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We suggest that in an anisotropic crystal there should be a mechanism of dichroism related to a scissors
mode, a kind of excitation observed in several other many-body systems. Such an effect should be found in
crystals, amorphous systems, and also metalloproteins. Its signature is a strong magnetic dipole transition
amplitude, which is a function of the angle between the momentum of the photon and the anisotropy axis of the
cell.
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The so-called scissors mode is a collective excitation,
where two systems can rotate with respect to each other,
conserving their shapes. It was predicted to occur in de-
formed atomic nuclei,1 in which protons and neutrons were
assumed to form two distinct bodies to be identified with the
blades of scissors. Their relative rotation generates a mag-
netic dipole moment which provides the signature of the
mode.

In this paper we suggest that a similar excitation should
exist as well in all systems in which there is a deformed atom
in a distorted cell, such as crystals or, for instance, perovs-
kites, and with the qualifications discussed at the end, also
amorphous systems and metalloproteins. In all these systems
the scissors mode should give rise to a new mechanism of
dichroism, since the atom can rotate only around the aniso-
tropy axis and therefore cannot absorb a photon with a mo-
mentum perpendicular to it, as shown in Fig. 1.

The investigation of this mechanism of dichroism has sev-
eral motivations. The most obvious is a direct determination
of the distortion parameters. In particular for metalloproteins
this could provide an alternate approach to the study of their
structure.

A second motivation concerns theoretical calculations of
dispersive effects because these will be dominated by the
scissors mode in a channel with its quantum numbers.

A last reason of general interest is in the comparison with
similar excitations predicted or observed in other systems.

Indeed, after Bohleet al.2 discovered the scissors mode
in 156Gd, it was systematically investigated both
experimentally3 and theoretically4 in atomic nuclei. Later on
it was predicted to occur in metal clusters,5 quantum dots,6

and Bose-Einstein7 and Fermi8 condensates. In all these sys-
tems, as in the present case, one of the blades of the scissors
must be identified with a moving partsi.e., the valence elec-
trons in metal clusters and quantum dots or the atom cloud in
Bose condensatesd and the other one with a structure at rest
sthe ions in metal clusters or the trap in quantum dots and
Bose-Einstein condensatesd. There is one exception in Bose-
Einstein condensates, where the simultaneous condensation
of two different species of atoms has been attained,9 thus
realizing a situation closer to the nuclear case. Among all
these systems the scissors excitation has been discovered
only in Bose-Einstein condensates,10 and it is under experi-
mental investigation in metal clusters.11 Also in these cases
the study of the scissors mode provides several pieces of

distinctive information. In nuclear physics it is related to the
superconductivity of deformed nuclei, in Bose-Einstein con-
densates it provides a signature of superfluidity, and in metal
clusters it is predicted to be responsible for paramagnetism.

In the present case numerical estimates are easy for ionic
bindings, and as an example we consider the distorted crystal
LaMnO3, which has a perovskite structure and has recently
attracted attention due to colossal magnetoresistance effects.
We find that the lowest excited state has an energy of about
4 eV with anM1 transition amplitude of 1.5 a.u. We think
that these values can be taken as an order of magnitude also
for amorphous systems and metalloproteins which have co-
valent bindings.

We study the motion of the atom in the cell frame of
reference. We assume thez axis is parallel to the anisotropy
axis. We do not need to specify the directions of thex andy
axes because we assume axial symmetry. We will also use
the intrinsic frame of reference of the atom, with thez axis
parallel to its symmetry axis. We callu the angle between the

z and thez axis, and we denote the components ofẑ in the
cell frame according tozx=sinu cosw, zy=sinu sinw and
zz=cosu.

The potential energy of the atom depends only onu, and
we take it to be

V =
1

2
C sin2 u. s1d

We identify two of the Euler angles of the intrinsic frame
with w andu, with the third angleg defining the orientation
of the atom around thez-axis. We assume the kinetic energy
of the atom to be that of a rigid rotator.

