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This paper describes the time evolution of reacting defect assemblies both in bulk metals and on their
surfaces. Three areas are treated. The first describes the linear response of reacting assemblies to perturbing
fields such as irradiation or temperature change. Alternative long wavelength limits identified here concern:sid
independent diffusion of vacancy- and interstitial-type defects to sinks; andsii d joint diffusion of defects down
a chemical potential gradient, with a separate branch of solutions associated with recombination. The second
topic concerns definitions of the chemical potentialm* and temperatureT* associated with the defect system
itself, as distinct from the properties of the embedding lattice. The utility of these quantities is illustrated by
examples including those pertaining to rapid temperature change.m* andT differ from the lattice valuesm ,T,
to an extent that determines possible energy and particle transfer in such processes as nucleation of new sinks
and precipitation from the defect assembly. The role of these quantities in relaxation modes is clarified. Finally,
an appendix discusses an approximate model of defect behavior in the bulk, and a speculative discussion of
defect behavior on surfaces, both positing homologous properties of the defect systems in metals, when scaled
to the melting temperatureTm. These characteristics of a standard metal and a standard close-packed metal
surface are employed in the text to identify and contrast typical behaviors of the bulk and surface defect
systems of metals. Universal properties that follow from these models are discussed in a second appendix.
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I. INTRODUCTION

It is a well-established fact that the kinetics of atomic
processes, both in the bulk of crystals1–5 and on surfaces,6–8

are mediated by thermal defects. These defects take the form
of vacant sites and of added atoms that occur in the bulk as
interstitials and on surfaces as adatoms. In each case the two
species are antidefects. Thermal defects achieve equilibrium
populations by creation and annihilation at such sinks as sur-
face steps and bulk dislocations. They also react as antide-
fects that form by spontaneous fluctuations of the perfect
lattice, and also mutually annihilate by random encounters;
once more, this is the case for both surface and bulk systems.
Energy is conserved through transfer to vibrational and elec-
tronic processes. When the defect systems are driven
strongly, for example, by irradiation,9,10 and even in thermal
equilibrium, notably on surfaces above half the melting tem-
peratureTm, defect concentrations can become sufficiently
large that reactions dominate the defect life cycle. Then
transport and kinetics take place through processes charac-
teristic of the reacting defect assembly.

The present paper treats this problem with particular em-
phasis on metallic crystals, and on phenomena that occur
when a defect assembly remains close to its thermal equilib-
rium configuration. The thermodynamic variables pertinent
to atomic transfer between defect systems and lattice sites
are also considered. Related processes specifically induced
by irradiation are treated, but an exploration of their main
consequences is deferred to a later work.11

Although much is known about thermal defects in the
bulk of metallic crystals,1–5,9,10,12for surface defects the state
of understanding is much less advanced.6–8,13–16In the bulk,
vacancies dominate transport near equilibrium; both the for-
mation and motion free energies of vacancies and interstitial
atoms have been surveyed for a range of pure metals.12 The

properties turn out to be surprisingly systematic when scaled
by melting temperatureTm.17,18,2,9In Appendix A this effec-
tive scaling is employed to create a standard metal whose
defect properties are representative of metals in general,
from which specific cases may differ to a greater or lesser
but not large extent. Throughout the paper this model is em-
ployed to assess the results of calculations for reacting bulk
defect assemblies.

Similar modeling of systematic trends has been
suggested19 but not yet justified for surface defects, for
which information about mass diffusion comes largely from
studies of step edge fluctuations20–23 and scratch
smoothing.24,25 Indeed, various surface orientations of the
same crystal must surely behave differently. Appendix A
nevertheless identifies a standard close-packed metal surface
whose properties generally mimic the known behavior of
surface species. This is employed in the text to track typical
properties expected for interacting assemblies on close-
packed metal surfaces, that remain still to be charted by ex-
periment. A point of particular interest is that the modeling
affirms a compelling distinction between surface and bulk
behavior, which originates in the large surface defect popu-
lations associated with the relatively small creation free en-
ergies of surface thermal defects. While the experimental
facts about surfaces remain insufficiently documented at
present, these differences appear large enough to remain per-
tinent as more information accumulates.

The properties of reacting thermal defects in crystals have
been studied for many decades.26,2,5 Early seminal ideas de-
veloped for insulators26,4 where charged defects couple in
predictable ways. Later work included metals, where inter-
actions are short-ranged, but nevertheless still cause nonlin-
ear transport behavior where high densities of vacancies lead
to defect reactions.27–30,10On the other hand, most informa-
tion about interstitial atoms in metals derives either from
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computer simulations or experiments on weakly irradiated
bulk crystals at low temperatures.10,12 Treatises, textbooks,
and reviews cited above summarize the available informa-
tion.

For surface processes the factual base of defect param-
eters is much less well developed. For example, the
temperature-dependent concentration of thermal defects is
accurately known scarcely for a single instance,31 and for
most metal surfaces, even the dominant thermal defect has
not been identified unambiguously. Careful experiments have
nevertheless determined the activation energies for hopping
motion of adatoms in a number of cases,32 mostly for low
temperatures,Tm/5. Despite this paucity of factual infor-
mation, the reactions of defects on surfaces can still be
charted prospectively in terms of formation and motion pa-
rameters that remain to be verified. For the present, these
results offer model predictions of surface properties for com-
parison with bulk behavior, by inspection of the standard
close-packed surface and the standard metal, as described
above.

In Sec. II below, the equations needed to describe the
evolution of defect assemblies are sufficiently nonspecific as
to apply equally to surface and bulk defects. The reactions of
their formation and annihilation are formulated generally, in
Sec. II A, with surface and bulk processes following a com-
mon format. In Sec. II B the partial differential equations are
solved for conditions close to equilibrium. The character of
the relaxation modes so determined is investigated in Sec.
II C. In the absence of inhomogeneous driving terms, and for
reaction controlled conditions, there are two sets of modes
that pertain, respectively, in the long wavelength limit, first
to recombination and second to long-range diffusion of both
defect species down the chemical potential gradient to sinks.
Section II D then employs the standard metal, and standard
close-packed surface parameters, to survey the regimes into
which bulk and surface phenomena fall as the temperature is
varied fromTm to zero. Clear distinctions between surface
and bulk behavior arise from this comparison.

In Sec. III the thermodynamic of the reacting assembly is
discussed in terms of a newly defined local temperatureT*

and chemical potentialm* of the reacting assembly. This
clarifies questions of heat and particle transfer among parts
of a system and between two distinct assemblies, for ex-
ample, surface and bulk. The space and time dependence of
defect formation after temperature change is treated as a per-
tinent example. The models of standard behavior for bulk
and surface defects are deferred to Appendix A. Finally, Ap-
pendix B presents illustrative cases in which the standard
models predict universal behavior for defect systems in met-
als.

For completeness we remark here that the results of the
present paper provide the basis for further investigations in
which defect systems, including defect interactions, are
driven by external fields, for example, by irradiation. Thus
the work presented here provides the response of reacting
assemblies to a particle flux, which causes radiation damage
and defect flow in the bulk, and such important phenomena
as beam-accelerated kinetics and enhanced growth processes
on surfaces. Detailed results for such processes, however, are
deferred to a separate publication.11

II. THERMAL DEFECTS IN THE BULK AND ON
SURFACES OF METALS

This section formulates equations to describe reactions
that create and annihilate point defects in the bulk of crystals
and on crystal surfaces. We treat materials formed from a
single chemical species, although this limitation is imposed
for clarity and simplicity rather than for fundamental rea-
sons. In the bulk of such materials, thermal point defects
comprise either an extra atom inserted into the lattice, as an
interstitial, or else a missing atom, leaving a vacant site, or
vacancy. These defects are mobile and interact also with
crystalline surfaces, to which they typically bind with a re-
lease of free energy. Vacancies are incorporated into the sur-
face layer as advacancies, while interstitials find their most
stable surface configuration at specific sites exterior to sur-
faces terraces as adatoms. The ad-defect properties must de-
pend on the particular orientation and state of the surface.

