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Thermal conduction of carbon nanotubes using molecular dynamics
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The heat flux autocorrelation functions of carbon nanotul@$T’s) with different radii and lengths are
calculated using equilibrium molecular dynamics with periodic boundary conditions. The thermal conductance
of CNT’s is also calculated using the Green-Kubo formula from linear response theory. By pointing out an
ambiguity in the cross-section definition of single-wall CNT’s, we refer to the thermal conductance instead of
conductivity in calculations and discussions. We find that the thermal conductance of CNT’s diverges with the
length of CNT'’s. After an analysis of vibrational density of states, it is shown that there are more and stronger
low-frequency vibrational modes in longer CNT’s, and these modes effectively contribute to the divergence of
thermal conductance.
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I. INTRODUCTION physical system from scratch and make little empirical as-

The carbon nanotubécNT) was discovered by lijima in  Sumptions. _ _
1991! Since then, its unique mechanical, electrical, and op- | N€ understanding of heat conduction and development of

tical properties have attracted intensive research activities ofy COmplete theory are a long-standing and formidably diffi-
this quasi-one-dimensional matefalCNT's have high cult task. For insulating crystals, the problem of heat trans-

Young modulus and strengfras well as high thermal con- portation by lattice vibrations is still far from being solved
from some points of view. For mathematical simplicity, one-

tivity. Many novel lications in vari r have . - . . .
ductivity. Many novel applications arious areas na edlmen5|onal(1D) or two-dimensional lattices of atoms are

been propos_ed, mcludlng nanoscale _electronlc devices in ﬂWaturally considerefl This issue has been addressed for sev-
next generation electronic technologies.

. ) ; . . eral decades. Recently, kt al. established a connection be-
As the dimensions of electronic devices shrink to the

’ tween anomalous heat conduction and anomalous diffusion
nanoscale, the thermal conduction problem becomes mofg sne-dimensional systemisand Wang and Li studied the

and more important, as a significant amount of energy maynomalous thermal conduction in 1D chains using MD and
be dissipated in a compact space. However, it is very difficulinode-coupling theor¥.
to measure the thermal conducting ability of nanoscale de- |n CNT’s genera”y two physica| mechanisms contribute
vices. Furthermore, the Fourier law, which describes thao the thermal conductior(i) electron-phonon interactions,
macroscopic thermal conduction phenomena, may not be agvhich mainly depend on electronic band structures and the
propriate for low-dimensional systems. Therefore, it is im-electron scattering process, etc., diigl phonon-phonon in-
portant to study the thermal conduction of nanoscale systentsractions, which depend on the vibrational modes of the
and to develop theoretical and computational methods folattice.
predicting the thermal properties of nanoscale materials and For semiconductor CNT’s in room temperature, phonon-
devices. phonon interactions dominate the overall thermal conductiv-
There are mainly two approaches to study theoreticallyity and electron-phonon interactions have only a small con-
the thermal conduction phenomena of nanoscale materialgribution due to the large band gap and low density of free
the first is a macroscopic method using continuum modelgharge carrier Fortunately the phonon-phonon contribution
and kinetic theories, such as Boltzmann transport equéfion, to thermal conduction can be well studied by classical MD.
and the second is a fundamental microscopic method based The phonon mean free path in the axial direction of
on first-principles atomistic simulations or quantum me-CNT’s is estimated to be very long, from about 100 nm to
chanical models. In the second approach, various methodsm and much longer than that of other materials as well as
are proposed to model the physical system and calculate ttibe size of simulation domain; thus, the thermal conductivity
thermal conductivity. These methods include equilibrium andof CNT’s which are shorter than a fewm may have ballis-
nonequilibrium molecular dynami¢®D) simulation as well  tic transport feature¥ The finite size constrains the phonon
as mode-coupling theory, etcThese methods study the motion and causes the thermal conductance to appear vari-
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able with the CNT length. Actually, it is difficult to make the heat flux j is related to the temperature gradient jas
simulation domain larger than phonon mean free path even—-«VT, wherex is the thermal conductivity tensor afdis
on supercomputers; thus, finding the “correct” value of therthe temperature distribution.
mal conductance remains a difficult task. From the intuition of the Fourier law, a simple approach
In the last few years, there have been many research ate study the thermal conduction of CNT’s is that, first, put
tivities on this subject. Berbeat al. studied the thermal con- the two ends in two heat reservoirs with different tempera-
ductivity « of CNT’s and the dependence &fon tempera- ture(usuallyTo+AT andTy— AT, whereT, is supposed to be
ture and suggested that is about 6600 W/mK for CNT the average temperature of the systemd measure the heat
(10,10 at room temperaturé.Cheet al. calculated the ther- flux along the axial direction and then calculate the thermal
mal conductivity of diamond materials and CNT'’s, and conductance. In simulations the heat flux should be collected
showed that the theoretical value of thermal conductivityafter the system becomes steady, and a large number of av-
converges as the simulation system size increases. Howeverages over time is needed to get smooth temperature gradi-
in their papers the errors of thermal conductivity values areent curves and accurate heat flux data. However, the simula-
too large to draw an accurate conclusiénMaruyamd® tion domain which MD can efficiently handle is not large
studied the heat conduction in finite-length CNT’s using non-enough, and the temperature gradient due to a reasonable
equilibrium MD and calculated the thermal conductivity temperature difference of two heat reservdinste that too
from the measured temperature gradients and energy budgessiall a temperature difference gives a large error and poor
in phantom molecules, and claimed that thermal conductivityresults is far too large to be realistic. Moreover, as the ther-
of CNT (5,5) diverges as a power law, where the calculatedmal conductance strongly depends on the temperature, re-
size dependence of the thermal conductivity gave the powesults from the nonuniform temperature distribution may not
index 0.32. This result appears confirmed by Zhang and Li irbe accurate. Schellingt al. systematically compared the
study on anomalous heat diffusibhOsman and Srivastava equilibrium and nonequilibrium methods for computing the
found thatx shows a peaking behavior before falling off at thermal conductivity of insulating materidfsand mentioned
higher temperatures due to the onset of umklapp scattéting.these problems. Moreover, if the thermal conductivity di-
Volz and Chen investigated the thermal conductivity of bulkverges with the tube length, the divergence exponegtin
silicon crystals based on MD simulation using Stillinger- k=L? need not be the same for equilibrium and nonequilib-
Weber potential, and found that is independent of the rium simulations?®

