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Elastic properties of crystal surfaces are useful in understanding mechanical properties of nanostructures.
This paper presents a fully nonlinear treatment of surface stress and surface elastic constants. A method for the
determination of surface elastic properties from atomistic simulations is developed. This method is illustrated
with examples of several crystal faces of some fcc metals modeled with embedded atom potentials. The key
finding in this study is the importance of accounting for the additional relaxations of atoms at the crystal
surface due to strain. Although these relaxations do not affect the values of surface stresssas had been
determined in previous worksd, they have a profound effect on the surface elastic constants. Failure to account
for these relaxations can lead to values of elastic constants that are incorrect not only in magnitude but also in
sign. A possible method for the experimental determination of the surface elastic constants is outlined.
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I. INTRODUCTION

The understanding of properties of surfaces of solid ma-
terials is important from both scientific and technological
viewpoints. Surfaces of solids possess interesting properties
owing to the fact that they possess atoms with fewer neigh-
bors and consequently excess energy over atoms in the bulk.
The properties of surfaces dominate processes ranging from
intercellular transport in biological systems to the growth of
thin films used in microelectronic devices.

An important property of solid surfaces is the surface
stress.1,2 When a liquid surface is deformed, atoms from the
bulk are free to migrate to the surface in such a manner that
the number of atoms per unit area of the surface remains
roughly a constant in the deformation process. Surface stress
arises in solids due to the fact that as the solid deforms,
atoms from the bulk are unable to move to occupy the sur-
face. Surface stress has been shown to be responsible for
many interesting effects on crystal surfaces. One such effect
is the reconstruction3–7 of the close packeds111d surfaces of
Au and Pt. This reconstruction has been attributed to a com-
petition between surface stress and the interlayer
interaction.2,8,9 The importance of surface stress has lead to
several efforts in its theoretical determination. For example,
surface stresses were evaluated usingab initio methods in
semiconductors by Maede and Vanderbilt10 and in metals by
Needs.11 More recently, Feibelman has investigated the na-
ture of anisotropy of surface stress12 on certain fcc crystal
surfaces and the effect of gas adsorption13 on surface stress.
Empirical potentials have also been employed to study sur-
face stresses in bcc and fcc crystals.14,15 Although the em-
pirical methods generally underestimate the magnitude of the
surface stress, they remain useful in understanding trends
and developing concepts.

With the emergence of nanotechnology in the last decade,
it is now possible to make structures and devices at nanomet-
ric scales. These “nanostructures” are characterized by a
large surface-to-volume ratio. In this context, it is all the
more important to understand properties of surfaces that
make up the nanostructure. Indeed, nanostructures show
“size-dependent” behavior. In a set of experiments, Gaoet

al.16 studied the properties of multiwalled carbon nanotubes
by exciting them with an external field and observing the
amplitude response as a function of the excitation frequency.
From the resonant frequency they calculated the elastic
modulus of the tube using standard continuum mechanics
and found that the calculated elastic modulus is a strong
function of the diameter of the tube. In another set of experi-
ments, Yanget al.17 found that the loss factor of ultrathin
silicon cantilevers depends on the thickness of the cantile-
vers, an effect that they attributed to surface stress.

A simple model to explain the size dependence of the
elastic rigidities of nanostructures was developed by Miller
and Shenoy.18 The main premise of the model is that al-
though the discrete atomistic nature of the material becomes
important at smaller scales, the nanostructure can be mod-
eled using continuum mechanics following the ansatz that
“nanostructure = bulk + surface.” It was shown that the dif-
ferences between the actual rigiditysDd of a nanostructure
and that predicted by continuum mechanicssDcd can be ex-
pressed as

D − Dc

Dc
= A

h0

a
, s1d

whereA is a nondimensional constant that depends on the
geometry of the structure,a is the size scale of the structural
elementsfor example, the cross-sectional width of a bard, and
h0 is a material length that is the ratio of thesurface elastic
constantof the bounding surfaces of the structure and the
bulk elastic constant. Thus the size dependence of the rigidi-
ties can be predicted by obtaining the material parameterh0
and the nondimensional constantA. Typically, h0 can be ob-
tained from atomistic simulations that determine the value of
the surface and bulk elastic constants. The constantA, which
depends only on the geometryscross sectiond of the struc-
ture, can be calculated analytically. Thus the need for full
scale atomistic simulations of nanostructures is obviated.
This model was used to study the elastic properties of nano-
sized bars, plates, and beams,18 and also to study the torsion
of bars.19 In both cases, excellent agreement was obtained
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between theory and atomistic simulations. The main point
brought out by the above cited work is that theelastic re-
sponse of nanostructures depends on the surface elastic con-
stant(s).

