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Atomistic calculations of elastic properties of metallic fcc crystal surfaces
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Elastic properties of crystal surfaces are useful in understanding mechanical properties of nanostructures.
This paper presents a fully nonlinear treatment of surface stress and surface elastic constants. A method for the
determination of surface elastic properties from atomistic simulations is developed. This method is illustrated
with examples of several crystal faces of some fcc metals modeled with embedded atom potentials. The key
finding in this study is the importance of accounting for the additional relaxations of atoms at the crystal
surface due to strain. Although these relaxations do not affect the values of surface(atrdssl been
determined in previous worksthey have a profound effect on the surface elastic constants. Failure to account
for these relaxations can lead to values of elastic constants that are incorrect not only in magnitude but also in
sign. A possible method for the experimental determination of the surface elastic constants is outlined.

DOI: 10.1103/PhysRevB.71.094104 PACS nun®er68.35.Gy, 68.35.Md, 68.47.De

I. INTRODUCTION al.*® studied the properties of multiwalled carbon nanotubes

The understanding of properties of surfaces of solid mabPy €xciting them with an external field and observing the
terials is important from both scientific and technological2mPplitude response as a function of the excitation frequency.
viewpoints. Surfaces of solids possess interesting propertidgom the resonant frequency they calculated the elastic
owing to the fact that they possess atoms with fewer neigh[ﬂOdU'US of the tube using standard continuum mechanics
bors and consequently excess energy over atoms in the bulnd found that the calculated elastic modulus is a strong
The properties of surfaces dominate processes ranging frofanction of the diameter of the tube. In another set of experi-
intercellular transport in biological systems to the growth ofments, Yanget al!” found that the loss factor of ultrathin
thin films used in microelectronic devices. silicon cantilevers depends on the thickness of the cantile-

An important property of solid surfaces is the surfacevers, an effect that they attributed to surface stress.
stressh? When a liquid surface is deformed, atoms from the A simple model to explain the size dependence of the
bulk are free to migrate to the surface in such a manner thatlastic rigidities of nanostructures was developed by Miller
the number of atoms per unit area of the surface remaingnd Shenoy® The main premise of the model is that al-
roughly a constant in the deformation process. Surface streggough the discrete atomistic nature of the material becomes
arises in solids due to the fact that as the solid deformgmportant at smaller scales, the nanostructure can be mod-
atoms from the bulk are unable to move to occupy the sureled using continuum mechanics following the ansatz that
face. Surface stress has been shown to be responsible faranostructure = bulk + surface.” It was shown that the dif-
many interesting effects on crystal surfaces. One such effedéerences between the actual rigiditip) of a nanostructure
is the reconstructioh” of the close packedl11) surfaces of and that predicted by continuum mechaniBs) can be ex-

Au and Pt. This reconstruction has been attributed to a conpressed as

petition between surface stress and the interlayer

interaction?®° The importance of surface stress has lead to D-D._  ho

several efforts in its theoretical determination. For example, D =A a’ (1)
surface stresses were evaluated usbginitio methods in

semiconductors by Maede and VandetBiéind in metals by whereA is a nondimensional constant that depends on the
Needs!! More recently, Feibelman has investigated the na-geometry of the structure, is the size scale of the structural
ture of anisotropy of surface strédon certain fcc crystal elementfor example, the cross-sectional width of a)pand
surfaces and the effect of gas adsorptfarn surface stress. hy is a material length that is the ratio of tearface elastic
Empirical potentials have also been employed to study sureonstantof the bounding surfaces of the structure and the
face stresses in bce and fcc crystdi$? Although the em-  bulk elastic constant. Thus the size dependence of the rigidi-
pirical methods generally underestimate the magnitude of thées can be predicted by obtaining the material parantgger
surface stress, they remain useful in understanding trendmnd the nondimensional constahtTypically, hy can be ob-
and developing concepts. tained from atomistic simulations that determine the value of

With the emergence of nanotechnology in the last decaddhe surface and bulk elastic constants. The congtanthich
it is now possible to make structures and devices at nanometlepends only on the geometfgross sectionof the struc-
ric scales. These “nanostructures” are characterized by tre, can be calculated analytically. Thus the need for full
large surface-to-volume ratio. In this context, it is all the scale atomistic simulations of nanostructures is obviated.
more important to understand properties of surfaces thafhis model was used to study the elastic properties of nano-
make up the nanostructure. Indeed, nanostructures shosized bars, plates, and beatfisnd also to study the torsion
“size-dependent” behavior. In a set of experiments, ®ao of bars!® In both cases, excellent agreement was obtained
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between theory and atomistic simulations. The main point
brought out by the above cited work is that takstic re-
sponse of nanostructures depends on the surface elastic con-

stant(s) <X2
The idea of the surface elastic constant is now illustrated X

in a simple one-dimensional setting. Letlenote the surface
stres$® which is related to the surface energwia

Ao=y+ 22, @ F
Jde
wheree is the strain. Clearly, the surface stress depends on
the strain since the surface energy depends on the strain. T
What is usually referred to as surface stress and values <
reported®1%is the value of the surface stress at zero strain, T @
i.e., 0)=7°. The surface elastic constaBtis a measure of
how the surface stress changes with strain, i.e.,