The equations that determine defect evolution recognize
three factors. First, external driving forces can create defects
either independently or as antidefect pairs. Second, both in
the bulk and on surfaces, two antidefects can react and mu-
tually annihilate when they meet; in thermal equilibrium, the
inverse process of spontaneous creation by lattice fluctua-
tions occurs in the perfect lattice at an equal rate, to produce
detailed balance. Third, all point defects undergo separate
annihilation and creation also, at special sites known as
sinks. It is convenient to emphasize sinks that are translation-
ally invariant, such that multiple defect processes cause at
most a spatial displacement of the sink, and its free energy
remains unchanged. Then the sink provides a locus at which
the defect chemical potential is zero. If necessary it is pos-
sible to treat the departure of real sinks from this ideal be-
havior. Examples of sinks are step edges at which a surface
terrace terminates, that act as sinks for both species of ad-
defects, and also for bulk defects, while a variety of struc-
tures such as edge dislocations, interior voids, and surfaces
also act as sinks for bulk defects.

A. Evolution of reacting defect assemblies

Antidefect populations change with time owing to reac-
tions, to diffusion, and to the action of such perturbing pro-
cesses as irradiation, evaporation, etc. Several terms are
readily assembled to obtain partial differential equations that
describe the consequent time evolution. The purpose here is
to determine the evolutions of the distributions
c1sr ,td ,c2sr ,td of reacting defects under conditions that pro-
mote inhomogeneity, time dependence, or both.

Reaction and diffusion both depend on the mobilities of
the defects. Specifically, the rates at which the two species
meet and mutually annihilate in the lattice depends on the
rate at which they explore new sites, and hence on their
diffusion coefficientsD1,D2. The latter determine defect
flow by Ji =Vi

−1Di ¹ci, and the hopping frequency bywi
=2dDi / l i

2Ni, along each ofNi nearest neighbor jump paths
with length l i. Here d is the dimensionality, namely, 2 for
surface and 3 for bulk processes. The volumeVi per site in
the first of these equations converts the occupancyci into a
number of defects per unit volume,Ci. For the surface pro-
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cess the surface areaA per site enters the result instead.
In terms of these contributions the defect loss rates by

reaction atr ,t are

ċ1sr ,td = ċ2sr ,td

= −
l1D1 + l2D2

a2 c1sr ,tdc2sr ,td

= − K12c1sr ,tdc2sr ,td, s1d

Here, a is the lattice parameter andli =aia
2/ l i

2, with ai a
constant that depends on the mutual separation at which an-
tidefect pairs annihilate, such that typicallyl,50 for the
bulk and perhaps half that for surfacessour notation follows
that of Leeet al.33d. Note in addition that detailed balance
among microscopic processes is achieved only if defects are
created spontaneously in the lattice at a rate

ċ1sr ,td = ċ2sr ,td = K12c̄1c̄2, s2d

with c̄1, c̄2 the equilibrium concentrations, independent of
r ,t. The net rates from reactions are thus

ċ1sr ,td = ċ2sr ,td = − K12fc1sr ,tdc2sr ,td − c̄1c̄2g. s3d

Defects also flow through and from the locationr by dif-
fusion. These processes conserve particles other than at fixed
sinks, where annihilation and creation take place. If sinks are
translationally invariant, defect processes at most displace
the sink slowly to a configuration of equal energy, and such
sinks accordingly establish the local chemical potential for
the defects at its equilibrium valuem for the lattice at ambi-
ent temperatureT. It follows from the diffusion equation that
the defect loss rates from diffusion satisfy

ċ1sr ,td = D1¹
2fc1sr ,td − c̄1g,

s4d
ċ2sr ,td = D2¹

2fc2sr ,td − c̄2g.

These diffusion equations are to be solved subject to the
condition thatci − c̄i =0 at the boundary sites of fixed sinks,
wherec̄i is established by the equilibrium chemical potential
m of the lattice at temperatureT.

B. Formulation for the linear regime

In addition to reaction and diffusion, many interesting
phenomena occur while defects are simultaneously created
or destroyed by externally impresses processes, such as irra-
diation. These may possibly be spatially inhomogeneous and
time dependent. Representing the resulting creation rates by

ċ1 = K1sr ,td; ċ2 = K2sr ,td s5d

for the two species, we obtain complete equations for the
time evolution ofc1 andc2:

ċ1 − D1¹
2sc1 − c̄1d − K12sc̄1c̄2 − c1c2d = K1sr ,td;

s6d
ċ2 − D2¹

2sc2 − c̄2d − K12sc̄1c̄2 − c1c2d = K2sr ,td.

These equations can, in principle, be solved for any specific
example and the behavior of the defect populations thus

determined.34,35 The equations are, however, nonlinear, so
that general solutions are not readily achieved. A variety of
computational approaches have been described; a recent per-
spective is given by Doan and Martin.35

Here we focus on the general behavior of reacting defect
systems close to equilibrium. An example in point might be
the response of a surface defect population to the small per-
turbation caused by the Gibbs–Thompson potential of a
curved step edge;21 the response in turn determines the re-
laxation times characteristic of the step fluctuation spectrum.
Close to equilibrium the response must become linear,23 and
a description of this type of linear regime is our primary
goal.

The nonlinear systems are linearized by writingc1= c̄1
+s1;c2= c̄2+s2. Then

F ]

]t
− D1¹

2 + K12c̄2Gs1 = − K12c̄1s2 + K1sr ,td;

s7dF ]

]t
− D2¹

2 + K12c̄1Gs2 = − K12c̄2s1 + K2sr ,td.

Nonlinear terms inc1c2 are thus eliminated, and the system
of equations becomes linear ins1,s2. They are to be solved
subject to the boundary conditions1,s2=0 at fixed sinks,
whereci = c̄i.

The solutions of Eqs.s7d in any particular case comprise
solutions of the homogeneous equations obtained when
K1,K2=0, supplemented by particular integrals that accom-
modate the terms inK1 and K2. The former are of interest
here; the latter are treated as they arise in particular contexts.
Representing byf g1 and f g2 the differential operators in
braces on the left, we obtain forK1,K2=0 the equations

f g1f g2s2 = − K12c̄2f g1s1 = K12
2 c̄1c̄2s2;

s8d
f g2f g1s1 = − K12c̄1f g2s2 = K12

2 c̄1c̄2s1.

Consequently boths1 and s2 are solutions of the homoge-
neous equation

HF ]

]t
− D1¹

2 + K12c̄2GF ]

]t
− D2¹

2 + K12c̄1G
− K12

2 c̄1c̄2Jssr ,td

= 0. s9d

We seek solutions of the form

ssr ,td = sexpsiq · r dexps− wtd.

Equationss9dd transforms to

hf− w + q2D1 + K12c̄2gf− w + q2D2 + K12c̄1g − K12
2 c̄1c̄2js= 0,

s10d

or
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w2 − fK12sc̄1 + c̄2d + q2sD1 + D2dgw + q2sD1c̄1 + D2c̄2dK12

+ q4D1D2 = 0. s11d

This quadratic equation has solutions

w = b ± sb2 − cd1/2, s12d

in which

b = fK12sc̄1 + c̄2d + q2sD1 + D2dg/2;
s13d

c = q2sD1c̄1 + D2c̄2dK12 + q4D1D2.

These give the required eigenvalues,wsqd, of the system of
Eq. s9d. They afford plane wave solutions of the homoge-
neous relaxation problem for reacting defect systems near
equilibrium. The question of what boundary conditions the
plane wave eigenvalues are chosen to satisfy is discussed
below in Sec. III C.

C. Character of the relaxation modes

The modes derived above show how the departuressr ,td
of defect populations from equilibrium relaxes back toward
zero as time passes. It does so generally as a sum of eigen-
functions, each decaying exponentially:

ssr ,td = o
q

aqsqsr dexpf− wsqdtg. s14d

The eigenfunctionsssr d are not generally plane waves but,
rather, combinations of plane waves that satisfy the boundary
conditionss=0 at fixed sinks. In this connection note that the
eigenvaluesw derived above depend only onq= uqu. Conse-
quently thesqsr d are appropriate sums over plane waves hav-
ing the sameq and a common decay rate; thus

sqjsr d = o
uqu=q

bq j expsiq · r d; s15d

ssr ,td = o
qj

aqjsqjsr dexpf− wsqdtg. s16d

Here, thesqjsr d may be selected to form an orthonormal set.
The two defect species have concentrations defined by

similar expansions but with different constantsaqj in a ratio
fixed by the eigenvaluewsqd, as evaluated here. ForK1

=K2=0, Eqs.s6d read

f− wsqd + q2D1 + K12c̄2gs1 = − K12c̄1s2;
s17d

f− wsqd + q2D2 + K12c̄1gs2 = − K12c̄2s1;

whence for the two modes the two species have relative am-
plitude given by

s± = ss2/s1d± =
a1 − a2

2b1
F1 ± S1 +

4b1b2

sa1 − a2d2D1/2G , s18d

in which

a1 = q2D1 + K12c̄2; b1 = − K12c̄1;
s19d

a2 = q2D2 + K12c̄1; b2 = − K12c̄2.

