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Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra
with a finite-difference time-domain method
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We propose an accurate description for the dispersion of gold in the range of 1.24-2.48 eV. We implement
this improved model in an FDTD algorithm and evaluate its efficiency by comparison with an analytical
method. Extinction spectra of gold nanoparticle arrays are then calculated.
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I. INTRODUCTION w%
o . . ep(w) =€, - ————, (1)
The employment of the finite-difference time-domain o(w+iyp)

(FDTD) method in the study of different electromagnetic where wp, is the plasma frequency ang is the damping

phenomena has_ralsed constantly Increasing interest over tr(1:8efﬁcient. Nevertheless, if frequencies within the range of
past 15 years. Since then, an extensive number of referencgs "~ . ibl ired f i dv. th
describing the principles of the method have been publishe medV'IS'. eEsp(ictrum are rbeqwre Ior a speC|h|c st y’.; €
see, e.g., Refs. 1 and 2. Also, a wide variety of software odel in Eq.(1) may not be complete enough to provide

based on this techniaue has been develoned and is comm argcurate results. To illustrate this fact, we try to fit the rela-
. que . P e permittivity of gold €;; tabulated by Johnson and
cially, and noncommercially, available elsewhere.

T e
Due to the fact that accurate results for a full spectrumChrIStyl through the optimization OE.., wp, and yp for

. . . energies between 1.24 and 2.48 éNavelengths between
can be obtained in a single run of the program, ATt ha§00 %nd 1000 nm In order to determine tr?e best set of
proven to b.e well adapted for d|fferen_t lf'nd.s of SpeCtro'parameters, we define a fitness functisametimes called an
scopic studied.Nevertheless, a strong limitation is the re-

) . . , . objective function & as
quirement of an analytical model of dispersion. Typical
laws used for FDTD simulations are the Debye, Lorentz, or j, N N2 N A2
Drude dispersion modefs® Also, a modified Debye law can ®= % {Reexcley) ~ epla)) 1™ +{Iml esdlwy) = eplay) I
be used. At least in principle, any dispersion law could be 5
described in terms of a linear combination of Debye and (2)
Lorentz laws: Surprisingly, this property has not been usedwhere w; are the discrete values of the frequenay
in studies using the FDTD method. Rather, it has been suc=27c/\ for which the permittivity is calculated. The real
cessfully applied to the description of optical functions for 11and imaginary parts of a complex valaeare, respectively,
metals over a wide spectrufror to a calculation of the re- Re(z) and Im(z). The minimization of® is performed em-
flectance of single wall nanotubgdn this paper, we will  ploying the simulated annealing procedure described in Ref.
employ a scheme similar to the one that appears in this lagt3, and results are presented in the first row of Table I.
reference for the study of the optical response of gold nano- The real and imaginary parts of the permittiviéy(w),

structures. _ _ calculated with the Drude model, are, respectively, plotted
The structure of this work is as follows. In Sec. Il, we wjth a dotted line in Figs. 1 and 2.

show the results obtained from the implementation of two |t can be seen that neither Rg) nor Im(e;o) are well

classic dispersion models employing the FDTD method. Inyescribed for energies above 2.2 and 1.9 eV, respectively. To
order to validate the numerical approaches, we apply them t@mphasize this difference, we also plot in Figs. 1 and 2 the
the case of a simple structure and compare the results witfy|ative errors on Rep) and Imey). The existence of a

those obtained using the analytical method Qescribed in _Regtrong discrepancy for energies above 1.9 eV when using the
10. In Sec. lll, we employ our FDTD-based |mplementat|onsim‘:]|e Drude model is evident.

of the Drude-Lorentz model to the calculation of extinction Due to the inability of the Drude model to describe the

spectra. In Sec. IV, we present our main conclusions andemittivity of metals over a wide range of frequencies,
final remarks. some of the authors working with the FDTD restrict their
studies to a zone of the spectrum where the Drude model is
Il. MODELS OF DISPERSION valid (Ref. 7 for a gold tip, Refs. 14 and 15 for silver and
aluminum structures; it should be noted that for these two
A. The Drude model metals, the Drude model alone works well for the optical
It is well known that in the near infrared, the relative wavelengths Others try to fit the permittivity in the range of
permittivity of several metals can be described by means ointerest by modifying the values of the parametess wp,
the Drude modet! andyp of the model, as shown in Ref. 5 for the case of silver

