PHYSICAL REVIEW B 71, 094207(2005

Electronic structure of random binary alloys: An augmented space formulation
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We present here a reciprocal space formulation of the augmented space recursion which uses the lattice
translation symmetry in the full augmented space to produce configuration-averaged quantities, such as spectral
functions and complex band structures. Since the real space part is taken into ap@milyand there is no
truncation of this in the recursion, the results are more accurate than recursions in real space. We have also
described the Brillouin zone integration procedure to obtain the configuration-averaged density of states. We
apply the technique to the Pt alloy in conjunction with the tight-binding linear-muffin-tin orbital basis.
These developments in the theoretical basis were necessitated by our future application to obtain optical
conductivity in random systems.
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I. INTRODUCTION space? One way of reducing the gigantic rank of the Hamil-
tonian in a real-space-labeled basis is to go over to reciprocal
The augmented space recursiOhSR) carried out in a space. In th&-labeled basis, for a basis involving ordyp,
minimal basis set representation of the tight-binding linearand d states, the operators in reciprocal space have rank 9.
muffin-tin orbital method(TB LMTO) has been proposed However, to do this we require lattice translational symme-
earlier by u$? as an interesting technique for incorporationtry. In a random binary alloy, for instance, this is not imme-
of the effects of configuration fluctuations about the meardiately possible. However, the full augmented space, which
field [the coherent potential approximati¢@PA)] for ran- s the direct product of the real space spanned by the site-
dom substitutionally disordered alloys. This can be achievedhbeled basi$R;} and the configuration space spanned by the
without the usual problems of violation of the Herglotz ana-configurations of the system, possesses translational as well
lytic propertie$ of the approximated configuration-averaged as point group symmetriésConfigurations of a binary alloy
Green’s functions for the Schrodinger equation for these rancan be labeled by a binary sequence of 0 aridrT and | if
dom alloys. Earlier we had used this technique to look atsing models appeal to you mgrand uniquely described by
short-ranged ordering in such systehisas well as local the cardinality sequenci}, i.e., the sequence of positions
lattice distortions caused by size difference between the conyhere we hag a 1 or a| state. We had shown earlier that in
stituents of the allo. the subspace spanned by the reference s{@esn which
One of the dissatisfying features of the method, and thighe configuration average is described, we have full lattice
has to do with the recursion part, is the truncation of theygnsiation symmetry provided the disorder is
continued fraction expansion of the Green’s function. Trun-homogeneou¥’ The same statement would be true if there is
cation in the configuration space part of the problem can b@hort-ranged order or local lattice distortions, provided the
handled easily. We truncate out only those configurations thajhort-ranged order or local lattice distortions is probabilisti-
occur with low probability and contribute to the tail of the cajly identical anywhere in the system. A consequence of this

continued fraction. It is on the truncation in real space thais that probability densities are independent of the site label
we do not have a controllable handle. Any truncation in realand the configuration-averaged quantity

space means that our recursion has been carried out on a

finite cluster and edge effects become important. Quantities > explik -R -k’ -R)K(G(R,R;,2)))
that converge fast are integrals of the density of states mul- R R
tiplied by well-behaved functions of energy. We can also =G(k,2) 5k k).

estimate the errors committed by truncating at a particular
step/ However, the errors in the density of states itself can-Based on this, we had proposed a TB LMTO recursion in the
not be controlled. This is because even a small perturbatioreciprocal augmented spateThe recursion, as we shall
(like truncation after a large number of recursive sjé@s a  show subsequently, is entirely in configuration space for each
profound effect on the spectrum of the Hamiltoniesee k label. The truncation is also in configuration space alone
HaydocK). The problem of truncation has always been laidand leads to calculation of the configuration-averaged spec-
at the door of the recursion method. tral densities. These spectral densities are not a bunch of
Is it not possible to modify the TB LMTO ASR in such a functions, as in the case of ordered systems, but the complex
way that the truncation is carried out only in configurationself-energies, in general both energy dndependent, shift
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the peaks as well as broaden them, leading to fuzzy, complerefers to the position of atoms in the solid ahds a com-

band structures. posite label{¢,m,ms for the angular momentum quantum
Although our method allows us to carry our augmentednumbers.C, A, and o are potential parameters of the TB

space recursion into reciprocal space, for many physicalMTO method;o™! has dimension of energy and tEe's are

problems we need to carry our integration over the Brilluointhe reference energies about which the muffin-tin orbitals are

zone. For instance, to obtain the density of states or opticdinearized.

