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The thermopower of superconductors measured via the magnetic flux in a bimetallic loop is evaluated. It is
shown that by a standard matching of the electrostatic potential, known as the Bernoulli potential, one explains
the experimentally observed amplitude and the divergence in the vicinity of the critical temperature.
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The thermopower is a widely used tool to study electronic
properties of conductive materials. An exception are super-
conductors, where the supercurrent cancels any diffusive cur-
rent so that the zero net current or voltage are observed. This
feature is known from 1935 and since then there were a
number of attempts to access diffusive currents in an indirect
way.1

Already in 1944 Ginzburg noticed that in inhomogeneous
systems like bimetallic loops, the counter-flowing supercur-
rent creates a magnetic flux.2 The boom in this field came
30 years later. In 1974 Garland and Van Harlingen
proposed a simple phenomenological theory3 and Gal’perin,
Gurevich, and Kozub published a microscopic treatment4

based on the Boltzmann-type approach. These theories
predicted fluxes of similar amplitudes and temperature
dependences.

In the same year Zavaritskii presented experimental data5

and he was soon followed by others.6–8 Experimental results
were a surprise. Zavaritskii5 and Falco7 observed the ex-
pected temperature dependence, but Pegrum, Guénault, and
Pickett6 and Van Harlingen and Garland8 monitored a ther-
mally induced magnetic flux by five orders of magnitude
larger. Moreover, the theory predicts that close toTc the flux
F diverges asdF /dT~ sTc−Td−1, while a steeper divergence
dF /dT~ sTc−Td−3/2 was observed.6,8 The experimental situ-
ation in the late 1970s is reviewed in Ref. 9.

The giant flux stimulated a number of theoretical
studies10–15 that explored various additional components
ranging from a trapped flux, over impurities, over interfaces,
to an influence of supercurrent flow. Most of these
ingredients bring only a minor correction to the original
prediction. It was speculated, that the only sizable contribu-
tion can come from the trapped flux, which increasingly
leaks into the ring as the temperature approaches its critical
value.

All these speculations were terminated by measurements
of Van Harlingen, Heidel, and Garland.16 To avoid the
penetration of the external magnetic field they used the
toroidal geometry and convincingly demonstrated that the
large magnetic flux with thedF /dT~ sTc−Td−3/2 divergence
is a genuine effect. By comparing a number of samples
they could conclude that the flux is proportional to the
thermopower in the normal state and therefore that it is in-
deed caused by the thermal diffusion of electrons. The
lack of at least a qualitative theory has discouraged

further measurements in this direction and the thermopower
joined the family of puzzling transport properties in super-
conductors.

Alternative measurements of the thermopower via the su-
perconducting fountain effect17 or the charge imbalance in
the conversion region18 confirmed the theory of Gal’perin,
Gurevich, and Kozub.4 These satisfactory results eliminated
a presence of any anomalous thermoelectric force that would
possibly cause the giant magnetic flux.

As Ginzburg summarized in his 2003 Nobel Lecture, the
question of thermopower in superconductors remains largely
unclear to date.19 This state of art documents a theoretical
discussion that has started 8 years ago and remains open so
far.

Marinescu and Overhauser20 have analyzed the theory of
Gal’perin, Gurevich, and Kozub4 and concluded that its fail-
ure indicates a conceptual mistake in the underlying Boltz-
mann type transport theory developed by Bardeen, Rick-
ayzen, and Tewordt.21 Marinescu and Overhauser made an
ad hocmodification of the transport theory by including the
momentum exchange between the condensate and quasipar-
ticles. With this modification, a good agreement between
theory and experimental data was reached.

The modified transport theory, however, is in conflict with
other properties of superconductors as discussed recently by
Gal’perin, Gurevich, Kozub, and Shelankov.22 From the
time-reversal symmetry they showed that the theory of Ma-
rinescu and Overhauser predicts dissipative currents also in
equilibrium systems with inhomogeneous chemical compo-
sition, i.e., in any real superconductor. Perhaps we should
note yet another argument against the modified transport
theory. Measurements17,18 confirmed predictions based on
the kinetic equation proposed by Bardeen, Rickayzen, and
Tewordt.21

In this paper we will show that to explain the giant
magnetic flux no anomalous thermal force is needed.
The giant flux appears due to the mechanism which adds
to the flux evaluated in previous theories.3,4 We demonstrate
that the additional magnetic flux can be described in a simple
manner with the help of the Bernoulli potential. Our
approach parallels the textbook theory of thermopower in
normal metals in that we evaluate the net current in the
sample from the requirement of the electrostatic potential
matching.

Let us note that the presented approach fulfills the legiti-
mate request of Marinescu and Overhauser to cover properly
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the balance of forces between the superconducting and nor-
mal electrons. Indeed, the Bernoulli potential has originally
been identified from the balance of forces. Unlike forcesad
hocadded to the kinetic equation, forces derived from a sca-
lar sBernoullid potential cannot result in an artificial dissipa-
tion.