The idea of the surface elastic constant is now illustrated
in a simple one-dimensional setting. Lett denote the surface
stress20 which is related to the surface energyg via

tsed = g +
]g

]e
, s2d

wheree is the strain. Clearly, the surface stress depends on
the strain since the surface energy depends on the strain.
What is usually referred to as surface stress and values
reported10–15 is the value of the surface stress at zero strain,
i.e., ts0d=t0. The surface elastic constantS is a measure of
how the surface stress changes with strain, i.e.,

tsed = t0 + Se s3d

or, alternatively,

S= U ]t

]e
U

e=0
. s4d

The effect of surfaces on the biaxial modulus of thin films
and multilayers was first noted by Streitzet al.21,22 These
authors developed a scaling relation similar to Eq.s1d, but
did not introduce surface elastic constants explicitly. In ad-
dition, their analysis is restricted to biaxial deformations with
linear kinematics. Although surface elastic constants were
introduced and calculated in previous works18,19 with a view
a validating Eq.s1d, a systematic study of these quantities is
yet to be performed. The aim of this paper is twofold. First,
to develop a general nonlinear framework for surface me-
chanics in which the surface elastic constants are introduced,
and second, to establish a procedure for calculating these
quantities from atomistic simulations. Whileab initio meth-
ods provide the most accurate resultssin terms of numerical
valuesd, the present calculations are performed using the em-
bedded atom method.23,24 The advantage of this method is
that it allows for an efficient study of a large number of
crystal surfaces and materials and is therefore ideally suited
to achieve the second objective of this paper as stated above.
Attention is restricted to fcc crystals.

The paper is organized as follows. Section II contains the
theoretical background to the mechanical properties of sur-
faces. The method for obtaining the surface elastic constants
within the framework of atomistic simulations is outlined in
Sec. III. The results are presented and discussed in Sec. IV.
The last section also contains a discussion of possible future
directions of investigation.

II. MECHANICAL PROPERTIES OF CRYSTAL
SURFACES: THEORY

The mechanics of nanosized bodies requires consideration
of both the bulk and surface effects. The effects of terminat-
ing a solid at a surface may extend several atomic layers
below the terminating layer. The aim of the theoretical effort
in understanding size-dependent properties of

nanostructures18,19 is to develop simplecontinuumfield theo-
ries that include theeffect of surfaces. To this end, the nano-
sized body is considered to be made up of “bulk” and a
bounding “surface” in a continuum theory. This bounding
surface in the continuum theory is used to mathematically
represent the actual atomic surface of the solidincluding the
layers below the terminating layer where the effects of the
termination are felt. This is achieved in two steps. First is to
develop a fully nonlinearcontinuum theoryof surface defor-
mation and energetics. The key outcome of this step is the
description of the surface mechanics via surface stress and
elastic modulus tensors; this is described in this section. The
second step is the calculation of the constitutive parameters,
namely the surface stresses and elastic constants, which will
include effects of layers below the terminating layer, from an
atomistic simulation. This second step is taken up in the next
section.

Nonlinear mechanics of a bulk solid is well known.25 Me-
chanics of surface deformation is considered in some detail
by Haiss1 based on linear kinematics. The analysis here is
based on nonlinear kinematics and a complete development
is presented for the sake of clarity. The flat surface consid-
ered is described by coordinatessX1,X2d in its undeformed
statesFig. 1d. The surface undergoes homogeneous deforma-
tion described by the deformation gradient tensor25 F whose
components are denoted byFij . The point sX1,X2d in the
undeformed system is mapped tosx1,x2d by F sFig. 1d, i.e.,

xi = FijXj . s5d

The components of the Green-Lagrange strain tensore are
related to the deformation gradient tensor via

ei j =
1

2
sFkiFkj − di jd, s6d

wheredi j is the Kronecker delta symbol.

FIG. 1. Schematic of a flat surface undergoing homogeneous
deformation. The deformation leaves the surface flat.
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Under the action of the homogeneous deformationF, a
patch with areaA0 is mapped to a patch with areaA. The
deformed areaA is related to the areaA0 via

A = A0 det F = A0
ÎdetsI + 2ed, s7d

whereI is the identity tensor. Two results to be used in the
developments below are recorded. First is the derivative of
the areaA with respect to the strain tensor components,

]A

]ei j
= AfsI + 2ed−1gi j , s8d

where fsI +2ed−1gi j denotes thei j component of the tensor
sI +2ed−1. Second is the derivative of the components of the
tensorsI +2ed−1 with respect to the components of the strain
tensor

]fsI + 2ed−1gi j

]ekl
= 2fsI + 2ed−1gikfsI + 2ed−1g jl . s9d

The surface is assumed to posses an energy densityg
which is the energy per unit deformed area. Evidentlyg de-
pends on the strain tensore. With this definition of strain, the
total energyEs in the patchA can be written as

Es = Agsed. s10d

To obtain an expression for surface stress, the strain state in
incremented toe+de from e and the change in total energy is
evaluated using Eq.s8d:

dEs = S ]A

]ei j
g + A

]g

]ei j
Ddei j = ASgfsI + 2ed−1gi j +

]g

]ei j
Ddei j .

s11d

The surface stress tensort swith componentsti jd is defined
as the work conjugate ofdei j , i.e.,

dEs = Ati jdei j ⇒ ti j =
1

A

]Es

]ei j
= SgfsI + 2ed−1gi j +

]g

]ei j
D .

s12d

The expressions12d is the definition consistent with nonlin-
ear kinematics and the surface stress clearly depends on the
strain. When Eq.s12d is evaluated at the unstrained configu-
ration, i.e., whenei j =0, the result above agrees with the pre-
vious definition of surface stress1,2,20

ti j
0 = Su

1

A

]Es

]ei j
D

e=0
= Sgdi j + u

]g

]ei j
D

e=0
. s13d

The surface elastic constants determine the change in the
surface stress with strain. Thus the surface stressti j is written
as

ti j < ti j
0 + Sijklekl, s14d

whereSijkl is the fourth order surface elastic tensor. An alter-
native definition of the surface elastic that is consistent with
Eq. s14d is

