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Scissors mode and dichroism in an anisotropic crystal
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We suggest that in an anisotropic crystal there should be a mechanism of dichroism related to a scissors
mode, a kind of excitation observed in several other many-body systems. Such an effect should be found in
crystals, amorphous systems, and also metalloproteins. Its signature is a strong magnetic dipole transition
amplitude, which is a function of the angle between the momentum of the photon and the anisotropy axis of the
cell.
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The so-called scissors mode is a collective excitationdistinctive information. In nuclear physics it is related to the
where two systems can rotate with respect to each othesuperconductivity of deformed nuclei, in Bose-Einstein con-
conserving their shapes. It was predicted to occur in deeensates it provides a signature of superfluidity, and in metal
formed atomic nuclet,in which protons and neutrons were clusters it is predicted to be responsible for paramagnetism.
assumed to form two distinct bodies to be identified with the In the present case numerical estimates are easy for ionic
blades of scissors. Their relative rotation genel’ateS a ma%'indingS, and as an examp'e we Consider the distorted Crysta|
netic dipole moment which provides the signature of the| aMnQ,, which has a perovskite structure and has recently
mode. o o attracted attention due to colossal magnetoresistance effects.

In this paper we suggest that a similar excitation shouldug fing that the lowest excited state has an energy of about
exist as well in all systems in which there is a deformed atomy o\, \vith anM1 transition amplitude of 1.5 a.u. We think

in a distorted cell, such as crystals or, for instance, PETOVShat these values can be taken as an order of magnitude also

kites, and with the qualifications discussed at the end, als : :
amorphous systems and metalloproteins. In all these systeng%rleanr?zzﬁgﬁ:;ss systems and metalloproteins which have co

the scissors mode should give rise to a new mechanism 6’1aW wudv th i f the at in th I ¢
dichroism, since the atom can rotate only around the aniso- _''¢ Study theé motion of the atom in the cell irame o

tropy axis and therefore cannot absorb a photon with a moteference. We assume theaxis is parallel to the anisotropy

mentum perpendicular to it, as shown in Fig. 1. axis. We do not need to specify the directions of xhendy

The investigation of this mechanism of dichroism has sev@Xes because we assume axial symmetry. We will also use
eral motivations. The most obvious is a direct determinatiorfn€ intrinsic frame of reference of the atom, with thexis
of the distortion parameters. In particular for metalloproteingP@rallel to its symmetry axis. We calithe angle between the
this could provide an alternate approach to the study of theif and thez axis, and we denote the components{ah the
structure. cell frame according tQ,=sinécose, {,=sin#siny and

A second motivation concerns theoretical calculations of,=cosé.
dispersive effects because these will be dominated by the The potential energy of the atom depends onlyépand
scissors mode in a channel with its quantum numbers. we take it to be

A last reason of general interest is in the comparison with
similar excitations predicted or observed in other systems.

Indeed, after Bohleet al? discovered the scissors mode
in %Gd, it was systematically investigated both
experimentally and theoreticallyin atomic nuclei. Later on We identify two of the Euler angles of the intrinsic frame
it was predicted to occur in metal clustérguantum dot§,  With ¢ and 6, with the third angley defining the orientation
and Bose-Einstefnand Fernfi condensates. In all these sys- Of the atom around th&-axis. We assume the kinetic energy
tems, as in the present case, one of the blades of the sciss@fsthe atom to be that of a rigid rotator.
must be identified with a moving pafite., the valence elec-  In quantum mechanics, rotations around the symmetry
trons in metal clusters and quantum dots or the atom cloud iaxis are forbidden, and therefore the wave functions must
Bose condensatgand the other one with a structure at restsatisfy the constraing-J=-id/ 9y=0, whereJ is the angular
(the ions in metal clusters or the trap in quantum dots angnomentum of the atom. Its components in the cell frame
Bose-Einstein condensaje$here is one exception in Bose- become then those of a point particle so that
Einstein condensates, where the simultaneous condensation
of two different species of atoms has been attathéuys K2 P d 1 .,
realizing a situation closer to the nuclear case. Among all T= 20,\ 982 coto*+ o) (2)
these systems the scissors excitation has been discovered
only in Bose-Einstein condensatfsand it is under experi- wherel, is the moment of inertia along the one intrinsic axis.
mental investigation in metal clustefsAlso in these cases There remains another constraint. Indeed the two orienta-
the study of the scissors mode provides several pieces dibns of the atomic symmetry axis cannot be distinguished

V= %c Siré 6. (1)
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FIG. 1. In(a) the atom is in the ground state
and the incoming photon has circular polariza-
tion. In (b) the atom carries the angular momen-
tum of the absorbed photon and precesses at an
angle 6, around the cell axis, generating a mag-
netic moment proportional to B4, with a varia-
tion of quadrupole moment proportional &.