)
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TABLE I. Values of the parameters used for the optimization of the Drude and the Drude-Lorentz models.
The value of the fitness function is given in the last column.
€ wpl2m (THz)  yp/27w (THz) Q. /27 (THz) T'\/27 (THz) Ae [
Drude 9.0685 2155.6 18.36 431.46
Drude-Lorentz  5.9673 2113.6 15.92 650.07 104.86 1.09 14.521
structures or in Ref. 15 for a gold nanostructure. In this last (@) w% AE‘QE @
ep(w) =€, — - - - , 3
reference, Drude parameters are actually adapted for several DL w(@+iy) (02— QE) +il o

particular wavelengths.
One way to overcome the limitations of the Drude modelwhere ), and I'|, respectively, stand for the oscillator

could be to split the spectrum in several zones and use strength and the spectral width of the Lorentz oscillators, and

different set of parameters for each of these parts in order tde can be interpreted as a weighting factor.

get the best fit. However, a drawback of this solution is that In order to find the best set of parameters and the best fit

a whole new computation is required for each set of paramof €;dw), we employ the same optimization scheme as we
eters. did for the Drude model. The new parameters are presented

in the second row of Table I.

In order to facilitate the comparison with the results ob-
tained employing the single Drude model, we depict with a

Another way to overcome the limitations of the Drude solid line in Figs. 1 and 2 the real and imaginary parts cal-
model for gold in the 1.24-2.48 eV range, and also to takeulated with the Drude-Lorentz model. The agreement be-
into account the interband transitions, is suggested in Retween the experimental values and the ones described by Eq.
11. It consists in the addition of one or several Lorentzian(3) is quite good for the whole spectrum. The initial discrep-
terms to Eqg.(1). This approach was used in Ref. 8, whereancies present for energies above 1.9 eV, when using the
five Lorentzian terms were added in order to fit the permit-Drude model, have been removed. This effect is illustrated
tivity of 11 metals for energies between 0.1 and 5 eV. Nevfurther when we plot the relative errors on (Rg) and
ertheless, as the authors acknowledge themselves, the Drudg(epy)-
Lorentz model does not fit very well experimental values The improved law of dispersion in E(g) is now imple-
around 2 eV for g0|d, even with additional terms. Moreover,mented in our FDTD code through the recursive convolution
we aim to imp'ement our improved dispersion |aW in anmethod described in Ref 1 fOI’ Validation. Details on the

FDTD code, and the memory requirements increase linearlfumerical implementation are given in an Appendix at the
with the number of terms used for the dispersion law. Foend of this paper.

these reasons, we decided to restrict our model of dispersion
to only one additional Lorentzian term. Thus, we write the
permittivity of gold as

B. Extended Drude model

C. Validation of the new approach

In order to evaluate the performance of our approach, we
will compare its results with those obtained employing an
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FIG. 1. Real part of the permittivity of gold as published in Ref.

FIG. 2. Imaginary part of the permittivity of gold as published

12, calculated with the single Drude model and calculated with then Ref. 12, calculated with the single Drude model and calculated
with the Drude-Lorentz model.

Drude-Lorentz model.
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FIG. 4. Coefficient of transmission through a layer of 50 nm of
gold, respectively, calculated analytically, with the simple Drude
model and with the Drude-Lorentz model. The relative erroitpn
by comparison with the analytical result is also depicted.

FIG. 3. Coefficient of transmission through a layer of 20 nm of
gold, respectively, calculated analytically, with the simple Drude
model and with the Drude-Lorentz model. The relative erroftbn
by comparison with the analytical result is also depicted.

analytical method. For simplicity, the structure we will con- drawn. In this case, the maximal error achieved when using
sider for our tests consists of a thin layer of gold surroundedhe Drude-Lorentz model is 5.2%, and the Drude model per-
by air. We will calculate the coefficient of transmission in fgrms worse only for energies above 2.34 @Mavelengths
amplitude for the electric field using the formulas that appeagg|ow 530 nm. If now we still consider the threshold previ-
in Ref. 10 for an absorbing film on a transparent substrate.ous|y defined(maximal error of 2.7% then the Drude-
In Fig. 3, we present the results obtained considering @ orentz model can be accepted for energies below 2.39 eV
thin film of thicknesse=20 nm. The absolute values of the (wavelengths greater than 520 hmwhereas the Drude
transmission coefficientff|, computed through the FDTD ,0del is only acceptable for energies below 1.78(eMve-

implementations of Drude and Drude-Lorentz models, aréjengths above 697 niand in a narrow zone between 2.08
respectively, depicted with a dashed and a thick solid curvesnq 2.24 eV(555 and 596 nm