Sijkl = U ]ti j

]ekl
U

e=0
. s15d

From Eqs.s12d ands15d, it is easily shown using Eq.s8d that

Sijkl = U 1

A

]2Es

]ei j ] ekl
U

e=0
− ti j

0dkl s16d

and in terms of surface energyfon using Eq.s9dg as

Sijkl = US2gdikd jl + di j
]g

]ekl
+

]2g

]ei j ] ekl
DU

e=0
. s17d

The surface elastic constant tensor possesses the follow-
ing symmetries with respect to exchange of indices:

TABLE I. Independent surface elastic constants for different plane point groups.

Plane Number of independent Independent Symmetry imposed

point groupssd elastic constants elastic constants constraint relations

1,2 9 All Nil

m ,2mm 5 S1111,S1122,S1212 S1112=S1211=S1222=S2212=0

S2211,S2222

4 5 S1111,S1112,S1211 S1222=−S1211,S2211=S1122,

S1212,S1122 S2212=−S1112,S2222=S1111

4mm 3 S1111,S1122,S1212 S1112=S1211=S1222=S2212=0,

S2211=S1122,S2222=S1111

3,6 3 S1111,S1112,S1122 S1211=−S1112,2S1212=S1111−S1122,

S1222=S1112,S2211=S1122,

S2212=−S1112,S2222=S1111

3m,6mm 2 S1111,S1122 S1112=S1211=S1222=S2212=0,

2S1212=S1111−S1122,

S2211=S1122,S2222=S1111
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Sjikl = Sijkl , s18d

Sijlk = Sijkl . s19d

Notably, Sijkl ÞSklij , a symmetry that is present in the bulk
elastic tensor. There are, therefore, a total of nine indepen-
dent possible elastic constants for a crystal surface which are
taken to beS1111, S1112, S1122, S1211, S1212, S1222, S2211, S2212,
and S2222. Further reduction in the number of independent
elastic constants can is brought about by the presence of
geometric symmetry in the crystal surface as shown in Table
I.

In contrast to the bulk elastic tensor, the surface elastic
tensorSijkl need not be positive definite, i.e., the quadratic
form Sijklei jekl need not be non-negative. At first glance this
may suggest a violation of basic thermodynamic postulates.
It must be noted that the positive definiteness of the bulk
elastic modulus tensor which guarantees the stability of the
solid cannot be applied to the surface elastic tensor. This is
due to the fact that a surface cannot exist independent of the
bulk, and the total energysbulk + surfaced that needs to
satisfy the positive definiteness condition. This property of
the surface elastic modulus can lead to interesting conse-
quences such as fall in the rigidity of a nanostructure18 with
size.

III. CALCULATION OF SURFACE ELASTIC CONSTANTS

One of the objectives of this work is to establish a method
to obtain surface elastic constants from atomistic calcula-
tions. Whileab initio electronic structure methods26 are the
most reliable in terms of numerical values, approximate total
energy descriptions such as the embedded atom method23,24

provide for efficient computations. Since the purpose of this
work is not the accurate determination of numerical values of
surface elastic constants, but to establish consistent methods
for the determination of the surface elastic constants from a
total energy description, the embedded atom method is
adopted. It must be emphasized that the methods presented
here can be applied to any atomistic formulation.

The total energy in the embedded atom formalism23,24de-
pends on the positions of the atomssrestricted here to solids
with single species of atomsd via

Etot =
1

2o
a

o
bÞa

fsrabd + o
a

Fsrad,

ra = o
bÞa

rsrabd, s20d

wherea andb are indices that run over the atoms,rab is the
distance between atoma and b, fsrd is a function that de-
scribes a pairwise interaction between the atoms,rsrd is the
electron density function,ra is the electron density at the site
of atoma, andF is the embedding function. The embedded
atom method accounts for the many body effects in an ap-
proximate manner via the nonlinear embedding function. It
must be noted that the total energyEtot in Eq. s20d is taken to

be theadditional energywith respect to the undistorted lat-
tice, i.e., the energy reference is chosen such that an undis-
torted lattice will have zero energy per atom.

To calculate the surface elastic properties, a simulation
cell consisting of atoms as shown in Fig. 2 is constructed.
Periodic boundary conditions are used in the “1” and “2”
directions while the box is bounded in the third direction by
free surfaces whose properties are to be studied. An impor-
tant parameter is the thicknessh of the slab. This thickness is
determined by a Gibbs dividing surface construction27 based
on total mass. Thush is chosen such that the volume of the
cell sL1L2hd in its undistorted configuration multiplied by the
density of the bulk solid is equal to the total mass of the
atoms in the box. The lengthsL1 andL2 are typically chosen
to be five to six times the repeat distance in the appropriate
crystallographic direction. It is found that the calculated sur-
face elastic properties do not depend on the particular choice
of L1 andL2.