In quantum mechanics, rotations around the symmetry
axis are forbidden, and therefore the wave functions must

satisfy the constraintẑ ·J=−i] /]g=0, whereJ is the angular
momentum of the atom. Its components in the cell frame
become then those of a point particle so that

T =
"2

2I1
S−

]2

]u2 − cotu
]

]u
+

1

sin2 u
Jz

2D , s2d

whereI1 is the moment of inertia along the one intrinsic axis.
There remains another constraint. Indeed the two orienta-
tions of the atomic symmetry axis cannot be distinguished
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from one another, so that the admissible wave functions must
be symmetric under the operation

r:u → p − u, w → p + w. s3d

Needless to say, the Hamiltonian is symmetric under this
operation. The scalar product for such a system remains de-
fined by the measure of integration over the Euler angles,
which for functions independent ofg is

kciuc fl =E
0

2p

dwE
0

p

du sinuci
*su,wdc fsu,wd. s4d

Exploiting ther-symmetry we will write the matrix elements
in the form

kciuOuc fl =E
0

2p

dwE
0

p/2

du sinuci
*su,wdfOsw,ud

+ Osp + w,p − udgc fsu,wd. s5d

Notice that, accordingly, the wave functions are normalized
to 1/2.

The exact eigenfunctions and eigenvalues are known,12

but in the cases of physical interest the quadratic approxima-
tion is sufficient

T =
"2

2I1
S−

]2

]u2 −
1

u

]

]u
+

1

u2Jz
2D, 0 ø u ø p

V = H1/2Cu2, 0 ø u ø p/2,

1/2Csp − ud2, p/2 , u ø p.
J s6d

We recognize that this Hamiltonian, in each of theu regions
above, is exactly that of a two-dimensional harmonic oscil-
lator, provided we identifyu with the polar radius. As shown
by the following estimates, the falloff of the wave function is

so fast that we can extend without any appreciable error the
integral overu up to infinity.

In the quadratic approximation, in the region 0øu
øp /2 the eigenfunctions are

cn,msu,wd =
1

Î2p
eimwxn,umusud s7d

where

xn,umusud = nn,umuS u

u0
Dumu

expS−
u2

2u0
2DLn

sumudSu2

u0
2D . s8d

Ln
sumud are Laguerre polynomials12 and

nn,umu =Î n!

u0
2Gsn + umu + 1d

, u0
2 =

"

ÎI1C
. s9d

Because of ther-symmetry in the regionp /2,uøp, we
havexn,umusp−ud=s−1dmxn,umusud. The eigenvalues are

En,m = "vs2n + umu + 1d, sn = 0,1,2 . . .d s10d

where

v =ÎC

I1
. s11d

The Hamiltonians6d is exactly the intrinsic Hamiltonian
which appeared in the nuclear model.

The first excited states haven=0, m= ±1, and, as we will
see, are the only states strongly coupled to the ground state
by electromagnetic radiation. As shown in Fig. 1, they de-

scribe the precession of the atom at an angleū,u0 around
the axis of the cell. Due to the small value ofu0 the atom is
essentially polarized. This, as explained below, has an impor-
tant consequence on the experimental measurements.

Now we evaluate theM1 andE2 electromagnetic transi-

FIG. 1. In sad the atom is in the ground state
and the incoming photon has circular polariza-
tion. In sbd the atom carries the angular momen-
tum of the absorbed photon and precesses at an
angleu0 around the cell axis, generating a mag-
netic moment proportional to 1/u0, with a varia-
tion of quadrupole moment proportional tou0.
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tion amplitudes. We will find that theM1 amplitude is large,
being proportional to 1/u0, while theE2 one is proportional
to u0 and therefore small.

The intrinsic magnetic dipole moment of the atom is

MsM1,md = −
1

2c
E drj sr d · r ∧ ¹ frY1msr̂ dg. s12d

The atomic electric current,

j sr d =
e

me
rsr dpsr d, s13d

depends on the electric chargee, the massme, the momen-
tum psr d of the electrons, and the atomic densityrsr d. The
intrinsic atomic magnetic momentM can be rewritten as

MsM1,md =
e"

2mec
Î 3

4p
Jm, s14d

whereJm is the atomic angular momentum in the intrinsic
frame,

Jm =
1

"
E drrsr dsr ∧ pdm. s15d

By the rotationR=e−iJyue−iJzw we can transform it to the cell
frame,

RJmR† =5eimwSi cotu
]

]w
+ m

]

]u
D , m = ± 1

− i
]

]w
, m = 0. 6 s16d

Taking in to account ther-symmetry, theM1 transition am-
plitude is

kcn,muMsM1,mduc0,0l = m
e"

