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Irregular lattice model for quasistatic crack propagation
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An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice
elements are defined on the edges of a Delaunay tessellation of the medium. Théochradi) tessellation is
used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This
property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of
fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numeri-
cal simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are pre-
sented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced
brittle-matrix composites.
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I. INTRODUCTION continua. A gradient continuum includes higher-order terms

. . . and an internal length scale, which are absent in the con-
The use of discrete, one-dimensional elements to repre: g

sent structural continua dates back to the work ofinuum theory. of linear elasticity. By virtue o.f. nodal site
Hrennikoff! The modern counterparts of such discrete Sys_symmetry, lattices formed frpm regularly positioned nqdal
tems are lattice models, which are composed of simple, onaites can quel uniform straining. However, regular Iattm;es
dimensional mechanical elements connected on a dense 480d to provide low energy pathways for element breaking
of nodal sites that are either regularly or irregularly and, therefore, can strongly bias the cracking direction. Ir-
distributec? These models have their primary justification in regular lattices"*?exhibit less bias on cracking direction and
the physical structure of matter at a very small scale, wheréffer freedom in domain discretization, yet generally do not
material can be seen as a collection of particles in equilibprovide an elastically uniform description of the material.
rium with their interaction forces. Lattice models have also In this paper, we utilize beam-type elements in an irregu-
been used to study the behavior of a variety of materials dar lattice model of fracture for quasibrittle materials such as
larger scales, with particular interest in their disorder andconcrete composites. The scaling of element stiffness terms
breakdown under loadirg? is based on a Voronoi discretization of the material domain
When subjected to loading, the lattice network has elastiand provides an elastically uniform description of the mate-
strain energyH(u), whereu={u,, ... ,uy} are the general- rial under uniform modes of straining. This Voronoi scaling
ized displacements of thd nodal sites. On minimizingt ~ was introduced by Chrigt al,'3 who investigated the pos-
with respect tou, a system of equations is obtained, from sibility of carrying out quantum field theory computations
which u is determined. The breaking of an element in aysjng a random lattice. The elastically uniform lattice serves
lattice n_etwork is based on criteria in terms of element strai.nas a basis for the explicit modeling of heterogeneous fea-
generalized force, or energy, as determined from the disgres; such as inclusions and fibers. Fracture is modeled us-
placement solution. In the classical approach, an element {5 5 cohesive description of cracking. Closing pressures as-

removed from the network if it meets the breaking C.r?terion'sociated with the cohesive crack law blunt the singularity
The procedure is repeated, where only the most critical elethat would exist at the crack tip in linear elastic fracture

ment is removed fo.r gach solution of the equation set. I‘Oadmechanlcs. This reduces nodal rotations that might otherwise
ing on the network is incremented only after all elements are . ; .

o L ) . accentuate differences between theories based on gradient
within the limits set by the breaking criterion.

Lattice models differ mainly in the manner in which continua and classical linear elasticity. In contrast to most

neighboring nodal sites interact via the lattice elements. WitHattice models, element breaking is gradual and governed by
respect to modeling material fracture, the simplest and one di€S that provide an energy conserving, objective represen-
the most popular forms of interaction is through central forcd@tion of fracture through the irregular lattice.

(or axia) springs*~® A more general form of interaction is ~ Numerical examples are presented to demonstrate the ac-
provided by the Born modélwhich includes both axial and curacy and applicability of the lattice model in terms of its
transverse stiffnesses, although this model in not rotationall¢lasticity and fracture properties. These capabilities provide
invariant. With the introduction of rotational degrees of free-an effective framework for the modeling of fracture in
dom at the element nodes, bond-bendingranular, and heterogeneous materials. For instance, the lattice model pro-
Euler-Bernoulli bearh'® models overcome the deficiency of posed herein can serve as a basis for modeling fracture
the Born model and allow for a more general interactionin fiber-reinforced brittle-matrix composites and in other
between the neighboring sites that, in the limit, relate to anultiphase materials when each phase is assumed to be
gradient continuum, such as Mindlin-Toupin or Cosserathomogeneous.
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FIG. 2. Basic element of the spring network model.

here, two translational and one rotational degrees of freedom
are defined at each lattice node.