The thin solid curve (_:o_rresponds to the analytical result. _The As a last test, we compute the intensity 5 nm above an
values of the permittivity used for the analytical calcu_latloninﬁnite gold cylinder of radius 15 nm illuminated with a
are the ones published in Ref. 12 and not the values fitted b;‘zflane wave, the incident field being polarized perpendicu-
the Drude-Lorentz model. larly with the axis of the cylinder. Results are compared with
It can be observed in Fig. 3 that the agreement betweefhe e theory and presented in Fig. 5. It is confirmed that

the Drude model and the analytical one decreases for enefe prude-Lorentz models perform better than the single
gies above 1.8 e\wavelength below 700 nmOn the other  prde model, which is unable to predict the peak of absorp-
hand, the agreement between the Drude-Lorentz model anghn around 2.4 eV. Nevertheless, the error calculated in this
th_e analytical one is quite good._Th|s behavior can be visuggse is higher than previously observed, mainly due to the
alized further by plotting the relative error on the valuetiof  itficulty to accurately describe a circle using an orthogonal
for the two models used with the FDTD method. It is obvi- nesh. For this calculation, in order to refine the description

ous from Fig. 3 that the Drude-Lorentz model not only per-of the shape of the cylinder, a spatial discretization of 0.5 nm
forms better than the Drude model, but also that it leads t0 §,55 ysed. instead of 5 nm for the thin-layer cases.

very small error on a wide spectrum. The maximal relative  once we have verified that an improvement can be ob-
error obtained with the Drude-Lorentz model is 2.7%, and ifgarved not only on the description of the permittivigybut

we consider this value as a threshold for the validity of they|sq on the calculation of transmission coefficients, we feel
model, the Drude model is only valid for energies below 1.97.nfident to apply our new dispersion model to a more com-

eV (wavelengths greater than 630 hm ~_ plicated case, namely the calculation of extinction spectra
According to Figs. 1 and 2, it is clear that the imaginary gpoye gold nanostructures arrays.

part of the permittivity is less well described than the real

one even with the Drude-Lorentz model, thus we can check

results obta_ined f_0|rt| when cons_idering a Iay_er of thick_ness IIl. APPLICATION TO THE CALCULATION

e=50 nm(Fig. 4) in order to verify that we still get satisfy- OF EXTINCTION SPECTRA

ing results. It can be seen that both the transmission coeffi-

cients|t| and the relative errors present a behavior analogous Recently, several experimental results obtained with gold
to the one shown in Fig. 3, and similar conclusions can beanoparticle arrays have been publish&d! Various sizes,
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FIG. 7. Extinction spectra calculated for gold cylinders with an

FIG. 5. Intensity transmitted above a gold cylinder of radius 15elliptical basis: the height is 60 nm, the grating constant is 300 nm,
nm, respectively, calculated analyticallie theory, with the  and the major and minor axes are, respectively, 100 nm and 100 nm
simple Drude model and with the Drude-Lorentz model. The rela{structure A, 125 nm and 100 nnfstructure B, and 150 nm and

tive error by comparison with the analytical result is also depicted100 nm (structure @. Calculations performed with the Drude-
Lorentz model are depicted with a thick line. Calculations per-

shapes, and periodicities are used in order to tune the posflqrmed with the Drude model are depicted with a thin line. Peak

. L ) ositions for structures A, B, and C are, respectivaly,637 nm,
tion of the extinction, and the influence of these parameterg=680 am. and\=712 nm with the Drude-Lorentz model. and
was reviewed in Ref. 22. These experiments are mainly fo- 537 1m x =683 nm. and\ =715 nm for the Drude model.
cused on the development and the improvement of surface ' ’

enhanced Raman spectroscd®ERS active substrate. iumi qf h 0 . incid Th
In this section, we will present computations of extinction 'uminated from thez=0 region at normal incidence. The

spectra on two kinds of gold nanoparticle arrays. As most Oyalue of the_ electric field is recorded afte_r each time step of
the figures published in previously cited papers show théhe calculation on a plane above the particles. Once we have

spectra as a function of the wavelength, the following ﬁgures.ChG(:k.Gd.that the _Gagssian pulse _has v_anished and that no
will maintain the same convention. electric field remains in the computing window, we stop the

