j,

õA = o
R

hAsoDdAsD−1djPR ^ I,

õB = o
R

hBsoDdAsD−1djPR ^ PR
↓ ,

õF = o
R

hFsoDdAsD−1djPR ^ hTR
↑↓ + TR

↓↑j. s8d

In case there is no off-diagonal disorder due to local lattice
distortion because of size mismatch,

S̃= o
R

o
R8

AsDR
−1d−1/2SRR8AsDR8

−1d−1/2TRR8 ^ I.

This equation is now exactly in the form in which the recur-
sion method may be applied. At this point we note that the
above expression for the averagedGLLsk ,zd is exact.

The recursion method addresses inversions of infinite
matrices.8 Once a sparse representation of an operator in Hil-

bert space,H̃ s2d, is known in a countable basis, the recursion
method obtains an alternative basis in which the operator
becomes tridiagonal. This basis and the representations of
the operator in it are found recursively through a three-term
recurrence relation

uun+1j = H̃ s2duunj − anskduunj − bn
2skduun−1j s9d

with the initial choiceuu1j= uRLl ^ u1l andb1
2=1. The recur-

sion coefficientsan andbn are real and are obtained by im-
posing the orthonormalizability condition of the new basis
set as

anskd =
hnuH̃ s2dunj

hnunj
, bn−1

2 skd =
hn − 1uH̃ s2dunj

hnunj
,

and also hmuH̃ s2dunj = 0 for mÞ n,n ± 1.

To obtain the spectral function we first write the configura-
tion averagedL-projected Green’s functions as continued
fractions:
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kkGLLsk,zdll

=
b1L

2

z− a1Lskd −
b2L

2 skd

z− a2Lskd −
b3L

2 skd
�

z− aNLskd − GLsk,zd

,

whereGLsk ,zd is the asymptotic part of the continued frac-
tion. The approximation involved has to do with the termi-
nation of this continued fraction. The coefficients are calcu-
lated exactly up to a finite number of stepshan,bnj for n
,N and the asymptotic part of the continued fraction is ob-
tained from the initial set of coefficients using the idea of the
Beer and Pettifor terminator.22 Haydock and co-workers23

have carried out extensive studies of the errors involved and
precise estimates are available in the literature. Haydock24

has shown that if we carry out recursion exactly up toN
steps, the resulting continued fraction maintains the first 2N
moments of the exact result.

It is important to note that the operatorsÃ ,B̃ ,F̃ are all
projection operators in real spacesi.e., unit operators ink
spaced and acts on an augmented space basis only to change
the configuration partsi.e., the cardinality sequencehCjd,

ÃihCjl = A1ihCjl,

B̃ihCjl = A2ihCjldsRP hCjd,

F̃ihCjl = A3ihC ± Rjl.

The coefficientsA1–A3 can be expressed from Eq.s7d. Simi-
lar expressions hold for the operators in Eq.s8d. The remain-

ing operatorS̃ is diagonal ink space and acts on an aug-
mented space only to change the configuration part:

S̃ihCjl = o
x

exps− ık · xdihC − xjl.

Here thex’s are the near-neighbor vectors. The operation of
the effective Hamiltonian is thus entirely in the configuration
space and the calculation does not involve the spaceH at all.
This is an enormous simplification over the standard aug-
mented space recursion described earlier,1,2,18,19 where the
entire reduced real space part as well as the configuration
part was involved in the recursion process. Earlier we had to
resort to symmetry reduction of this enormous space in order
to make the recursion tractable. Here the rank of only the
configuration space is much smaller and we may further re-
duce it by using the local symmetries of the configuration
space, as described in our earlier Letter.1 However, this ad-
vantage is offset by the fact that the effective Hamiltonian is
energy dependent. This means that to obtain the Green func-
tions we have to carry out the recursion for each energy
point. This process is simplified by carrying out recursion
over a suitably chosen set ofseed energiesand interpolating
the values of the coefficients across the band.

III. SPECTRAL DENSITY AND BAND ENERGY

The self-energy which arises because of scattering by the
random potential fluctuations is of the form

SLsk,zd =
b2L

2 skd

z− a2Lskd −
b3L

2 skd
�

z− aNLskd − GLsk,zd

.