conductivity? For a disordered binary alloy we may write

3,
wEn= | Kraken, Cru= Chng-+ C3(1-ng),
BZ 877

ARZ= (A g+ (ADMAL - ng),

3
{o(w)))y = f dE f d—k3Tr[Jeﬁ(k,E,w)
6z 87 Ore= 0Nz + OF(1 ~NR). 2)

eff T
XA BT E 0) (A E+ w))]. Here {ng} are the random site-occupation variables which

Here ((A(k,E))) is the configuration-averaged spectral den-take values 1 and O depending upon whether the muffin-tin
sity and disorder scattering renormalizes the current term itebeled byR is occupied by arA or B type of atom. The
the Kubo-Greenwood formula t#f(k ,E, w). atom sitting a{R} can be of either typ&(ng=1) with prob-

Another contribution of this paper is to modify the tetra- ability x or B(ng=0) with probability y. The augmented
hedral method of Brilluoin zone integration, so that we mayspace formalisnfASF) now introduces the space of configu-
carry out a similar integration technique for integrands whichrations of the set of binary random variableg}: ®.
are smoother than the highly singular spectral functions of In the absence of short-ranged order, each random vari-
the ordered systems. The proposed Brilluoin zone integratioableng has associated with it an operatdiz whose spectral
is closely related to that of Jepsen and Andetdem Leh-  density is its probability density:
mann and Tadt for ordered systems.

1
Il. AUGMENTED SPACE RECURSION IN k SPACE P(Ng) =x3(Ng = 1) +yalng) == !;'Lno Im(TRl(ng +i9)l

The augmented space recursion based on the tight-binding -MgrlY1R), 3
linear muffin-tin orbitals method has been described thor-
oughly in a series of articles>15-1°We shall introduce the WhereMg is an operator whose eigenvalues 1, O correspond
salient features of the ASR which will be required by us into the observed values ok and whose corresponding eigen-
our subsequent discussions. vectors{|1g),|0r)} span a configuration spaeg of rank 2.

We shall start from a first-principles tight-binding linear- We may change the basis {0g),||r)} (see Appendix A
muffin-tin orbital€%21in the most localized representatit®m  and in this new basis the operaidr is:
representation This is necessary, because the subsequent re-

cursion requires a sparse representation of the Hamiltonian. Nr— Mg=XPL+yPk+ Vxy(7h + 7). (4)
In this representation, the second-order alloy Hamiltonian is
given by Two new vectors span the spagg. The full configuration

space®=II3 ¢y is then spanned by vectors of the form

(2 = -
H*=E,+h—hoh, [TT17]---). These configurations may be labeled by the se-

where quence of sitegC} at which we have d. For example, for
) u the state just quote’}=|{3,5, .. }). This sequence is called
h=2> (Cr-ERPr* 2 2 AR SrrAr TR, the cardinality sequencelf we define the configuration
R RR [T7---1- -y as thereferenceconfiguration, then the cardinality
sequence of the reference configuration is the null sequence
o= 2 ORrPR- 1 {0}
R The augmented space theorférstates that
Cr,E,r, AR, andog are diagonal matrices in angular momen- ~
tum space: (AU = (B} A0}, (5)
Cr=CridL, ERr=ERribL, where
Ar=AR 6Ly OR=OR. S|/, Z\({M RH = f s f AR [T dP(NR).

and Sgr is a matrix of rankL,.. Pr=|RXR| and Trr
=|R){R’| are projection and transfer operators in the HilbertP(\g) is the spectral density of the self-adjoint operaibs.
space’H spanned by the tight-binding badigR)}. Here, R Applying (5) to the Green’s function we get
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(G(k,2) =(k @ {0}|(Z ~-H?) Yk @ {0}),  (6) B=2 {B[(zl -C)AJYAA ™} Pr® Pk,
R

whereG andH@ are operators which are matrices in angu-

lar momentum space, and the augmentedspace basis ~ _ ~
lk,L&{0}) has the form F=X (Fl@ -CATVAMTIPRe (T + T}, ()