To determine the unstrainedsreferenced configuration of
the surface, the following method is adopted. Atoms are
stacked in positions as if in a perfect crystal in the simulation
box shown in Fig. 2. An energy minimization is performed
such that the atoms at the surface relax to their equilibrium
positions. This relaxed configuration of the surface is taken
as the reference configuration defined in the previous section
sFig. 1d.

There are two possible methods for evaluating the surface
stressti j

0 and elastic tensorSijkl . The first method, adopted in
previous calculations14,28 sin the case of surface stressd, is to
evaluate the expression for surface stress in terms of the
strain derivative of the total surface energy given in Eq.s12d.
The strain derivative of the surface energy is derived analyti-
cally. In the case of the embedded atom method, the strain
derivative of the total energy is given by

]Etot

]ei j
= o

a
o
bÞa

S1

2
f8srabd + F8sradr8srabdD rab

i rab
j

rab

,

s21d

where the primes denote derivatives. In case ofab initio
electronic structure methods, a conceptually similar expres-
sion is used.28,29 For the developments that follow it is im-

FIG. 2. A simulation cell used to determine surface elastic prop-
erties consists of a slab of thicknessh. Periodic boundary conditions
are used in the 1 and 2 directions.
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portant to understand how Eq.s21d is derived. To obtain the
strain derivative of the total energy, the positions of all atoms
are modified by the applied homogeneous deformation gra-
dient. Stated in another way, ifr is the position vector of an
atom in the reference configuration, its position is changed to
r i →Fij r j under the action of the homogeneous deformation
gradient. The total energyfEtotsedg is evaluated in this con-
figuration where the atoms are placed in the positions dic-
tated by the homogeneous deformation gradient. The expres-
sion s21d is obtained as limei j→0hfEtotsed−Etotsrefdg /ei jj. The
derivation of the stress expression in the case ofab initio
methods28,29 is also similar in that the ground state electronic
wave functions are “stretched” by the strain tensor and the
difference in the energy is obtained and the limiting process
described above provides the strain derivative. The surface
elastic modulus can also be obtained using Eq.s16d, in the
case of the embedded atom method, from the second deriva-
tive of the total energy:

]2Etot

]ei j ] ekl
= o

a
o
bÞa

F1

2
Sf9srabd −

f8srabd
rab

D − F8srad

3Sr9srabd −
r8srabd

rab
DG rab

i rab
j rab

k rab
l

rab
2 + o

a

F9srad

3So
b

r8srabd
rab

i rab
j

rab
DSo

b

r8srabd
rab

k rab
l

rab
D . s22d

It must be noted that the second derivative of the total energy
contains both bulk and surface contributions. The surface
contribution can be isolated using the method described be-
low.

The second method to obtain the surface stress tensor and
elastic tensor is to obtain the total surface energy as a func-
tion of strain and calculate the required quantities by numeri-
cal differentiation. When the slab in Fig. 2 is strained, the
totalenergy of the system is made of two components, the
strain energy in the bulk and the surface energy. The surface
energy has to be isolated from the total energy. IfL1L2 sL1
andL2 are taken in the strained stated is taken asA, the area
of the surface, the total energy can be written as

s23d

whereWsed is the bulk strain energy density andEb is the
total energy in the bulk. Thus, for a given state of strain, the
total energy depends linearly on the thicknessh sdetermined
by the Gibbs constructiond of the slab.

Indeed, calculationssFig. 3d show that the linear relation-
ship is very closely followed. For a given strain state, surface
energyEs can therefore be determined by obtaining the total
energy as a function of thickness. A linear fits3d is made to
the Etot vs h data, the intercept of which is twice the surface
energy. This procedure has proved to be very robust. An
important check to test the accuracy of the fit is to determine
the surface energy based on different sets of values ofh. The
present calculations show that in every case reported here,
the values were to within one part in 106 of each other. The
present method, therefore, provides a very accurate method

for determining thetotal surface energy Es as a function of
strain. Once the total surface energyEs is obtained, expres-
sionss13d and s16d are used to, respectively, obtain the sur-
face stress and elastic tensors by numerical differentiation.

The two methods outlined above have one very important
difference which proves to be crucial in the correct calcula-
tion of the surface elastic tensor. In the second method, the
system is fully relaxed on application of the strain. The re-
laxation entails a Poisson contraction of the entire set of
atoms in the 3 direction,and rearrangements of surface at-
oms to their new equilibrium positions. In the first method
where analytical derivatives are used to obtain the required
quantities, the effects due to theadditional surface relax-
ations due to strain are not accounted for. Figure 3 shows
the total energy as a function of the thickness for both the
relaxed and unrelaxed cases, and the importance of relax-
ation is evident. A more vivid illustration of this effect is
shown in Fig. 4 where the dependence of both relaxed and

FIG. 3. Dependence of the total energy of the system on the
thickness of the slab. Results shown are for the case of Als001d
surface at a strain ofe11=0.003,e12=0.003,e22=0.003 using a slab
ssee Fig. 2d with L1=L2=24.192 Å. For the values of thicknesses
and the strain state, the majority contribution to the total energyEtot

arises fromEs fof Eq. s23dg as the bulk elastic energy works out
only to 2.33310−4 eV/atom.

