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The heat flux autocorrelation functions of carbon nanotubessCNT’sd with different radii and lengths are
calculated using equilibrium molecular dynamics with periodic boundary conditions. The thermal conductance
of CNT’s is also calculated using the Green-Kubo formula from linear response theory. By pointing out an
ambiguity in the cross-section definition of single-wall CNT’s, we refer to the thermal conductance instead of
conductivity in calculations and discussions. We find that the thermal conductance of CNT’s diverges with the
length of CNT’s. After an analysis of vibrational density of states, it is shown that there are more and stronger
low-frequency vibrational modes in longer CNT’s, and these modes effectively contribute to the divergence of
thermal conductance.

DOI: 10.1103/PhysRevB.71.085417 PACS numberssd: 61.48.1c, 63.22.1m, 66.70.1f, 68.70.1w

I. INTRODUCTION

The carbon nanotubesCNTd was discovered by Iijima in
1991.1 Since then, its unique mechanical, electrical, and op-
tical properties have attracted intensive research activities on
this quasi-one-dimensional material.2 CNT’s have high
Young modulus and strength,3 as well as high thermal con-
ductivity. Many novel applications in various areas have
been proposed, including nanoscale electronic devices in the
next generation electronic technologies.

As the dimensions of electronic devices shrink to the
nanoscale, the thermal conduction problem becomes more
and more important, as a significant amount of energy may
be dissipated in a compact space. However, it is very difficult
to measure the thermal conducting ability of nanoscale de-
vices. Furthermore, the Fourier law, which describes the
macroscopic thermal conduction phenomena, may not be ap-
propriate for low-dimensional systems. Therefore, it is im-
portant to study the thermal conduction of nanoscale systems
and to develop theoretical and computational methods for
predicting the thermal properties of nanoscale materials and
devices.

There are mainly two approaches to study theoretically
the thermal conduction phenomena of nanoscale materials:
the first is a macroscopic method using continuum models
and kinetic theories, such as Boltzmann transport equation,4,5

and the second is a fundamental microscopic method based
on first-principles atomistic simulations or quantum me-
chanical models. In the second approach, various methods
are proposed to model the physical system and calculate the
thermal conductivity. These methods include equilibrium and
nonequilibrium molecular dynamicssMDd simulation as well
as mode-coupling theory, etc.6 These methods study the

physical system from scratch and make little empirical as-
sumptions.

The understanding of heat conduction and development of
a complete theory are a long-standing and formidably diffi-
cult task. For insulating crystals, the problem of heat trans-
portation by lattice vibrations is still far from being solved
from some points of view. For mathematical simplicity, one-
dimensionals1Dd or two-dimensional lattices of atoms are
naturally considered.6 This issue has been addressed for sev-
eral decades. Recently, Liet al. established a connection be-
tween anomalous heat conduction and anomalous diffusion
in one-dimensional systems,7 and Wang and Li studied the
anomalous thermal conduction in 1D chains using MD and
mode-coupling theory.8

In CNT’s generally two physical mechanisms contribute
to the thermal conduction:sid electron-phonon interactions,
which mainly depend on electronic band structures and the
electron scattering process, etc., andsii d phonon-phonon in-
teractions, which depend on the vibrational modes of the
lattice.

For semiconductor CNT’s in room temperature, phonon-
phonon interactions dominate the overall thermal conductiv-
ity and electron-phonon interactions have only a small con-
tribution due to the large band gap and low density of free
charge carriers.9 Fortunately the phonon-phonon contribution
to thermal conduction can be well studied by classical MD.

The phonon mean free path in the axial direction of
CNT’s is estimated to be very long, from about 100 nm to
1 mm and much longer than that of other materials as well as
the size of simulation domain; thus, the thermal conductivity
of CNT’s which are shorter than a fewmm may have ballis-
tic transport features.10 The finite size constrains the phonon
motion and causes the thermal conductance to appear vari-
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able with the CNT length. Actually, it is difficult to make the
simulation domain larger than phonon mean free path even
on supercomputers; thus, finding the “correct” value of ther-
mal conductance remains a difficult task.