(1/\’N)§ exp(-ik - R)R L © {0}). 3:3A+35+3F, and©0=0,+0g+0g, Where

The augmented space Hamiltonibi®? is constructed from Ja=2{A[(C-E)AJAAYIP® T,
the TB LMTO HamiltonianH@ by replacing each random R

variable ng by operatorsMy. It is an operator in the aug-

mented spaceV=H®®. The ASF maps a disordered 'jB = > {B[(C-E,)AJAA™Y}Pr ® Pk,
Hamiltonian described in a Hilbert spag¢éonto an ordered R

Hamiltonian in an enlarged spade, where the spac# is
constructed as the outer product of the spicand configu-
ration spaced of the random variables of the disordered
Hamiltonian. The configuration spadeis of rank 2" if there
areN muffin-tin spheres in the system. Another way of look-
ing atH® is to note that it is thecollection of all possible
Hamiltonians for all possible configurations of the system.

The resolvent of the Hamiltonian can be expressed in the _ . i
following way: Og = >, {B(OA)A(A™)}Pr @ Pk,

R
(2l - H(Z))‘l =(z21 -C- AY2SAYZ + hOh)_l

Je = 2 FL(C-E)AYAA Y Pr @ {74 + T4},
R

Ba =2 {AAAA™YIPR® T,
R

- - O = >, {F(OA)A(A™Y)}Pr ® {TL + T4} 8
:A_m{mAc _S+(CAE,,+S)(A1,ZOA1,2) #= 2 (FOAAMIPre Tk + 7{) 8)
C-E -1 In case there is no off-diagonal disorder due to local lattice
x(T” + S)] A2, distortion because of size mismatch,
~ L L
Expressions in bold are matrices in angular momentum space 5= 2 2 A(AR) M ?SprA(Ag) VP Tkg @ 1.
and all others exce®, H®, andG are diagonal matrices. ROR

In the above expression, since This equation is now exactly in the form in which the recur-

sion method may be applied. At this point we note that the
above expression for the averagéd (k,z) is exact.
The recursion method addresses inversions of infinite

A= (AA)Pr o T+B(A )Py ® Ph
R

+FA™)Pr @ (7@ + 7¢RT)}, matrices® Once a sparse representation of an operator in Hil-

tor V method obtains an alternative basis in which the operator
becomes tridiagonal. This basis and the representations of

AV)=ANV)SL, AVD =XV +YVE, the operator in it are found recursively through a three-term

recurrence relation

|Uns1t = Hup = @ ()|t = B2(K) U} (9)

F(V)=F(V)é., F(V)= \r’xT/(Vﬁ—VE), with the initial choice|u;}=|RL)®|1) and 82=1. The recur-
sion coefficientsy,, and 3, are real and are obtained by im-

B(V)=B(V)dL, B(V)=(y-x(Vg-VE),

we get posing the orthonormalizability condition of the new basis
~ t

A%k e (o) =AQ Dk ® 0) + FA k@ RY=(1).

The ket|1} is not normalized and we define the normalized a (k) = {n|H®|n} 5 (K) = {n-1/H?|n}

ket as|1)=[A(A™1)]"Y31}. Then we may rewrité6) as n {n} = "t {nn}

G(k,2)=(1[Z —A+B+F-S+@J+908J + 9] Y1), -
(G20 =1l (J+ 580 + 9171 and also {mH@|n}=0form##nnz1.
where
B To obtain the spectral function we first write the configura-
A= E {A(CA™H/AA Y PR T, tion averagedL-projected Green'’s functions as continued
R fractions:
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(G (K, 2))) Ill. SPECTRAL DENSITY AND BAND ENERGY
,gi The self-energy which arises because of scattering by the
= B2 (K) ) random potential fluctuations is of the form
z-ay (k) - = > 2
Ba(K) _ Ba (k)
- - k,z) =
77 eall) - Flle? A K)
z-ay (k) - -

z- an (k) - T'(k,2)

whereT', (k,2) is the asymptotic part of the continued frac- z-ay (k) -T'(k,2)
tion. The approximation involved has to do with the termi- So the continued fraction can be written in the forn{z/
nation of this continued fraction. The coefficients are calcu—E, (k)-3, (k,E)], whereE, (k)= ay (K).

lated exactly up to a finite number of stefs,, By} for n The average spectral functidtA,(E))) is related to the
<N and the asymptotic part of the continued fraction is Ob'averaged Green's function in reciprocal space as
tained from the initial set of coefficients using the idea of the

Beer and Pettifor terminatéf. Haydock and co-workefd UAE))) = D (AL(E)Y,
have carried out extensive studies of the errors involved and L
precise estimates are available in the literature. Haytfock
has shown that if we carry out recursion exactly upNo
steps, the resulting continued fraction maintains the fikst 2 1
moments of the exact result. (ALE)) =- ;JL”S+{|m<<GLL(k:E_ 19N}

It is important to note that the operatofs B,F are all
projection operators in real Spaf%_, unit operators irk To obtain the Complex bands for the aIon we fix a value for
space and acts on an augmented space basis only to chandfeand solve for
the configuration parti.e., the cardinality sequengg}),

where

z-E (k) -3, (k,E) = 0.