FIG. 4. Surface energy of thes001d surface of AlsRef. 30d as a
function of uniaxial strain in thef100g direction. The curvature of
the relaxed and unrelaxed surface energies are different. Relaxation
here refers to the additional rearrangements of surface atoms due to
application of strain.
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unrelaxed surface energies on strain is plotted. It is evident
that although the slopes are equal in both cases when strain is
zero, the curvatures of the two are vastly different. Thus the
first method for the calculation of the surface stress tensor
and the surface elastic modulus tensor based on the analyti-
cal derivative pertains to theunrelaxedcase where additional
surface relaxations due to the strain are neglected, while the
second method based on the numerical derivative of the total
surface energy accounts for surface relaxations. It is found in
the calculations here that the additional surface relaxations
do not affect the value of the surface stressti j

0 in a significant
manner, but can have profound effect on the surface elastic
tensor in that even thesign can be different when calculated
in these two different ways. Needless to state that the second
method where additional relaxations are accounted for corre-
sponds to the correct physical situation.

IV. RESULTS AND CONCLUSIONS

This section contains results of the calculations performed
to determine the surface stress tensor and the surface elastic
constants based on embedded atom simulations. Attention is
restricted to fcc crystals. Four different surface orientations
viz. s001d, s110d, s111d, ands112d are studied. The elements
considered are Ag, Al, Au, Cu, Ni, Pd, and Pt. To study the

effect of the particular embedded atom potentials Al is
treated with two different potentials. When treated with em-
bedded atom potentials of Ercolessi and Adams30 derived by
a force matching method fromab initio calculations, Al is
denoted as AlsEAd. The second embedded atom potential
chosen is that of Al obtained by Voter31 denoted as AlsVd.
All the remaining elements are treated using the embedded
atom potentials developed by Oh and Johnson.32 These po-
tentials have the same functional forms and the parameters in
these functions are determined by fit to measured properties.

The total surface energyEs is determined using the above
procedure for several values of strains; strainsse11,e22,e12d
are each varied from −0.003 to 0.003 in steps of 0.001 andEs

is determined for each set of values. A quartic polynomial in
e11, e22, ande12 is fit to this data and the required derivatives
are extracted. The process of determination ofEs is carried
out both without allowing for additional relaxations and al-
lowing for relaxations. In the former case where relaxations
are not allowed, the results are compared with those using
the analytic formulas and agreement to several significant
figures is found confirming the correctness of the procedure.

A. (001) crystal surface

The s001d crystal face in fcc crystals belongs to the plane
point group4mm. Thus the surface stresses are isotropic,

TABLE II. Surface stress tensor of thes001d crystal face. The “1” direction corresponds tof100g and “2” corresponds tof010g. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

t11
0 seV/Å2d t22

0 seV/Åd t12
0 seV/Å2d

Element g seV/Å2d UR R UR R UR R

Ag 0.0543 0.0556 0.0556 0.0556 0.0556 0.0000 0.0000

Al sEAd 0.0588 0.0355 0.0355 0.0355 0.0355 0.0000 0.0000

Al sVd 0.0533 0.0822 0.0822 0.0822 0.0822 0.0000 0.0000

Au 0.0498 0.0877 0.0877 0.0877 0.0877 0.0000 0.0000

Cu 0.0828 0.0649 0.0649 0.0649 0.0649 0.0000 0.0000

Ni 0.0956 0.0442 0.0442 0.0442 0.0442 0.0000 0.0000

Pd 0.0807 0.1052 0.1052 0.1052 0.1052 0.0000 0.0000

Pt 0.0880 0.1426 0.1426 0.1426 0.1426 0.0000 0.0000

TABLE III. Surface elastic modulus tensor of thes001d crystal face. The “1” direction corresponds tof100g and “2” corresponds tof010g.
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

S1111seV/Å2d S2222seV/Å2d S1122seV/Å2d S2211seV/Å2d S1212seV/Å2d

Element UR R UR R UR R UR R UR R

Ag −0.733 −0.216 −0.733 −0.216 −0.397 0.119 −0.397 0.119 −0.105 −0.105

Al sEAd −0.089 −0.565 −0.089 −0.565 0.695 0.218 0.695 0.218 0.214 0.214

Al sVd 0.138 −0.193 0.138 −0.193 0.396 0.066 0.396 0.066 −0.072 −0.072

Au −0.901 −0.329 −0.901 −0.329 −0.730 −0.158 −0.730 −0.158 −0.247 −0.247

Cu −0.885 −0.260 −0.885 −0.260 −0.356 0.269 −0.356 0.269 −0.063 −0.063

Ni −1.046 −0.304 −1.046 −0.304 −0.148 0.593 −0.148 0.593 0.012 0.012

Pd −1.185 −0.402 −1.185 −0.402 −0.778 0.006 −0.778 0.006 −0.231 −0.231

Pt −1.561 −0.555 −1.561 −0.555 −1.183 −0.177 −1.183 −0.177 −0.389 −0.389
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and the elastic moduli are anisotropic. The results for surface
stresses and elastic moduli are given, respectively, in Tables
II and III. The surface stresses are all positive and in agree-
ment with previously reported results,18 but are somewhat
lower in magnitude than those fromab initio calculations as
has been seen in previous works.15 The surface stresses are
also close to the values reported by Streitzet al.21 for these
materials with similar embedded atom potentials. Also, the
surface stresses from unrelaxed calculations and relaxed cal-
culations disagree in only higher decimal placessnot shown
in the tablesd. This is not the case with surface elastic con-
stants. In the case of AlsVd, the unrelaxed and relaxed values
of S1111 disagree in sign. Even in cases where there is agree-
ment in sign, the numerical values disagree by several fac-
tors. These results illustrate the profound influence of relax-
ation on the surface elastic modulus. In all elements, the
relaxed values ofS1111s=S2222d are negative for this crystal
surface. In the case ofS1212, the values of AlsEAd and Ni are
positive while all the remaining elements have negative val-
ues. It is also noted that the results forS1212 for aluminum
differs in sign for the two potentials used. An interesting
observation is that surface relaxation has little effect onS1212.