In the last few years, there have been many research ac-
tivities on this subject. Berberet al. studied the thermal con-
ductivity k of CNT’s and the dependence ofk on tempera-
ture and suggested thatk is about 6600 W/mK for CNT
s10,10d at room temperature.11 Cheet al. calculated the ther-
mal conductivity of diamond materials and CNT’s, and
showed that the theoretical value of thermal conductivity
converges as the simulation system size increases. However,
in their papers the errors of thermal conductivity values are
too large to draw an accurate conclusion.12 Maruyama10

studied the heat conduction in finite-length CNT’s using non-
equilibrium MD and calculated the thermal conductivity
from the measured temperature gradients and energy budgets
in phantom molecules, and claimed that thermal conductivity
of CNT s5,5d diverges as a power law, where the calculated
size dependence of the thermal conductivity gave the power
index 0.32. This result appears confirmed by Zhang and Li in
study on anomalous heat diffusion.13 Osman and Srivastava
found thatk shows a peaking behavior before falling off at
higher temperatures due to the onset of umklapp scattering.14

Volz and Chen investigated the thermal conductivity of bulk
silicon crystals based on MD simulation using Stillinger-
Weber potential, and found thatk is independent of the
lengthLx of nanowire whenLx is larger than 16 lattice con-
stants and the cross section area is smaller than a certain
value.15

In addition to these theoretical studies there is some ex-
perimental work on the heat conduction of CNT’s. Yanget
al. investigated the thermal conductivity of multiwall CNT’s
using a pulsed photothermal reflectance technique and sug-
gested that the effectivek could be about 200 W/mK.16 Kim
et al. measured the thermal conductivity of a single CNT
using a microfabricated suspended device and found thatk
.3000 W/mK at room temperature.17 Honeet al. measured
the temperature-dependent thermal conductivity of crystal-
line ropes of single-wall CNT’s and argued thatk is domi-
nated by phonons at all temperatures.18

In this work we use the Green-Kubo relation derived from
linear response theory to examine the thermal conductance
by calculating the heat flux autocorrelation functions. How-
ever, finite-size artifacts are still involved due to the fre-
quency cutoff and the artificial autocorrelation introduced by
periodic boundary conditions, which is consistent with the
results of Volz and Chen.15 We find that the low-frequency
vibrational modes of the lattice are limited by the size of
simulation domain, and the thermal conductance of an infi-
nite long CNT may be infinite.

II. COMPUTATION OF THERMAL CONDUCTIVITY
USING MD

A. Green-Kubo relation and heat flux

In the macroscopic model of thermal conduction, the ther-
mal conductivity is defined from the Fourier law which is for
heat flow under a nonuniform temperature distribution. The

heat flux j is related to the temperature gradient asj
=−k¹T, wherek is the thermal conductivity tensor andT is
the temperature distribution.

From the intuition of the Fourier law, a simple approach
to study the thermal conduction of CNT’s is that, first, put
the two ends in two heat reservoirs with different tempera-
ture susuallyT0+DT andT0−DT, whereT0 is supposed to be
the average temperature of the systemd and measure the heat
flux along the axial direction and then calculate the thermal
conductance. In simulations the heat flux should be collected
after the system becomes steady, and a large number of av-
erages over time is needed to get smooth temperature gradi-
ent curves and accurate heat flux data. However, the simula-
tion domain which MD can efficiently handle is not large
enough, and the temperature gradient due to a reasonable
temperature difference of two heat reservoirssnote that too
small a temperature difference gives a large error and poor
resultsd is far too large to be realistic. Moreover, as the ther-
mal conductance strongly depends on the temperature, re-
sults from the nonuniform temperature distribution may not
be accurate. Schellinget al. systematically compared the
equilibrium and nonequilibrium methods for computing the
thermal conductivity of insulating materials19 and mentioned
these problems. Moreover, if the thermal conductivity di-
verges with the tube lengthL, the divergence exponentb in
k~Lb need not be the same for equilibrium and nonequilib-
rium simulations.20

Due to the aforementioned reasons, in this work we use
the fluctuation-dissipation theorem from linear response
theory which connects the energy dissipation to the thermal
fluctuations in the equilibrium state.5,21 In this method, the
thermal conductivity in axial direction of CNT’s can be ex-
pressed in terms of heat flux autocorrelation function,5,21

k =
1

kBT2V
E

0

`

kJstdJs0dldt, s1d

whereJstd=ej sr ,tddV is the total heat flux in the axial direc-
tion andV is the volume of the system. From the local en-
ergy balance equation

]rsr ,td
]t

+ ¹ · j sr ,td = 0, s2d

where rsr ,td is the energy densitysi.e., energy per unit
volumed—and note thatrsr ,td and j sr ,td are macroscopic
concepts—a microscopic expression for total heat flux can
be derived as follows:

Jstd =
d

dtoi

r istdeistd, s3d

where r istd is the time-dependent coordinate of atomi. In
MD simulations, the total potential energy can be divided
among atoms; then, the site energyeistd can be taken to be

ei =
1

2
mivi

2 +
1

2o
j

usr ijd. s4d

In the above equation,usr ijd is in fact a many-body
potential,22 and the calculation of total heat fluxJstd is much
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more complicated in this case than in case of using a simple
pairwise potential function.