computation, and it is then straightforward to calculate the
extinction spectrum of the structure by performing a Fourier
A. Geometry of the problem transform of the field:2 The results presented in the follow-
The typical shape of the structures used for SERS expering subsections are computed with spatial discretizaign
ments is depicted in Fig. 6. It consists of a substrate made ¢f5 nm, and the time stefit is defined as\t=Ax/(2c) with
glass on which gold nanoparticles are deposited. For out the speed of light in vacuum.
forthcoming calculations, the incident field is assumed to be

a plane wave with a Gaussian temporal shape. The sample is
B. Numerical results

In the first case, the particles in Fig. 6 are cylinders with
an elliptical basis and a height of 60 nm. One of the axes of
the ellipse has a constant lendiim=100 nnj, whereas the
length of the second axis is variablgtructure A: M
=100 nm; structure B: M=125 nm; structure C:M
=150 nm). The periodicity of the array along the x and y
directions isp,=p,=300 nm. The incident light is polarized
along the x axis. The exinction spectra obtained for struc-
tures A, B, and C are plotted in Fig. 7 with thick solid or
dashed curves.

These results are in good agreement with those published
in Ref. 20, where increasing the size of the major axis of the
ellipse induced a strong redshift of the peak. Results ob-
tained with the Drude model are also depicted in Fig. 7 with

FIG. 6. Geometry of the structure studied for the calculation ofthin solid or dashed lines. It can be observed that the posi-
the extinction spectrum. tions of the peaks are almost the same, but oscillations are

Incident light
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— 200 7m than the discrete dipole approximatiODDA) used in Ref.
- 250 nm 17, as it gives the right direction for the shift of the peak.
— 300nm || The benefit of using Eq2) instead of the standard Drude
model given in Eqg.(1) can be seen by comparing results
obtained with the single Drude model depicted with thin
lines in Fig. 8. Positions of the peaks are still almost the
same, but strong oscillations are present on the left part of
the spectrum for all structures.

IV. CONCLUSION

By adding a Lorentzian term to the widely used Drude
model, we were able to fit the dispersion curve of gold over
a spectrum wider than possible with the single Drude model.
, ‘ et R L P This improved dispersion law was then implemented in a
500 600 700 800 900 FDTD code and applied to the calculation of gold nanopar-

wavelength (nm) ticle arrays extinction spectra. Calculations are in good
agreement with experimental results. When calculations are

FIG. 8. Extinction spectra calculated for gold cylinders: the . g -
height is 60 nm, the diameter is 100 nm, and grating contants aremade with the original Drude model, only a small shift of the

respectively, 200 nnfstructure A, 250 nm(structure B, and 300 dbsorption peak may be observed for some structures, but

nm (structure @. Calculations performed with the Drude-Lorentz strong oscillations in the SPeCWm are _V'S'_ble fqr wave-
model are depicted with a thick line. Calculations performed with!éngths below the resonance. This behavior is an indication

the Drude model are depicted with a thin line. Peak positions fothat intensities calculated above or inside the metallic struc-
structures A, B, and C are, respectiveh=625 nm,\=630 nm,  ture would then be wrong, leading to inexact estimations of

and\=638 nm with the Drude-Lorentz model, an¢-628 nm,x  the SERS gain. o _
=630 nm, anc\ =638 nm for the Drude model. Further work is still required in order to be able to fit the

permittivity of gold over the full visible spectrum. This could
present on the spectrum calculated with the Drude model fobe achieved by adding at least one more Lorentzian term.
structure A. Moreover, other metals often used for the design of nano-
In the second case, particles are cylinders with a diametestructures, like silver or aluminum, should be studied too.
of 100 nm and a height of 60 nm, and the periodicity of the

array is changedstructure A:p,=p,=200 nm; structure B: ACKNOWLEDGMENTS
Px=py=250 nm; structure Cp,=p,=300 nn). Results are
presented in Fig. 8 with thick solid or dashed lines. D.M. acknowledges Le Ministére de la Jeunesse, de

The behavior of the curves in Fig. 8 is consistent with that’Education Nationale et de la Recherche as well as the Con-
of the experimental results published in Ref. 17, where aeil Régional de Champagne—Ardennes for financial support.
small shift to the red was observed when increasing the peA.-S. Grimault acknowledges the Conseil Régional de
riod of the grating. Moreover, our model gives better resultsChampagne—Ardennes for financial support.