Useful, in addition, are the exact identities:

s+s− = − c̄2/c̄1;
s20d

s+ + s− = − fq2sD1 − D2d + K12sc̄1 − c̄2dg/K12c̄1.

These equations define the ratios of the decay mode ampli-
tudes of the two species for the two modessi.e., ±d that are
characteristic of any particular eigenmodeq, j . Some illus-
trative examples follow.

1. Diffusion dominated decay

The values ofq required by the diffusion equation are
determined by the geometry of the sinks. It may happensand
is commonly the case in bulk examples at high temperaturesd
that the diffusive loss greatly exceeds the recombination, and
the recovery is therefore dominated by defect diffusion to the
sinks, witha1,a2@b1,b2. Then the above equations are best
rearranged to give

w± =
1

2
sa1 + a2d ±

1

2
fsa1 − a2d2 + 4b1b2g1/2;

s21d

s± =
1

2b1
hsa1 − a2d 7 fsa1 − a2d2 + 4b1b2g1/2j .

The first now gives

w+ = a1 < q2D1; w− = a2 < q2D2; s22d

and the ratios of the defect amplitudes are

ss2/s1d− < sa1 − a2d/b1

= − fq2sD1 − D2d + K12sc̄2 − c̄1dg/K12c̄1;

ss1/s2d+ < sa2 − a1d/b2 = fq2sD1 − D2d + K12sc̄2 − c̄1dg/K12c̄2.

s23d

Both ratios are largesnote that the second is invertedd, pro-
vided thatD1ÞD2, so that the two modes largely comprise
separate diffusion of defects 1 and 2 to their fixed sinks. In
each case the corrections to this limiting behavior concern
ratios of recombination to diffusion, as expected. The disper-
sion curves for this case are shown as functions ofq in Fig.
1sad for the exampleD1/D2=3. The flow corresponding to
such modes is represented below by the arrows near the equi-
librium point in Sec. III B, Fig. 6sad.

2. Equal diffusion

WhenD1=D2=D the exact results are obtained precisely
as above:

C. P. FLYNN PHYSICAL REVIEW B 71, 085422s2005d

085422-4



w± = q2D +
1

2
K12sc̄1 + c̄2d ±

1

2
K12sc̄1 + c̄2d;

s24d

s± =
c̄1 − c̄2

2c̄1
F1 ±

c̄1 + c̄2

c̄1 − c̄2
G ,

so that

w+ = q2D + K12sc̄1 + c̄2d; ss2/s1d+ = 1;
s25d

w− = q2D; ss2/s1d− = − c̄2/c̄1.

These dispersion relationships are shown in Fig. 1sbd. Evi-
dently the + mode comprises recombinationswhich causes
equal decays of the two speciesd with diffusion sfor qÞ0d
while the − mode decays entirely by diffusion. In this regard
note that the − mode corresponds to equal but oppositefrac-
tional departures from equilibrium for the two species. As
such it is consistent with the two species responding to a
common but inhomogeneous chemical potential in the lattice
ssee also below and Sec. IIId.

3. One loss term dominant

When, as must normally occur, one loss rate from diffu-
sion or recombination greatly exceeds the other three terms,
the equations are best rearranged so the roots can be ex-
panded to provide immediate approximations to the eigen-
values and the amplitude ratios. Thus

w± =
1

2
sa1 + a2dH1 ± F1 +

4sb1b2 − a1a2d
sa1 + a2d2 G1/2J;

s± =
1

2b1
Hsa1 − a2d 7 sa1 + a2dF1 +

4sb1b2 − a1a2d
sa1 + a2d2 G1/2J .

s26d

With only one term large, andb2 andb1 also contained ina1
and a2, respectively, the ratio inside the root is small. By
expansion one finds

w+ =
q2sD1c̄2 + D2c̄1d + K12sc̄1 + c̄2d2

sc̄1 + c̄2d
;

ss2/s1d+ < 1 −
q2sD1 − D2d
K12sc̄1 + c̄2d

;

s27d

w− =
q2sD1c̄1 + D2c̄2dK12 + q4D1D2

K12sc̄1 + c̄2d + q2sD1 + D2d
;

ss2/s1d− < − c̄2/c̄1S1 −
q2sD1 − D2d
K12sc̄1 + c̄2d

D ,

where the results fors are for smallq. Both ± results warrant
comment. The + mode has the decay rate of whichever pro-
cess is dominant. Asq→0 it becomes the recombination
term K12sc̄1+ c̄2d alone, and accordingly the ratio of defect
densities becomes unity. On the other hand, asq→0, the −
mode identifies an effective diffusion coefficient,

Deff =
sD1c̄1 + D2c̄2d

sc̄1 + c̄2d
, s28d

comprising the mass diffusion coefficientsless correlation
factorsd divided by the net defect concentration. This is the
diffusion coefficient with which the reacting defect assembly
responds to a gradient of defect chemical potential, accord-
ing to the Nernst–Einstein equation J=−fsc1

+c2dDeff /VkBTg¹m. It is analogous to the “thermal equilib-
rium” Deff obtained2,28 for reacting vacancies that maintain
local equilibrium. For the − mode asq→0, the ratio of de-
fect amplitudes becomess2/s1=−c̄2/ c̄1, which is consistent
with the defect fluxes driven by a common chemical poten-
tial. The relaxation modes have the dispersion relationships
shown in Fig. 1scd, and for q→0 are indicated by arrows
near the equilibrium point in Sec. III B, Fig. 6sbd.

The condition that a single rate term is largest may be
valid only over some range ofq as, for example, when theq
dependence of the diffusion terms overtakes recombination
terms with increasingq. In the exact dispersion curves
shown in Fig. 1scd, one diffusion coefficient is a factor of 10
larger than the other. It crosses the larger of the recombina-
tion rates halfway to the Brillouin zone boundary, with the
smaller recombination rate fixed an order of magnitude
smaller. As evident in Fig. 1scd, the exact dispersion curves

FIG. 1. Dispersion relations for relaxation in
several cases.sad Independent diffusion of the
two species to sinks arises when recombination is
negligible compared to diffusion.sbd Equal diffu-
sion and recombination rates of two species leads
to one branch purely diffusion and onesupperd
mixed recombination and diffusion.scd When dif-
fusion and recombination compete in midzone
the dispersions exhibit an avoided crossing. At
the zone center the two branches are pure diffu-
sion and pure recombinationssee textd.
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exhibit an avoided crossing where the rates of the faster dif-
fusion process and faster recombination process become
equal.

D. Relaxation of surface and bulk defects

We now compare and contrast reactions among thermal
defects on close-packed surfaces with those in the bulk of
metals. One purpose is to clarify and illustrate the results of
the preceding sections by application to typical materials. In
particular, the complexity of surface diffusion, as defined by
the standard close-packed surface, becomes clearly apparent.
Also, the equilibrium properties recognized here establish a
base for a future discussion of the reactions that take place
when these systems are driven by particle irradiation.11

The four parameters that enter into the reaction kinetics,
according to Eqs.s7d, are q2D1 and K12c2 for added atom
defects andq2D2 andK12c1 for vacancies. To show generally
how these behave, Fig. 2sad for bulk defects comparesD1
with R1=K12c2/q2 sbroken linesd, and D2 with R2
=K12c1/q2 ssolid linesd. The choice made here forq
,np /L is the smallest eigenvaluesn=1d for a region of
length L=10 mm, a relatively large sink spacing, selected
here to enhance bulk reactions relative to defect diffusion to
fixed sinks. Even so,D2 and R2 for the dominant vacancy
defects become equal only just belowTm. Thus, for the stan-
dard metal, the majority defects form mostly at sinks, except
in the range,Tm to 0.8Tm, where pairs in the bulk mainly
form by spontaneous fluctuation. It is of some interest that
even this limited range of reaction-controlled conditions
could not be identified before the recent discovery that inter-
stitial formation entropies are so large36,37 ssee Appendix Ad.