So the continued fraction can be written in the form 1/fz
−ẼLskd−SLsk ,Edg, whereẼLskd=a1Lskd.

The average spectral functionkkAksEdll is related to the
averaged Green’s function in reciprocal space as

kkAksEdll = o
L

kkAkLsEdll,

where

kkAkLsEdll = −
1

p
lim

d→0+
hImkkGLLsk,E − iddllj.

To obtain the complex bands for the alloy we fix a value for
k and solve for

z− ẼLskd − SLsk,Ed = 0.

The real part of the roots will give the position of the bands,
while the imaginary part of the roots will be proportional to
the lifetime. Since the alloy is random, the bands always
have finite lifetimes and are fuzzy.

IV. INTEGRATION IN k SPACE

To obtain the density of states we need to integrate over
the Brillouin zone,

kknsEdll = o
L
E

BZ

d3k

8p3kkAkLsEdll. s10d

For ordered systems the spectral function consists ofd func-
tions: Ak

0sEd=o jAjd(E−Ejskd), with j labeling a particular
energy band. The integrand being highly singular, the inte-
gral s10d has to be calculated carefully. Jepsen and
Andersen13 and Lehmann and Taut14 proposed an accurate
technique, the tetrahedron method, for obtaining such inte-
grals accurately. We may also mention here an earlier work15

which extended the tetrahedron method to the complex en-
ergy plane. However, the authors did not extend it to disor-
dered systems with an energy and wave-vector-dependent
self-energy. In this section we shall discuss an extension of
that method for application to disordered systems.

In the presence of disorder the spectral function is
smoother and we may rewrite it in terms of the real and
imaginary parts of the disorder-induced self-energy:

kkAkLsEdll =
− SL

I sk,Ed/p

fE − ẼLskd − SL
Rsk,Edg2 + SL

I sk,Ed2
. s11d

Such a function is peaked around the zeros ofE−ẼLskd
−SL

Rsk ,Ed and theSL
I sk ,Ed provides the width of the peaks.
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The spectral function behaves roughly asLorentzianin the
vicinity of its peaks. We may reduce the above expression to
one amenable to the tetrahedron integration form by the fol-
lowing trick:

=E dE8
− SL

I sk,Ed/p
fE − E8 − SL

Rsk,Edg2 + SL
I sk,Ed2d„E8 − ẼLskd…

=E dE8WkLsE,E8dd„E8 − ẼLskd…

whereWkL is defined as aweight function. Now integrating
above over the Brillouin zone, we may get the configuration-
averaged density of statessDOSd

kknsEdll = o
L
E

BZ

d3k

8p3kkAkLsEdll

= o
L
E dE8E

BZ

d3k

8p3WkLsE,E8dd„E8 − ẼLskd….

At this stage, in order to simplify notation we shall drop the
L index from allL-dependent factors and understood that the
eventual result is summed over allL. In order to perform the
above integration over the BZ, we have generalized the tet-
rahedron method developed by Jepsen and Andersen13 and
Lehmann and Taut14 to include the weight function
WksE,E8d. We have followed the idea of MacDonaldet al.25

In this generalization the energies as well as the weight func-
tions are linearly interpolated throughout the vertices of
small tetrahedrons. We label the energies at the vertices of

the ith tetrahedronẼ1
i , Ẽ2

i , Ẽ3
i , and Ẽ4

i , where the indices

correspond to increasing magnitude of the energy, i.e.,Ẽ1
i

ù Ẽ2
i ù Ẽ3

i ù Ẽ4
i , and the corner values of the weight function

areW1
i, W2

i, W3
i, andW4

i. Then the averaged DOS may be
written as

kknsEdll = VMZ E dE8o
i=1

N

Cio
k=1

4

Ik
i Wk

i , s12d

where Ik
i = IksE,E8 ,Ẽ1

i ,Ẽ2
i ,Ẽ3

i ,Ẽ4
i d, N is the number of tetra-

hedral microzones, andVMZ is the microzone volume, and
also for Ẽ1

i ,E8ø Ẽ2
i ,

Ci = 3F21F31F41/sE8 − Ẽ1d,

I1
i = sF12 + F13 + F14d/3,

Ik
i = Fk1/3, k = 2,3,4;