(a)

from one another, so that the admissible wave functions musto fast that we can extend without any appreciable error the

be symmetric under the operation integral overé up to infinity.
In the quadratic approximation, in the region<=®
ro—m=0, ¢—mte. @ <z/2the eigenfunctions are
Needless to say, the Hamiltonian is symmetric under this 1
operation. The scalar product for such a system remains de- Ym0, 0) = ?e'm¢xn,‘m|(0) (7)
fined by the measure of integration over the Euler angles, N2m
which for functions independent of is where
e 6\ ¢ ¢
(Wily) = f de f dosinoy; (6,9)4(6,9).  (4) Xom(6) = vn|m(—) exp(— —)LW“(—). (8)
0 0 ’ T Oy 20% 6(2)

[mi)

Exploiting ther-symmetry we will write the matrix elements L™ are Laguerre polynomiai$and

in the form ' .
n!
=\, B=—. 9
anlm‘ agr(n+ |m| + l) 0 \s”llC ( )

27 /2
<¢i|o|‘//f>:f d@f dé sin 6y; (6,¢)[O(e, 0)
0 0

Because of the-symmetry in the regionr/2< <, we

+O(m+ @, m= 0)]s(0,0). (5) have xp jm(7—60)=(-1)"x,m(6). The eigenvalues are
Notice that, accordingly, the wave functions are normalized Enm=fiw(2n+|m+1), (n=0,1,2..) (10
to 1/2. where
The exact eigenfunctions and eigenvalues are knwn,
but in the cases of physical interest the quadratic approxima- C
tion is sufficient w= I (11
T:h_z(_ a_z_li +1J2) 0O<fd<m The Hamiltonian(6) is exactly the intrinsic Hamiltonian
21,\ 9 006 ) which appeared in the nuclear model.

The first excited states have=0, m=+1, and, as we will
1/2C#2, 0< 6< /2, see, are the only states strongly coupled to the ground state
= 6 i iation. in Fig. -
12C(m- 02, w2< 6= (6) by electromagnetic radiation. As shown in Fig. 1, they de

scribe the precession of the atom at an ar#jted, around
We recognize that this Hamiltonian, in each of #heegions  the axis of the cell. Due to the small value @fthe atom is
above, is exactly that of a two-dimensional harmonic oscil-essentially polarized. This, as explained below, has an impor-
lator, provided we identifyp with the polar radius. As shown tant consequence on the experimental measurements.
by the following estimates, the falloff of the wave functionis  Now we evaluate thé1 andE2 electromagnetic transi-
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tion amplitudes. We will find that th11 amplitude is large,
being proportional to 14,, while theE2 one is proportional
to 6, and therefore small.

The intrinsic magnetic dipole moment of the atom is

1
M(Ml,,u)z—z:Jdrj (r)-rOV[ry,Md]. (12

The atomic electric current,

e

j(r)=—p(r)p(r), (13
Me

depends on the electric chargethe masan,, the momen-

tum p(r) of the electrons, and the atomic densifyy ). The

intrinsic atomic magnetic momen¥t can be rewritten as

_ e |3
MML ) = 2mg 47TJ“’

(14)

where J
frame,

J 1fdrp(r)( r0p),. (15)

KR

By the rotationR=e "% z¢ we can transform it to the cell
frame,

d
e'“‘P<|cot0—+,u ) pu==z1
+ dp a0
RJR'= p (16)
—i&— n=0.
¢

Taking in to account the-symmetry, theM1 transition am-
plitude is

eh 3
<'/’nm|M(M1 M)|‘/’OO> ’u2mec T
Smu2Xn, \,L\| |Xoo> (17)
Performing the change of variablés 62/ 62,
J - R
Xnlul| g (X0 ) = VnluVoobo | dége L (€
0
x e #2L0(9)] (19
9& 0 =

we get its final expression,

/ 3
<wn,m|M(M1uU«)|¢0,0> == meCG 5 5 (19)
As anticipated, only the states=0, m=+1 are excited. The
fact that the amplitude vanishes far=0 is due to the fact
that the atom can rotate only around thaxis.

Next we evaluate th&2 transition amplitude. The intrin-
sic quadrupole moment is
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Q=€ J dr p(r)r2Yo, (7).

We parametrize the charge density according d@)
=4r(0,¢)-r]lpy wheres is the step function and(é,¢)
:r0[1+a20Y20(f)], so that

Q2. = €pof 30208,.0 (20)
Transforming to the cell frame we have
MI(E2,p) = X Q,42v|R121) = Queilp( )€, (21)
where
d2o) = (- D~ g ; P4(cosé). (22

So theE2 transition amplitude becomes

., is the atomic angular momentum in the intrinsic (Yl ME2,10)| 0. 0) = 5mﬂonJ dﬁﬂxnw[d )(6)

+(—)md (77' ) 1x0,0

= 25mquof dann,\mdgz,z(é’)Xo,ol
0

(23)

sincedgiz(w— 0)=(—)md$1(6). The amplitude for excitation of
the lowest state is

3
(o m M(E2,1)[tho 0 = \/;00Q205m,p (24
Again we find that only the states=*1 are excited.