We will use notation related to the experimental setup of
Van Harlingen, Heidel, and Garland16 shown in Fig. 1. The
sample is a toroid with the internal cylinder from the lead
and the external one from indium. The magnetic fluxF in
question is restricted to the volume between cylinders, i.e., it
is inside the toroidal cavity. The diamagnetic currentJ cor-
responding to the fluxF flows on the outer surface of lead
and the inner surface of indium. The flux is linear in the
current

F = J
1

2p
m0D ln

r In

rPb
, s1d

whereD is the length of the sample, andr In,Pb are the radii
which enclose the flux.

The experiment is aimed to measure the transport coeffi-
cient LT which determines the diffusive electric currentj dif
=−LT¹T caused by the temperature gradient¹T. As already
mentioned,j dif is not observable since it is cancelled by the
supercurrent j =−j dif. The theory of Garland and Van
Harlingen3 uses the London gauge to find the vector potential
A =−m0l2j , wherel is the London penetration depth. The
flux is then an integral along the bimetallic loop,
FG= rdrA =−m0rdrl2LT¹T.

The London gauge is justified only for small fluxes. The
data16 show, however, that the flux is large so that it is of
form F=NF0+FG, whereN is an integer quantum number
of the superconducting condensate andF0 is the elementary
flux. Estimates16 indicate thatFG!F0, therefore to under-
stand the giant flux, we can neglectFG while we have to find
which stateN is the most favorable for the system with the
imposed temperature gradient. Measured values16 of N range
up to 250. These values are sufficiently large for the classical
approximation, whereN is treated as a continuous variable.
Accordingly, we will not assume quantum restrictions of the
flux F.

The mechanism by which the flux arises is as follows.
The diffusive current generates magnetic field, which is
screened by the counterflowing supercurrent. In the surface
layer of the London penetration depth thickness, the cancel-

lation is not complete. Accordingly, the supercurrent density
is a sum of the counterflow −j dif and a missing counterflow
je−x/l, i.e., j =−j dif + je−x/l, where x is a distance from
the surface enclosing the cavity. We call the component
je−x/l a diamagnetic current, as it screens the bulk of
superconductor from the magnetic field, which is present in
the toroidal cavity.

Our aim is to find amplitudesj in indium and lead. The
total currentJ=ed2r sj + j difd is the integral of the current den-
sity across each cylinder, i.e.,J=2pr InlIn j In, and due to con-
tinuity condition alsoJ=−2prPblPb jPb. Sincel depends on
the temperature, the surface values of the diamagnetic cur-
rent densitiesj In,Pb change along the temperature gradient,
while the productl j stays constant.

Now we specify the condition for the total currentJ
from the requirement of the scalar potential matching.
As was observed by Bok and Klein24 and with a higher
precision by Morris and Brown,25,26 current in the supercon-
ductor induces perpendicular electric field. It is well
approximated by the electrostatic potential of Bernoulli
type23

w =
ns

n

1

2
mv2, s2d

where ns is the density of superconducting electrons. The
velocity of the superconducting electrons at the surface is
given by the current density

v = U j

ens
U

x=0
=

LT ¹ T

ens
±

J

2prlens
, s3d

where plus applies for indium and minus for lead, in which
the total current flows in opposite direction. The first term is
due to the compensating supercurrent −j diff , the second term
is caused by the diamagnetic currentj .

The electrostatic potential has to be continuous, therefore
the potential differences created by the temperature gradient
in lead and indium has to be equal

wPbsT2d − wPbsT1d = wInsT2d − wInsT1d. s4d

This is the central equation in our approach. From the set
s2d–s4d one can directly evaluate the currentJ and the mag-
netic flux s1d.

Condition s4d is a simple quadratic equation, which in-
cludes material parameters of both, lead and indium. The
experiment16 explores temperatures close to the critical tem-
perature of indiumTc

In=3.4 K, therefore only a small fraction
of electrons remain superconductingns

In!nIn in the indium
arm. Since the critical temperature of leadTc

Pb=7.19 K is
considerably higher, the majority of electrons are supercon-
ducting, ns

Pb.nPb, and consequently the difference of Ber-
noulli potential in lead is much smaller than the potential
difference in indium. Briefly, lead effectively short-circuits
ends of indium, so thats4d reduces towInsT2d=wInsT1d and
material parameters of lead drop out.

The second simplification follows from the relation
between the superconducting density and the London
penetration depth,l2=m/ sm0e

2nsd. This allows us to
express the conditions4d on the potential asvInsT1d /lInsT1d

FIG. 1. The toroidal sample of Van Harlingenat al. ssee Ref.
16d. The measured fluxF is in the toroidal cavity.
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=−vInsT2d /lInsT2d. The net current is now a solution of a
linear relation and the resulting magnetic flux reads

F = −
1

2
m0LTsT2 − T1dflsT1d + lsT2dgr Inln

r In

rPb
. s5d

In this expression, the thermoelectric coefficientLT and the
London penetration depthl are of indium. To make the ex-
pression compact we writeD¹T=T2−T1.

