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We propose an accurate description for the dispersion of gold in the range of 1.24–2.48 eV. We implement
this improved model in an FDTD algorithm and evaluate its efficiency by comparison with an analytical
method. Extinction spectra of gold nanoparticle arrays are then calculated.
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I. INTRODUCTION

The employment of the finite-difference time-domain
sFDTDd method in the study of different electromagnetic
phenomena has raised constantly increasing interest over the
past 15 years. Since then, an extensive number of references
describing the principles of the method have been published;
see, e.g., Refs. 1 and 2. Also, a wide variety of software
based on this technique has been developed and is commer-
cially, and noncommercially, available elsewhere.

Due to the fact that accurate results for a full spectrum
can be obtained in a single run of the program, the FDTD has
proven to be well adapted for different kinds of spectro-
scopic studies.3 Nevertheless, a strong limitation is the re-
quirement of an analytical model of dispersion. Typical
laws used for FDTD simulations are the Debye, Lorentz, or
Drude dispersion models.3–6Also, a modified Debye law can
be used.7 At least in principle, any dispersion law could be
described in terms of a linear combination of Debye and
Lorentz laws.2 Surprisingly, this property has not been used
in studies using the FDTD method. Rather, it has been suc-
cessfully applied to the description of optical functions for 11
metals over a wide spectrum,8 or to a calculation of the re-
flectance of single wall nanotubes.9 In this paper, we will
employ a scheme similar to the one that appears in this last
reference for the study of the optical response of gold nano-
structures.

The structure of this work is as follows. In Sec. II, we
show the results obtained from the implementation of two
classic dispersion models employing the FDTD method. In
order to validate the numerical approaches, we apply them to
the case of a simple structure and compare the results with
those obtained using the analytical method described in Ref.
10. In Sec. III, we employ our FDTD-based implementation
of the Drude-Lorentz model to the calculation of extinction
spectra. In Sec. IV, we present our main conclusions and
final remarks.

II. MODELS OF DISPERSION

A. The Drude model

It is well known that in the near infrared, the relative
permittivity of several metals can be described by means of
the Drude model,11

eDsvd = e` −
vD

2

vsv + igDd
, s1d

where vD is the plasma frequency andgD is the damping
coefficient. Nevertheless, if frequencies within the range of
the visible spectrum are required for a specific study, the
model in Eq.s1d may not be complete enough to provide
accurate results. To illustrate this fact, we try to fit the rela-
tive permittivity of gold eJC, tabulated by Johnson and
Christy12 through the optimization ofe`, vD, and gD for
energies between 1.24 and 2.48 eVswavelengths between
500 and 1000 nmd. In order to determine the best set of
parameters, we define a fitness functionssometimes called an
objective functiond F as

F = o
v j

hRefeJCsv jd − eDsv jdgj2 + hImfeJCsv jd − eDsv jdgj2,

s2d

where v j are the discrete values of the frequencyv
=2pc/l for which the permittivity is calculated. The real
and imaginary parts of a complex valuez are, respectively,
Reszd and Imszd. The minimization ofF is performed em-
ploying the simulated annealing procedure described in Ref.
13, and results are presented in the first row of Table I.

The real and imaginary parts of the permittivityeDsvd,
calculated with the Drude model, are, respectively, plotted
with a dotted line in Figs. 1 and 2.

It can be seen that neither ReseJCd nor ImseJCd are well
described for energies above 2.2 and 1.9 eV, respectively. To
emphasize this difference, we also plot in Figs. 1 and 2 the
relative errors on ReseDd and ImseDd. The existence of a
strong discrepancy for energies above 1.9 eV when using the
single Drude model is evident.

Due to the inability of the Drude model to describe the
permittivity of metals over a wide range of frequencies,
some of the authors working with the FDTD restrict their
studies to a zone of the spectrum where the Drude model is
valid sRef. 7 for a gold tip, Refs. 14 and 15 for silver and
aluminum structures; it should be noted that for these two
metals, the Drude model alone works well for the optical
wavelengthsd. Others try to fit the permittivity in the range of
interest by modifying the values of the parameterse`, vD,
andgD of the model, as shown in Ref. 5 for the case of silver
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structures or in Ref. 15 for a gold nanostructure. In this last
reference, Drude parameters are actually adapted for several
particular wavelengths.

One way to overcome the limitations of the Drude model
could be to split the spectrum in several zones and use a
different set of parameters for each of these parts in order to
get the best fit. However, a drawback of this solution is that
a whole new computation is required for each set of param-
eters.

B. Extended Drude model

Another way to overcome the limitations of the Drude
model for gold in the 1.24–2.48 eV range, and also to take
into account the interband transitions, is suggested in Ref.
11. It consists in the addition of one or several Lorentzian
terms to Eq.s1d. This approach was used in Ref. 8, where
five Lorentzian terms were added in order to fit the permit-
tivity of 11 metals for energies between 0.1 and 5 eV. Nev-
ertheless, as the authors acknowledge themselves, the Drude-
Lorentz model does not fit very well experimental values
around 2 eV for gold, even with additional terms. Moreover,
we aim to implement our improved dispersion law in an
FDTD code, and the memory requirements increase linearly
with the number of terms used for the dispersion law. For
these reasons, we decided to restrict our model of dispersion
to only one additional Lorentzian term. Thus, we write the
permittivity of gold as

eDLsvd = e` −
vD

2

vsv + igDd
−

De . VL
2

sv2 − VL
2d + iGLv

, s3d

where VL and GL, respectively, stand for the oscillator
strength and the spectral width of the Lorentz oscillators, and
De can be interpreted as a weighting factor.