The excitation energy and the electromagnetic transition
amplitudes depend only on the paramet€rand|. To per-
form an estimate of these parameters we must distinguish the
ionic from the covalent bindings. As a prototype of the first
one we consider LaMng In this crystal the MA" ion is
surrounded by six & ions sitting at the vertices of an octa-
hedron which is elongated in thedirection as shown in
Fig. 1.

The restoring force originated by the quadrupole-
quadrupole electromagnetic interaction is a function of the
rotation angled,

V(6) = %2 <5qii><%Qii> \

where 6q;; =q;;(0) —q;;(0). This equation holds if the charge
of the ligands is external to the ator®; are the diagonal
components of the electric quadrupole moment density of the
cell (we assume); =0, i # j) andq;; () are the electric quad-
rupole components of the atomic electrons after their coordi-
nates are rotated by the angbethrough thex axis. The
expectation values are taken with respect to the ligand and
atomic wave functions, respectively. To second ordet e
have8g11=0, 802,= (022~ Gga) 0%, 8033= (0o~ Csa) . We as-
sume that the atomic charge has an axially symmetric ellip-

(25
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soidal shape with axes=ry(1+26), a=ro(1-5), while the the nuclei are unpolarized, while in crystals the deformed
ligands are pointlike with coordinates, atoms are essentially polarized. As a consequence the elec-
: tromagnetic cross sections have an angular dependence

[0,0,Ry(1+2A)], [0,0,-Rg(1+24)], which should make their measurement possible. Indeed the

cross section is maximum when the momentum of the pho-

[Ro(1-4),0,0], [-Ro(1-4),0,0], ton is parallel to the anisotropy axis and vanishes when it is
perpendicular to it. Therefore a differential dichroic absorp-
[0,Ry(1-4),0], [0,-Ry(1-4),0]. (26) tion with linear polarization of the incoming photon parallel
Therefore the following relations hold, and perpendicular to the anisotropy axis should be able to
single out the magnetic dipole transition due to the collective
(O3 = = X022 = = X010 scissors mode, provided that around its energy the linear di-

chroism originating from electric dipoléE1l) transitions be
1 _ 1 : 1 negligible or structureless. This latter feature should obvi-
R_5Q33 =-2 ESQ22 =-2 EQH (@D ously be derived from a realistic description of the con-
tinuum particle-hole excitations based on the band structure
and of the crystal. In this connection we note that the damping of
127,e the collective mode is expected either to be zero, if its energy

1 A . o . :
(Qag) = —2-126, <EQ33> =-36Z—. (28 fallsinthe band gap, or rather small if it falls in the particle-
5 RS hole continuum, due to the smallness of the matrix element

Z,, Z, are the charges of the ligands and the atom, respe&onnecting the mode to the particle-hole states.
tively. Assuming for simplicityA =3, we get In a triaxial deformation an energy splitting of the collec-
tive mode is expected, as predicted in nuéfeguch a split-

c=3%% ezr_c2)52 29) ting might obviously provide additional pieces of informa-
5 717 Rg ' tion, but in a more realistic, microscopic description based
on the random phase approximation, as done in nuclear
Since the moment of inertia of the atom, under the simphysics, one should also expect a fragmentation of the mode
plifying assumption of constant density in the ellipsis, is  that might mask it and make its experimental detection more
2MZs difficult. . .
ro(l+9), (30) As a last remark we may note that inelastic photon scat-
5 tering is another technique able to detect the scissors mode.
we finally get The case of covalent binding cannot be analyzed in the
i same way. First, the decoupling of the intrinsic degrees of
2 _ 162Z,e*5” 2= S Ry (31) freedom from the collectivérotationa) ones, which is at the
mRe 0 1827,8\7 12 basis of our semiclassical treatment, is less obvious. Second,
) ) ) ) ~ the estimate of the restoring force and of the moment of
According to Ref. 13, in LaMn@the distortion parameter is jnertia requires a numerical calculation. Indeed we expect
A=0.06, whilerg=1.42 A, R,=2.02 A, /=2, Z,=22. With  {hat the restoring force will be smaller, yet we deem that the
the above values we gétw=4.0 eV, 6,=0.33 radiants The gcissors mode will not be precluded by the nature of the
small value ofé, justifies the extension we did of the inte- qyalent binding and that the above numerical estimates
grals overg up to infinity. The exact valdé of w differs  ghould still remain valid as an order of magnitude.
from the above by less than 6%.
A major difference with respect to the nuclear case has We are grateful to M. Benfatto and C. R. Natoli for many
already been emphasized. In standard nuclear experimerftsiitful discussions.
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