B. Interatomic potential

Currently there are several choices of potential functions
for describing interatomic interactions in carbon materials:
the Tersoff potential which was published in 1989 for the
latest parameters,22 Brenner potential which was originally
published in 199023 and revised in 2002,24 environment-
dependent interaction potential for carbon materials by
Marks published in 2000,25 and a new bond order potential
in which parameters are fitted to tight-binding results.26 In
these potentials, the latter two have not been widely recog-
nized. The Brenner potential with the latest parameters gives
accurate results and is widely used. However, it is observed
that in long-time microcanonical ensemble simulations,35 the
Brenner potential gives a larger total energy deviation than
the Tersoff potential due to its complicated interpolation
functions. The Tersoff potential is stable in long-time run-
ning according to our tests and gives fairly accurate results.
Zheng et al.27 compared Tersoff and Brenner potentials in
their theoretical analysis of the thermal conduction of single-
wall CNT’s and got good results using both potentials, Ber-
ber has also used the Tersoff potential to study the thermal
properties of CNT’s and calculated the thermal
conductivity.11 Therefore, in our simulation we use the Ter-
soff potential. The Tersoff potential can be formally written
as a summation of pairwise interactions,

Vtot =
1

2o
i j

fcsr ijdfVRsr ijd − BijVAsr ijdg, s5d

whereVR andVA are the repulsive and attractive parts of the
potential, and their functional forms are given below:

VRsrd = A exps− lrd, VAsrd = B exps− mrd, s6d

fcsrd =5
1,

1

2
F1 + cos

psr − Rd
S− R

G ,

0,

r , R,

Rø r ø S,

r . S,

s7d

where fcsrd is a cutoff function which explicitly restricts the
interactions within the nearest neighbors and dramatically
reduces the redundant computation in the force-potential
evaluation procedure. In Eq.s5d, Bij is a bond order param-
eter and depends on the bonding environment around atomi
and j . Bij implicitly contains multibody information and thus
the whole potential function is actually a multiple-body po-
tential. The functional form ofBij can be written as follows:

Bij = f1 + sbzi jdng−1/2n. s8d

The detailed information and parameters of Eqs.s5d–s8d are
given in Tersoff’s paper.22

C. Finite-size effect

One of the major concerns in simulation of CNT’s to cal-
culate the thermal conductivity is the finite-size effect due to

periodic boundary conditions applied in the axial direction.
As the simulation is conducted in a periodic box, the long-
wavelength vibrational mode of the lattice is cut off while
the CNT is short. This effect causes that a short CNT thermal
conductivity is smaller than a long CNT thermal conductiv-
ity. Using MD, we investigate the thermal conductivity of
CNT’s with different lengths as well as the relationship be-
tween the thermal conductivity and the length, to study its
convergence with system size.

It is noticed that with increasing CNT length more and
stronger long-wavelength phonon modes are introduced to
the system, and these modes are characterized by a longer
mean free pathscompare with a shorter CNTd and thus con-
tribute more to the thermal conductance. Moreover, as a kind
of quasi-1D material low-frequency modes play a more im-
portant part in heat conduction, as in 1D systems the acoustic
vibrational density of statessVDOSd is a constant withk,
while in 3D systems VDOS varies withk2 where k is the
wave vector. Taking into account this factor, the thermal con-
ductance depends on the size of the system. Although it was
demonstrated that in some 3D systems the thermal conduc-
tivity is also size dependent,31 for CNT’s the thermal con-
ductance should be much stronger size dependent, and for
infinite CNT’s it remains unknown whether the thermal con-
ductance converges or not.

D. Thermal conductance vs thermal conductivity

It should be mentioned here that since an isolated single-
wall CNT cross section can be defined in different ways, its
thermal conductivity has also arbitrary definitions and is not
a well-defined quantity. Some definitions of the cross section
A of single-wall CNT’s are as follow.

sid Consider the CNT as a solid cylinder; then, the cross
section area will bepR2, whereR is the radius of the CNT.

sii d Consider the CNT as a hollow cylinder; then, the
cross section area will be 2pRd, whered is the thickness of
CNT shell. In the literature usually two values ofd are used:
one is 3.4 Å, which is the interlayer distance of graphite
materials; the other is 1.42 Å, which is the length ofsp2

bond.
Therefore, in the literature many different values of ther-

mal conductivity are reported; some of them mainly differ in
the cross-section definition.