In Fig. 2 we compare experimental data of Van Harlingen,
Heidel, and Garland16 with formula s5d. The diameters
of toroid arer In=3 mm andr In=1 mm. Material parameters
are the thermoelectric coefficient of the normal metal,
LT=9.823103 A/K m, and the London penetration depth
at the zero temperature,l0=400 Å. All the parameters
are from Ref. 16 as values for sample T-4. The only
open question is the temperature dependence of the London
penetration depth close to the critical temperature
Tc

In=3.4 K. We use the asymptotic BCS relation
l=l0/Î2−2T/Tc.

In the linear region,T1−T2!Tc−T2, the theory agrees
with the experimental data within experimental errors. Per-
haps we should return to the original aim of the measurement
and conclude that experimental data16 confirm that the ther-
moelectric coefficientLT close belowTc has the same value
as above.

In the nonlinear region the theory deviates from data. This
is no surprise since the presented theory is locally linear in
the temperature gradient. Moreover, additional nonlinear ef-
fects are caused by the so called thermodynamic correction
to the electrostatic potential.27,28 We aim to discuss these
corrections in a next paper.

We should mention that formulas5d has been derived
under a tacit assumption that a widthwIn of the indium
cylinder is sufficiently larger than the London penetration
depth l. This is satisfied for all reported temperatures
since at T2,Tc−0.1 mK one finds lsT2d,1.6 mm
while wIn=0.25 mm. For lsT2d→wIn the magnetic

flux given by formula s5d approachesF→ 1
2Fn, where

Fn=−m0LTsT2−T1dwInr Inlnsr In / rPbd. The flux Fn develops
when indium makes a transition to the normalsnonsupercon-
ductived state, while lead remains superconducting. The
factor 1

2 results from the unrestricted integration of the dia-
magnetic current into the bulk of indium valid only for
l!w. Assuming the upper integration limit,J=e0

wdx j, one
finds thatF→Fn. Unfortunately, details of the flux in the
narrow vicinity of Tc have not been measured. One can
merely speculate thatFn is the upper limit of the diverging
flux F.

Finally, we want to clarify the simple potential matching
used before. First, the potential has to match across the
whole sample while Eq.s4d was obtained by matching only
at the inner surface. At the outer surface the Bernoulli poten-
tial s2d is zero everywhere so that the matching is clearly
satisfied. The potential profile between the inner and outer
surfaces is nontrivial since the current profile is complicated
by itself. Indeed, the screening currents in indium and in lead
spread over different London penetration depths, and they
have to match across the whole interface with the current
continuity satisfied at each point. We plan to evaluate the
current and potential profiles in future. Complete three-
dimensional solutions are numerically too demanding, so far
only simplified geometries has been studied.29 The present
theory is based on our belief that matching at the surface
points of the interface is sufficient.

Second, we have ignored the role of the flat pieces in the
upper and lower end of sample. In these pieces, the tempera-
ture gradient is absent, nevertheless, the potential difference
across each piece is nonzero since the current density at the
matching corner to lead is higher than the current density at
the Indium corner. Sending¹T to zero ins3d and using ob-
tained velocities ins2d, we find that the potential differences
across the upper and the lower flat pieces are identical and
thus cancel.

Third, the Bernoulli potentials2d is the simplest approxi-
mation of the electrostatic potential. Why we ignore more
sophisticated potentials that include the thermodynamic
corrections27 and nonlocal corrections30 due to the finite
Ginzburg–Landau coherence length? Both these corrections
result in a surface dipole31 which makes the potential match-
ing more complex. On the other hand, with the surface di-
pole there also appears a dipole at the interface of indium
and lead. We expect that these dipoles tend to cancel in the
final matching condition.

In conclusion, we would like to encourage measurements
of thermoelectric coefficients in superconductors. Since the
detection of magnetic fluxes is extremely sensitive and fluxes
10−3 F0 can be conveniently monitored, it should be possible
to accessLT in a wider temperature region, not merely few
milli-Kelvins below Tc.

Far fromTc the present theory is not valid, since the mag-
netic flux becomes small and it has to exhibit the quantiza-
tion. Fluxes smaller than the elementary flux are covered by
the former theory,3,4 as confirmed by Zavaritskii5 and Falco,7

who monitored fluxes of the order of 10−2 and 10−1F0, re-
spectively.

Interesting features might appear at the intermediate re-
gion, where fluxes are comparable to the elementary flux.

FIG. 2. Thermally induced magnetic flux in a toroid. The dots
are the experimental data of Van Harlingen, Heidel, and Garland
ssee Ref. 16d, the line is according to formulas5d of this paper with
T1=Tc−7 mK andT2;T.
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For instance, the earlier discussed sample has the classical
estimate of thermally induced flux equal to 1F0/mK at the
temperatureT=Tc−65 mK. It should be thus in an access of
experiment to observe whether the flux increases in stepsF0
or smoothly.
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