He)=1"+Se )
. FIG. 1. Schematic of a flat surface undergoing homogeneous
or, alternatively, deformation. The deformation leaves the surface flat.
_ T
S= — (4 nanostructuré€'9is to develop simpleontinuumield theo-

de| —o X ) .
€le0 ries that include theffect of surfaceslo this end, the nano-

The effect of surfaces on the biaxial modulus of thin filmssized body is considered to be made up of “bulk” and a
and multilayers was first noted by Streitz al?1?> These  bounding “surface” in a continuum theory. This bounding
authors developed a scaling relation similar to EQ, but  surface in the continuum theory is used to mathematically
did not introduce surface elastic constants explicitly. In ad+epresent the actual atomic surface of the simiduding the
dition, their analysis is restricted to biaxial deformations withlayers below the terminating layer where the effects of the
linear kinematics. Although surface elastic constants wergermination are felt. This is achieved in two steps. First is to
introduced and calculated in previous wdfk®with a view  develop a fully nonlineacontinuum theoryf surface defor-

a validating Eq(1), a systematic study of these quantities ismation and energetics. The key outcome of this step is the
yet to be performed. The aim of this paper is twofold. First,description of the surface mechanics via surface stress and
to develop a general nonlinear framework for surface meelastic modulus tensors; this is described in this section. The
chanics in which the surface elastic constants are introducedecond step is the calculation of the constitutive parameters,
and second, to establish a procedure for calculating theseamely the surface stresses and elastic constants, which will
quantities from atomistic simulations. Whisb initio meth-  include effects of layers below the terminating layer, from an
ods provide the most accurate resyitsterms of numerical atomistic simulation. This second step is taken up in the next
values, the present calculations are performed using the emsection.

bedded atom method:?* The advantage of this method is  Nonlinear mechanics of a bulk solid is well knowhMe-

that it allows for an efficient study of a large number of chanics of surface deformation is considered in some detail
crystal surfaces and materials and is therefore ideally suitefly Hais$ based on linear kinematics. The analysis here is
to achieve the second objective of this paper as stated aboveased on nonlinear kinematics and a complete development
Attention is restricted to fcc crystals. is presented for the sake of clarity. The flat surface consid-

The paper is organized as follows. Section Il contains theered is described by coordinaté%;,X,) in its undeformed
theoretical background to the mechanical properties of surstate(Fig. 1). The surface undergoes homogeneous deforma-
faces. The method for obtaining the surface elastic constantin described by the deformation gradient teA36r whose
within the framework of atomistic simulations is outlined in components are denoted ;. The point(X;,X,) in the

Sec. lll. The results are presented and discussed in Sec. IMndeformed system is mapped(tq,x,) by F (Fig. 1), i.e.,
The last section also contains a discussion of possible future

directions of investigation. X = FyX. (5)
Il. MECHANICAL PROPERTIES OF CRYSTAL The components of the Green-Lagrange strain teasare
SURFACES: THEORY related to the deformation gradient tensor via

The mechanics of nanosized bodies requires consideration
of both the bulk and surface effects. The effects of terminat- 6 = }(Fkiij - &), (6)
ing a solid at a surface may extend several atomic layers 2
below the terminating layer. The aim of the theoretical effort
in understanding size-dependent properties ofwvhere g; is the Kronecker delta symbol.
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Under the action of the homogeneous deformafigra < 19E° 1 dy
patch with aread, is mapped to a patch with are® The oE>=AT;oe; U 7 = Ade A +2¢)77]; + 2 |
deformed ared is related to the ared, via ! 1 12

A=A detF =Agvdetl + 2e), () The expressiornl2) is the definition consistent with nonlin-

ear kinematics and the surface stress clearly depends on the

wherel is the identity tensor. Two results to be used in the train, When Eq(12) i luated at th trained p
developments below are recorded. First is the derivative oprain. When £q IS evaluated at the unstrained configu-
ration, i.e., wheng; =0, the result above agrees with the pre-

he areaA with r he strain tensor componen X
the areai with respect to the strain tensor components, " definition of surface stress?

oA _ s
2= A+ 207;, ®) 79:( 1@) :(75_ . ﬂ) _ 13

GU ! AO76”' 0 !y &Eij =0
where[(1+2¢)~"]; denotes thej component of the tensor The surface elastic constants determine the change in the

(1+2¢)™%. Second is the derivative of the components of thesurface stress with strain. Thus the surface stregs written
tensor(l +2¢)~* with respect to the components of the strainas

tensor 0
7ij = Tij T Sjki €ki» (14
a[(l + 26)_1:|i' -1 -1 . .
————— 1 =20(1+2¢) Pyl (1 + 2¢) ;. (9)  whereSy is the fourth order surface elastic tensor. An alter-
Je€q native definition of the surface elastic that is consistent with
The surface is assumed to posses an energy depsity Ed- (14) is
which is the energy per unit deformed area. Evidentige- .
pends on the strain tenserWith this definition of strain, the Si= —| . (15)
total energyE® in the patchA can be written as 9€4 | =0
From Eqgs.(12) and(15), it is easily shown using E8) that
. . . . 1_FF 0
To obtain an expression for surface stress, the strain state in Sjk = Ade = 764 (16)
incremented ta+ Se from e and the change in total energy is €ij 7 € | e=0
evaluated using Eq(8): and in terms of surface enerdgn using Eq.(9)] as
JA J J
SES= ((9_’)/4' Aﬁ_y>5€|1 :A<’y[(| +26)_1]ij +a_y)5€ij. 0.'7 (92’}/
€i l i Sjx = (275ik5]| t&—— —) (17)
(11) deq  J€jd €/ | o
The surface stress tenser(with componentsr;) is defined The surface elastic constant tensor possesses the follow-
as the work conjugate adfe, i.e., ing symmetries with respect to exchange of indices:
TABLE |. Independent surface elastic constants for different plane point groups.
Plane Number of independent Independent Symmetry imposed
point groups) elastic constants elastic constants constraint relations
1,2 9 All Nil
m,2mm S S1111,S1122, S1212 S11127 S12117 S1220= $521~0
$211:S222
4 S S1111,S1112, S1211 S12007 =S1211, S211= S1122
S1212:S1122 $2127 =S1112, S22 S1111
4mm 3 S1111,S1122, S1212 S11127 S12117 S1220= $217=0,
$2117 S1122. 92207 S1111
3,6 3 S1111,S1112, S1122 S12117 =S1112, 2512157 1111~ S1122