IIl. LATTICE ELEMENT DESCRIPTION
A. Elasticity model

The lattice element, shown in Fig. 2, consists of a zero-
size spring set that is connected to the lattice nodes via rigid
. ! arms. The spring set is positioned at the midpoint of the
(C] SLE -\ /1. T 1 - - Voronoi edge common to the two nodes. This general ap-
proach has evolved from the rigid-body-spring concept of
Kawail>16 Each spring set consists of normal, tangential,
and rotational springs that are defined as local to the com-
mon edge and assigned stiffnessgs k;, and k,, respec-

Il. DOMAIN DISCRETIZATION tively. These stiffnesses are simple functions of the distance,
15, between the lattice nodésandJ and the length of the
ommon Voronoi edges,,

FIG. 1. (a) Dual tessellations of a two-dimensional set of points
and (b) Voronoi diagram partitioning of a multiphase material.

h
The elastic properties of the material are discretized using
a Voronoi diagram on an irregular set of poittBy defini-

tion, the Voronoi cell associated with sités the set of points k,=EA;/h;,

closer to sitd than all other sites in the domajfrig. 1(a)].

The Voronoi partitioning of the material domain is robust and k.= EA/h, (1)
facilitates a high degree of preprocessing automation. Ad-

vantages of this approach include the ability to do the fol- -

lowing: ks = koS/12,

(1) Explicitty model material structure, such as the where A;=s;t, with t being the thickness of the planar
boundaries between two phagesich generally do not run  model andE being the elastic modulus of the continuum
along the grid lines produced by a regular triangular ormaterial. The systematic scaling of the spring stiffnesses
square lattice This can be done by strategically placing given in Eq.(1) provides an elastically homogeneous repre-
semiregularly spaced points prior to random filling of thesentation of the continuud®;'” which is necessary for the
domain[Fig. 1(b)]. objective modeling of fracture described later in this work.

(2) Grade average cell siz@grid point density, which  The sames;/h; scaling relation has been used for random
can be advantageous for improving resolution in critical re-walks on arbitrary set8 and for solving two-dimensional
gions of the domain, while reducing computational expensend three-dimensional diffusion problems on irregular

elsewhere. grids1°20Lattice models are limited in their ability to repre-
(3) Perform adaptive mesh refinement in nonlinear orsent Poisson effects in linear elasticity, due to the unidirec-
time-dependent problems. tional structure of the lattice elements. A limited range of

In the following, the generator points of the Voronoi diagrammacroscopic Poisson ratios can be modeled by the regular
are the lattice sitegnodes, whereas the edges of the corre- arrangement of lattice elements or by the adjustment of ele-
sponding Delaunay triangulation define the lattice elemeniment stiffness coefficients, but a local realization of the Pois-

connectivitieg Fig. 1(a)]. For the planar analyses consideredson effect is not obtained. The proposed model can represent
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a range of macroscopic Poisson ratios by settirgak,,
where O<a=<1, but for k;# k, the material model is not
elastically homogeneod$.Schlangen and Garboé%ipro-
vide an alternative approach to obtaining an elastically uni-
form random lattice, which involves the iterative refinement
of the lattice element properties.

Due to the arrangement of its six nodal degrees of free-
dom, the element shown in Fig. 2 is similar to a beam-spring
element with axial stiffness, such as those used by Schlangen
and van Mief! to model elasticity and brittle fracture at the
material scale. For the special case of a square lattice, the
two approaches provide the same element stiffness
matrices'® provided thes;/h; scaling is also used for the
beam element properties. In general, however, the stiffness
formulations are different, partly because the spring set is
located eccentrically to the element axi3elaunay edgeso
that elemental axial and rotational stiffness terms are o
coupled. A

B. Fracture model

One motivation for utilizing lattice models is the explicit

representation of discontinuous material structure at fine Bo, 1
scales, including the simulation of bond breaking in atomic } —w
structures. At coarser resolutions, however, the model repre- (b) nNWe We

sents the material as a continuum. Heterogeneity is intro- N .
duced into the network either explicitly or through statistical ~ FIG. 3. (8) Crack-band geometry within an element of the spring
variations in the element propertié#\s a fundamental re- network model andb) associated softening relation.