for Ẽ2
i ,E8ø Ẽ3

i ,

Ci = 3sF23F31 + F32F24d/E41,

I1
i = F14/3 + F13F31F23/C

iE41,

I2
i = F23/3 + F24

2 F32/C
iE41,

I3
i = F32/3 + F31

2 F23/C
iE41,

I4
i = F41/3 + F42F24F32/C

iE41;

for Ẽ3
i ,E8ø Ẽ4

i ,

Ci = 3F14F24F34/sẼ4 − E8d,

Ik
i = Fk4/3, k = 1,2,3,

I4
i = sF41 + F42 + F43d/3,

whereEmn=Ẽm−Ẽn andFmn=sE8−Ẽnd /Emn. Also kknsEdll is

zero forE8ø Ẽ1
i or E8ù Ẽ4

i .
The optical conductivity expression given in Sec. I can

also be reduced to a form suitable for the generalized
k-space integration method described above. We may write

kkssvdll = TrE dEE dE8E
BZ

d3k

8p3Jeffsk,E,vd
− SIsk,Ed/p

fE − E8 − SRsk,Edg2 + SIsk,Ed2 3 ¯

3 Jeffsk,E,vd† − SIsk,Ed/p
fE + v − E8 − SRsk,E + vdg2 + SIsk,E + vd2d„E8 − ẼLskd…

= TrE dEE dE8E
BZ

d3k

8p3WksE,E8,vdd„E8 − ẼLskd… = VMZTrE dEE dE8o
i=1

N

Cio
k=1

4

Ik
i Wk

i . s13d

This is a form similar to Eq.s12d, with W being the corre-
sponding weight function andW i the values of this weight
function at the four corners of theith tetrahedron. The inte-
gration is carried out in a very similar fashion.

V. COMPUTATIONAL DETAILS AND RESULTS

For ordered faces the calculations have been performed in
the basis of linear muffin-tin orbitals in the atomic sphere
approximation including combined corrections. The scalar-
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relativistic calculations in this case are carried out for equal
atomic spheres. Thek space integration was carried out with
a 16316316 mesh resulting in 145k points for cubic
primitive structure in the irreducible part of the Brillouin
zone.

In Fig. 1 shows how the size of the augmented space map
sin both thek and the real space representationd increases as
we increase the number of nearest-neighbor shells from a
starting site. We note that the reciprocal space map at a par-
ticular recursion step is much smaller than the real aug-
mented space map. This is because in the reciprocal aug-
mented space we generate only the different configurations.
The full real space lattice map has been collapsed using lat-
tice translational symmetry in full augmented space.

We have first carried out calculations on a simple model
of a disordered binary alloy system described by ans-state
tight-binding Hamiltonian with nearest-neighbor hopping in-
tegrals only. In Fig. 2 we compare the results obtained using
reciprocal and real space formulation of ASR. Thek space
integration has been performed in two ways. The brute force

method, where we replace the integral by a sum with appro-
priate weights at differentk points, generates some unusual
oscillations particularly in the lower part of the band. How-
ever, the tetrahedron method gives smoother results which
are in good agreement with the real space calculations as
well.

We now go over to calculations for the disordered
Ni50Pt50 alloy. We have used the minimal basis set of the TB
LMTO with nine orbitals per atomss, p anddd to set up our
Hamiltonian. In Fig. 3 we present the results for the spectral
functions for Ni50Pt50 alloy along theG-X direction. We have
chosen 11 equidistantk points between theG and X points
and show the spectral function at those points. These spectral
functions show good agreement with the same results ob-
tained from Korringa-Kohn-Rostocker sKKRd CPA
calculations.26 It may be seen that the width of the spectral
function varies considerably as a function ofk andE. There
are some simple trends concerning this behavior. The sharp
peaks on the lower band edge near theG point appear as the
s-like band. As we go fromG toward theX point thes band
hybridizes with thep band and the peak becomes wider. The
structures on the upper band edges are mostly due to the

FIG. 1. Showing how the number of lattice sites increases with
increasing number of shells in the real space and reciprocal space
maps.