lengthL, of nanowire wherlL, is larger than 16 lattice con- Due to the aforementioned reasons, in this work we use
stants and the cross section area is smaller than a certdifhe fluctuation-dissipation theorem from linear response
valuel® theory which connects the energy dissipation to the thermal

In addition to these theoretical studies there is some exfluctuations in the equilibrium staf&! In this method, the
perimental work on the heat conduction of CNT’s. Yagty thermal conductivity in axial direction of CNT’s can be ex-
al. investigated the thermal conductivity of multiwall CNT’s pressed in terms of heat flux autocorrelation functiéh,
using a pulsed photothermal reflectance technique and sug-
gested that the effective could be about 200 W/mH8 Kim K= !
et al. measured the thermal conductivity of a single CNT ke T2V
using a microfabricated suspended device and found«hat
>3000 W/mK at room temperatuté Honeet al. measured
the temperature-dependent thermal conductivity of crystal
line ropes of single-wall CNT’s and argued thats domi-
nated by phonons at all temperatut@s. ap(r.t) _

In this work we use the Green-Kubo relation derived from Y 7Y -j(r,t)=0, (2
linear response theory to examine the thermal conductance
by calculating the heat flux autocorrelation functions. How-where p(r,t) is the energy densityi.e., energy per unit
ever, finite-size artifacts are still involved due to the fre-volume—and note thafp(r,t) and j(r,t) are macroscopic
guency cutoff and the artificial autocorrelation introduced byconcepts—a microscopic expression for total heat flux can
periodic boundary conditions, which is consistent with thebe derived as follows:
results of Volz and Chet? We find that the low-frequency d
vibrational modes of the lattice are limited by the size of Jt) == ride&t), (3)
simulation domain, and the thermal conductance of an infi- dt=
nite long CNT may be infinite.

f (J(1)JI(0))dt, 1)
0

wherelJ(t)=[j(r,t)dVis the total heat flux in the axial direc-
tion andV is the volume of the system. From the local en-
ergy balance equation

wherer;(t) is the time-dependent coordinate of atomin
MD simulations, the total potential energy can be divided

Il. COMPUTATION OF THERMAL CONDUCTIVITY among atoms; then, the site energft) can be taken to be

USING MD
1 1
A. Green-Kubo relation and heat flux €= Emivi2 + 52 u(rij). (4)
]