quirement for either case, the lattice formulation must be ) ) ) .
able to provide an unbiased representation of fracturénodel is functionally equivalent to the cohesive crack model,

through a homogeneous medium. Consider the discretizatichs considered by Dugddfeand Barenblaff and later ap-

of a two-phase composite shown in FigblL At this scale, Plied to softening materials by Hillerborgt al*> According
heterogeneity is apparent at the junction of different phased0 this type of fracture model, separation takes place across a
whereas each phase by itself is often regarded as a homogglhesive zone and is resisted by cohesive tractions. Within
neous material. From a modeling perspective, the lattice efthis framework, the physically unrealistia singularity that
ements eithef1) correspond to specific features of the ma-arises in linear elastic fracture mechaffcs avoided. For
terial structure, such as an interface between different phas&ittle materials, the interface traction law can be linked with
or (2) are not related to any material feature, such as whef#1€ gradual breaking of atomic bonds toward the formation
representing homogeneous properties within a single phasef @ new traction-free surface. The area under the traction-
The proposed lattice model is applied to the latter of thesélisplacement curve is the specific fracture enef@y, and

two cases, although the approach can be tailored to treat bothe maximum effective stressy, the maximum effective
cases. separationw,, and the shape of the traction-displacement

In this study, mode cracking is simulated by degrading Curve are material parameters. When cohesive tractions di-

the strengths and stifinesses of the lattice elements, accorflinish with increasing separation, the traction-displacement
ing to the crack-band approaghThe crack-band model is Curve can be referred to as a softening relation.

based on the observation that microcracking, crack branch- An important feature of the fracture model is that the
ing, and other toughening mechanisms associated witRr@Ck band can form at an angik to the element axis and
cracking occur within a fracture process zone, the width ofthe dimensions of the crack band are determined according
which is typically related to the maximum size of the hetero-t0 the local geometry of the Voronoi diagrahiFig. 3(a].
geneities. These various crack openings are assumed to b€ forces carried by the spring sets are known at any stage
uniformly distributed over the crack-band width. In the nu- Of the loading history. An average value of tensile stress can
merical implementation of the model, cracks form angbe calcglated from the resultant of this force pair, divided by
propagate through the element interiors and the band widti'e projected area,

generally conforms to the element size, rather than to the Fr

actual width of the fracture process zofie., the fracture
localizes into the smallest width permitted by the element
discretization of the material domain, provided there is noTo obtain proper fracture energy consumption for different
artificial locking of the crack opening that might otherwise meshing strategies, strain values characterizing the softening
cause the crack band to widein this sense, the crack-band response aré

(2)

Oop="——_.
R™ A, cosbg
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o= &)
h,; cosér

wherew is the crackopening displacement, which is assumed
to be uniformly distributed over the crack-band width of
h,; cosér [Fig. 3@]. In essence, modek cracking is con-
trolled by the shape of the tension-softening diagram and the
fracture energyGg, which are assumed to be material prop-
erties and thus do not depend on the domain discretization
The softening diagram, shown in Figh3, can be defined by
stress and crack-opening values determined through invers
analysis of fracture test resuft6After each load increment,
the resultant tensile stress in each spring set is checke
against the softening relation. For a critical spring set, frac-
ture involves an isotropic reduction of the spring stiffnesses
and an associated release of spring forces, so that the resul
ant stress lies on the corresponding softening relation. The
release of spring forces causes an imbalance between tF
external and internal nodal force vectors, which often pro- %\
motes additional fracture within the load step. The process o). | .
partially breaking the single most critical element and then
solving the associated system of linear equations is repeate
within each load step until the fracture criterion is satisfied
throughout the problem domain. Although this process is
computationally demanding, negative stiffness terms are
avoided and zero-energy modes of deformation are not pro
duced.

IV. NUMERICAL SIMULATIONS
A. Elastic uniformity of irregular lattices

In Fig. 4, quasiuniform and graded discretizations of a
unit square domain are illustrated. For uniform strain condi-
tions imposed on the boundaries, the lattice sites should dis
place so that uniform strain occurs throughout the lattice.
Regular lattice models, by virtue of site symmetry, exhibit
such elastic uniformity, whereas irregular lattices are gener-
ally not elastically uniform?

The lattices indicated in Fig. 4 are subjected to both uni-
form stretching(u; =x;; u,=0) and combined stretching and (b)|.
shear (u;=u,=x;+X,). The numerical solution accurately
represents the theoretical displacement field, as indicated by FIG. 4. Irregular lattices(a) Quasiuniform nodal discretization
the small relative errors indicated in Table I. The relativeand(b) graded nodal discretization.
error is defined as

Voronoi cells have been constrained for both sets of analyses.
. N The placement of nodes along the boundaries is only to fa-
lu=u", cilitate the analyses and is not a requirement here.
g="——" |ulb= > u(x) -u(x), (4)
2 1=1