A similar calculation for surface species is shown in Fig.
2sbd. The eigenvalueq is chosen for sinks separated byL
=0.1 mm, appropriate for step edges on a surface miscut by
0.1°. The large diffusion rates of the surface defects more
than compensate for the factor 102 in sink spacing between
the surface and bulk systems, chosen for this comparison.
The estimated crossings ofR andD for surface species occur
near 0.3Tm and 0.4Tm for smajorityd adatoms andsminorityd
advacancies, respectively. Evidently surface antidefects are
controlled by pair reactions over most of the temperature
range belowTm.

We conclude that significant distinctions separate bulk
and surface kinetics. Spontaneous creation of pairs on the
terraces dominates surface defect processes on low miscut
surfaces at temperatures above,Tm/3 whereas, in the bulk,
the majority defects become reaction controlled only just be-
low Tm.

Also owing to the large concentration of surface defects,
defect multiples occur on surfaces at high temperatures to the
degree that it may possibly become impractical to describe
the total defect population by building blocks of defect mul-
tiplets. The adatom concentrationfEq. ssA7ddg c1,3 exp
s−4.5Tm/Td reaches 3.3310−2 at Tm. The density of adatom
pairs at Tm, given an estimated pair binding energy one-third
of the adatom formation energy, is then 3c1

2 exps−1.5Tm/Td
,1.5310−2; thus about as many adatoms are bound in pairs
as exist singly on the surface. Because defect formation en-

ergies were obtained in Appendix A by assigning to them
most of the activation energy for mass diffusion, as actually
observedat T.Tm/2, it is hard to see how actual defect
densities could be much smaller than those described here.
Given the many possible triplet configurations, and that some
may be strongly bound, the total occupation of the surface by
adatoms atTm is generally large, and may be poorly defined
for the parameters of a standard close-packed surface. Cer-
tainly, in the bulk, defect concentrations larger than about
1% fe.g., for AgI sRef. 37dg cause the relevant sublattice to
becomeliquidlike.

Experimental observation of liquidlike behavior in the
surface layer has been reported for some metal surfaces.38,39

In regard to diffusion, it is known that even large, compact
islands remain mobile on close-packed surfaces,40 so a com-
plete treatment must certainly include complexes and reac-
tions. For less smooth surfaces, with smaller formation ener-
gies, the defect densities are still larger, and the contribution
of complex processes to defect flow must accordingly be still
greater.

These conclusions have significant consequences. Surface
diffusion is a critical process that facilitates epitaxial growth,
surface fluctuations and smoothing, and other technically im-
portant phenomena. The present discussion suggests, forT
.Tm/3, that measurements of surface mass diffusionse.g.,
by step fluctuation spectroscopyd, and all processes deter-
mined by mass diffusion, are likely to involve an effective
diffusion coefficient for the reacting assembly, as in Eq.s28d,
rather than activated linear diffusion of one independent de-
fect species. At the highest temperatures, and for less smooth
surfaces, it is likely that sizable defect clusters contribute to
mass flow, and a more careful and complete theory of mass
flow is therefore needed.

III. TEMPERATURE AND CHEMICAL POTENTIAL IN
REACTING ASSEMBLIES

Our concern here lies with reacting defects in nonequilib-
rium assemblies; the local values ofc1,c2 then may generally

FIG. 2. Relative diffusion and recombination for bulk defectssad
and surface defectssbd evaluated for standard metal, with 10µm
bulk sink spacing and 100 nm surface sink spacing. For each defect,
D is the diffusion coefficient andR measures the relative rate of
recombination forq=1 sthe longest wavelength moded. For the
bulk, majority defectssvacanciesd only just achieve reaction limited
kinetics atTm, whereas surfaces are reaction controlled aboveTm/3
even with the smaller sink spacing.
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differ from the thermal equilibrium valuesc̄1, c̄2. In this con-
nection it is useful to recall,2 for the added-atom defect in the
dilute limit sc!1d, that theequilibrium densities of thermal
defects are

c̄1 = exp −f1/kBT = expf− sF1 − md/kBTg; s29ad

similarly,

c̄2 = exp −f2/kBT = expf− sF2 + md/kBTg s29bd

for vacancy type defect. In these equationsT andm are the
equilibrium temperature and chemical potential of the lattice,
F1 is the work required to place an atom from infinity into
the site occupied by the extra atom, andF2 is the work
needed to remove an atom to infinity from a site of the per-
fect lattice, in order to create a vacancysthe number of sites
per lattice site for added atom defects can be incorporated
into F1d. f1 and f2 are thus the free energies of defect forma-
tion, which have energy and entropy components quantified
explicitly in Appendix A. Finallym is the average worksa
negative quantityd required to add one atom from infinity to
a typical bound site of the solid, exemplified as the binding
energy at a kink site at a surface step. This latter definition
provides a sink that remains unchanged by the process, other
than by a translation that has no consequence for the free
energiessi.e., the kink site has the average energy of the
atoms of the crystald.

Whenc1 andc2 differ locally from their equilibrium val-
ues, we can regard the temperature and chemical potential of
the defect system as taking effective valuesT* and m* de-
fined by

c1 = expf− sF1 − m*d/kBT*g;
s30d

c2 = expf− sF2 + m*d/kBT*g,

in which c1,c2 replace the equilibrium valuesc̄1, c̄2. ThusT*

and m* are the lattice temperature and chemical potential
with which these defect densities would be in equilibrium.
Then from Eqs.s30d:

T* = T
ln c̄1c̄2

ln c1c2
; s31ad

m* − m =
1

2
kBfT* lnsc1/c2d − T lnsc̄1/c̄2dg

=
1

2
kBTF ln c̄1c̄2 lnsc1/c2d

ln c1c2
− lnsc̄1/c̄2dG , s31bd

after elimination ofT* . Note thatT* and m* represent the
temperature and chemical potentialof the defect system it-
self; they determine, for example, energy and particle flow
between parts of the system, and between the defect system
and the lattice. Of course, the values ofT* ,m* may differ
from the lattice valuesT,m, whenever the defect system is
driven by forces that affect the defect system independently,
as in the cases of irradiation, rapid change of lattice tempera-
ture, or mechanical work.

As an illustration in what follows we consider first the
way T* and m* evolve with time as the lattice undergoes

sudden changes of temperature. The relationship to the nor-
mal relaxation modes derived in Sec. II is then discussed for
bulk and surface systems.

A. Pair generation remote from sinks after quenching

At equilibrium, the spontaneous annihilation, that occurs
as antidefects encounter each other in the lattice by diffusion,
is precisely compensated by the creation of antidefect pairs
by spontaneous fluctuations of the perfect lattice. No local
precursor structure is necessary for this latter process to op-
erate. When temperature changes occur, the creation pro-
cesses respond accordingly with changed rates appropriate to
the new temperature. However, annihilation continues at a
rate fixed by the existing defect site occupancies in Eq.s3d,
albeit with kinetics adjusted to the new temperature. A char-
acteristic evolution of defect populations occurs by reaction,
both on terraces and in the bulk, to a state of kinetic equilib-
rium determined by the new temperature. While all such pro-
cesses may be modeled by computation, it turns out that an
exact solution can be written down for the particular prob-
lem. This section summarizes the result and its consequences
for the defect temperature and chemical potential.

We consider a lattice with uniform occupancies,c1,c2, of
defects corresponding to equilibrium at the initial tempera-
ture, perturbed by a temperature change for which the equi-
librium occupancies now becomec̄1, c̄2. This problem can be
solved exactly. In the absence of sinks, Eqs.s6d for the evo-
lution both read

K12
−1ṡ= c̄1c̄2 − sc1 + sdsc2 + sd, s32d

in which sstd is the added occupancy for both species due to
reactions at the new temperature. Our concern here is to find
sstd and the consequent defect propertiesT*std and m*std.
Equations32d may be integrated and a constant of integration
selected to fit the initial conditions, yielding

sstd = cF« cothst/td + 1

« + cothst/td
− «G , s33d

in which

c2 = c̄1c̄2 + sc1 − c2d2/4; t−1 = cK12;
s34d

« = sc1 + c2d/2c.

Thuss→0 at t=0; ands→cs1−«d=c−sc1+c2d /2 ast→`,
which givess→ sc̄1c̄2d1/2 if c̄1c̄2@c1c2, when the system is
heated, ands→−c1 or −c2, depending on the sign of the root,
when the system is quenched, withc̄1c̄2!c1c2.