S1220=S1112: $211= S1122
$21==S1112,$220= S1111
3m,6mm 2 S1111, S1122 S111= S1211= S1225= $210,
281217 S1111~ S1122
$211= 1122 $22= 1111
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Sk = Sjui » (18)
Sjik = Sju - (19

Notably, Sy # Sqij, @ symmetry that is present in the bulk
elastic tensor. There are, therefore, a total of nine indepen-
dent possible elastic constants for a crystal surface which are
taken to beS;113, Si112 Si122 Si211 Si212 S1220 S211 S212
and S,,,» Further reduction in the number of independent
elastic constants can is brought about by the presence of
geometric symmetry in the crystal surface as shown in Table
l. FIG. 2. A simulation cell used to determine surface elastic prop-
In contrast to the bulk elastic tensor, the surface elastierties consists of a slab of thickndssPeriodic boundary conditions
tensorS;, need not be positive definite, i.e., the quadraticare used in the 1 and 2 directions.
form S €;j€q need not be non-negative. At first glance this

may suggest a violation of basic thermodynamic postulates,e theadditional energywith respect to the undistorted lat-

It must be noted that the positive definiteness of the bulkjce e the energy reference is chosen such that an undis-
elastic modulus tensor which guarantees the stability of the, iaq jattice will have zero energy per atom.

solid cannot be applied to the surface v_ela_stic tensor. This iS 14 calculate the surface elastic properties, a simulation
due to the fact that a surface cannot exist independent of thg,, consisting of atoms as shown in Fig. 2 is constructed.
bulk, and the total energfbulk + surface that needs 10 periggic boundary conditions are used in the “1” and “2”
satisfy the positive definiteness condition. This property Ofgirections while the box is bounded in the third direction by

the surface elastic modulus can lead to interesting consgree syrfaces whose properties are to be studied. An impor-
quences such as fall in the rigidity of a nanostructtwath (5 parameter is the thicknels®f the slab. This thickness is
Size. determined by a Gibbs dividing surface constructidrased

on total mass. Thuk is chosen such that the volume of the
lll. CALCULATION OF SURFACE ELASTIC CONSTANTS cell (L;L,h) in its undistorted configuration multiplied by the
Odensity of the bulk solid is equal to the total mass of the

One of the objectives of this work is to establish a metho i in the box. The lenat dL woically ch
to obtain surface elastic constants from atomistic calcula®0™S !N the box. The leng hs andL, are typically chosen

tions. Whileab initio electronic structure methotfsare the to be five to S!X times_the repeat distance in the appropriate
most reliable in terms of numerical values, approximate tota rystallograpmc d|r¢ct|on. Itis found that the calqulated sur-
energy descriptions such as the embedded atom néttfod ace elastic properties do not depend on the particular choice
provide for efficient computations. Since the purpose of thisOf L, andL,. . . ) .

work is not the accurate determination of numerical values o To determine the ungtrame(deferencé configuration of
surface elastic constants, but to establish consistent metho[‘]}e surft_ice, th_e foIIovx{mg method s adopted. At_oms are
for the determination of the surface elastic constants from gaeked n ppsm_ons asifina perfeqt .crysta'l In t'he simulation
total energy description, the embedded atom method i ox shown in Fig. 2. An energy minimization is performed

adopted. It must be emphasized that the methods presentgﬂch.that the_ atoms at the ;urfac_e relax to their eql_JiIibrium
here can be applied to any atomistic formulation positions. This relaxed configuration of the surface is taken

The total energy in the embedded atom formafshde- as the reference configuration defined in the previous section

7. , o (Fig. 1).
\E)v(iatrr;dssi:{;\lethsepggisgoor}sacs;g;;tm(mestrlcted here to solids There are two possible methods for evaluating the surface

stressﬁ} and elastic tensdg,;. The first method, adopted in
1 previous calculatiort428 (in the case of surface strgss to
tot — — . .
B = 22 > ¢(raﬂ)+2 Flpa), evaluate the expression for surface stress in terms of the