B. Elastic analysis of fiber composites
where] -, is theL, norm of the indicated argument,andu®

are the exact and numerical solutions, respectively, Nl To illustrate the importance of elastic uniformity, we first
the total number of nodes. The networks do not exhibit spueonsider a short fiber embedded within an irregular lattice
rious heterogeneity arising from either random mesh geommodel of a matrix material. A fiber contributes to the stiff-
etry or varying element size. If each of the lattice elements isiess of a lattice element if it crosses the common boundary
assigned a constant area, equal to the average of the Vorormfi the two Voronoi cells(Fig. 5. To model this stiffness
facet areag\ ;, then the lattices are not elastically uniform, ascontribution, a zero-length spring connects the two cells at
evidenced by the large relative errors given in Table I. Inthe boundary crossing. The spring is aligned in the fiber di-
producing the results for shear loading, rotations of theection and assigned axial stiffness,
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TABLE |. Relative errorse, for uniform strain loading.

Quasiuniform mesh Graded mesh

Boundary — —
conditions Voronoi scaling A=Ay, Voronoi scaling A=Ay,
U1=X, 1.25x 1077 4.41x 1072 5.46x 1078 8.68x 1072
U2:O
Uy =X1+Xp 1.602x 1077 3.640x 1072 1.191x 1077 7.610x 1072
Up=X3+Xp

Asor(X0) posed by Cox¥/ in which perfect bonding is assumed

= (h/cosp)on’ (5 between the fiber and matrix. - _ _

v In general, fibers cross multiple Voronoi cell boundaries
where A; is the fiber cross-section area,, is the matrix ~and therefore contribute to the stiffness and internal force
strain in the fiber directiong(x.) is the fiber axial stress at calculations of multiple lattice elements. Figur@@gshows a
the boundary crossing, andis the angle between the fiber Single, inclined fiber of length; embedded in a homoge-
axis and the direction of loading on the composite. The€0US matrix subjected to unl_aX|aI tension. The fiber elastic
spring stiffness is linked to the computational degrees offodulus isEq=10E,, whereE, is th,e elastic modulus of the
freedom, which are defined at the lattice nodes, by assumir;gatr'x' For comparisons with Cox’s thedtywhich assumes

f

the cells to be rigid. The approach is general in that an uniforlrln stlrzi_in i”ttht?] mt?]t.ri)li’ the fibfetrhdiam?t_er iZc_hlosten to
: ; e small relative to the thickness of the matrix. Axial stress
appropriate model relatings(x;) and sy can be used to de- levels in the fiber at each cell boundary crossing are shown
in Fig. 6(b), where the axial stress has been normalized by
o;=E;e cog ¢, with & being the strain in the loading direc-
tion. The computed axial stress values agree with theory
when the Voronoi scaling of the lattice stiffness coefficients
is used. The constant-area scaling does not provide an elas-
tically uniform representation of the matrix, and the associ-
ated artificial heterogeneity of the lattice is manifested as
noise in the axial stress profile.
As a second example, we consider a fiber composite with
a random distribution of short fibers. Fibers are randomly
inserted in aa X a square domain with thicknesd 10 [Fig.
7(a)]. The matrix discretization is shown in Fig(es. The
fiber lengthl;=a/8, fiber diametekp=1;/100, E;=10E,, and
6 519 fibers are used to achieve a fiber volume fraction of
1%. The composite system is subjected to tensile loading in
@) the vertical direction and the fiber axial stress val(ies
each individual fiber at each boundary crosgiage plotted
in Fig. 7(b). Once again the numerical results for the axial
stress in the fibers are in good agreement with Cox’s
theory?” Of the 11 497 data points shown in Fighy, a few
stress values differ from the theoretical predictions, since
nonuniformity and the discrete nature of the fiber distribution
causes variations in the stiffness and therefore fluctuations in
strain. Similarly, good agreement with theory is obtained for
(U severalfold increases in the fiber volume fraction, although

D/ for much higher fiber contentéor for significantly larger
I fibers relative to the domain thickngsshe heterogeneity
~

more strongly affects straining of the matrix and therefore

the axial strain profiles of the fibers. The modeling of local

(b) . . i ) .
interaction effects between the fibers is approximate, and

FIG. 5. (a) Lattice element with fiber inclusion ang) fiber ~ therefore the physical interpretation of the results also be-
contribution to element stiffness. comes difficult for high volume fractions of fibers.