The changes of the defect chemical potentialm* caused
by the evolution of the defect system are of special interest
as they promote defect precipitation, creating new sinks,
whenm* departs sufficiently from the lattice chemical poten-
tial m. m* is obtained from

POINT DEFECT REACTIONS AT SURFACES AND IN… PHYSICAL REVIEW B 71, 085422s2005d

085422-7



m* − m =
1

2
kBfT* lnsc1 + sd/sc2 + sd − T lnsc̄1/c̄2dg;

s35d

T* = T
ln c̄1c̄2

lnsc1 + sdsc2 + sd
,

using

sc1 + sd
sc2 + sd

=
c1fcothst/td + «g + cs1 − «2d
c2fcothst/td + «g + cs1 − «2d

;

s36d

sc1 + sdsc2 + sd = c̄1c̄2 −
c̄1c̄2 − c1c2

fcoshst/td + « sinhst/tdg2 .

In verifying these results, note that the first of Eqs.s36d
clearly gives c1/c2 as t→0, and as t→` gives fc1

+ss`dg / fc2+ss`dg with ss`d=cs1−«d, as required. The prod-
uct in the second equation becomesc1c2 ast→0, andc̄1c̄2 as
t→`, again as is necessary.

Figure 3 shows the evolution ofc1, c2, m* , and T* for a
standard metal initially atT=0.5Tm for two cases in which
the reacting defects pass toward a kinetic equilibrium after a
sudden temperature change. In Fig. 3sad, c̄1c̄2=102c1c2, as a
temperature riseDT/T,0.03Tm increasesthe defect popula-
tion, and in Fig. 3sbd, c̄1c̄2=10−2c1c2, when a quench of simi-
lar magnitude decreases the concentrations.c2 hardly
changes because the steady state is achieved by variations of
c1 by factors of ,10±2. Initially T* jumps slightly in the
opposite sense from the initial lattice temperature in both
examples, and then changes smoothly to equilibrate at the

new lattice temperature, with a response time,cK12
−1. The

initial jump arises from the dependence ofF1+F2 on T in
Eqs.s30d si.e., the defect formation entropiesd. Note that the
factors 102 in c1,c2, from even these small fractional tem-
perature changes, place the response far outside the linear
regime, so that the actual responses insad andsbd differ by an
order of magnitude in duration.

After a similar initial small jump, the chemical potential
m* of the defect system relaxes back throughm and departs
progressively further as the reaction takes place. This behav-
ior of m* can readily be understood from the fact that the
relative proportions of the defects change as the defect popu-
lations evolve under the reaction constraint that additional
defects of the two types form or annihilate in equal numbers.
Temperature increase then creates a relative excess of the
minority defectsfor that temperatured while, after quenching,
the majority species consumes the minority and results in a
minority deficit. The defect chemical potentialm* therefore
departs fromm in the opposite sense for the two cases. A
point of special interest is that the results shown in Fig. 3 are
universal, applying to all metals, in the approximation of
Appendix A; indeed, the decay times for different metals are
identical function ofT/Tm ssee below and Appendix Bd.

The change of chemical potential caused by pair creation
allows the lattice to access new channels for relaxation.
Whenm* differs sufficiently from the lattice valuem, a sys-
tem can lower its free energy by new channels when defects
react to nucleate fresh sinks, such as dislocation loops in the
bulk, or step edges on the surface; these serve as centers at
which, for each species, the thermal excess defects may be
annihilated and deficient species created, thereby restoring

FIG. 3. Time evolution of bulk
defect concentrationsstopd for a
standard metal that is instantlysad
upquenched and sbd down-
quenched from T=0.5Tm to
change the final equilibrium value
of c1c2 by factors of 10±2. The
concurrent changes ofT* and m*

−m are shown below. The latter
exhibit instantaneous changes att
=0 due to the temperature depen-
dence ofF. Note that the small re-
quired changes ofT still cause
nonlinear response, readily visible
from the differing timescales in
sad and sbd.

C. P. FLYNN PHYSICAL REVIEW B 71, 085422s2005d

085422-8



true equilibrium. Such nucleation events may require sub-
stantial chemical potentials which, for the small temperature
changes examined in Fig. 3, are not available, withum* −mu
,0.1 eV in typical cases. Much larger potentials are avail-
able for larger temperature changes. The following illustra-
tion is chosen to clarify the utility of theT* ,m* formulation.

Consider then the changes that occur when the bulk of a
standard metal in equilibrium at 0.2Tm is suddenly heated to
0.9Tm; and also the reverse process of quenching from 0.9Tm
to 0.2Tm sthe latter is typical of experiments to study vacan-
cies in metals such as Au, with 0.2Tm near room tempera-
tured. The evolutions ofc1, c2, T* , andm* are shown in Fig.
4. On the up-quenchfFig. 4sadg the final interstitial density
exceeds the initial vacancy density, so both species are gen-
erated in the lattice and quickly achieve essentially equal
concentrations. The initial defect populationc1,c2, when first
present at the final temperature, givesm* −m=−2.0kBTm,
which rises to 3.6kBTm as new defects then form to reach
their steadysbut nonequilibriumd state at 0.9Tm. The increase
favors excess interstitials and here represents themaximum
increase, which makes the densities of the two species essen-
tially equal sfor which m* −m=s10−7.17T/TmdkBTm; this is
the value, for example, when irradiation creates essentially
equal excesses of the two antidefectsd. In the case of Fig.
4sbd for the down-quench to 0.2Tm from 0.9Tm, the vacancies
consume almost all the interstitials, and the density reduction
by so many orders of magnitude takes correspondingly many
multiples s,160d of the response timet. In Fig. 4sbd, the
initial value at 0.2Tm is m* −m=3.2kBTm, which then de-
creases to −7.8kBTm at the steady state. For the example of

Au metal this is over 1 eV, which is amply sufficient to
influence nucleation of new sinks. The negative sign of the
final m* indicates that vacancies have become more preva-
lent, at the expense of interstitials, which are suppressed by
the large negativem* fcf. Eqs.s30dg.

Note that precisely the same magnitudes7.8kBTmd can be
obtained when, instead, theinterstitial chemical potential is
written, as is customary,Dmi =kBT ln c1/ c̄1=−7.8kBTm, with
c1 the final defect occupation after reactionsin this caseT
and T* are equald. The analogous result for vacancies is
Dmv=kBT ln c2/ c̄2= +7.8kBTm, with c2 and c̄2 the equilib-
rium and final vacancy concentrations. These opposite results
for Dmi and Dmv do show correctly that, at sinks where
Dmi ,Dmv=0, vacancyannihilation and interstitial formation
are equally enhanced in the steady state defect configuration.

The distinction between theDmi ,Dmv notation and the
presentT* ,m* formulation becomes clear from the values
after the quench butbefore the reaction occurs. The results
areDmv= +7.8kBTm sunchanged, since the number of vacan-
cies hardly changes in the reaction with interstitialsd while
Dmi = +11.7kBTm. An inference from thesalmost unchangedd
majority svacancyd population, and consequentDmv, that the
tendency of the majority defect to precipitate remained un-
changed through the reaction would, unfortunately, be in er-
ror. In fact, the balance of defect stability evolves from in-
terstitial precipitation to vacancy precipitation as the defect
reaction progresses at 0.2Tm. Specifically, before the reac-
tion, the force driving interstitialannihilation is even greater
than the analogous force for vacancies, so that new lattice
sitesse.g., interstitial loopsd form rather than disappear. Note

FIG. 4. Time evolution of bulk
defect concentrationsstopd for a
standard metal that issad instantly
upquenched from 0.2Tm to 0.9Tm

and sbd downquenched from
0.9Tm to 0.2Tm. The concurrent
changes of T* and m* −m are
shown below. The latter exhibit
instantaneous changes att=0 due
to the temperature dependence of
F. On the upquench,c1 andc2 are
equal from very short times be-
cause, after the temperature in-
crease, the lattice creates equal ex-
cesses, and the chemical potential
is thereby pinned ssee textd.
Steady state after the downquench
requires many multiples of the re-
laxation time t because c1

changes by so many orders of
magnitude.
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that, in contrast, the actual switch during reaction from net
interstitial to net vacancy precipitation is correctly monitored
by the potentialm* which changes from 2.1kBTm, through
zero, to −7.8kBTm, as the defects evolve to a steady state at
T=0.2Tm. In short, theT* ,m* formulation fulfills its purpose
of monitoring thenet reactivity schemical potentiald of the
compositedefect system.