B. (111) crystal surface

The s111d crystal face in fcc crystals has a sixfold sym-
metry splane point group6mmd and is therefore isotropic.

The surface stresssTable IVd values are positive for all ele-
ments except Ni. The surface elastic constantS1111 is positive
for Al sboth potentialsd and Ni and negative for the remain-
ing elementssTable Vd. The values ofS1212 are positive in
the case of Cu and Ni, and negative in all other cases. As in
the case of thes001d surface, the values of surface stress
from both unrelaxed and relaxed calculations agree. The
elastic constantS1212 is not independent; it satisfies the rela-
tion 2S1212=S1111−S1122 sTable Id which is readily verified
from Table V. Due to this reason, the elastic constantS1212 is
also affected by surface relaxations.

C. (110) crystal surface

This crystal face, belonging to the plane point group
2mm, is anisotropic and has been studied previously.12 The

stresses along thef001g direction and thef11̄0g direction are
unequalsTable VId. In the case of Ni the stress in the latter
direction is negative. There does not appear to be any trend
in magnitudes of the stresses in the two directions. Elastic
constantsS1111 and S2222 differ and in the case of AlsEAd
have a different signsTable VIId. Except in case of Pd and
Pt, the value ofS1111 is greater in magnitude thatS2222. The
elastic constantS1122 is unequal toS2211. Both of these are
negative for all elements and agree in sign. The elastic con-
stant representing the shear resistance of this surface is also

TABLE IV. Surface stress tensor of thes111d crystal face. The “1” direction corresponds tof11̄0g and “2” corresponds tof112̄g. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

t11
0 seV/Å2d t22

0 seV/Å2d t12
0 seV/Å2d

Element g seV/Å2d UR R UR R UR R

Ag 0.0499 0.0405 0.0405 0.0405 0.0405 0.0000 0.0000

Al sEAd 0.0543 0.0568 0.0568 0.0568 0.0568 0.0000 0.0000

Al sVd 0.0515 0.0771 0.0771 0.0771 0.0771 0.0000 0.0000

Au 0.0435 0.1025 0.1025 0.1025 0.1025 0.0000 0.0000

Cu 0.0775 0.0343 0.0343 0.0343 0.0343 0.0000 0.0000

Ni 0.0893 −0.0072 −0.0072 −0.0072 −0.0072 0.0000 0.0000

Pd 0.0726 0.1020 0.1020 0.1020 0.1020 0.0000 0.0000

Pt 0.0773 0.1585 0.1585 0.1585 0.1585 0.0000 0.0000

TABLE V. Surface elastic modulus tensor of thes111d crystal face. The “1” direction corresponds tof11̄0g and “2” corresponds tof112̄g.
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

S1111seV/Å2d S2222seV/Å2d S1122seV/Å2d S2211seV/Å2d S1212seV/Å2d

Element UR R UR R UR R UR R UR R

Ag −0.487 −0.190 −0.487 −0.190 −0.306 −0.128 −0.306 −0.128 −0.090 −0.031

Al sEAd 0.291 0.283 0.291 0.283 0.322 0.354 0.322 0.354 −0.015 −0.036

Al sVd 0.107 0.005 0.107 0.005 0.339 0.241 0.339 0.241 −0.116 −0.118

Au −0.995 −0.498 −0.995 −0.498 −0.618 −0.169 −0.618 −0.169 −0.188 −0.164

Cu −0.448 −0.123 −0.448 −0.123 −0.290 −0.140 −0.290 −0.140 −0.079 0.009

Ni −0.199 0.136 −0.199 0.136 −0.116 −0.085 −0.116 −0.085 −0.042 0.111

Pd −1.019 −0.488 −1.019 −0.488 −0.643 −0.237 −0.643 −0.237 −0.188 −0.125

Pt −1.577 −0.791 −1.577 −0.791 −0.980 −0.306 −0.980 −0.306 −0.299 −0.243
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negative for all elements. As in the case of thes001d surface,
the surface stresses and the elastic constantS1212 are unaf-
fected by relaxation.

D. (112) crystal surface

As in the case of thes110d crystal face this surface also
belongs to the2mm point group and hence is anisotropic.
The surface stresses are positive in all casessTable VIIId.
The elastic constantssTable IXd S1111 and S2222 are all of
negative sign except in the case of Ni. Also,S2222 along this
surface has a comparatively large magnitude compared to
moduli on other surfaces. In most casesS1122 is close in
value toS2211, this surface is elastically less anisotropic than
the s110d surface. The elastic constantS1212 is negative in all
cases. Again, the surface stresses are insensitive to surface
relaxations. The elastic modulusS1212 is strongly dependent
on relaxations.