APPENDIX: 3D NUMERICAL IMPLEMENTATION OF THE DRUDE-LORENTZ MODEL

For a three-dimensional computation window, with a spatial discretizatoaind a temporal discretizatiaxt, we represent

the value of any fieldJ at positionx=iAx, y=jAx, z=kAx and for the instant=nAt by U|{fj’k, and the standard recursion

equations in a nondispersive and nonmagnetic medium for the electric and magnetic fields are

At
n+1/2 — n-1/2 n _ n n _ n
HXi-1/2J+1,k+l_ Hxi-1/2J+l,k+l+ woAX (Ey|i—1/2J+1,k+3/2 Ey|i—1/2,j+1,k+1/2+ Ez|i—1/2,j+l/2k+1 Ez|i—1/2J+3/2,k+l)’ (AL)
0
H n+1/2 =H n-1/2 + At (E |n -E |n +E |n -E |n ) (A2)
yli,j+1/2k+1 = "yl j+1/2k+1 i AX Zli+1/2,j+1/2 k+1 Zli-1/2j+1/2 k+1 Xli,j+1/2 k+1/2 Xli,j+1/2k+3/2/»
0
H n+1/2 = H n-1/2 + At (E |n -E |n +E |n -E |n ) (A3)
2i,j+1k+1/27 Tlzlij+1 k+1/2 poAx  Xli+312ke1/2 Xli,j+1/2k+1/2 yli-1/2j+1k+1/2 yli+1/2j+1k+1/2)
0
At
n+1 _ n n+1/2 _ n+1/2 n+1/2  _ n+1/2
Ex|i,j+1/2k+1/2_ Ex|i,j+1/2,k+1/2+ HZi,j+1,k+1/2 Hzi,j,k+1/2+ Hyi,j+l/2,k Hy|i,j+1/2k+1)r (A4)

€06 j+1/2k+1/28X
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n+l At

_ n+1/2 2 12 /2
Ey i—1/2j+1 k+1/2 = Ey|ir1—l/2J+1,k+1/2+ €0€i-1/2 141 Ks1/2AX (Hx i—1/2j+1k+l Hyx in—+11/2J'+1,k+ H, in—+11,+]4',k+1/2_ H, irj}fl,k+1/2 )
i-1/2j+1 k+
(AS5)
n+1 _ = At n+1/2 n+1/2 n+1/2 n+1/2
Ez|i—1/2J+1/2k+1_ Ez|i—1/2,j+1/2k+1+ 061124112k Ax ( yli'j+1/2k+1_ Hy|i—1,j+1/2|k+1+ Hxi—1/2,j,k+1_ Hxi—1/2,j+1,k+1)-
i-1/2j+ +
(A6)
|
For a dispersive medium whose dispersion is described by o . Y e
Eq. (3), we need to introduce two new vector fiells, and e iﬁ(l G ) (A12)
W, known as “recursive acumulators” and E@¢84)—(A6)
have to be replaced by the following three equations: y
_ O0_ _i 7 (1 _-atipAyy2
\PD|n: CE‘I’DP 14 CgE|n, (A?) AXL |a_ Iﬂ(l (S} ) . (A13)
W |'= CPw "L+ COE (A8) CoefficientsC{ andC{ can now be written as
I ’
Cp = em*HiRAL (A14)
E|n+1: CaE|n + C,BV X Hn+l/2+ c? Re( lI,D|r‘I + \I’L|n)1
(A9) Cl=Ax}. (A15)
where the coefficient€?, CP, C”, C% andC” depend on the Finally, we definex’=xp +Re(x{), and the last three co-
coefficients of Eq(3). efficients needed are
For the Drude term, we defineS.=—(wp/vp)?% x5 .
=5(1-emA), AxS=5,(1-e2)2 and op=w3/yp. Then Cofz=————, (A16)
the coefficientsC andCJ are defined as €% Xo+ 0pAl
P — g DAL Al
Cp=¢€ : (A10) ch= At , (A17)
6 _A.D AXeg(€. + xo + opAt)
Co=Ax. (A11)
For the Lorentz term, we first definev=T" /2, B Cr= 1 A18
=\VQZ-a?, and y=AeO?/B. Then we define €.+ Xo+ OpAt’ (AL8)
*Electronic address: alexandre.vial@utt.fr (1999.
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