2mec
Î 3

4p

3 dmm2kxn,umuu
]

]u
ux0,0l. s17d

Performing the change of variablesj=u2/u0
2,

Kxn,umuU ]

]u
Ux0,0L = nn,umun0,0u0E

0

`

djje−j/2Ln
sumudsjd

3
]

]j
fe−j/2L0

s0dsjdg, s18d

we get its final expression,

kcn,muMsM1,mduc0,0l = − m
e"

mecu0
Î 3

4p
dmmdn0. s19d

As anticipated, only the statesn=0, m= ±1 are excited. The
fact that the amplitude vanishes form=0 is due to the fact
that the atom can rotate only around thez axis.

Next we evaluate theE2 transition amplitude. The intrin-
sic quadrupole moment is

Q2m = eE drrsr dr2Y2msr̂ d.

We parametrize the charge density according torsr d
=sfrsu ,wd−rgr0 where s is the step function andrsu ,wd
=r0f1+a20Y20sr̂ dg, so that

Q2m . er0r0
5a20dm0. s20d

Transforming to the cell frame we have

MsE2,md = o
n

Q2nk2nuRu2ml = Q20d0m
s2dsude−imw, s21d

where

d0m
s2dsud = s− 1dmÎs2 − md!

s2 + md!
P2

mscosud. s22d

So theE2 transition amplitude becomes

kcn,muMsE2,mduc0,0l = dmmQ20E
0

`

duuxn,umufd0m
s2dsud

+ s− dmd0m
s2dsp − udgx0,0

= 2dmmQ20E
0

`

duuxn,umud0m
s2dsudx0,0,

s23d

sinced0m
s2dsp−ud=s−dmd0m

s2dsud. The amplitude for excitation of
the lowest state is

kc0,muMsE2,mduc0,0l = mÎ3

2
u0Q20dmm. s24d

Again we find that only the statesm= ±1 are excited.
The excitation energy and the electromagnetic transition

amplitudes depend only on the parametersC and I. To per-
form an estimate of these parameters we must distinguish the
ionic from the covalent bindings. As a prototype of the first
one we consider LaMnO3. In this crystal the Mn3+ ion is
surrounded by six O2− ions sitting at the vertices of an octa-
hedron which is elongated in thez-direction as shown in
Fig. 1.

The restoring force originated by the quadrupole-
quadrupole electromagnetic interaction is a function of the
rotation angleu,

Vsud =
1

6o
i

kdqiilK 1

R5QiiL , s25d

wheredqii =qiisud−qiis0d. This equation holds if the charge
of the ligands is external to the atom.Qii are the diagonal
components of the electric quadrupole moment density of the
cell swe assumeQij =0, i Þ jd andqiisud are the electric quad-
rupole components of the atomic electrons after their coordi-
nates are rotated by the angleu through thex axis. The
expectation values are taken with respect to the ligand and
atomic wave functions, respectively. To second order inu we
havedq11=0, dq22=−sq22−q33du2, dq33=sq22−q33du2. We as-
sume that the atomic charge has an axially symmetric ellip-
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soidal shape with axesc=r0s1+2dd, a=r0s1−dd, while the
ligands are pointlike with coordinates,

f0,0,R0s1 + 2Ddg, f0,0,−R0s1 + 2Ddg,

fR0s1 − Dd,0,0g, f− R0s1 − Dd,0,0g,

f0,R0s1 − Dd,0g, f0,−R0s1 − Dd,0g. s26d

Therefore the following relations hold,

kq33l = − 2kq22l = − 2kq11l

K 1

R5Q33L = − 2K 1

R5Q22L = − 2K 1

R5Q11L , s27d

and

kq33l .
12Zae

5
r0

2d, K 1

R5Q33L . − 36eZl
D

R0
3 . s28d

Zl, Za are the charges of the ligands and the atom, respec-
tively. Assuming for simplicityD=d, we get

C =
324

5
ZlZae

2 r0
2

R0
3d2. s29d

Since the moment of inertia of the atom, under the sim-
plifying assumption of constant density in the ellipsis, is

I1 .
2meZa

5
r0

2s1 + dd, s30d

we finally get

v2 .
162Zle

2d2

meR0
3 , u0

2 =
5

18Î2ZadÎZl

R0
3/2

r0
2 . s31d

According to Ref. 13, in LaMnO3 the distortion parameter is
D=0.06, whiler0=1.42 Å, R0=2.02 Å, Zl =2, Za=22. With
the above values we get"v=4.0 eV,u0=0.33 radiants The
small value ofu0 justifies the extension we did of the inte-
grals overu up to infinity. The exact value12 of v differs
from the above by less than 6%.