C. Fracture of uniaxial tension specimen

The lattice model is used to simulate fracture in a rectan-
ular panel of homogeneous material under uniaxial tensile

terminek; through Eq.(5). The relation used here, and plot-
ted in Fig. &b), is based on an elastic shear lag theory pro-g
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o Voronoi scaling
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FIG. 6. (a) Inclined fiber in a homogeneous matrix atiy) axial stress along fiber.

loading. The panel has cross-section akemnd the softening sources of error combine to produce excess strength and en-
properties of the material are shown in FighB3 Figure 8 ergy consumption, as indicated by the broken line in Fig. 10,
shows a Voronoi discretization of the panel. For imposedwvhich can be viewed as a form of stress locking. In this case
relative displacemend between the two ends of the speci- [Fig. Yc)], fracture initiation does not occur at the point of
men (and reactive forcd), stressoy is determined for each reduced strength, which happens to be the element at loca-
lattice element per Eq2); for each elementgz has magni- tion B. Furthermore, elements at different locations partially
tude P/A and acts in the direction of the axial load. With fracture prior to localization and ultimate failure along the
increasing axial loadyy reaches the tensile strengthin all path shown in Fig. @). Even in most classical lattice
elements simultaneously. Only a small reduction of the approache$,where, upon violation of the fracture criteria,
value is needed to initiate fracture at any specific locationthe element is completely removed, the first of these sources
For a perturbation of X 10 oy in the tensile strength of the of error would still be present. The sensitivity to fluctuations
element atA or B (Fig. 8), fracture initiates at those loca- in strength, provided by the elastically uniform material
tions. From the point of crack initiation, fracture propagatesmodel and therg stress measure, is a prerequisite to analyses
through the cross section and the material sepaffiigs. based on the statistical assignment of strength values.

9(a) and 9b)]. From these plots, it appears that cracking is
constrained to follow the intercell boundaries. However, as
discussed in Sec. Ill B, fracture is distributed within the lat-
tice elements and the direction of fracture is not constrained The lattice model is used to simulate the three-point bend
by the discretization. In Fig. 10, average stressP/A and  test illustrated in Fig. 11. The specimen has dimensions
axial displacemen# have been normalized to better indicate =300 mm,d=100 mm,£=d/2, and a uniform thickness of
that the cohesive softening curifig. 3b)], used as inputto 100 mm. For an actual concrete mix, the physicaPtgsto-

the model, is manifested at the structural scale. The separaided the load versus crack mouth opening displacement
tion process involves only two nodes per element; this facili{CMOD) response shown in Fig. 12. Using the regular,
tates the transition from continuous to discontinuous behavstraight-line discretization of the potential crack path be-
ior and avoids significant stress locking. tween the prenotch tip and load application pojfig.

If the crack band is constrained to form normal to thell(b)], an inverse analysis based on a Levenburg-Marquardt
element axis, as would be the case for a central force springuinimization algorithm provided the softening relation pa-
lattice, the model response is not a direct reflection of theameters(oy=4.12 MPa, w,=0.154 mm, 8=0.247, andy
softening curve. There are two main sources of elfrthe  =0.118. These softening parameters were then used in a
magnitude of the stress component aligned with the elemerfiorward analysis to obtain the corresponding load versus
axis, o,=F,/A;, is less than the average axial strass CMOD curve in Fig. 12. Differences between the experimen-
=P/A, unless the element is aligned with the direction oftal result and the inverse fitting are due, in part, to the use of
tensile loading, and2) after fracture initiation, the compo- a bilinear softening relation, which is assumed to be constant
nent of crack opening in the direction of the element axis isduring fracture through the ligament length. The dimensions
smaller than that in the direction of loading. These twoof the three-point bend specimen, boundary conditions, and

D. Fracture of three-point bend specimen
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FIG. 9. Failure patternga) CaseA, (b) caseB, and(c) caseB
using o, fracture criterion.

To help illustrate the consequences of g/ h,; scaling
of the stiffness and crack-band dimensions, two variations
are made.

(1) The lattice elements in the fracture ligament region
are assigned a constant area, equal to the average of the
A Voronoi facet areas over the same region. For this case, the
initial slope of the load-CMOD diagram is nearly the same,
whereas the remainder of the curve is in fair agreement with
the previous resultéFig. 14).