Al[chH = Aqll{Ch, The real part of the roots will give the position of the bands,
while the imaginary part of the roots will be proportional to

the lifetime. Since the alloy is random, the bands always
have finite lifetimes and are fuzzy.

Blich =AdlichaR e {ch),

— IV. INTEGRATION IN k SPACE
FI{ch = Ad{lc £ R).

To obtain the density of states we need to integrate over

The coefficientsA;—A; can be expressed from EF). Simi-  the Brillouin zone,

lar expressions hold for the operators in E8). The remain- 5

ing operatorS is diagonal ink space and acts on an aug- Un(E))) =D d—k3<(Ak,_(E)>>. (10)
mented space only to change the configuration part: L Jez 8

= _ For ordered systems the spectral function consistsfahc-
S”{CD_% exp(= 1k - )HC = xb. tions: AE(E):E,-Ajﬁ(E—Ej(k)), with j labeling a particular
energy band. The integrand being highly singular, the inte-
Here they’s are the near-neighbor vectors. The operation ofgral (10) has to be calculated carefully. Jepsen and
the effective Hamiltonian is thus entirely in the configuration Andersef® and Lehmann and Taldtproposed an accurate
space and the calculation does not involve the spaeg all.  technique, the tetrahedron method, for obtaining such inte-
This is an enormous simplification over the standard auggrals accurately. We may also mention here an earlier #ork
mented space recursion described eatfef!®where the which extended the tetrahedron method to the complex en-
entire reduced real space part as well as the configuratiogrgy plane. However, the authors did not extend it to disor-
part was involved in the recursion process. Earlier we had tolered systems with an energy and wave-vector-dependent
resort to symmetry reduction of this enormous space in ordeself-energy. In this section we shall discuss an extension of
to make the recursion tractable. Here the rank of only théhat method for application to disordered systems.
configuration space is much smaller and we may further re- In the presence of disorder the spectral function is
duce it by using the local symmetries of the configurationsmoother and we may rewrite it in terms of the real and
space, as described in our earlier Lettéfowever, this ad- imaginary parts of the disorder-induced self-energy:
vantage is offset by the fact that the effective Hamiltonian is -3 (K.E)
energy dependent. This means that to obtain the Green func- UALE))) = — LBl ]
tions we have to carry out the recursion for each energy [E—EL(k)—Ef(k,E)]2+E'L(k,E)2
point. This process is simplified by carrying out recursion _
over a suitably chosen set séed energieand interpolating Such a function is peaked around the zerosEefE, (k)
the values of the coefficients across the band. —Ef(k ,E) and theE'L(k,E) provides the width of the peaks.

(11
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N 4

The spectral function behaves roughly lasrentzianin the A

vicinity of its peaks. We may reduce the above expression to {n(E))) =Vuz f dE' >, C'E LV, (12
one amenable to the tetrahedron integration form by the fol- =1 k=1

lowing trick:

wherell=I(E,E',E|,E,,EL,E), N is the number of tetra-
hedral microzones, andy,; is the microzone volume, and
SE' - EL(K)) also forE} <E'<E),

C' = 3F,yF3iF4//(E' - Ey),

_ f i -3U(K,E)m
- [E-E -3Rk,BE)2+3! (k,E)?