A major difference with respect to the nuclear case has
already been emphasized. In standard nuclear experiments

the nuclei are unpolarized, while in crystals the deformed
atoms are essentially polarized. As a consequence the elec-
tromagnetic cross sections have an angular dependence
which should make their measurement possible. Indeed the
cross section is maximum when the momentum of the pho-
ton is parallel to the anisotropy axis and vanishes when it is
perpendicular to it. Therefore a differential dichroic absorp-
tion with linear polarization of the incoming photon parallel
and perpendicular to the anisotropy axis should be able to
single out the magnetic dipole transition due to the collective
scissors mode, provided that around its energy the linear di-
chroism originating from electric dipolesE1d transitions be
negligible or structureless. This latter feature should obvi-
ously be derived from a realistic description of the con-
tinuum particle-hole excitations based on the band structure
of the crystal. In this connection we note that the damping of
the collective mode is expected either to be zero, if its energy
falls in the band gap, or rather small if it falls in the particle-
hole continuum, due to the smallness of the matrix element
connecting the mode to the particle-hole states.

In a triaxial deformation an energy splitting of the collec-
tive mode is expected, as predicted in nuclei.14 Such a split-
ting might obviously provide additional pieces of informa-
tion, but in a more realistic, microscopic description based
on the random phase approximation, as done in nuclear
physics, one should also expect a fragmentation of the mode
that might mask it and make its experimental detection more
difficult.

As a last remark we may note that inelastic photon scat-
tering is another technique able to detect the scissors mode.

The case of covalent binding cannot be analyzed in the
same way. First, the decoupling of the intrinsic degrees of
freedom from the collectivesrotationald ones, which is at the
basis of our semiclassical treatment, is less obvious. Second,
the estimate of the restoring force and of the moment of
inertia requires a numerical calculation. Indeed we expect
that the restoring force will be smaller, yet we deem that the
scissors mode will not be precluded by the nature of the
covalent binding and that the above numerical estimates
should still remain valid as an order of magnitude.

We are grateful to M. Benfatto and C. R. Natoli for many
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*Email address: palumbof@lnf.infn.it
1N. Lo Iudice and F. Palumbo, Phys. Rev. Lett.41, 1532s1978d.
2D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo

Iudice, F. Palumbo, and O. Scholten, Phys. Lett.137B, 27
s1984d.

3J. Enders, H. Kaiser, P. von Neumann-Cosel, C. Rangacharyulu,
and A. Richter, Phys. Rev. C59, R1851s1999d.

4N. Lo Iudice, Riv. Nuovo Cimento23, 1 s2000d.
5E. Lipparini and S. Stringari, Phys. Rev. Lett.63, 570 s1989d.
6Ll. Serra, A. Puente, and E. Lipparini, Phys. Rev. B60, R13 966

s1999d.
7D. Guéry-Odelin and S. Stringari, Phys. Rev. Lett.83, 4452

s1999d.

8A. Minguzzi and M. P. Tosi, Phys. Rev. A63, 023609s2001d.
9G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio,

Phys. Rev. Lett.89, 190404s2002d.
10O. M. Maragó, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechen-

blaikner, and C. J. Foot, Phys. Rev. Lett.84, 2056s2000d.
11H. Portales, E. Duval, L. Saviot, M. Fujii, M. Sumitomo, and S.

Hayashi, Phys. Rev. B63, 233402s2001d.
12Handbook of Mathematical Functions, edited by M. Abramowitz

and I. A. StegunsDover, New York, 1972d, p. 753.
13P. Ravindran, A. Kjekshus, H. Fjellvåg, A. Delin, and O. Eriks-

son, Phys. Rev. B65, 064445s2002d.
14F. Palumbo and A. Richter, Phys. Lett.158B, 101 s1985d.

BRIEF REPORTS PHYSICAL REVIEW B71, 092402s2005d

092402-4