In the macroscopic model of thermal conduction, the ther-
mal conductivity is defined from the Fourier law whichis for  In the above equationy(r;;) is in fact a many-body
heat flow under a nonuniform temperature distribution. Thepotential?? and the calculation of total heat fluXt) is much
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more complicated in this case than in case of using a simplperiodic boundary conditions applied in the axial direction.

pairwise potential function. As the simulation is conducted in a periodic box, the long-
wavelength vibrational mode of the lattice is cut off while
B. Interatomic potential the CNT is short. This effect causes that a short CNT thermal

conductivity is smaller than a long CNT thermal conductiv-

Curren_tly th?re are S?Ve_ra' Cho?ces Qf potential funct_i0n§ty. Using MD, we investigate the thermal conductivity of
for describing interatomic interactions in carbon materials: y

i . ) . ‘CNT’s with different lengths as well as the relationship be-
the Tersoff potential which was publlsh_ed n 1989 for thetween the thermal conductivity and the length, to study its
latest parameter®, Brenner potential which was originally convergence with system size
published n 199%?_and reV|s<_ad in 2002; environment- It is noticed that with increasing CNT length more and
dependent interaction potential for carbon materials byStr

. . . onger long-wavelength phonon modes are introduced to
Marks published in 2008, and a new bond order potential -
in which parameters are fitted to tight-binding reséftsn the system, and these modes are characterized by a longer

th tentials. the latter wo h b el mean free patlicompare with a shorter CNTand thus con-
1ese potentials, the atter two nave not been widely réCoGg;, 1o more to the thermal conductance. Moreover, as a kind

nized. The Brenner potential with the latest parameters giveg, quasi-1D material low-frequency modes play a more im-

accurate results and is widely used. However, it is observe ortant part in heat conduction, as in 1D systems the acoustic

that in 'O”Q't'm? mlgrocanomcal ensemble S'm“'a‘.'?’?‘me vibrational density of state§v/DOS) is a constant withk,
Brenner potential gives a larger total energy deviation than

the T # potential due to it licated int lati while in 3D systems VDOS varies witk® wherek is the
e 'ersoll potential dué 1o 1ts complicated Interpolation, e yector., Taking into account this factor, the thermal con-
functions. The Tersoff potential is stable in long-time run-

: . : . ductance depends on the size of the system. Although it was
ning accordg;g to our tests and gives fairly accurate .resu.ltsdemonstrated that in some 3D systems the thermal conduc-
Zhenget al<’ compared Tersoff and Brenner potentials 'ntivity is also size dependedt,for CNT's the thermal con-

their theoretical analysis of the thermal conduction of single- ;
. . ductance should be much stronger size dependent, and for
wall CNT’s and got good results using both potentials, Ber-; g P

; infinite CNT’s it remains unknown whether the thermal con-
ber has also used the Tersoff potential to study the therqu
i . uctance converges or not.
properties of CNT's and calculated the thermal
conductivity!! Therefore, in our simulation we use the Ter- D. Thermal conductance vs thermal conductivity
soff potential. The Tersoff potential can be formally written

as a summation of pairwise interactions, It should be mentioned here that since an isolated single-

wall CNT cross section can be defined in different ways, its
1 thermal conductivity has also arbitrary definitions and is not
Viot = 52 fo(rip[Vr(rij) = ByjVa(ri)l, (5 awell-defined quantity. Some definitions of the cross section
!y A of single-wall CNT’s are as follow.
whereVg andV, are the repulsive and attractive parts of the (i) Consider the CNT as a solid cylinder; then, the cross
potential, and their functional forms are given below: section area will berR?, whereR is the radius of the CNT.
(i) Consider the CNT as a hollow cylinder; then, the
VR(r) =Aexp(-Ar), Va(r)=B exp(- ur), () cross section area will berRs, wheres is the thickness of
CNT shell. In the literature usually two values &fire used:

1, F <R one is 3.4 A, which is the interlayer distance of graphite
1 a(r - R) ’ materials; the other is 1.42 A, which is the length spf
for)= > 1+ COSH , Rsrss, (7) bond.
r>Ss, Therefore, in the literature many different values of ther-
0, mal conductivity are reported; some of them mainly differ in

the cross-section definition.