5‘ (2) As for the uniaxial tension test simulation, the crack
= band is constrained to form normal to the element &ixés,
S « Voronoi scaling on=Fp/Ay; is used to guide fractu}_eFor this case, the glo-
— Cox (1952) bal response curve is too toudkig. 14. Schlangen and
0 . Garbocz?® have noted a strong directional dependence of the
T T

fracture properties of regular lattices when employing this
0 0-5 1 type of normal force fracture criterion.
() o/l From these results, it appears that the scaling of the ele-
ment stiffness terms and the condition of elastic uniformity
are of secondary importance when compared to the influence
of the element-breaking rules. However, the performance
specific fracture energy of the material preclude the appeaevaluation of the different models should not be based on the
ance of instability in the global load versus CMOD responseglobal load versus CMOD results alone. The following sec-
The solution process can accommodate instabfitych as tion focuses on the performance of each model in terms of
snap backin the specimen response by advancing and/othe rate and variation of energy consumption along the crack
retracting the load point displacements so that the materigtajectory.
fracture criterion is precisely followed.

Using the same set of softening parameters, forward E. Energy conservation in crack growth processes
analyses are repeated for two different semirandom, irregular ) ) ]
discretizations of the ligament length. The deformed mesh at AS iS common for lattice models, only one lattice element
a near-final stage in the loading history for one of the analyis modified per computational cycle. The energy associated
ses is shown in Fig. 13. The resulting load versus CMOD

FIG. 7. Analysis of random fiber composit@) Fiber distribu-
tion and(b) axial stress along fibers.

plots is also given in Fig. 12. The main observation is that .
mesh size and irregu_lar geometry do not appreciaply influ- 19 \\ op criterion (cases A and B)
ence cracking behavior and, therefore, the resulting load- & \ ——— 0, criterion (case B)
displacement curves agree well. S \
\
\
Ale—\e==mae
\vﬁé\ ~~~~~~~~~
0 ===
0 1
0w,

FIG. 8. Voronoi discretization of uniaxial tension test FIG. 10. Normalized load versus displacement relations for
specimen. simulated uniaxial tension test.
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FIG. 13. Mesh for simulating fracture in three-point bend
test.

resent any structural features within the material. The simu-
lated uniaxial tension test discussed earlier also exhibits a
uniform distribution ofgr/ Gg = 1.0 over the fracture surface.
When using a constant ared,, for each lattice element
in the ligament region, it is clear that local energy con-
sumption does not follow that prescribed by the softening
] relation [Fig. 16@)]. For elements withA;>A,;, the ratio
(QF/GF< 1, whereas for elements withy; <A,;, the converse
is true. This tendency fage/Gg to be on either side of unity
provides reasonable global load-displacement results, as seen
earlier in Fig. 14. When constraining fracture to form normal

with the breaking of an element can be computed from thd® the element axiéoy, criterion), howeverge/Gg=1 for all
changes in reactive force at the load points, whose displac&/acks withw=w; [Fig. 1&b)], resulting in overstrength and
ments are controlled through a finite stiffness device. Th&XCESS energy consumption in the structural response. The
cumulative amount of energy consumed by each lattice ele3t€SS locking is more pronounced, relative to that seen for
ment is obtained, so that the distribution of local energy contn€ uniaxial tension specimen, since the fracture path from
sumption can be viewed at any load stage. The total amourif€ Prenotch tip includes elements that are significantly in-
of energy assigned to the breaking elements is equal to tHelined to the loading direction. For the uniaxial tension test,
difference between the area under the global force versU§€re are low energy pathways available, where the elements
displacement curve and the elastic strain energy stored in tHd € closely aligned with the loading direction. In these simu-
system. lations, there is a temptation to associate the nonuniform
In Fig. 15, we depict the maps of specific fracture energyjlstnbunon of energy consgmpnon with heterogeneous fea-
consumptionge, along the ligament length for the regular tures present in th(_a material. However, the effects of this
and two irregular discretizations of the ligament region. The2'tificial heterogeneity can be severe and bear no relation to
energies correspond to a near-final stage in the loading hidh® actual material features.
tory and have been normalized I8¢, the area under the
blllngar so_ftemng dlagrarﬂ:lg. 3b)]. As expected, the regu- F. Fracture of fiber-reinforced brittle-matrix composites
lar discretization of the ligament produces uniform energy
consumption along the crack trajectory. The rajidGg de-

®) A me)

FIG. 11. (a) Three-point bend test specimen and dimensions an
(b) Voronoi discretization for inverse analysis of softening
parameters.