= | dE'W, (E,E")S(E’ - EL(K)) .
f 11 = (Fio+ Fiz+ F1g)/3,
whereW,, is defined as aveight function Now integrating

above over the Brillouin zone, we may get the configuration-

averaged density of stat¢BOS for ~Ei2 <FE $Ei3

l.=Fu/3, k=2,3,4;

C'=3(F,3F31 + FaoF24)/Eay,

d3k
(nEN =2 F«AkL(E)» .
L JBz OT =F14/3 +F1gF31F2dC'Ex,

d*k ~ ) )
= f dE,f @WKL(E,E’)&E’ -E (k). Iy = Fgf3 +F5,F3J/CEyy,
L BZ

I5=F3y/3 +F3,F,9/CEyy,
At this stage, in order to simplify notation we shall drop the 3=Fad aFdCEa
L index from allL-dependent factors and understood that the I, = F1/3 + F4oF 5P 3 C'Eyy;
eventual result is summed over &llIn order to perform the
above integration over the BZ, we have generalized the teffor EI <F’ <E4,
rahedron method developed by Jepsen and AndErsemnl
Lehmann and Talt to include the weight function
WW(E,E"). We have followed the idea of MacDonadd al 2>
In this generalization the energies as well as the weight func-
tions are linearly interpolated throughout the vertices of
small tetrahedrons. We label the energies at the vertices of

the ith tetrahedrorE};, Ej, Eb, and Ej, where the indices whereE,,,=E,,~E, andFp,=(E' - Ep)/Enn Also (n(E))) is
correspond to increasing magnitude of the energy, E§ zero forE/<EI or E’>E4

C'= 3F14F24F34/(E4 -E'),
=F/3, k=1,2.3,

= (Fas+ Faa+ F43/3,

>E,> E4, and the corner values of the weight function  The optlcal conductivity expression given in Sec. | can
areW,, Wz, W3, andW,. Then the averaged DOS may be also be reduced to a form suitable for the generalized
written as k-space integration method described above. We may write
|
a3k -3(k,E)/m
=Tr | dE | dE' | ——J3°"(k,E, : X
(ot f f LZ 8" “EECE 3Rk B+ 3k Y
-3(k,E)/7 -
x 3k, E, )" ’ S(E' - E (K
( w) [E+w—E'—ER(k,E+w)]2+2l(k,E+w)2 ( L( ))
d3|( N 4
:TrdeJdE'f ka(E,E',w)é(E’—EL(k)):VMZTrJdEJdE’E C' > 1IW,. (13)
gz 87 i=1 k=1

This is a form similar to Eq(12), with W being the corre- V. COMPUTATIONAL DETAILS AND RESULTS

sponding weight function anW/' the values of this weight For ordered faces the calculations have been performed in
function at the four corners of thi¢h tetrahedron. The inte- the basis of linear muffin-tin orbitals in the atomic sphere
gration is carried out in a very similar fashion. approximation including combined corrections. The scalar-
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FIG. 1. Showing how the number of lattice sites increases with 1 3. The spectral function of BPt, alloy plotted as a func-
increasing number of shells in the real space and reciprocal spaggy of energy at severdl points along thd™-X direction.
maps.

method, where we replace the integral by a sum with appro-
Priate weights at different points, generates some unusual
oscillations particularly in the lower part of the band. How-
ever, the tetrahedron method gives smoother results which
are in good agreement with the real space calculations as

relativistic calculations in this case are carried out for equa
atomic spheres. Thie space integration was carried out with
a 16X 16X 16 mesh resulting in 14% points for cubic

primitive structure in the irreducible part of the Brillouin

zone. . We now go over to calculations for the disordered
In Fig. 1 shows how the size of the augmented space maRj_ pt., alloy. We have used the minimal basis set of the TB

(in both thek and the real space representaliitreases as | MTO with nine orbitals per atongs, p andd) to set up our
we increase the number of nearest-neighbor shells from gamiltonian. In Fig. 3 we present the results for the spectral
starting site. We note that the reciprocal space map at a pafunctions for NiPts, alloy along thel-X direction. We have
ticular recursion step is much smaller than the real augehosen 11 equidistark points between th& and X points
mented space map. This is because in the reciprocal augnd show the spectral function at those points. These spectral
mented space we generate only the different configurationsunctions show good agreement with the same results ob-
The full real space lattice map has been collapsed using latained from Korringa-Kohn-Rostocker (KKR) CPA
tice translational symmetry in full augmented space. calculations’® It may be seen that the width of the spectral
We have first carried out calculations on a simple modefunction varies considerably as a functionkondE. There
of a disordered binary alloy system described bysastate are some simple trends concerning this behavior. The sharp
tight-binding Hamiltonian with nearest-neighbor hopping in- peaks on the lower band edge near Ehpoint appear as the
tegrals only. In Fig. 2 we compare the results obtained using-like band. As we go fronI" toward theX point thes band
reciprocal and real space formulation of ASR. Thespace hybridizes with thep band and the peak becomes wider. The
integration has been performed in two ways. The brute forcatructures on the upper band edges are mostly due to the

FIG. 2. Comparison of the av-
erage(50-50 density of states for
a model fcc alloy calculated using
the k space formulation of ASR
(solid curve and using real space
formulation of ASR (dotted
curve. k space integration has
been performed in two wayga)
using the tetrahedron method
(TM) (right solid curve and (b)
multiplying  spectral  function
A(E) by the k-point weight and
then summing up ovek (left
solid curvg. In both figures we
note that the oscillations shown by
Energy the brute force technique are
smoothed by the TM.