We can predict the bulk and surface relaxation times from
small perturbations, for both bulk and surface processes, as
functions of temperature. These are universal functions of
T/Tm within the standard metal approximations. When
c̄1, c̄2<c1,c2,c→ sc1+c2d /2 in Eq. s34d, so t−1→K12sc1

+c2d /2. For the bulk, c2@c1, and D1@D2, so that t−1

→lc2D1/2a2. The result for the bulk shown in Fig. 5 is
obtained withl=50,a=4310−8 cm, and the values ofc2D1
given for a standard metal in Appendix A, so that the process
is activated with an energy 10.5kBTm. If, for surfaces, ada-
toms are both the more prevalent and the more mobile, then
the result for surfaces is approximatelyt−1→lc1D1/2a2 in
which the surface mass diffusion coefficientc1D1,5
310−4 exps−6Tm/Td cm2/s. With l,25 for the smaller sur-
face atom coordination, the relaxation time in Fig. 5 corre-
sponds to an activation energy of 6kBTm. As seen in Fig. 5,
the bulk and surface times atTm are 30 ns and 10 ps, respec-
tively, and the former remains the smaller at all temperatures.
They pass through laboratory times,1 s at about 0.4Tm and
0.2Tm, respectively. Note that these are now decay times in
linear response for small perturbations, in which equilibrium
defects dominate the reaction. Of course, these results may
need refining as data accumulate, and in any event will differ
to some extent from one actual metal to the next.

Two further comments on the use ofT* ,m* follow. First,
upon quenching surface defects, the changes of chemical po-
tential are much smaller than for the bulk because the forma-
tion energies are smaller; and also the equilibrium occupan-
cies for the two antidefects are more comparable. Second,

the use of these ideas, and the access the system acquires to
new pathways for relaxation, is not restricted to temperature
change, but instead is common to all pair creation phenom-
ena including, for example, irradiation events which cause
local modifications of chemical potential that nucleate new
sinks such as interstitial loops in the bulk, and activate step
edge flow on surfaces. A specific discussion of this nucle-
ation and subsequent flow is deferred to a separate publica-
tion.

We note finally that bothT* and m* remain finite asT
→0 even when defects remain present. This may offer a
basis for the discussion of simulations of defective driven
systems41 in which questions of free energy and phase
change remain interesting at 0 K.42

B. Application to surface and bulk relaxation modes

Here we place the relaxation modes of bulk and surface
defect systems, as described in Sec. II, in the context of the
temperatureT* and chemical potentialm* of the defect sys-
tem, introduced in Sec. III. To interpret any particular case
note thatT* is constant for fixed values ofc1c2. The defect
chemical potentialm* is constant when lnc1=a ln c2; then
m* −m=skBT/2dfs1−ad / s1+adgln c̄1c̄2− lnsc̄1/ c̄2d, with a a
constant. On a graph with axes lnc1 and lnc2, constantm*

appears as a straight line throughc1=c2=1, both logarithms
then being zero. ConstantT* occurs instead for straight lines
of slope −1. The cases shown in Fig. 6 employ a modifica-
tion of this scheme with coordinates lnsc1/ c̄1d , lnsc2/ c̄2d.
With this choice, thermal equilibrium is shifted to the point
s0,0d, and the straight lines of constantm* now converge at
the point lnc1

−1, ln c2
−1.

These plots may be employed to display the different be-
haviors of reaction-controlled and independently diffusing
defects. Figure 6sad shows the example, typical of bulk de-
fects atTm/2, for which the standard metalsAppendix Ad
gives c̄1! c̄2,10−8. Lines of constantT are shown, with a
common slope, and lines of constantm which converge to
the point described above are labeled in units ofkBT/2
=kBTm/4. In addition, a thick broken line shows for this case
the changes near equilibriumsat the coordinate origind
caused by Frenkel pair formation or recombination.

Our interest centers on the relaxation modes revealed in
the linear response formulation. As explained in Sec. II, the
mode character depends on the separation of free sinks. For
reasonable sink separations,10 mm, and defect properties
for Tm/2 given by the standard metal, the recombination
turns out to have negligible effect. Then the two relaxation
modes reduce to the independent modes in which the two
defect species diffuse separately to the free sinks. Figure 1sad
shows dispersion relationships typical of this type of behav-
ior. Small arrows near the equilibrium points0,0d in Fig. 6sad
indicate the displacements of these normal modes from equi-
librium.

The bulk behavior atTm/2 documented above is con-
trasted in Fig. 6sbd with the typical case for defect relaxation
on surfaces at,Tm/2 where concentrationsc1,c2, ,10−4 are
expected for a standard metal surface. For a separation
,0.1 mm between sinks, the recombination terms are now

FIG. 5. Relaxation rates for surfacessd and bulksbd defect sys-
tems for a standard metal, shown as functions of temperature. In
this approximation, thet−1 are universal functions ofT/Tm.
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dominant, and the two relaxation modes forq→0 in Fig.
1scd haves1=s2 ands1/s2=−c̄1/ c̄2 sconstantTd as explained
in Sec. II. As indicated by fine arrows nears0,0d in Fig. 6sbd,
the modes now, respectively, describe Frenkel pair creation
and isothermal recovery by diffusion of both species down
the chemical potential gradient.

Within the validity of the model of metals described in
Appendix A, the behaviors indicated in Fig. 6 are universal.
The modes in Fig. 6sad pertain to all metals near equilibrium
at almost all temperatures, and those in Fig. 6sbd represent all
close packed surfaces for temperatures above about 0.4Tm.

C. Boundary conditions on relaxation modes

The general character of the relaxation modes that solve
Eq. s9d is seen above to follow from the relative values of the

component terms related to diffusion and to recombination.
These lead to modes with limiting behavior either for sepa-
rate diffusion to sinks of the two species, or to recombination
and joint diffusion to sinks. The specific forms of the eigen-
functions and the values of the associated eigenvalues natu-
rally depend, in addition, on the particular boundary condi-
tions that prevail at the sinks. A subtlety connected with
these matters, left undefined in Sec. II, is briefly clarified in
what follows.

The point to be made is that the boundary conditions must
certainly be consistent with the character of the modes they
define. In the case of separate diffusion to the sinks by the
two defect species, each must satisfy conditions pertinent to
that species, and there is no evident requirement that the sink
parameters be the same for the two species. Dissimilar inter-
actions with a particular sink may, for example, give that
sink an apparently different volume or shape for one species
than for the other species. Correspondingly, somewhat differ-
ent eigenfunctions may be required to describe kinetics for
the two species.

This cannot be the case when dominant reactions couple
the two species so that their correlated variations are the
dominant feature. Eigenfunctions must then be selected that
describejoint behavior, and this requires that the species sat-
isfy common boundary conditions at the sink. This is impor-
tant both for recombination modes in which defect densities
must change equally in space and time, and also for diffusive
modes in which the excess species decay together under a
common chemical potential gradient.

IV. SUMMARY

This paper treats reacting antidefects in crystals and on
crystal surfaces. It is shown how the relaxation modes of
thermal defects near equilibrium depend on a comparison of
the rate defects diffuse to sinks with the rate of antidefect
reaction. When sinks dominate, the relaxation modes com-
prise separate diffusion of the two species to sinks. When
reactions are dominant, the modes in the long wavelength
limit respectively describe recombination and mass flow by
both species together to sinks. Using models of standard
metal behavior, developed in Appendix A , it is shown that
bulk metals near equilibrium remain in the regime of inde-
pendent diffusion at almost all temperatures, while surface
defects on close-packed surfaces are reaction-dominated for
temperatures above,0.4Tm. A definition is given for the
temperatureT* and chemical potentialm* of the reacting de-
fect assembly. This is employed to monitor the defect assem-
bly during reactions such as those that occur after rapid tem-
perature change. ThenT* and m* differ from the lattice
temperatureT and chemical potentialm, to an extent that
measures the propensity of the defect system for energy and
particle transfer in such processes as sink nucleation and pre-
cipitation. The significance of these concepts for the selec-
tion of boundary conditions on relaxation modes is dis-
cussed, and the respective relaxation modes of bulk and
surface defects identified using the models of bulk metals
and close-packed metal surfaces developed in Appendix A.
Appendix B introduces universal properties of defect sys-
tems that follow for these standard metals.