Obviously, the definition of the cross section is not impor-
tant for the thermal conduction research of CNT’s, as we
only need to calculate and compare the results consistently.
However, for comparing different results from different re-
search groups, this arbitrariness must be eliminated. In this
work, we use the quantity of “thermal conductance”k8
=kA, which equals the thermal conductivity times cross-
section area. Thus, the thermal conductance has the dimen-
sion of “W m/K.” Note that even in experiment, what can be
measured is heat powersenergy per unit timed and tempera-
ture gradient, the ambiguity of the CNT cross section also
enters.

E. Simulation procedure

In this work, CNT’s with different sizes are investigated.
First, armchaired CNT’ss10,10d with different lengths are
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simulated; then, CNTs15,15d and s5,5d are simulated. In
our MD simulation program, the time integration algorithm
is implemented by using the velocity Verlet method. For im-
proving the computation performance, a new neighbor list
algorithm using cell decomposition is employed.28 In all
simulation cases, a periodic boundary condition is used only
in the axial direction of CNT’s. For each simulation case, we
carry out the following three steps.

sid First, canonical ensemble MD is running for 105–
53105 steps in order to take the average system temperature
to 300 K and wait until system reaches thermal equilibrium.

sii d Then it is followed by microcanonical ensemble run-
ning for another 105–53105 steps and wait until system
reaches a thermal equilibrium in the new ensemble.

siii d Finally microcanonical ensemble MD continues to
run and heat flux data are calculated and collected in every
time step. After every 105 steps, the power spectra of heat
flux data are online calculated; meanwhile, its arithmetic av-
erage and Fourier transform, which is heat flux autocorrela-
tion function, as well as the statistical errors are calculated
and dumped to disk files.

In this work, the last step runs indefinitely and stops until
accurate results are obtained after many times of average.
Generally 108 steps were carried out in this step. In other
words, about 1000 averages have been done to obtain the
final data. The total amount of CPU time is about 3 months
on 10 Pentium III 866MHz PCs and three dual-CPU Alpha
EV67/667MHz workstations.

In MD simulation, time step is 0.8 fs, and the canonical
ensemble simulation is implemented by a Nośe-Hoover
algorithm.29

III. RESULTS AND DISCUSSIONS

Figure 1 shows the autocorrelation function of the total
heat flux along the axial direction of CNTs10,10d with 50,
100, 200, and 400 layers. A very sharp decay in the begin-
ning followed by a very slow decay can be seen clearly. An
oscillation in the autocorrelation function can also be seen in
the curves, and it becomes larger when the CNT is longer.
The oscillation is related to the low-frequency phonon mode
in the system32 and becomes stronger as the length of the
CNT increases. From Fig. 2 it can be seen that the frequency
of the autocorrelation oscillation is only related to the chiral
index of CNT’s, not to the length of CNT’s. The value of
autocorrelation function increases as the CNT length in-
creases. The fast initial decay is believed to be contributed
by high-frequency vibrational modes in the CNT, and slow
decay is contributed by low-frequency modes which have a
much longer wavelength.

The insets of Fig. 1 are the log-log curves of the heat flux
autocorrelation function. Note that data points in the range of
8–80 ps are in the order of 10−7–10−8 and are almost ran-
dom errors. The origin of these errors are mainly due to
inaccurate velocity trajectories and roundoff errors in float-
ing operations. Data points in the range of 0.001–0.8 ps cor-

FIG. 1. Initial heat flux autocorrelation functions0–20 psd of CNT s10,10d with 50, 100, 200, and 400 layers, respectivelysfrom left to
right, top to bottomd. Insets are log-log curves of full time range.
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respond to initial decay in the very early moment and the
number of points is smallsthough this section seems quite
long in the graphd; thus, the middle section in the range of
0.8–8 ps should show asymptotic behavior. And it can be
seen that roughly the correlation function decays as a power
law fstd<cta. Theoretically, we expecta=−d/d whered is
the dimension andd is the exponent related to the decay of
modesssee the Appendixd.