@ pra “ strain derivative of the total surface energy given in 84).
The strain derivative of the surface energy is derived analyti-
Pa= 2 P ap), (200 cally. In the case of the embedded atom method, the strain
B#a derivative of the total energy is given by
wherea and g are indices that run over the atonngy is the ot .
distance between atowm and 3, ¢(r) is a function that de- £:2 D <}¢,(r )+ (p,)p!(r )>ra§ra§
scribes a pairwise interaction between the atopas), is the d€; 7 pra\2 h PalP Lap B
electron density functiom, is the electron density at the site (21)

of atom«, andF is the embedding function. The embedded

atom method accounts for the many body effects in an apwhere the primes denote derivatives. In caseabfinitio
proximate manner via the nonlinear embedding function. lelectronic structure methods, a conceptually similar expres-
must be noted that the total energ{' in Eq.(20) is taken to  sion is used®2° For the developments that follow it is im-
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portant to understand how E(R1) is derived. To obtain the ga.70r
strain derivative of the total energy, the positions of all atoms i
are modified by the applied homogeneous deformation gra-  essof —=— Unrelaxed
dient. Stated in another way, iifis the position vector of an —— Relaxed
atom in the reference configuration, its position is changed to
ri— F;jr; under the action of the homogeneous deformation
grad|ent The total energhE(e)] is evaluated in this con-
figuration where the atoms are placed in the positions dic-
tated by the homogeneous deformation gradient. The expres-
sion (21) is obtained as Ilm_,o{[E‘Ot(e) E°Y(ref)]/ ;}. The 89.30
derivation of the stress expressmn in the casalfinitio
method$®?°is also similar in that the ground state electronic 69.20 i L
wave functions are “stretched” by the strain tensor and the Thickness (4)

difference in the energy is obtained and the limiting process

described above provides the strain derivative. The surface FIG. 3. Dependence of the total energy of the system on the
elastic modulus can also be obtained using @§), in the  thickness of the slab. Results shown are for the case (H0A)
case of the embedded atom method, from the second derivadrface at a strain of;;=0.003,€;,=0.003,€,,=0.003 using a slab

Energy (eV)

3

3
——r

@
©
s
S
T

tive of the total energy: (see Fig. 2 with L,=1L,=24.192 A. For the values of thicknesses
o , and the strain state, the majority contribution to the total enEfgly
PE - E 2 <¢n( e ¢ (Ug)) —F'(p,) arises frome® [ofAEq. (23)] as the bulk elastic energy works out
dejdeq 4 Bra "‘ B only to 2.33x 107* eV/atom.

x(p”(r ) - P'(rag))] aBraBraBraB +> F(p,) for Qetermining thetotal surface energy Eas a function of
p raﬁ raﬁ " “ strain. Once the total surface energyis obtained, expres-
sions(13) and(16) are used to, respectively, obtain the sur-
(2 o' aﬁ) g g)(E ot ) g g). 22 face stress and elastic tensors by numerical differe;ntiation.
B B The two methods outlined above have one very important
difference which proves to be crucial in the correct calcula-
It must be noted that the second derivative of the total energyion of the surface elastic tensor. In the second method, the
contains both bulk and surface contributions. The surfacgystem is fully relaxed on application of the strain. The re-
contribution can be isolated using the method described baaxation entails a Poisson contraction of the entire set of
low. atoms in the 3 directiorand rearrangements of surface at-
The second method to obtain the surface stress tensor agghsto their new equilibrium positions. In the first method
elastic tensor is to obtain the total surface energy as a fungyhere analytical derivatives are used to obtain the required
tion of strain and calculate the required quantities by numeriquantities, the effects due to thelditional surface relax-
cal differentiation. When the slab in Fig. 2 is strained, theations due to strain are not accounted _f(ﬁ'igure 3 shows
totalenergy of the system is made of two components, théhe total energy as a function of the thickness for both the
strain energy in the bulk and the surface energy. The surfacglaxed and unrelaxed cases, and the importance of relax-
energy has to be isolated from the total energyLilf; (Ly  ation is evident. A more vivid illustration of this effect is

andL, are taken in the strained stais taken asA, the area  shown in Fig. 4 where the dependence of both relaxed and
of the surface, the total energy can be written as

0058
E" =2Av(€) + hAW(e), i ,

E Eb (23 0.056 - ———=-Unrelaxed % 3

whereW(e) is the bulk strain energy density aifie? is the Relaxed

%)

total energy in the bulk. Thus, for a given state of strain, the °<
total energy depends linearly on the thicknegsletermined w7 GOSAL
by the Gibbs constructigrof the slab. =
Indeed, calculationgFig. 3) show that the linear relation- gieal _
ship is very closely followed. For a given strain state, surface T
energyE® can therefore be determined by obtaining the total i
energy as a function of thickness. A linear(®) is made to 0.050 b
the E'®' vs h data, the intercept of which is twice the surface £,

energy. This procedure has proved to be very robust. An

important check to test the accuracy of the fit is to determine F|G. 4. Surface energy of thH@01) surface of Al(Ref. 30 as a

the surface energy based on different sets of valués ©he  function of uniaxial strain in th¢100] direction. The curvature of
present calculations show that in every case reported herehe relaxed and unrelaxed surface energies are different. Relaxation
the values were to within one part in.6f each other. The here refers to the additional rearrangements of surface atoms due to
present method, therefore, provides a very accurate methagbplication of strain.
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TABLE II. Surface stress tensor of t{801) crystal face. The “1” direction corresponds[tt00] and “2” corresponds t0010]. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