Obviously, the definition of the cross section is not impor-
nt for the thermal conduction research of CNT's, as we
only need to calculate and compare the results consistently.

mHowever, for comparing different results from different re-
search groups, this arbitrariness must be eliminated. In this
work, we use the quantity of “thermal conductance”
=«kA, which equals the thermal conductivity times cross-
section area. Thus, the thermal conductance has the dimen-
Bj=[1 +(,8§ij)“]‘1’2”. (8)  sionof “W m/K.” Note that even in experiment, what can be
measured is heat powéenergy per unit timeand tempera-
ture gradient, the ambiguity of the CNT cross section also
enters.

wheref(r) is a cutoff function which explicitly restricts the

interactions within the nearest neighbors and dramaticall
reduces the redundant computation in the force-potenti
evaluation procedure. In E¢5), Bj; is a bond order param-
eter and depends on the bonding environment around &ato
andj. B;; implicitly contains multibody information and thus
the whole potential function is actually a multiple-body po-
tential. The functional form oB;; can be written as follows:

The detailed information and parameters of E§$—~8) are
given in Tersoff's papet?

C. Finite-size effect E. Simulation procedure

One of the major concerns in simulation of CNT’s to cal-  In this work, CNT’s with different sizes are investigated.
culate the thermal conductivity is the finite-size effect due toFirst, armchaired CNT'10,10 with different lengths are
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FIG. 1. Initial heat flux autocorrelation functid®@—20 p$ of CNT (10,10 with 50, 100, 200, and 400 layers, respectivétpm left to
right, top to bottonu Insets are log-log curves of full time range.

simulated; then, CNT15,15 and (5,5) are simulated. In In MD simulation, time step is 0.8 fs, and the canonical
our MD simulation program, the time integration algorithm ensemble simulation is implemented by a $Bid{oover

is implemented by using the velocity Verlet method. For im-algorithm?®

proving the computation performance, a new neighbor list

a_Igorith_m using cell dgcqmposition is emp!oy@fdln all lIl. RESULTS AND DISCUSSIONS

simulation cases, a periodic boundary condition is used only

in the axial direction of CNT’s. For each simulation case, we Figure 1 shows the autocorrelation function of the total
carry out the following three steps. heat flux along the axial direction of CN(ILO,10 with 50,

(i) First, canonical ensemble MD is running for®:0 100, 200, and 400 layers. A very sharp decay in the begin-
5X 10° steps in order to take the average system temperaturgng followed by a very slow decay can be seen clearly. An
to 300 K and wait until system reaches thermal equilibrium.oscillation in the autocorrelation function can also be seen in

(i) Then it is followed by microcanonical ensemble run- the curves, and it becomes larger when the CNT is longer.
ning for another 19-5X 10° steps and wait until system The oscillation is related to the low-frequency phonon mode
reaches a thermal equilibrium in the new ensemble. in the syster’? and becomes stronger as the length of the

(iii) Finally microcanonical ensemble MD continues to CNT increases. From Fig. 2 it can be seen that the frequency
run and heat flux data are calculated and collected in evergf the autocorrelation oscillation is only related to the chiral
time step. After every 10steps, the power spectra of heat index of CNT’s, not to the length of CNT's. The value of
flux data are online calculated; meanwhile, its arithmetic av-autocorrelation function increases as the CNT length in-
erage and Fourier transform, which is heat flux autocorrelaereases. The fast initial decay is believed to be contributed
tion function, as well as the statistical errors are calculatedby high-frequency vibrational modes in the CNT, and slow
and dumped to disk files. decay is contributed by low-frequency modes which have a

In this work, the last step runs indefinitely and stops untilmuch longer wavelength.
accurate results are obtained after many times of average. The insets of Fig. 1 are the log-log curves of the heat flux
Generally 16 steps were carried out in this step. In otherautocorrelation function. Note that data points in the range of
words, about 1000 averages have been done to obtain tie-80 ps are in the order of 16-108 and are almost ran-
final data. The total amount of CPU time is about 3 monthsdom errors. The origin of these errors are mainly due to
on 10 Pentium 1ll 866MHz PCs and three dual-CPU Alphainaccurate velocity trajectories and roundoff errors in float-
EV67/667MHz workstations. ing operations. Data points in the range of 0.001-0.8 ps cor-
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FIG. 2. Initial decay of heat flux autocorrelation function of
CNT (10,10 with 100, 200, 300, and 400 layers, respectively.

respond to initial decay in the very early moment and the
number of points is smallthough this section seems quite
long in the graph thus, the middle section in the range of
0.8—8 ps should show asymptotic behavior. And it can be
seen that roughly the correlation function decays as a power
law f(t) =ct®. Theoretically, we expeca=-d/ 5 whered is
the dimension and is the exponent related to the decay of
modes(see the Appendjx