From data in the insets of Fig. 1 we calculate the power
indexa of the heat flux autocorrelation function decay using
the linear least-squares methodsdata after 8 ps are not used
due to too large errorsd and show the relationship betweena
and the length of CNT in Fig. 3. From the Green-Kubo
formula,6 knowledge of the asymptotic behavior of
kJstdJs0dl allows the determination of the dependence of the
thermal conductance on the system sizeN. From Fig. 3 it can
been seen that the power index of the heat flux autocorrela-
tion function decay is about −3/2, and for certain cases it is
near −1; thus, the thermal conductancek8 should converge to
a finite value as the system size increases, on the basis of this
exponent. However, when the length of CNT’s is between 50
and 600 layers in our work, there is no evidence thatk will
converge. Strangely, this fast growth of the thermal conduc-
tance with sizes appears mainly from contributions at short
times.

The curves shown in Fig. 4 are the integration of the heat
flux autocorrelation function over timet. It can be seen that
both the initial fast decay and long-time slow decay contrib-
ute to the thermal conductance. The cutoff of long-
wavelength vibrational modes will significantly influence the
final result of the thermal conductivity. Compared with CNT
s10,10d, the integration of the heat flux autocorrelation func-
tion for CNT s5,5d converges more slowly, especially for the
longer CNT’s. The integration of heat flux autocorrelation
function for CNT s15,15d is qualitatively similar to CNT
s10,10d, and it converges fast, so we do not show it in Fig. 4.

As discussed in Sec. II D, the absolute thermal conductiv-
ity value of an isolated single-wall CNT is ambiguous be-
cause the cross section is not well defined, so we discuss
only the thermal conductance. The relationship between the
thermal conductance and the length of CNT is shown in Fig.
5 in logarithmic scale. In all cases, the thermal conductance
of the single-wall CNT does not converge to a finite value as
the length of the CNT increases. In the figure we also give
the standard errors of thermal conductance results and mark
in the error bars. The error is calculated as follows.

sid In microcanonical ensemble simulations,Ntot number
of time steps is carried out; thus,Ntot heat flux data points are
collected.

sii d Divide these heat flux data toN groups, each group

FIG. 2. Initial decay of heat flux autocorrelation function of
CNT s10,10d with 100, 200, 300, and 400 layers, respectively.

FIG. 3. Relationship between decay power index and length of
CNT s5,5d, s10,10d, ands15,15d. sPower indices for shorter CNT’s
have also smaller errors.d

FIG. 4. Integration of the heat flux autocorrelation function over
time t up to given number of time steps for CNTs10,10d stopd and
s5,5d sbottomd.
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hasM heat flux data points, and calculate the heat flux auto-
correlation function and integration for each group, respec-
tively.

siii d The final result is taken to be the average ofN
groups of results in the second step. Meanwhile, the standard
error of the result is given by

Si =Î 1

N
o
j=1

M

sj j − j̄d2, i = 1, . . . ,N.

From Fig. 5 it can be seen that as long as the length of the
CNT increases, the thermal conductance increases corre-
spondingly, and this trend has been discovered in the
literature.10 If we consider the van der Waals thickness 3.4 Å
as the thickness of the CNT shell and treat the CNT as a
hollow cylinder, the thermal conductivity results are in good
agreement with Maruyama’s data.10 From Fig. 6 we also no-
tice that as the length of the CNT,L, increases,k8 /L swhere
k8 is the thermal conductanced tends to a constantfexcept
perhaps thes5,5d caseg. If this result can be confirmed, then it
means that thermal conduction is ballistic in the region of
our model parameters studied and the length of the CNT is
the mean free path.

In order to understand why a longer CNT has higher ther-
mal conductance, we calculate the VDOS by computing the
power spectrum of the velocity correlation function while the

simulation is running, and the calculation can be expressed
as follows:30

Dzsvd =E exps− ivtdkvzstdvzs0dldt, s9d

where Dzsvd denotes the VDOS along thez axis si.e., the
axial directiond andvzstd denotes the velocity of atoms in the
z axis. Figure 7 shows the VDOS of CNT’s with 50 and 100
layers, respectively. The inset of Fig. 7 shows the VDOS of
two CNT’s in the full frequency range, and it seems that two
curves are almost the same; this indicates that the middle-
and high-frequency distributions of VDOS of two CNT’s are
roughly identical. In order to verify the VDOS calculation
using MD, phonon modes of CNTs10,10d unit cell are cal-
culated using the density functional theory generalized gra-
dient approximationsDFT-GGAd and the linear response
theory,33,34 and the results show that the lowest mode is
about 1.379 THz and the highest mode is about 294.9 THz.
The results are in good agreement with MD calculations,
except that anharmonic effect is of course ignored and dif-
ferent length CNT’s have the same vibrational modes in prin-
ciple. However, from the graph of low-frequency range, it
can been seen that the CNT with 100 layers has more low
frequency vibration modes; this is why a longer CNT has a
higher thermal conductance. We believe that the CNT with
100 layers has a larger simulation domain, has a longer pho-
non mean free path, and then has more low-frequency
modes.