721 (eVIA? ng (eV/A) 7'(1)2 (eV/A?)
Element v (eVIA?) UR R UR R UR R
Ag 0.0543 0.0556 0.0556 0.0556 0.0556 0.0000 0.0000
Al(EA) 0.0588 0.0355 0.0355 0.0355 0.0355 0.0000 0.0000
Al(V) 0.0533 0.0822 0.0822 0.0822 0.0822 0.0000 0.0000
Au 0.0498 0.0877 0.0877 0.0877 0.0877 0.0000 0.0000
Cu 0.0828 0.0649 0.0649 0.0649 0.0649 0.0000 0.0000
Ni 0.0956 0.0442 0.0442 0.0442 0.0442 0.0000 0.0000
Pd 0.0807 0.1052 0.1052 0.1052 0.1052 0.0000 0.0000
Pt 0.0880 0.1426 0.1426 0.1426 0.1426 0.0000 0.0000

unrelaxed surface energies on strain is plotted. It is evidentffect of the particular embedded atom potentials Al is
that although the slopes are equal in both cases when strainti®ated with two different potentials. When treated with em-
zero, the curvatures of the two are vastly different. Thus théedded atom potentials of Ercolessi and Ad#hdgrived by
first method for the calculation of the surface stress tenso@ force matching method frorab initio calculations, Al is
and the surface elastic modulus tensor based on the analydenoted as AEA). The second embedded atom potential
cal derivative pertains to thenrelaxedcase where additional chosen is that of Al obtained by Voférdenoted as AV).
surface relaxations due to the strain are neglected, while th&ll the remaining elements are treated using the embedded
second method based on the numerical derivative of the totatom potentials developed by Oh and John¥ohhese po-
surface energy accounts for surface relaxations. It is found itentials have the same functional forms and the parameters in
the calculations here that the additional surface relaxationthese functions are determined by fit to measured properties.
do not affect the value of the surface stre%sm a significant The total surface enerds® is determined using the above
manner, but can have profound effect on the surface elastigrocedure for several values of strains; stréiag, €x,, €,
tensor in that even thsign can be different when calculated are each varied from —0.003 to 0.003 in steps of 0.001&nd
in these two different ways. Needless to state that the secorig determined for each set of values. A quartic polynomial in
method where additional relaxations are accounted for corree;;, €,,, ande;, is fit to this data and the required derivatives
sponds to the correct physical situation. are extracted. The process of determinatiorEdfs carried
out both without allowing for additional relaxations and al-
V. RESULTS AND CONCLUSIONS lowing for relaxations. In the former case where relaxations

are not allowed, the results are compared with those using
This section contains results of the calculations performedhe analytic formulas and agreement to several significant

to determine the surface stress tensor and the surface elasfigures is found confirming the correctness of the procedure.
constants based on embedded atom simulations. Attention is

restricted to fcc crystals. Four different surface orientations A. (001) crystal surface
viz. (00)), (110, (111), and(112) are studied. The elements  The (001 crystal face in fcc crystals belongs to the plane
considered are Ag, Al, Au, Cu, Ni, Pd, and Pt. To study thepoint group4mm. Thus the surface stresses are isotropic,

TABLE lIl. Surface elastic modulus tensor of tf@01) crystal face. The “1” direction corresponds[®0] and “2” corresponds tp010].
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

Si111(eV/A?) S22(eV/A?) Si120(eV/A?) Sro11(eV/A?) Si212(eV/IA?)
Element UR R UR R UR R UR R UR R
Ag -0.733 -0.216 -0.733 -0.216 -0.397 0.119 -0.397 0.119 -0.105 -0.105
Al(EA) -0.089 —-0.565 -0.089 —-0.565 0.695 0.218 0.695 0.218 0.214 0.214
Al(V) 0.138 -0.193 0.138 -0.193 0.396 0.066 0.396 0.066 -0.072 -0.072
Au -0.901 -0.329 -0.901 -0.329 -0.730 -0.158 -0.730 -0.158 -0.247 -0.247
Cu -0.885 -0.260 -0.885 -0.260 -0.356 0.269 -0.356 0.269 -0.063 -0.063
Ni -1.046 -0.304 -1.046 -0.304 -0.148 0.593 -0.148 0.593 0.012 0.012
Pd -1.185 -0.402 -1.185 -0.402 -0.778 0.006 -0.778 0.006 -0.231 -0.231
Pt -1.561 —-0.555 -1.561 —-0.555 -1.183 -0.177 -1.183 -0.177 -0.389 -0.389
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TABLE V. Surface stress tensor of th{@11) crystal face. The “1” direction corresponds[thO] and “2” corresponds t{)ll?]. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

7, (eVIA?) 79, (eVIA?) 7, (eVIA?)
Element v (eV/IA?) UR R UR R UR R
Ag 0.0499 0.0405 0.0405 0.0405 0.0405 0.0000 0.0000
Al(EA) 0.0543 0.0568 0.0568 0.0568 0.0568 0.0000 0.0000
Al(V) 0.0515 0.0771 0.0771 0.0771 0.0771 0.0000 0.0000
Au 0.0435 0.1025 0.1025 0.1025 0.1025 0.0000 0.0000
Cu 0.0775 0.0343 0.0343 0.0343 0.0343 0.0000 0.0000
Ni 0.0893 -0.0072 -0.0072 -0.0072 -0.0072 0.0000 0.0000
Pd 0.0726 0.1020 0.1020 0.1020 0.1020 0.0000 0.0000
Pt 0.0773 0.1585 0.1585 0.1585 0.1585 0.0000 0.0000

and the elastic moduli are anisotropic. The results for surfac&he surface stres§able V) values are positive for all ele-
stresses and elastic moduli are given, respectively, in Tablasents except Ni. The surface elastic constni; is positive