From data in the insets of Fig. 1 we calculate the power
index « of the heat flux autocorrelation function decay using
the linear least-squares meth@thta after 8 ps are not used
due to too large errofsand show the relationship betweean
and the length of CNT in Fig. 3. From the Green-Kubo
formula® knowledge of the asymptotic behavior of

Integration of heat flux autocorrelation

—
(=3
=

0.01

0.005

0 20 40 60
Time (ps)

80

FIG. 4. Integration of the heat flux autocorrelation function over

(J(1)J(0)) allows the determination of the dependence of thetimet up to given number of time steps for CNT0, 10 (top) and

thermal conductance on the system gizé-rom Fig. 3 it can
been seen that the power index of the heat flux autocorrela-

(5,5) (bottom.

tion function decay is about —3/2, and for certain cases it is The curves shown in Fig. 4 are the integration of the heat
near —1; thus, the thermal conductané¢eshould converge to  flux autocorrelation function over time It can be seen that

a finite value as the system size increases, on the basis of tHieth the initial fast decay and long-time slow decay contrib-
exponent. However, when the length of CNT’s is between 5Qte to the thermal conductance. The cutoff of long-

and 600 layers in our work, there is no evidence thatill

wavelength vibrational modes will significantly influence the

converge. Strangely, this fast growth of the thermal conducfinal result o_f the the_zrmal conductivity. Compared With CNT
tance with sizes appears mainly from contributions at short10, 10, the integration of the heat flux autocorrelation func-

times. tion for CNT (5, 5) converges more slowly, especially for the
0 longer CNT'’s. The integration of heat flux autocorrelation
"nanotube (5,5) —— function for CNT (15,19 is qualitatively similar to CNT
05| nanotube 2]2]2; e (10,10, and it converges fast, so we do not show it in Fig. 4.
As discussed in Sec. Il D, the absolute thermal conductiv-
L I - ity value of an isolated single-wall CNT is ambiguous be-
g 5 S cause the cross section is not well defined, so we discuss
° -~ only the thermal conductance. The relationship between the

0 100

200 300 400 500 600
Number of unit cells

thermal conductance and the length of CNT is shown in Fig.
5 in logarithmic scale. In all cases, the thermal conductance
of the single-wall CNT does not converge to a finite value as
the length of the CNT increases. In the figure we also give
the standard errors of thermal conductance results and mark
in the error bars. The error is calculated as follows.

(i) In microcanonical ensemble simulatioré,; number

FIG. 3. Relationship between decay power index and length obf time steps is carried out; thu,, heat flux data points are
CNT (5,5), (10,10, and(15,15. (Power indices for shorter CNT’s  collected.
have also smaller errojs.

(i) Divide these heat flux data td groups, each group
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FIG. 5. Thermal conductance as a function of the CNT length. ) . .
In the graph solid line, dotted line, and dashed line denote the F!G- 7. Vibrational density of states of CN(O, 10 with 50

thermal conductance of CNT5,5), (10,10, and (15,19 and 100 layers, respectively. The inset shows the VDOS in the full
respectively. o T ""7"  frequency range, and the full graph shows the VDOS in the low-

frequency range. In the graphs, the dashed lines denote the VDOS

. of the CNT with 100 layers and the solid line denotes the VDOS of
hasM heat flux data points, and calculate the heat flux autog,e cNT with 50 layers.

correlation function and integration for each group, respec-
tively.

(i) The final result is taken to be the average Nf
groups of results in the second step. Meanwhile, the standal

error of the result is given by
where D,(w) denotes the VDOS along theaxis (i.e., the

[E—
S=\/g2E-9% =1L\
j=1 axial direction) andv,(t) denotes the velocity of atoms in the