FIG. 2. Comparison of the av-
erages50-50d density of states for
a model fcc alloy calculated using
the k space formulation of ASR
ssolid curved and using real space
formulation of ASR sdotted
curved. k space integration has
been performed in two ways:sad
using the tetrahedron method
sTMd sright solid curved and sbd
multiplying spectral function
AksEd by the k-point weight and
then summing up overk sleft
solid curved. In both figures we
note that the oscillations shown by
the brute force technique are
smoothed by the TM.

FIG. 3. The spectral function of Ni50Pt50 alloy plotted as a func-
tion of energy at severalk points along theG-X direction.
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overlap of thed states of Ni and Pt. The disorder effects on
thesed-dominated states are strong and there is significant
broadening.

In Fig. 4 we present the complex fuzzy bands of the dis-
ordered alloy. The disorder smearing is maximum in the
overlappingd bands of the constituents, and is negligible in
thes-like part. This is also apparent in the spectral functions
shown earlier. The sharps-like peaks flank wided-like struc-
tures in Fig. 3.

Finally using our modified tetrahedron method we have
calculated the density of states of ordered and homogeneous
disordered NiPt alloys from the spectral function. Side by
side we have also carried out the same calculation in real
augmented space. In Fig. 5 we show the,-projected density
of states for the Ni50Pt50 alloy. We compare thek space
results with those found from real space recursion. The main
improvement occurs in theeg and t2g d bands. In particular,
the sharp feature straddling the Fermi energy is better repro-

FIG. 4. sRightd Ni sdashed linesd and Ptsbold linesd energy bands on a lattice appropriate to the Ni50Pt50 alloy, in theG-X direction.
Average lattice parametera0=7.127 a.u. was fixed after minimizing the energy.sLeftd The fuzzy band of the disordered Ni50Pt50 system
plotted along the same direction.

FIG. 5. Comparison of the partial density of
states of Ni50Pt50 alloy calculated using aug-
mented space recursion insad real space formula-
tion sleft paneld and sbd k space formulation
sright paneld.
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duced in thek space recursion than in real space. The reason
for this is the early truncation of recursion in real space and
the consequent finite-size effects to which the more localized
d states are more susceptible.

In Fig. 6 stop rowd we show a comparison between the
average DOSs calculated by real and reciprocal space recur-
sions. As discussed before, it is the sharp feature straddling
the Fermi energy with a major contribution coming from the
Ni d states that is not well reproduced in the real space
technique. In this point ourk space calculations agree with
the KKR CPA results of Stauntonet al.26 In the left lower
panel of Fig. 6 we show the DOSs for pure Ni and Pt, but in
a lattice with the lattice parameter the same as in the alloy.
We may compare this with the DOS for the disordered alloy.
The rightmost three peaks at −0.25, −0.16, and −0.11 Ry of
the disordered DOS are mostly contributed by Ni whereas
the left slower-energyd structures slarge shoulder at
−0.57 Ryd come mostly from Pt. The sharp peaks in the el-
emental results are obviously because of the Van Hove sin-
gularities of the DOS. The effect of disorder mainly smears
out the sharp peaks present in the DOS. The disorder smear-
ing is more pronounced for thed-like parts of the band. We
remark that there is very little shift in the DOS-related fea-
tures between the ordered and disordered states.

Finally, in the right lower panel we show the photoem-
mission spectrum of Ni50Pt50 reported by Nahmet al.27 The
general features with a double peak straddling the Fermi en-
ergy and a lower-energy shoulder are clearly seen. The pho-
toemission spectra are convolutions of the density of states
with a weakly energy- and wave-number-dependent transi-
tion matrix. This may lead to shifting and smearing of the
prominent peak structures. Keeping this in mind, ourk space
recursion results are in good agreement with experiment.

VI. REMARKS AND CONCLUSION

We have presented an augmented space recursion formu-
lation in reciprocal space. We also present a generalization of

the tetrahedron method proposed by Jepsen and Andersen13

for inverting the spectral functions to obtain the density of
states. This technique will be useful for carrying out Brillu-
oin zone integrals for disordered alloys. We have studied
both a model alloy and NiPt. The latter was chosen since it
has a sharp structure straddling the Fermi energy and there-
fore is a sensitive test for the accuracy of our technique.
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APPENDIX A: THE AUGMENTED SPACE THEOREM

Let fsnRd be a function of a random variablenR, whose
binary probability density is given by

psnRd = xdsnR − 1d + ydsnRd.