Il and Ill. The surface stresses are all positive and in agreefor Al (both potentialsand Ni and negative for the remain-
ment with previously reported resuffsbut are somewhat ing elementgTable V). The values 0fSy,;, are positive in
lower in magnitude than those froab initio calculations as  the case of Cu and Ni, and negative in all other cases. As in
has been seen in previous worksThe surface stresses are the case of thg001) surface, the values of surface stress
also close to the values reported by Streitzal?! for these  from both unrelaxed and relaxed calculations agree. The
materials with similar embedded atom potentials. AlSO, th%|ast|c Constans_ulz is not independent; it satisfies the rela-
surface stresses from unrelaxed calculations and relaxed cajon 2S,,,,=S,,,,-S,12» (Table ) which is readily verified

culations disagree in only higher decimal pla¢ast shown  from Table V. Due to this reason, the elastic cons@t, is
in the tableg This is not the case with surface elastic con-g|so affected by surface relaxations.

stants. In the case of A¥), the unrelaxed and relaxed values
of S;;;11 disagree in sign. Even in cases where there is agree-
ment in sign, the numerical values disagree by several fac- ] . .
tors. These results illustrate the profound influence of relax- This crystal face, belonging to the plane point group
ation on the surface elastic modulus. In all elements, th&Mm, is anisotropic and has been studied previotijhe
relaxed values 08,;,1/(=S,s,0) are negative for this crystal stresses along tH®01] direction and th¢110] direction are
surface. In the case &, the values of AIEA) and Ni are  unequal(Table VI). In the case of Ni the stress in the latter
positive while all the remaining elements have negative valdirection is negative. There does not appear to be any trend
ues. It is also noted that the results 8, for aluminum  in magnitudes of the stresses in the two directions. Elastic
differs in sign for the two potentials used. An interestingconstantsS,;q; and S,,,, differ and in the case of AEA)
observation is that surface relaxation has little effecBgn,  have a different sigriTable VII). Except in case of Pd and
Pt, the value ofS;4, is greater in magnitude th&.,,» The

elastic constang; 5, is unequal t0Sy,15. Both of these are
The (112 crystal face in fcc crystals has a sixfold sym- negative for all elements and agree in sign. The elastic con-

metry (plane point groupdmm) and is therefore isotropic. stant representing the shear resistance of this surface is also

C. (110) crystal surface

B. (111) crystal surface

TABLE V. Surface elastic modulus tensor of tfie 1) crystal face. The “1” direction corresponds[ﬂﬂ)] and “2” corresponds tbllz].
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

Si111(eV/A?) S22(eV/A?) Si120(eV/A?) Sro11(eV/A?) Si212(eV/IA?)
Element UR R UR R UR R UR R UR R
Ag -0.487 -0.190 -0.487 -0.190 —-0.306 -0.128 —-0.306 -0.128 —-0.090 -0.031
Al(EA) 0.291 0.283 0.291 0.283 0.322 0.354 0.322 0.354 -0.015 —-0.036
Al(V) 0.107 0.005 0.107 0.005 0.339 0.241 0.339 0.241 -0.116 -0.118
Au -0.995 —-0.498 -0.995 —-0.498 -0.618 -0.169 -0.618 -0.169 -0.188 -0.164
Cu -0.448 -0.123 -0.448 -0.123 -0.290 -0.140 -0.290 -0.140 -0.079 0.009
Ni -0.199 0.136 -0.199 0.136 -0.116 -0.085 -0.116 -0.085 -0.042 0.111
Pd -1.019 -0.488 -1.019 -0.488 -0.643 -0.237 -0.643 -0.237 -0.188 -0.125
Pt -1.577 -0.791 -1.577 -0.791 -0.980 -0.306 -0.980 -0.306 -0.299 -0.243

094104-7



VIJAY B. SHENOY PHYSICAL REVIEW B 71, 094104(2005

TABLE VI. Surface stress tensor of th{&10) crystal face. The “1” direction corresponds[@01] and “2” corresponds t{)lTo]. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

7, (eVIA?) 79, (eV/IA?) 7, (eVIA?)
Element v (eV/IA?) UR R UR R UR R
Ag 0.0585 0.0436 0.0436 0.0403 0.0403 0.0000 0.0000
Al(EA) 0.0647 0.0732 0.0732 0.1007 0.1007 0.0000 0.0000
Al(V) 0.0598 0.0811 0.0811 0.0936 0.0936 0.0000 0.0000
Au 0.0529 0.0561 0.0561 0.0918 0.0918 0.0000 0.0000
Cu 0.0889 0.0621 0.0621 0.0373 0.0373 0.0000 0.0000
Ni 0.1028 0.0504 0.0504 -0.0036 -0.0036 0.0000 0.0000
Pd 0.0869 0.0773 0.0773 0.0977 0.0977 0.0000 0.0000
Pt 0.0944 0.0937 0.0937 0.1463 0.1463 0.0000 0.0000