E. Comparative study and trends

It is of interest to make a comparative study of the elastic
properties with the purpose of uncovering trends in their be-
havior with respect to surfaces and elements. To achieve this

comparison, two quantities pertaining to elastic modulus ten-
sor are considered. First is the “surface bulk modulus” which
is equal toSiij j and gives a measure of the resistance of the
surface to homogeneous dilatation, and second is the surface
shear elastic constantS1212. The comparative information is
collected in Tables X and XI. Elements are grouped accord-
ing to their positions in the periodic table. AlsEAd and AlsVd
are considered first, followed by the noble metals Cu, Ag,
and Au, and the Ni group metals Ni, Pd, and Pt.

From Table X it is evident that two potentials for Al
roughly produce the same general trends for surface bulk
modulus. In the case of AlsEAd, the surface bulk modulus is
ordered ass111d. s001d. s110d. s112d, while in case of
Al sVd, the order iss111d. s001d. s112d. s110d. In case of
noble metals, Cu and Ag have the surface bulk modulus in
the orders001d. s111d. s112d. s110d. Au, the last element
in this group, deviates and has the ordering ass110d
. s001d. s111d. s112d. Interestingly, the first two elements
in the Ni group, Ni and Pd, have surface bulk modulus or-
dered ass001d. s111d. s112d. s110d, the same as the first
two noble metals. Additionally, Pt, the last element in the Ni
group, deviates tos001d. s110d. s111d. s112d. A further
interesting point is seen from the results. The surface bulk
modulus for thes001d and s111d decreases on going down

TABLE VI. Surface stress tensor of thes110d crystal face. The “1” direction corresponds tof001g and “2” corresponds tof11̄0g. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

t11
0 seV/Å2d t22

0 seV/Å2d t12
0 seV/Å2d

Element g seV/Å2d UR R UR R UR R

Ag 0.0585 0.0436 0.0436 0.0403 0.0403 0.0000 0.0000

Al sEAd 0.0647 0.0732 0.0732 0.1007 0.1007 0.0000 0.0000

Al sVd 0.0598 0.0811 0.0811 0.0936 0.0936 0.0000 0.0000

Au 0.0529 0.0561 0.0561 0.0918 0.0918 0.0000 0.0000

Cu 0.0889 0.0621 0.0621 0.0373 0.0373 0.0000 0.0000

Ni 0.1028 0.0504 0.0504 −0.0036 −0.0036 0.0000 0.0000

Pd 0.0869 0.0773 0.0773 0.0977 0.0977 0.0000 0.0000

Pt 0.0944 0.0937 0.0937 0.1463 0.1463 0.0000 0.0000

TABLE VII. Surface elastic modulus tensor of thes110d crystal face. The “1” direction corresponds tof001g and “2” corresponds to

f11̄0g. “UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to
strain.

S1111seV/Å2d S2222seV/Å2d S1122seV/Å2d S2211seV/Å2d S1212seV/Å2d

Element UR R UR R UR R UR R UR R

Ag −0.788 −0.571 −0.533 −0.429 −0.508 −0.357 −0.505 −0.354 −0.228 −0.228

Al sEAd −0.932 −1.254 −0.115 0.087 −0.103 −0.067 −0.130 −0.094 −0.063 −0.063

Al sVd 0.066 −0.507 0.190 −0.182 0.376 −0.081 0.364 −0.094 −0.098 −0.098

Au −0.790 −0.185 −0.972 −0.543 −0.565 −0.055 −0.601 −0.090 −0.118 −0.118

Cu −1.045 −0.908 −0.511 −0.445 −0.647 −0.550 −0.622 −0.525 −0.352 −0.352

Ni −1.359 −1.442 −0.269 −0.314 −0.768 −0.836 −0.713 −0.782 −0.600 −0.600

Pd −1.204 −0.680 −1.069 −0.748 −0.803 −0.392 −0.824 −0.412 −0.275 −0.275

Pt −1.457 −0.562 −1.597 −0.998 −1.013 −0.279 −1.066 −0.331 −0.262 −0.262
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the group, both in the Ni group and in noble metals. For the
s110d surface the trend is the opposite, the surface bulk
modulus increases on going down the group. There is, how-
ever, no clear trend in the case of thes112d surface.

A similar study of the surface shear elastic constant can be
undertaken from Table XI. Just as in the case of the surface
bulk modulus, both the potentials for the case of Al produce
similar trends. The shear modulus is ordered ass001d
. s111d. s110d. s112d in the case of AlsEAd and ass001d
. s110d. s111d. s112d in the case of AlsVd. In the case of
the noble metals, the shear modulus for the first two, Cu and
Ag, is ordered ass111d. s001d. s112d. s110d. Au has a
different ordering, s110d. s112d. s111d. s001d. This is
similar to the case of the surface bulk modulus where the
first two elements show the same trend while the last element
deviates. In the case of the Ni group elements, each of them
show a different trend for the ordering of the shear modulus,
although Ni and Pd are close in ordering. Finally, the shear
modulus of thes001d ands111d decreases on going down the
group, in both noble metals and Ni group. However, the
shear modulus increases on going down the group for the
case of thes110d surface. In the case of thes112d surface, the
shear modulus decreases on going down the group for the
noble metals.