The irregular lattice serves as a framework for modeling

creases near the top of the ligament length, sintecomes the fracture of fiber-reinforced brittle-matrix composites.
less thanw. and tends to zero when approa’ching the neutraPiscontinuous, short fibers are added to brittle matrix mate-
C .

axis of bending. For the random geometry analysis, the erfials to provide additional toughness after matrix fracture.
ergy distributions are nearly uniform along the principal 1€ increase in toughness is due to debonding along the

crack trajectory, with ge/Ge~1.0. Crack propagation fiber-matrix interface, followed by frictional pullout of the
through the random mesh produces nearly the same results %ers traversing an opening matrix cratlVarious types of
crack propagation along a smooth, predefined pathway. ThidPers are used, depending on the application, with the fiber
is desirable in that network random geometry does not rep-

40
30 354 N\ — f"g‘ﬂ"
--- experiment?® 304 & - — irregular 7
2.5 R \ ---- irregular (A;;=A)
- g 259 - imogular (on—Fo/A)
22.0— i.n‘egula.r (ﬂ ST E L
515 — trregular (I § 151
S 107 107
0.5
L 0 . : ‘ : —
0 0 0.1 0.2 0.3 0.4 0.5 0.6
0 01 02 03 04 05 06 CMOD (mm)
CMOD (mm)
FIG. 14. Influence of discretization and fracture criterion on
FIG. 12. Experimental curve and forward analysis runs. specimen response.
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FIG. 15. Crack trajectories and
local energy consumption.(a)
(b) 9r/Gr Regular discretizatior{b) irregu-
lar discretization(case } and (c)
irregular discretizatioricase 1) of
the ligament length.

(2)

© ' 9r/Gr

dosages ranging up to several percent by volume of the conof the fiber unloads after peak fiber load. The pullout rela-
posite, which is a practical limit for achieving uniform dis- tions for each embedded length are derived from the consti-
persions of fibers with high aspect ratios. tutive properties of the matrix-fiber interfagghown in Fig.
Prior to matrix fracture, fiber contributions to composite 17(a), wherer, and 7; indicate adhesional and constant fric-
stiffness and strength are modeled using elastic-shear la@nal bond strengths, respectivghSlip hardening or fric-
theory, as described in Sec. IV B. At the onset of matrixtional decay along the matrix-fiber interface can be consid-
fracture, fibers that cross the developing crack are identifiecered in the modeling approach. In addition, the spring
and the associated springs at the crossing locatieigs ~ element is augmented with a beam-spring component to
5(b)] are modified as follows. Considering equilibrium and model the flexural and shear properties of the fiber, which
compatability conditions, the axial stiffness of a modified become active after fracture initiation. This lumping of the
spring is based on a composite pulldué., axial force ver- fiber postcracking behavior into a nonlinear spring bridging
sus pullout displacementurve, which is derived from the the crack is valid, provided the fiber crosses only one crack,
pullout relations for the embedded fiber lengths to each sidehich is the case in most applications.
of the spring. The crack opening is modeled as the separation Assuming constant;=r, for the fiber-matrix interface,
between adjacent Voronoi cells at the fiber-crossing locationthe direct pullout of a single embedded length from the ir-
The spring aligns with the point of entry of the fiber into regular lattice yields the plot of axial for¢at the load point
each Voronoi cell. With continued crack opening, the shortewversus pullout displacement shown in Fig.()7 The peak
embedded length eventually pulls out, whereas the other erldad is equal tdPy=m¢l.7;, wherel, is the embedded length.
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y/t

Lo n=201; l,=0.2701f

n=195; [, = 0.2401y
—n=176; l,= 0.2561f
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= 0.5

5.71

0.0
(a)

; -
2.0 3.0  gu/Gp

1
0 0.5 1
¢
v/ §/(0.51p)
FIG. 18. Axial load versus displacement curves for three nomi-
nally identical fiber-reinforced brittle matrix composites.

tioned within an irregular lattice model of a uniaxial tension
test specimen. The Voronoi discretization of tng 5a rect-
angular domair(with thicknessa/2) and the model bound-
ary conditions are as previously shown in Fig. 8. The fiber
lengthl;=a/2, fiber diameterp=1;/100, E;=2E,, and 2547
fibers are used to achieve a fiber volume fraction of 1%. The
matrix-fiber interface is assigned constant bond strength,
=7,=1, and 7/ oy=1. Fiber axial strength is assumed to be
greater than the maximum pullout strendth5w¢l;7), so
that tensile rupture of the fibers is avoided, which is normally
the material design objective.
For the same lattice geometry, three different random re-

galizations of the fiber distribution are considered, providing
the three global response curves shown in Fig. 18, whése

-
T
(b) 0.0 1.0 20 gp/Gp

FIG. 16. Crack trajecto_ries and local energy consumptian.