0.15 -1 - —0.15

e
=

Density of States
Density of States

0.05
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FIG. 4. (Right) Ni (dashed linesand Pt(bold lineg energy bands on a lattice appropriate to theyRli, alloy, in theI"-X direction.
Average lattice parametey=7.127 a.u. was fixed after minimizing the ener@yeft) The fuzzy band of the disordered P, system

plotted along the same direction.

overlap of thed states of Ni and Pt. The disorder effects on

Finally using our modified tetrahedron method we have

thesed-dominated states are strong and there is significantalculated the density of states of ordered and homogeneous

disordered NiPt alloys from the spectral function. Side by
In Fig. 4 we present the complex fuzzy bands of the disside we have also carried out the same calculation in real

ordered alloy. The disorder smearing is maximum in theaugmented space. In Fig. 5 we show thprojected density

overlappingd bands of the constituents, and is negligible inof states for the NyPt, alloy. We compare th& space

the s-like part. This is also apparent in the spectral functionsresults with those found from real space recursion. The main

broadening.

shown earlier. The shaplike peaks flank widal-like struc-

tures in Fig. 3.

improvement occurs in the; andt,y d bands. In particular,

the sharp feature straddling the Fermi energy is better repro-

2 T T T T T T T
B S state

T S state

" p state

Density of States (states/Ryd.atom.spin)
=)

| e, state 1 e, state __

5 — —— —

0 I | 1 1 I 1 \__ | 1 1 | 1 I 1 \—_‘

-0.8 -0.6 -0.4 -0.2 0 -08 -0.6 -0.4 -0.2 0
Energy (Ryd.) Energy (Ryd.)
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FIG. 5. Comparison of the partial density of
states of NjgPto alloy calculated using aug-
mented space recursion (@) real space formula-
tion (left pane) and (b) k space formulation
(right pane].
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FIG. 6. Comparison of the density of states of
the NigPtg alloy calculated using augmented
space recursion ifa) k space formulation angb)
real space formulatioric) Density of states of Ni
(solid line) and Pt(dotted ling on a lattice appro-
priate to the NjgPtsq alloy. (d) Valence-band pho-
toemission spectra of NPty with photon en-
ergy hv=60 (Ref. 27.
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duced in thek space recursion than in real space. The reasothe tetrahedron method proposed by Jepsen and Andérsen
for this is the early truncation of recursion in real space andor inverting the spectral functions to obtain the density of
the consequent finite-size effects to which the more localizedtates. This technique will be useful for carrying out Brillu-

d states are more susceptible. oin zone integrals for disordered alloys. We have studied

In Fig. 6 (top row) we show a comparison between the both a model alloy and NiPt. The latter was chosen since it
average DOSs calculated by real and reciprocal space recuras a sharp structure straddling the Fermi energy and there-
sions. As discussed before, it is the sharp feature straddlinfpre is a sensitive test for the accuracy of our technique.
the Fermi energy with a major contribution coming from the
Ni d states that is not well reproduced in the real space
technique. In this point ouk space calculations agree with
the KIKI? CP’% resulths of ﬁtaur(ljtget faLze In th(_a Ieg Iowcta)r . One of us(K.K.S.) would like to thank Professor O. K.
galzfticc:a \I/:v||§t1h thvt\e/elasttig\év :)a?a?netesr 'f;\;psarl?nl:l;niniﬁe ;Itlc')r;Andersen, MPI Stuttgart, for kind hospitality and several im-
We may compare this with the DOS for the disordered allc)y.portant discussions during the time this work was developed.
The rightmost three peaks at -0.25, -0.16, and -0.11 Ry of
the disordered DOS are mostly contributed by Ni whereas APPENDIX A: THE AUGMENTED SPACE THEOREM
the left (lower-energy structures (large shoulder at
-0.57 Ry come mostly from Pt. The sharp peaks in the el- Let f(ng) be a function of a random variablg, whose
emental results are obviously because of the Van Hove sirbinary probability density is given by
gularities of the DOS. The effect of disorder mainly smears
out the sharp peaks present in the DOS. The disorder smear- p(NR) = x8(Ng = 1) +ya(ng).
ing is more pronounced for thetlike parts of the band. We
remark that there is very little shift in the DOS-related fea-
tures between the ordered and disordered states.