We may then write

psnRd = −
1

p
lim
d→0

Imk↑RufsnR + iddI − M Rg−1u↑Rl.

Here, the operatorM R acts on a space spanned by the eigen-
vectorsu1Rl and u0Rl of M R, corresponding to eigenvalues 1
and 0; u↑Rl=Îxu1Rl+Îyu0Rl is called the reference state. Its
orthogonal counterpart isu↓Rl=Îyu1Rl−Îxu0Rl. The represen-
tation of M R in this new basis,

M R = S x Îxy

Îxy y
D .

Now,

FIG. 6. Comparison of the density of states of
the Ni50Pt50 alloy calculated using augmented
space recursion insad k space formulation andsbd
real space formulation.scd Density of states of Ni
ssolid lined and Ptsdotted lined on a lattice appro-
priate to the Ni50Pt50 alloy. sdd Valence-band pho-
toemission spectra of Ni50Pt50 with photon en-
ergy hn=60 sRef. 27d.
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kkfsnRdll =E
−`

`

fsnRdpsnRddnR

= −
1

p
Im E

−`

`

fsnRdk↑RusnRI − M Rd−1u↑RldnR

= −
1

p
Im o

l=0,1
o

l8=0,1

fsnRdk↑Rull

3klusnRI − M Rd−1ul8lkl8u↑RldnR

= o
l=0,1

k↑Rullfsldklu↑Rl = k↑Ruf̃ u↑Rl. sA1d

Here f̃ is an operator built out offsnRd by simply replacing
the variablenR by the associated operatorM R. The above
expression shows that the average is obtained by taking the
matrix element of this operator for the reference stateu↑Rl.
The full augmented space theorem is a generalization of this
for functions of many independent random variableshnRj.

APPENDIX B: TERMINATORS

The recursive calculation described earlier gives rise to a
set of continued fraction coefficientshan,bnj. In any practi-
cal calculation we can go only up to a finite number of steps,
consistent with our computational process. In case the coef-
ficients converge, i.e., ifuan−auøe, ubn−buøe for nùN,
we may replacehan,bnj by ha ,bj for all nùN. In that case
the asymptotic part of the continued fraction may be analyti-
cally summed to obtain

GsEd =
1

2
sE − a − ÎsE − ad2 − 4b2d

which gives a continuous spectruma−2bùEùa+2b.
Since the terminator coefficients are related to the band
edges and widths, a sensible criterion for the choice of these
asymptotic coefficients is necessary, so as not to give rise to
spurious structures in our calculations. Beer and Pettifor22

suggest a sensible criterion: given a finite number of coeffi-
cients, we must chooseha ,bj in such a way as to give, for
this set of coefficients, the minimum bandwidth consistent
with no loss of spectral weight from the band. Let us call

these valueshac,bcj. This criterion is easily translated into
mathematical terms. Thed function that would carry weight
out of the band must then be situated exactly at the band
edge. We thus demand that the continued fraction diverge
simultaneously at both the top and the bottom of the band.

At the band edges,Gsa±2bd= ±b, and so

kkGsa ± 2bdll

=
b1

2/2

±b −
1

2
sa1 − ad −

b2
2/4

±b −
1

2
sa2 − ad −

b3
2/4

�bN
2/2

±b − saN − ad

.

For a givena, thesN+1d eigenvalues of the finite tridiagonal
matrix

1
1

2
sa1 − ad

1

2
b2 0 ¯ ¯ 0

1

2
b2

1

2
sa2 − ad

1

2
b3 � A

0
1

2
b3 � � � A

A � � � � 0

A � � �

1
Î2

bN

0 ¯ ¯ 0
1
Î2

bN saN − ad

2
are values at which the Green’s function diverges. The maxi-
mum and minimum of this set of eigenvalues are those val-
ues ofb that carry weight out of the band. Thus our choice
of a is that value for which the maximum eigenvalue is the
largest and the minimum the smallest. Since the terminator
only involvesb2 we must have

bc = sup
haj

bmaxsacd = inf
haj

ubminsacdu.

With this choice the terminatorGsEd has all the Herglotz
properties required.
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