negative for all elements. As in the case of {881) surface, comparison, two quantities pertaining to elastic modulus ten-
the surface stresses and the elastic cons$ant are unaf-  sor are considered. First is the “surface bulk modulus” which
fected by relaxation. is equal toS;;; and gives a measure of the resistance of the
surface to homogeneous dilatation, and second is the surface
shear elastic constai$;,;» The comparative information is
collected in Tables X and XI. Elements are grouped accord-
As in the case of thé¢110) crystal face this surface also ing to their positions in the periodic table.(#&A) and A(V)
belongs to the2mm point group and hence is anisotropic. are considered first, followed by the noble metals Cu, Ag,
The surface stresses are positive in all cadeble VIII).  and Au, and the Ni group metals Ni, Pd, and Pt.
The elastic constantéTable IX) S;;;; and Sy, are all of From Table X it is evident that two potentials for Al
negative sign except in the case of Ni. Al),,,along this roughly produce the same general trends for surface bulk
surface has a comparatively large magnitude compared t&odulus. In the case of MEA), the surface bulk modulus is
moduli on other surfaces. In most casBg,, is close in ordered as(111)>(001)>(110>(112), while in case of
value t0S,,;, this surface is elastically less anisotropic thanAl (V). the order i111)>(001)> (112> (110. In case of
the (110 surface. The elastic constaBby,is negative in all  noble metals, Cu and Ag have the surface bulk modulus in
cases. Again, the surface stresses are insensitive to surfa@¢ order001)>(111)>(112)>(110. Au, the last element
relaxations. The elastic modul®s,;, is strongly dependent N this group, deviates and has the ordering @310
on relaxations. > (00D >(112) >(112. Interestingly, the first two elements
in the Ni group, Ni and Pd, have surface bulk modulus or-
dered aq001) >(111) > (112 >(110), the same as the first
two noble metals. Additionally, Pt, the last element in the Ni
It is of interest to make a comparative study of the elastiggroup, deviates td001) > (110 >(111)>(112. A further
properties with the purpose of uncovering trends in their beinteresting point is seen from the results. The surface bulk
havior with respect to surfaces and elements. To achieve thisiodulus for the(001) and (111) decreases on going down

D. (112) crystal surface

E. Comparative study and trends

TABLE VII. Surface elastic modulus tensor of tti#10) crystal face. The “1” direction corresponds [#@01] and “2" corresponds to

[13)]. “UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to
strain.

Si111(eV/A?) S22(eV/A?) Si120(eV/A?) Sro11(eV/A?) Si212(eV/IA?)

Element UR R UR R UR R UR R UR R
Ag -0.788 -0.571 -0.533 -0.429 -0.508 -0.357 -0.505 -0.354 -0.228 -0.228
Al(EA) -0.932 -1.254 -0.115 0.087 -0.103 -0.067 -0.130 -0.094 -0.063 -0.063
Al(V) 0.066 -0.507 0.190 -0.182 0.376 -0.081 0.364 -0.094 -0.098 -0.098
Au -0.790 -0.185 -0.972 -0.543 -0.565 -0.055 -0.601 -0.090 -0.118 -0.118
Cu -1.045 -0.908 -0.511 -0.445 -0.647 —-0.550 -0.622 -0.525 -0.352 -0.352
Ni -1.359 -1.442 -0.269 -0.314 -0.768 —-0.836 -0.713 -0.782 -0.600 -0.600
Pd -1.204 -0.680 -1.069 -0.748 -0.803 -0.392 -0.824 -0.412 -0.275 -0.275
Pt -1.457 -0.562 -1.597 -0.998 -1.013 -0.279 -1.066 -0.331 -0.262 -0.262
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TABLE VIII. Surface stress tensor of th&12) crystal face. The “1” direction corresponds[ttfo] and “2” corresponds tbll?]. “UR”
stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

7, (eVIA?Y 79, (eV/A?) 7, (eVIA?)
Element v (eV/IA?) UR R UR R UR R
Ag 0.0572 0.0447 0.0447 0.0340 0.0340 0.0000 0.0000
Al(EA) 0.0633 0.0544 0.0544 0.0681 0.0681 0.0000 0.0000
Al(V) 0.0584 0.0795 0.0795 0.0684 0.0684 0.0000 0.0000
Au 0.0505 0.0835 0.0835 0.0690 0.0690 0.0000 0.0000
Cu 0.0878 0.0474 0.0474 0.0382 0.0382 0.0000 0.0000
Ni 0.1013 0.0184 0.0184 0.0129 0.0129 0.0000 0.0000
Pd 0.0841 0.0947 0.0947 0.0750 0.0750 0.0000 0.0000
Pt 0.0903 0.1355 0.1355 0.1084 0.1084 0.0000 0.0000
the group, both in the Ni group and in noble metals. For the F. Conclusions and future directions

(110 surface the trend 1 the opposite, the surfa(?e bulk This paper achieves two main objectives. First, a fully
modulus increases on going down the group. There is, howﬁ

lear trend in th ftHED) surf onlinear formulation of surface elasticity is presented. Sec-
ever, no cleartrend In the case o surtace. ond, a method for calculation of the surface elastic properties

A similar study of the surface shear elastic constant can bf‘s developed. The most important result uncovered by this
undertaken from Table XI. Just as in the case of the surfacg, . is the importance of accounting for additional surface
bulk modulus, both the potentials for the case of Al produc€ g,y ations engendered by the applied strain. It is found that

similar trends. The shear modulus is ordered (881) 0 1ojaxation effects do not affect the surface stress tensor
>(11)>(110>(112) in the case of AIEA) and as(001)  4nq in the case of some crystal faces, the surface shear elas-