F. Conclusions and future directions

This paper achieves two main objectives. First, a fully
nonlinear formulation of surface elasticity is presented. Sec-
ond, a method for calculation of the surface elastic properties
is developed. The most important result uncovered by this
work is the importance of accounting for additional surface
relaxations engendered by the applied strain. It is found that
the relaxation effects do not affect the surface stress tensor
and, in the case of some crystal faces, the surface shear elas-
tic constantS1212. All other elastic constants are strongly af-
fected by the relaxation, in that relaxed and unrelaxed results
can differ even in sign. The limitations of the embedded
atom method in describing surfaces and interfaces are well
known, and the results in this work are only likely to show
trends. In this regard, the study indicates the presence of
some general trends as indicated in the previous section.Ab
initio methods are best suited to determine accurate numeri-
cal values of surface elastic constants. The finding in the
present study amounts to the conclusion that therelaxations
of the atomssand not just the determination of the ground
state wave functions based on the homogeneously strained
positions of the atomsd is essential for the accurate determi-
nation of surface elastic constants. Also, the accurate deter-
mination of the total surface energy as a function of strain

TABLE VIII. Surface stress tensor of thes112d crystal face. The “1” direction corresponds tof11̄0g and “2” corresponds tof111̄g. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

t11
0 seV/Å2d t22

0 seV/Å2d t12
0 seV/Å2d

Element g seV/Å2d UR R UR R UR R

Ag 0.0572 0.0447 0.0447 0.0340 0.0340 0.0000 0.0000

Al sEAd 0.0633 0.0544 0.0544 0.0681 0.0681 0.0000 0.0000

Al sVd 0.0584 0.0795 0.0795 0.0684 0.0684 0.0000 0.0000

Au 0.0505 0.0835 0.0835 0.0690 0.0690 0.0000 0.0000

Cu 0.0878 0.0474 0.0474 0.0382 0.0382 0.0000 0.0000

Ni 0.1013 0.0184 0.0184 0.0129 0.0129 0.0000 0.0000

Pd 0.0841 0.0947 0.0947 0.0750 0.0750 0.0000 0.0000

Pt 0.0903 0.1355 0.1355 0.1084 0.1084 0.0000 0.0000

TABLE IX. Surface elastic modulus tensor of thes112d crystal face. The “1” direction corresponds tof11̄0g and “2” corresponds tof111̄g.
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

S1111seV/Å2d S2222seV/Å2d S1122seV/Å2d S2211seV/Å2d S1212seV/Å2d

Element UR R UR R UR R UR R UR R

Ag −0.570 −0.160 −0.766 −0.759 −0.375 −0.169 −0.364 −0.159 −0.098 −0.164

Al sEAd 0.069 −0.113 −0.346 −0.676 −0.172 −0.331 −0.186 −0.344 −0.062 −0.371

Al sVd 0.233 −0.163 0.123 −0.431 0.363 −0.016 0.374 −0.005 −0.082 −0.176

Au −0.925 −0.534 −0.902 −0.571 −0.540 −0.154 −0.525 −0.140 −0.066 −0.120

Cu −0.571 −0.065 −0.973 −1.113 −0.420 −0.236 −0.411 −0.227 −0.142 −0.253

Ni −0.406 0.205 −1.263 −1.693 −0.357 −0.288 −0.351 −0.283 −0.223 −0.391

Pd −1.070 −0.475 −1.206 −1.035 −0.666 −0.259 −0.646 −0.240 −0.126 −0.220

Pt −1.553 −0.819 −1.571 −1.144 −0.916 −0.293 −0.889 −0.266 −0.131 −0.235
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requires simulations with slabs of various thicknesses, nec-
essarily requiring large computational efforts.

Further efforts are required to bring the subject of elastic
properties of crystal surfaces on a firm theoretical footing.
Prime among them is the connection to surface phonons.33

The bulk elastic constants can be derived from the bulk pho-
non spectrum using the method of long waves.34 An impor-
tant and interesting task is to derive the surface elastic con-
stants from surface phonons using the method of long waves.
Other interesting problems include the determination of tem-
perature dependence and effect of ad-atoms on the surface
elastic constants. The determination of temperature depen-
dence of surface elastic constants requires the dynamical
treatment of surface phonons and will be taken up in a future
publication.

The experimental determination of surface elastic con-
stants is likely to prove to be a challenging task. The deter-
mination of the surface stress in itself requires careful
experiments.1 A suggestion for the possible determination of
the surface elastic constant is made here along lines similar
to that suggested by Kosevich and Kosevich.35 For the sake
of simplicity a two-dimensional slab of thicknessh slines
that bound the slab are treated as surfacesd is considered,
with bulk elastic modulusC, surface stresst0, and surface

elastic constantS. When the slab is a few atomic layers thick,
the lattice parameter will be unequal to the bulk lattice pa-
rameter, i.e., the lattice will experience a strain. A simple
calculation shows that the strainer can be obtained as

1

er
= − S C

2t0
h +

S

t0D . s24d

The experiment to be performed will include determination
of er for slabs of various thicknesses, and calculation ofS
andt0 from Eq. s24d with the knowledge of the bulk elastic
constantC. Haiss1 has pointed out the difficulties involved in
such experiments.
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