Constant element arda,;=A) and(b) axial stress fracture criterion
(on=FnlAy).

Within the figure inset, the numerical solution is compare
with theory?! for the initial part of the curve that is primarily

affected by fiber debonding, i.e., the loss of perfect bondthe number of fibers bridging the crack ahds the corre-
After peak load, the fiber is completely debonded and thePonding average embedded length. The load-displacement

axial force declines linearly due to the loss of embedded &SPONSe is Iinear' until Fhe onset C.’f matrix fract.u're, after
length as the fiber is pulled out from the matrix. which the toughening actions of the fibers are mobilized. The

To demonstrate and verify the modeling procedure fof€Sponse curves are normalized by the mathematically ex-
multiple fiber composites, short fibers are randomly posiPected postcracking strength,

Pe=(n7epli/4) 7y, (6)

wheren is the average oh for the three simulations. The
scatter in the results is caused by the differencesand the
differences in the distribution of embedded lengths about the
expected average ¢f/4, both of which are due to random
variation in the fiber positions. The load-free crack condition
occurs at an axial displacementlef2, which corresponds to
the maximum possible embedded length. As the post-

shear stress

@) Slip cracking strength is significantly less than the first cracking
P strength of the composite, a single crack forms, followed by
— Naaman et al. (1991) fiber pullout, as shown in Fig. 19. Nonuniformity of the fiber
--- fregular lattice distribution causes variation in the load carried by the ma-
trix; therefore the crack location differs for each of the three
1o B simulations.

V. CONCLUSION

In this paper, we have described an irregular lattice model
oL : . ! . . ) - :
(b) 0 e 5 that is suitable for simulating fracture in quasibrittle materi-
als, such as concrete, rock, and other geomaterials. This
FIG. 17. (a) Constitutive relations for the fiber-matrix interface model differs from previous lattice models in several re-
and (b) axial load versus pullout displacement for a single fiber. spects.
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trajectory regardless of the mesh geometry. The common ap-
proach of assigning equal areas to the lattice elements, and
the use of element axial forces to define the fracture criteria,
leads to strongly nonuniform specific energy consumption
along the crack path that, on the average, is much higher than
FIG. 19. Fracture localization in the fiber-reinforced compositethat prescribed through the cohesive traction-displacement
model. relation. Although disordered materials exhibit fluctuations
in specific energy consumption as the fracture process ad-
(1) Lattice geometry is based on a Voronoi discretizationvances, the fluctuations exhibited by the common lattice ap-
of the material domain, allowing effective gradations of proach can be extreme and can bear no connection to the
nodal point density. The Voronoi diagram provides scalingphysical processes. This form of stress locking leads to over-
rules for the elemental stiffness relations, so that the irregulastrength and excess energy consumption in the global load-
lattice is elastically homogeneous under uniform modes oflisplacement response.
straining. The elastically uniform lattice serves as a basis for The fracture simulations presented in this paper involved
the explicit modeling of heterogeneous features, such astatistically homogeneous softening materials as well as
short fibers. fiber-reinforced brittle-matrix composites. In the former case,
(2) Fracture is modeled using a crack-band approachthe various sources of energy consumption during fracture
where the crack band can form at arbitrary angles to the axesere represented by a cohesive law. A similar approach can
of the lattice elements. The dimensions of the crack band ankle applied in the fracture analysis of multiphase materials
the softening relation are also defined by the local geometrwhere each phase is assumed to be homogeneous. In the
of the Voronoi diagram. Fracture localizes into the narrowestatter case, the stiffness, strength, and toughening mecha-
band permitted by lattice discretization and, therefore, thenisms of individual fibers were explicitly represented within
model can also be regarded as a cohesive zone representatibe material model. This enables the quantification and study
of fracture. of the effects of nonuniform fiber distributions on composite
(3) The crack-band representation of fracture involves arperformance measures, such as postcracking strength and
incremental softening of the lattice elements, according tdoughness. The explicit modeling of material structure, and
the prescribed traction-displacement relation. This is in conits relations to system breakdown and failure, is a long-term
trast to the conventional approach in which elements arebjective of this research.
completely removed from the lattice upon violating the frac-
ture criterion.
(4) The fracture model is objective with respect to the ACKNOWLEDGMENT
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