>(110>(111)>(112) in the case of AV). In the case of tjc constantS,,;, All other elastic constants are strongly af-
the noble metals, the shear modulus for the first two, Cu angkcted by the relaxation, in that relaxed and unrelaxed results
Ag, is ordered ag111)>(00)>(112>(110. Au has a can differ even in sign. The limitations of the embedded
different ordering, (110 >(112>(11)>(001. This is  atom method in describing surfaces and interfaces are well
similar to the case of the surface bulk modulus where thé&nown, and the results in this work are only likely to show
first two elements show the same trend while the last elementends. In this regard, the study indicates the presence of
deviates. In the case of the Ni group elements, each of thegome general trends as indicated in the previous sediion.
show a different trend for the ordering of the shear modulusinitio methods are best suited to determine accurate numeri-
although Ni and Pd are close in ordering. Finally, the sheatal values of surface elastic constants. The finding in the
modulus of thg001) and(111) decreases on going down the present study amounts to the conclusion thatréiexations
group, in both noble metals and Ni group. However, theof the atomsand not just the determination of the ground
shear modulus increases on going down the group for thetate wave functions based on the homogeneously strained
case of thé¢110) surface. In the case of t{@12) surface, the positions of the atomss essential for the accurate determi-
shear modulus decreases on going down the group for theation of surface elastic constants. Also, the accurate deter-
noble metals. mination of the total surface energy as a function of strain

TABLE IX. Surface elastic modulus tensor of tfEL2) crystal face. The “1” direction corresponds[ﬂo] and “2” corresponds t[)ll?].
“UR” stands for unrelaxed results and “R” denotes values for relaxed surfaces. Relaxation here denotes additional relaxation due to strain.

Si11(eVIA?) Sr222(eV/IA?) Si122(eV/A?) Sp11(eV/A?) Si212(eV/A?)
Element UR R UR R UR R UR R UR R
Ag -0.570 -0.160 -0.766 -0.759 -0.375 -0.169 -0.364 -0.159 -0.098 -0.164
Al(EA) 0.069 -0.113 -0.346 -0.676 -0.172 -0.331 -0.186 -0.344 -0.062 -0.371
Al(V) 0.233 -0.163 0.123 -0.431 0.363 -0.016 0.374 -0.005 -0.082 -0.176
Au -0.925 -0.534 -0.902 -0.571 -0.540 -0.154 -0.525 -0.140 -0.066 -0.120
Cu -0.571 -0.065 -0.973 -1.113 -0.420 -0.236 -0.411 -0.227 -0.142 -0.253
Ni -0.406 0.205 -1.263 -1.693 -0.357 -0.288 -0.351 -0.283 -0.223 -0.391
Pd -1.070 -0.475 -1.206 -1.035 -0.666 -0.259 -0.646 -0.240 -0.126 -0.220
Pt -1.553 -0.819 -1.571 -1.144 -0.916 -0.293 -0.889 -0.266 -0.131 -0.235
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TABLE X. Comparison of “surface bulk modulus” for various TABLE XlI. Comparison of surface shear modulus for various

surfaces and elements. surfaces and elements.
Siji (eV/A?) Si212(eV/A?)

Element (001) (112) (110 (112 Element (001 (112 (110 (112

Al(EA) -0.695 1.275 -1.327 -1.464 Al(EA) 0.214 -0.036 -0.063 -0.371

Al(V) -0.254 0.492 -0.864 -0.615 Al(V) -0.072 -0.118 -0.098 -0.176
Cu 0.017 -0.527 -2.428 -1.641 Cu -0.063 0.009 -0.352 -0.253
Ag -0.193 -0.636 -1.711 -1.247 Ag -0.105 -0.031 -0.228 -0.164
Au -0.975 -1.335 -0.872 -1.398 Au -0.247 -0.164 -0.118 -0.120
Ni 0.578 0.102 -3.374 -2.059 Ni 0.012 0.111 -0.600 -0.391
Pd -0.793 -1.449 -2.232 -2.009 Pd -0.231 -0.125 -0.275 -0.220
Pt -1.465 -2.194 -2.170 -2.521 Pt -0.389 -0.243 -0.262 -0.235

requires simulations with slabs of various thicknesses, NeGs|astic constar®. When the slab is a few atomic layers thick

essarily requiring large cor.‘r\putauor)al efforts. . . the lattice parameter will be unequal to the bulk lattice pa-
Further efforts are required to bring the subject of elast'crameter, i.e., the lattice will experience a strain. A simple

properties of crystal surfaces on a firm theoretical fOOti”g'calculation shows that the strain can be obtained as
Prime among them is the connection to surface phofdns.

The bulk elastic constants can be derived from the bulk pho- 1 C S
non spectrum using the method of long wavean impor- P 2_70h+ o)
tant and interesting task is to derive the surface elastic con-

stants from surface phonons using the method of long wavedhe experiment to be performed will include determination
Other interesting problems include the determination of temof ¢ for slabs of various thicknesses, and calculatiorSof
perature dependence and effect of ad-atoms on the surfaggd® from Eq. (24) with the knowledge of the bulk elastic
elastic constants. The determination of temperature depeonstantC. Haiss has pointed out the difficulties involved in
dence of surface elastic constants requires the dynamic&Hch experiments.

treatment of surface phonons and will be taken up in a future
publication.

The experimental determination of surface elastic con-
stants is likely to prove to be a challenging task. The deter- Support for this work by the Indian National Science
mination of the surface stress in itself requires carefulAcademy under the INSA Young Scientist Programme is
experiments. A suggestion for the possible determination of gratefully acknowledged. The author thanks Narayanan Rav-
the surface elastic constant is made here along lines similashankar for many stimulating discussions, valuable sugges-
to that suggested by Kosevich and Kosevielror the sake tions, and particularly for pointing out an inconsistency in
of simplicity a two-dimensional slab of thicknes$s(lines the first draft of this paper. Discussions with Shobana
that bound the slab are treated as surfaéesconsidered, Narasimhan and Umesh Waghmare are thankfully acknowl-
with bulk elastic modulusC, surface stress®, and surface edged.
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