From Fig. 5 it can be seen that as long as the length of thé 8XiS. Figure 7 shows the VDOS of CNT's with 50 and 100
CNT increases, the thermal conductance increases corrYers, re,spectlvely. The inset of Fig. 7 shows the VDOS of
spondingly, and this trend has been discovered in thdwo CNT's in the full frequency range, _and it seems that_two
literature!® If we consider the van der Waals thickness 3.4 ACurves are aimost the same; this indicates that the middle-
as the thickness of the CNT shell and treat the CNT as &1d high-frequency distributions of VDOS of two CNT's are
hollow cylinder, the thermal conductivity results are in good0ughly identical. In order to verify the VDOS calculation
agreement with Maruyama’s daFrom Fig. 6 we also no- USing MD, phonon modes of CN{L0, 10 unit cell are cal-
tice that as the length of the CNI, increasesk’ /L (where cylated using the_ density functional theory generalized gra-
k' is the thermal conductanceéends to a constarfexcept dient agpeﬁroxmatlon(DFT—GGA) and the linear response
perhaps thé5,5) casd. If this result can be confirmed, then it theory?>** and the results show that the lowest mode is
means that thermal conduction is ballistic in the region of2bout 1.379 THz and the highest mode is about 294.9 THz.
our model parameters studied and the length of the CNT idne results are in good agreement with MD calculations,
the mean free path. except that anharmonic effect is of course ignored and dif-

In order to understand why a longer CNT has higher therferent length CNT’s have the same vibrational modes in prin-
mal conductance, we calculate the VDOS by computing th&iPle. However, from the graph of low-frequency range, it

power spectrum of the velocity correlation function while the €an been seen that the CNT with 100 layers has more low
frequency vibration modes; this is why a longer CNT has a

simulation is running, and the calculation can be expressed
a follows°

Dw) = f exp(—iwt)(v (thv,(0))dt, 9)

2500

higher thermal conductance. We believe that the CNT with

‘(1551%; 100 layers has a larger simulation domain, has a longer pho-
2000 | | (15,15) oo ] non mean free path, and then has more low-frequency

1500 | 3

1000

KL (W/K)

500 L

0 L L L L L L L
0 100 200 300 400 500 600 700 800

L (A)

modes.

IV. CONCLUSIONS

In this paper the high thermal conductance of single-wall
CNT's is calculated using equilibrium MD, and the relation-
ship between thermal conductance and length of the CNT is
discussed. It is found that as a kind of quasi-one-dimensional
material, the CNT thermal conductance does not converge to
a finite value as the CNT length increases up to 80 nm. It can

FIG. 6. Thermal conductance divided by the length of the CNTalso be seen that a longer CNT has more long wavelength

with the function ofL.

vibrational modes, and these modes contribute to the thermal
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conduction as the CNT is longer. The specific form of diver-integrate on the volum¥,; occupied by the CNT modes in

gence(the exponentneeds further investigation. reciprocal space:
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APPENDIX: A SIMPLE EXPLANATION The basic assumption is that the decay constaistsome
TO THE THERMAL CONDUCTIVITY power of k, 7,ck®. Now set a simple variable change
OF CNT's =tck’, where § is the power law of the spectral relaxation

From the mode-coupling theory it is known that the decaylime: Equation(A3) can be changed to

behavior of the heat flux autocorrelation function is related to

the convergence of the thermal conductivity with the length (J(0)J(1))
of carbon CNT’s. In this section, a simple derivation is given kaT )\ 2
to explain this relationship. In this paper the analysis of the = <L) f kd-letck§d|k|
thermal conductivity of CNT’s starts from the Green-Kubo v
formula[see Eq(1)]. The heat flux can be decomposed into KT\2 1
modes, = <L) —f u¥lamugy
vV /) ste)¥e ],
Jv= Ek: ﬁwkvgkéhk(t), (Al) - t_d/(g. (AS)

where wy is the mode frequencyq, represents the mode
group velocity, andn is the deviation of the phonon num-
ber from equilibrium. Combining this expression in the
Green-Kubo equation and neglecting the cross terms, we

Note that the integration ofJ(0)J(t)) is proportional to the
thermal conductivity; then, il # 6,

have JOC ot = 1 tdorL x, (AB)
1 o -dis+1 o
(3(0)J(1)y = 722 (wvg X n(0)dny (). (A2)
k and ifd=4,
If we model the phonon autocorrelation by an exponentially
decaying function{n,(0)dn,(t))=(n,(0)%e¥* and con- o .
sider that(on,(t)2)=(n,(t)?) and the phonon number can be L tdt= In(t)[g. (A7)

written as(dn,(0)%)=(n(0)?)=(kgT/hw)?, then we have

(kgT)? _ Note that the limitt=0 is not physical so that the divergence
((0)I(V) = 5/2 2 vge™. (A3) " at this limit should not be considered.
K From the above derivation it can be seen that/i6<1,
If the discrete sum over the modes on the right-hand side dhe thermal conductivity of the infinitely long CNT is also
the above equation is turned into a continuous integral, wénfinite.
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