FIG. 6. T* andm*shown as functions ofc1,c2 at T=Tm/2 for the
standard bulk metalsad and the standard close-packed metal surface
sbd. Lines of constantT* have a common slope, and lines of con-
stant m, marked in units of kBT/2 converge to the point
ln c1

−1, ln c2
−1. A heavy broken line indicates Frenkel pair formation

near equilibrium, ats0,0d. The orthogonal relaxation modes, calcu-
lated in Sec. II, and indicated by arrows ats0,0d in the figure,
correspond to separate diffusion of the species to sinks insad, and in
sbd to Frenkel pair reactions and joint isothermal diffusion down a
chemical potential gradient. The difference arises from typical de-
fect concentrations relative to typical sink spacings for the two
cases.
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APPENDIX A: MODELS OF THERMAL DEFECTS FOR
STANDARD METALS AND CLOSE-PACKED

SURFACES

There is a considerable degree of regularity in the behav-
ior of thermally activated defects in bulk metallic crystals.2 A
comprehensive review is available, with critical selection of
data.12 The regularity is most apparent in the bulk diffusive
properties, and extends, remarkably, to crystals of the rare
gases, but not to the elemental semiconductors diamond, Si,
and Ge, which have low coordination numbers. All the ma-
terials with similar properties support dominant vacancy dis-
order in the bulk, and a resulting vacancy-dominated atomic
diffusion. Our purpose here is to collect and correlate the
properties of thermal defects, first of the bulk, to model the
average behavior as astandard metal, and second to carry
through a similar assessment for defect properties of its close
packed surfaces, to model astandard close-packed surface.
These prove to be of value in the text by facilitating an
assessment of typical regimes of response for defect species
in metals.

1. Bulk defects

a. Bulk vacancy

The important facts are that diffusion coefficients in met-
als typically fall within an order of magnitude of 10−8 cm2/s
at the melting temperatures,Tm. With activation energies
about 17kBTm, and with prefactors within an order of magni-
tude of 0.3 cm2/s, the diffusion coefficient approximately
obeys

DsTd = 0.3 exps− 17Tm/Td cm2/s. sA1d

Inspection of documented cases2,12 reveals that the activa-
tion energy typically arises from a vacancy formation energy
of ,10kBTm, with an entropy,1 to 2kB, so that the vacancy
concentration is approximately

cvsTd = 6 exps− 10Tm/Td. sA2d

A comparison of Eqs.sA1d and sA2d gives the hopping rate
as

DvsTd = 5 3 10−2 exps− 7Tm/Td cm2/s. sA3d

In fact motion energies actually relate more closely to the
lattice phonon modes that activate atomic hops, and so the
link to cohesion and henceTm deteriorates for the special
case of the alkali metals, which display very low shear
moduli.2,12 Otherwise Eq.sA3d provides a useful estimate of
vacancy motion in metals.

b. Bulk interstitials

Information about interstitial behavior in metals is less
abundant than that for vacancies. Experiment and calculation
both reveal that “dumbbell” interstitials are favored, with
two atoms occupying a single site symmetrically. The forma-
tion energies of interstitials are typically a factor,3 larger
than those of vacancies, or,30kBTm. At the same time, the
complexity of the highly distorted lattice near the defect re-
sults in many very similar saddlepoints for motion. Related
to this same feature is the low activation energy for intersti-
tial migration, typically less thankBTm. The activation energy
for diffusion by interstitial hopping thus typically remains
almost twice that for vacancies, which explains the preva-
lence of vacancy-facilitated diffusion in metals.

Only recently has it been recognized that the flat energy
landscape for interstitial motion has further consequences.
One is that interstitials possess resonant vibrational modes,43

deep in the Debye vibrational tail, whose excitation drives
interstitial diffusion. Important here is the phonon entropy
s=oiln v /v8, the sum extending over all modes with,v8,
and without,v, an interstitial. For interstitialss appears to be
very large, mainly as a result of the low-frequency resonance
modes. Values ofs,16kB are cited from experiments and
theory,36,37,44 and these produce interstitial concentrations
larger than otherwise expected by a factor of 107. Thus in-
terstitials have

ci , 107 exps− 30Tm/Td. sA4d

Still fewer details are known about interstitial motion,
other than the easy activation. One useful source of informa-
tion is computer simulation with interatomic potentials
which, while fitted to particular cases, actually are generic,
so that the results, when scaled, pertain well to other metals.
Such treatments reproduce37 an interstitial concentration at
Tm sfor Cud of just below 10−6, in agreement with Eq.sA4d.
Interstitial hops appear complex since the activation energy
is low and the dwell time accordingly short. From simula-
tions, the interstitial-driven component of diffusion atTm is
close to 10−10 cm2/s. With the small hopping energy the dif-
fusion is only weakly activated, and the resulting interstitial
mobility consistent with Eq.sA4d is

Di = 10−4 exps− 0.5Tm/Td cm2/s. sA5d

The unusually small prefactor may in part be a further con-
sequence of the resonance modes, which result in a small
attempt frequency.

The concentrationsc̄1, c̄2 of bulk defects for a standard
metal behave as the functions ofTm/T shown as broken lines
in Fig. 7. A characterization of the consequences for the re-
action kinetics in the equilibrating defect assembly is pro-
vided in Sec. II D.

2. Surface defects

Here we turn to the comparative properties of adatoms
and advacancies. There is no current demonstration that sur-
face behavior exhibits a regularity comparable with that of
the bulk, although the possibility has been introduced.19 In-
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deed, details of atomic mobility on surfaces must evidently
depend on the particular orientation of the surface consid-
ered. Also, broad studies of equilibrium mass surface diffu-
sion are at present lacking, so there has existed no purpose in
seeking trends among metals. Nevertheless, the data cur-
rently available for close-packed surfaces differ strikingly
from bulk results, to an extent that presents a significant
pattern in itself. Specifically, there is a qualitative difference
in bulk and surface behavior that is established in a credible
manner by the existingsif fewd results. This encourages the
following characterization of astandard close-packed sur-
face.

a. Adatoms and advacancies

In several cases surface mass diffusion coefficients on
metals have been established by direct experiment.24,45–47

Reliable prefactors for mass diffusion appear to be
,10−4–10−3 cm2/s, rather than the bulk value,0.3 cm2/s.
Activation energies for diffusion also are much smaller at
,6kBTm, in place of 17kBTm for the bulk, giving

D , 5 3 10−4 exps− 6Tm/Td cm2/s. sA6d

Adatoms are thought to be generally the more mobile defect,
dominating diffusion on close-packed surfaces in many
cases, although accurate information is scarce. The diffusion
energy of,6kBTm must be apportioned between formation
and motion energies. Force model calculations48–50show that
the adatom formation energy is greatest on the smoothest
sclose packedd surfaces, as appears reasonable from the sur-
face stability and large surface energies. For such cases as

fcc s111d and bccs011d, the hopping energy is perhaps 1 to
2kBTm and the formation energy 4 to 5kBTm. Detailed experi-
mental studies of hopping confirm for adatoms that the for-
mation portion is generally much larger. These results appear
consistent with surface defects on the smoothest surfaces
having formation energies in the range 4.5kBTm, and with
entropies of,1 to 2kB. We thus estimate

c , 3 exps− 4.5Tm/Td sA7d

for adatoms; the observed diffusion coefficientsA6d now
identifies a hopping mobility

D , 2 3 10−4 exps− 1.5Tm/Td cm2/s. sA8d

Model force Monte Carlo calculations also suggest a system-
atic variation of hopping energy with host propertiessparam-
etrized by a Lennard–Jones potentiald, with much the same
magnitude as in Eq.sA8d.48

Here two points warrant specific comment. It is interest-
ing first that the adatom on smooth surfaces and the bulk
interstitial both have small prefactors,10−4 cm2/s to match
their small activation energies for hopping. This may derive
in part from the low frequencies of phonon modes that drive
the process, as mentioned above. It seems possible for ada-
toms that the formation entropy could in fact be larger for
this same reason, and the migration prefactor correspond-
ingly smaller still. Careful measurements for more strongly
bound surface species with larger activation energies gener-
ally give larger prefactors than 10−3 cm2/s, as again appears
reasonable.32 Second, adatom formation energies are be-
lieved to be generally still smaller on less smooth crystal
faces, so that the large defect populations nearTm given in
Sec. III of the text using Eq.sA6d probably underestimate the
actual defect densities for surfaces other than the smoothest.