Finally, in the right lower panel we show the photoem- 1
mission spectrum of NiPty, reported by Nahnet al?” The __ 15 SO L
general features with a double peak straddling the Fermi en- P(NR) = W!slir:) (Tl +19)1 =Ml ™1
ergy and a lower-energy shoulder are clearly seen. The pho-
toemission spectra are convolutions of the density of stategere, the operatavi acts on a space spanned by the eigen-
with a weakly energy- and wave-number-dependent {ransigectors|1g) and|0g) of M, corresponding to eigenvalues 1
tion matrix. This may lead to shifting and smearing of the g, 0;|TR>:&|1R>+\@|OR> is called the reference state. Its

promiqent peak structyres. Keeping this in mind, bm_pace orthogonal counterpart {$ )= \;;,| 19— \&|OR>- The represen-
recursion results are in good agreement with experiment. i5iion of Mg in this new basis
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We may then write

VI. REMARKS AND CONCLUSION M= ( X_ \xy)'
VXY Y
We have presented an augmented space recursion formu-
lation in reciprocal space. We also present a generalization dfiow,
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® these valuega., B;}. This criterion is easily translated into
() =f f(nr)p(n)dng mathematical terms. Thé function that would carry weight
‘°° out of the band must then be situated exactly at the band
1 * N edge. We thus demand that the continued fraction diverge
=-—1Im f f(nR)(1RI (Nl = M) TR)dNg simultaneously at both the top and the bottom of the band.
‘°° At the band edged,(a+28)=+p4, and so
1
=-=1Im X X f(nR)(TRr\) (Glax2p)))
T A=01y=01 ) 212
X(N|(ngl =M )N XN [TR)dNg - 1( : B2l4
~ *-=(y—a)—
= 3 AN =(-fflTe. (A1) E D P - .
A=0,1 B 2(a2 %) B2
By
Heref is an operator built out of(ng) by simply replacing tp-(an~—a)

the varigblenR by the associated operatth . The aboye For a givena, the (N+1) eigenvalues of the finite tridiagonal
expression shows that the average is obtained by taking ﬂ}ﬁatrix

matrix element of this operator for the reference stagg.
The full augmented space theorem is a generalization of this [ 1
for functions of many independent random varialles. 5(0‘1_ @) 5132 0 - - 0

APPENDIX B: TERMINATORS %/32 %(az— @) %,33
The recursive calculation described earlier gives rise to a 1
set of continued fraction coefficienfa,, 8,}. In any practi- 0 —Bs
cal calculation we can go only up to a finite number of steps, 2
consistent with our computational process. In case the coef- : 0
ficients converge, i.e., ifa,—a|<e€, |B,—B|<e for n=N,
we may replacga,, 8y by {a, B} for all n=N. In that case : Té:BN
the asymptotic part of the continued fraction may be analyti- v
cally summed to obtain

1
0 ce e 0 By (ay-a)
e V2
I'(E) = l(E— a=V(E-a)?-48%)
2 are values at which the Green’s function diverges. The maxi-
] ) ) mum and minimum of this set of eigenvalues are those val-
which gives a continuous spectrum-28=E=a+2B. g5 ofg that carry weight out of the band. Thus our choice
Since the terminator coefficients are related to the bangs , is that value for which the maximum eigenvalue is the

edges and widths, a sensible criterion for the choice of thes%rgest and the minimum the smallest. Since the terminator
asymptotic coefficients is necessary, so as not to give rise t8n|y involves 82 we must have

spurious structures in our calculations. Beer and Petfifor

suggest a sensible criterion: given a finite number of coeffi- Be = SUPBrmad ac) = inf| Bmin(ao)|.

cients, we must choosr, 8} in such a way as to give, for ta} ta}

this set of coefficients, the minimum bandwidth consistentWith this choice the terminatoF(E) has all the Herglotz
with no loss of spectral weight from the band. Let us callproperties required.
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