IV. CONCLUSIONS

In this paper the high thermal conductance of single-wall
CNT’s is calculated using equilibrium MD, and the relation-
ship between thermal conductance and length of the CNT is
discussed. It is found that as a kind of quasi-one-dimensional
material, the CNT thermal conductance does not converge to
a finite value as the CNT length increases up to 80 nm. It can
also be seen that a longer CNT has more long wavelength
vibrational modes, and these modes contribute to the thermal

FIG. 5. Thermal conductance as a function of the CNT length.
In the graph solid line, dotted line, and dashed line denote the
thermal conductance of CNTs5,5d, s10,10d, and s15,15d,
respectively.

FIG. 6. Thermal conductance divided by the length of the CNT
with the function ofL.

FIG. 7. Vibrational density of states of CNTs10,10d with 50
and 100 layers, respectively. The inset shows the VDOS in the full
frequency range, and the full graph shows the VDOS in the low-
frequency range. In the graphs, the dashed lines denote the VDOS
of the CNT with 100 layers and the solid line denotes the VDOS of
the CNT with 50 layers.
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conduction as the CNT is longer. The specific form of diver-
gencesthe exponentd needs further investigation.
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APPENDIX: A SIMPLE EXPLANATION
TO THE THERMAL CONDUCTIVITY

OF CNT’s

From the mode-coupling theory it is known that the decay
behavior of the heat flux autocorrelation function is related to
the convergence of the thermal conductivity with the length
of carbon CNT’s. In this section, a simple derivation is given
to explain this relationship. In this paper the analysis of the
thermal conductivity of CNT’s starts from the Green-Kubo
formula fsee Eq.s1dg. The heat flux can be decomposed into
modes,

JV= o
k

"vkvgkdnkstd, sA1d

where vk is the mode frequency,vgk represents the mode
group velocity, anddnk is the deviation of the phonon num-
ber from equilibrium. Combining this expression in the
Green-Kubo equation and neglecting the cross terms, we
have

kJs0dJstdl =
1

V2o
k

s"vvgd2kdnks0ddnkstdl. sA2d

If we model the phonon autocorrelation by an exponentially
decaying functionkdnks0ddnkstdl=kdnks0d2le−t/tk and con-
sider thatkdnkstd2l=knkstd2l and the phonon number can be
written askdnks0d2l=knks0d2l=skBT/"vd2, then we have

kJs0dJstdl =
skBTd2

V2 o
k

vg
2e−t/tk. sA3d

If the discrete sum over the modes on the right-hand side of
the above equation is turned into a continuous integral, we

integrate on the volumeVrs occupied by the CNT modes in
reciprocal space:

o
k

vg
2e−t/tk =E

Vrs

vg
2e−t/tkd3k. sA4d

Generally d3k,kd−1dk, where d is the dimension of the
structure. The integral can also be done in the frequency
domain using the dispersion relationk~v. This means that
the dimensiond is given by the power law at low frequency
of the phonon density of states.

The basic assumption is that the decay constanttk is some
power of k, tk~kd. Now set a simple variable changeu
= tckd, whered is the power law of the spectral relaxation
time. EquationsA3d can be changed to

kJs0dJstdl

= SkBT

V
D2E

k

kd−1etckd
duku

= SkBT

V
D2 1

dstcdd/dE
u

ud/d−1e−udu

, t−d/d. sA5d

Note that the integration ofkJs0dJstdl is proportional to the
thermal conductivity; then, ifdÞd,

E
0

`

t−d/ddt = U 1

− d/d + 1
t−d/d+1U

0

`

, sA6d

and if d=d,

E
0

`

t−1dt = ulnstdu0
`. sA7d

Note that the limitt=0 is not physical so that the divergence
at this limit should not be considered.

From the above derivation it can be seen that ifd/d,1,
the thermal conductivity of the infinitely long CNT is also
infinite.
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