As it is poorly established which surface species domi-
nates diffusion in most cases, there is correspondingly little
information available about the contributions of minority
species, perhaps often advacancies. Pair bond models predict
identical formation energies for the two surface species and
are typically incorrect by a factor of 3 or more in absolute
energy, owing to relaxation near the surface. Entropic factors
certainly favor adatoms with low-frequency modes in the
surface plane. Given that advacancies are the minority spe-
cies, reasonable guesses for vacancylike behavior on smooth
surfaces are

c , 3 exps− 6Tm/Td; sA9d

D , 3 3 10−4 exps− 2Tm/Td cm2/s. sA10d

The characteristics of a standard close-packed surface
sSCPSd as assessed here present a picture strikingly different
from that for bulk defects. The solid lines in Fig. 7 show
concentrations of surface defects that are much larger than
those of bulk defects, and remain as large as,10−6 down to
temperatures as low asTm/3.

The meaning this difference lends to defect reactions is
clarified by consideration of the typical life cycle when sinks
are ,103 atom-spacings distant. Examples are films
,0.2 mm thick, for which the surfaces act as the sinks for
bulk defects, or when a crystal surface is miscut by,0.1° to

FIG. 7. Concentrations of thermal defects for a standard metal
sbroken linesd and on close-packed surfacesssolid linesd. The nota-
tion is svd vacancy;sid interstitial;savd advacancy; andsaad adatom.
The horizontal lines mark the conditionscN=1 for sinks separated
by ,103 steps and,105 steps, withN the number of atomic jumps
required in the average defect lifetime.
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give a similar spacing of surface steps, which act as sinks for
surface defects. Then, in each example,N,106 steps are
needed in a typical random walk of a defect lifespan from
sink to sink. SincecN.1 at all temperatures aboveTm/3,
Fig. 7 shows that a surface defect will normally encounter its
antidefect and annihilate long before the walk is complete.
Therefore reactions on terraces provide the dominant process
of annihilation in the defect life cycle. It follows from de-
tailed balance that creation of defect pairs spontaneously
from fluctuations on the terraces must, under the same con-
ditions, correspondingly be the dominant mechanism by
which thermal defects also form, together with a small frac-
tion created singly at the sinks. This conclusion may hold
down to still lower reduced temperatures fornon-close-
packed surfaces, owing to the larger densities of thermal de-
fects they supportssee aboved.

These distinctions concerning the defect life cycle point to
the need for treatments of defect flow that describe interact-
ing defect assemblies, particularly for surface-related phe-
nomena. The extension to circumstances where external driv-
ing processes, such as irradiation, cause the system, either
bulk or surface, to develop excess defect populations, also is
deferred to a later work.11

In equilibration, the product of the two thermal equilib-
rium concentrations is an important quantity. For the stan-
dard metal defined above these are

Bulk: c̄1c̄2 = 6 3 107 exps− 40Tm/Td;
sA11d

Surface:c̄1c̄2 = 9 exps− 10.5Tm/Td.

One further point, pertaining to the bulk and surface for-
mation energies estimated above, is that both bulk vacancies
and bulk interstitials bind strongly to ordinary surface sites to
form advacancies and adatoms on the surface terraces in the
two cases. By subtracting the surface formation free energies
from the bulk values one finds that the binding free energies
to the surface are,kBs4Tm−Td and,kBs25Tm−15Td for va-
cancies and interstitials, respectively. These are the free en-
ergy differences that must be accommodated in the detailed
balance of the transition rates between bulk and surface de-
fect species.

APPENDIX B: UNIVERSAL BEHAVIOR IN THE
RESPONSE OF THE STANDARD METAL

Both the kinetics and the equilibrium configurations of the
standard models outlined above depend only onT/Tm. This
leads to remarkable predictions of behavior that are universal
for all metals at the homologous temperatures, merely scaled
from the actual temperature byTm. As an example, the
quenching characteristics discussed in Sec. III A fall in this
category. In particular, different metals are expected to
evolve along similar paths given the same fractional
quenches. Furthermore, since the model kinetics are defined
by similarly homologous behavior, with fixed prefactors, and
activation energies that scale withTm, the time evolutions of
different systems under homologous conditions are predicted
to exhibit identical response times, as in Fig. 5. In what

follows, several further relationships in diverse contexts are
identified.

1. Epitaxial growth

In the growth of single crystal films by molecular beam
epitaxy, it is desirable to have the diffusion of surface atoms
fast enough for added atoms to reach steps, say 10 nm dis-
tant, during deposition of a monolayer, requiring perhaps 10
s. At the same time bulk diffusion must be sufficiently slow
that mixing through one monolayer of penetration requires
more than the net growth time of perhaps 104 s. We solve
Eq. sA5d for T given the required surface diffusion to find
T.0.28Tm, this would be higher on rougher surfacesd. Upon
solving Eq.sA3d for the necessary bulk diffusion we findT
,0.39Tm. Evidently the necessary growth conditions occur
for T,0.33Tm. This result is consistent with an experimental
determination51,19 that optimal growth for normal metallic
crystals occurs forT,3Tm/8.

2. Competition between bulk and surface diffusion in surface
processes

The flow of atoms required to smooth surface scratches or
to support fluctuations of step edge profile may be supplied
by diffusion of defects across terraces or by diffusion of
defects through the bulk. The larger activation energy of the
bulk process opens the possibility that a crossover occurs
from a surface dominated process at low temperature to a
bulk-dominated process at high temperature. In the case of
step edges the effective diffusion coefficient is46

D , Db + qaDs, sB1d

with q the wave vector of the fluctuation along the step,a the
atomic spacing along the step, and subscriptsb ands identi-
fying bulk and surface mass diffusion coefficients. For fluc-
tuations of wavelength 1µm, so thatqa,10−3, the bulk and
surface diffusion coefficients given in Appendix A now yield
equal contributions when 10−8 exps−11Tm/Td=1, or T
<0.6Tm. Experiments for fluctuations of this wavelength us-
ing low energy electron microscopy have identified the
crossover from surface- to bulk-driven fluctuations for Pt
s111d precisely in this predicted temperature range.46 For sur-
face scratches theq dependence differs but the crossover
again occurs as predicted.24,25 Similar crossovers are pre-
dicted for all metals in the same temperature range, for both
step fluctuations and scratch annealing, on all close-packed
surfaces, according to the standard model described here.

3. Radiation-enhanced bulk diffusion

An irradiation flux creates Frenkel pairs in the bulk, and
the additional defects so created enhance the diffusion of
atoms through the bulk. The diffusion in all unirradiated
metal is vacancy dominated, and it turns out, since
irradiation-induced interstitials precipitate, that diffusion is
enhanced by the ratio of the total to the equilibrium vacancy
concentration. For a film of thicknessL, vacancies drain to
the surfaces with time constantt−1=q2Dv, with q=p /L, so
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that a creation rateK per site causes a steady state excess
occupationc=K /q2Dv. Thus the coefficient of mass diffu-
sion required to double the vacancy concentration isD
=K /q2, and, from Eq.sA1d, the temperature at which the
irradiation fieldK doubles the vacancy concentration is

T < − 17Tm/lnsKL2/3d. sB2d

This result is, once more, universal. Taking the temperature
Tm as an example, all thin films of pure metal 1µm thick
requireK,12 s−1 in order to double the vacancy concentra-
tion, the excess being greater at lowerT,Tm. Similarly, for
a 0.3µm film with K=1.5310−5 s−1 sthe experimental maxi-
mum that avoids blisteringd Eq. sB2d predicts that the va-
cancy concentrationsand hence the mass diffusion coeffi-
cient alsod is doubled atT,0.53Tm. For Cu3Au, Leeet al.33

find that the experimental value is,0.58Tm, in reasonable
accord with the universal prediction.

4. Beam-assisted growth

It may be appropriate to terminate these speculative com-
ments with a prediction. Suppose that a beam of self-ions
were employed to speed up surface kinetics; what conditions
would be needed to promote measurable results—say a dou-
bling of surface defect density and hence diffusion also? We
use a beam energy that creates one defect pair per incident
particle, and a readily achievable ion beam current of
1 mA cm−2s,1013 cm−2 s−1 or K=10−2 s−1d, for a crystal
with surface miscut by 0.1°, so that the surface sinks are
steps spaced byL=100 nm. The required conditionK
,q2D=sp /Ld2D is achieved for a surface mass diffusion
coefficient D=10−13 cm2/s, which from Eq.sA6d requires
T,0.3Tm. Evidently a somewhat larger flux density than
1 mA/cm2 may be required to accelerate kinetics signifi-
cantly at the slightly higher temperature,3Tm/8 at which
single crystal films of metals are often grown epitaxially.
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