In order to find the best set of parameters and the best fit
of eJCsvd, we employ the same optimization scheme as we
did for the Drude model. The new parameters are presented
in the second row of Table I.

In order to facilitate the comparison with the results ob-
tained employing the single Drude model, we depict with a
solid line in Figs. 1 and 2 the real and imaginary parts cal-
culated with the Drude-Lorentz model. The agreement be-
tween the experimental values and the ones described by Eq.
s3d is quite good for the whole spectrum. The initial discrep-
ancies present for energies above 1.9 eV, when using the
Drude model, have been removed. This effect is illustrated
further when we plot the relative errors on ReseDLd and
ImseDLd.

The improved law of dispersion in Eq.s3d is now imple-
mented in our FDTD code through the recursive convolution
method described in Ref. 1 for validation. Details on the
numerical implementation are given in an Appendix at the
end of this paper.

C. Validation of the new approach

In order to evaluate the performance of our approach, we
will compare its results with those obtained employing an

TABLE I. Values of the parameters used for the optimization of the Drude and the Drude-Lorentz models.
The value of the fitness function is given in the last column.

e` vD /2p sTHzd gD /2p sTHzd VL /2p sTHzd GL /2p sTHzd De F

Drude 9.0685 2155.6 18.36 431.46

Drude-Lorentz 5.9673 2113.6 15.92 650.07 104.86 1.09 14.521

FIG. 1. Real part of the permittivity of gold as published in Ref.
12, calculated with the single Drude model and calculated with the
Drude-Lorentz model.

FIG. 2. Imaginary part of the permittivity of gold as published
in Ref. 12, calculated with the single Drude model and calculated
with the Drude-Lorentz model.
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analytical method. For simplicity, the structure we will con-
sider for our tests consists of a thin layer of gold surrounded
by air. We will calculate the coefficient of transmission in
amplitude for the electric field using the formulas that appear
in Ref. 10 for an absorbing film on a transparent substrate.

In Fig. 3, we present the results obtained considering a
thin film of thicknesse=20 nm. The absolute values of the
transmission coefficientsutu, computed through the FDTD
implementations of Drude and Drude-Lorentz models, are,
respectively, depicted with a dashed and a thick solid curve.
The thin solid curve corresponds to the analytical result. The
values of the permittivity used for the analytical calculation
are the ones published in Ref. 12 and not the values fitted by
the Drude-Lorentz model.

It can be observed in Fig. 3 that the agreement between
the Drude model and the analytical one decreases for ener-
gies above 1.8 eVswavelength below 700 nmd. On the other
hand, the agreement between the Drude-Lorentz model and
the analytical one is quite good. This behavior can be visu-
alized further by plotting the relative error on the values ofutu
for the two models used with the FDTD method. It is obvi-
ous from Fig. 3 that the Drude-Lorentz model not only per-
forms better than the Drude model, but also that it leads to a
very small error on a wide spectrum. The maximal relative
error obtained with the Drude-Lorentz model is 2.7%, and if
we consider this value as a threshold for the validity of the
model, the Drude model is only valid for energies below 1.97
eV swavelengths greater than 630 nmd.

According to Figs. 1 and 2, it is clear that the imaginary
part of the permittivity is less well described than the real
one even with the Drude-Lorentz model, thus we can check
results obtained forutu when considering a layer of thickness
e=50 nmsFig. 4d in order to verify that we still get satisfy-
ing results. It can be seen that both the transmission coeffi-
cientsutu and the relative errors present a behavior analogous
to the one shown in Fig. 3, and similar conclusions can be

drawn. In this case, the maximal error achieved when using
the Drude-Lorentz model is 5.2%, and the Drude model per-
forms worse only for energies above 2.34 eVswavelengths
below 530 nmd. If now we still consider the threshold previ-
ously definedsmaximal error of 2.7%d, then the Drude-
Lorentz model can be accepted for energies below 2.39 eV
swavelengths greater than 520 nmd, whereas the Drude
model is only acceptable for energies below 1.78 eVswave-
lengths above 697 nmd and in a narrow zone between 2.08
and 2.24 eVs555 and 596 nmd.

As a last test, we compute the intensity 5 nm above an
infinite gold cylinder of radius 15 nm illuminated with a
plane wave, the incident field being polarized perpendicu-
larly with the axis of the cylinder. Results are compared with
the Mie theory and presented in Fig. 5. It is confirmed that
the Drude-Lorentz models perform better than the single
Drude model, which is unable to predict the peak of absorp-
tion around 2.4 eV. Nevertheless, the error calculated in this
case is higher than previously observed, mainly due to the
difficulty to accurately describe a circle using an orthogonal
mesh. For this calculation, in order to refine the description
of the shape of the cylinder, a spatial discretization of 0.5 nm
was used, instead of 5 nm for the thin-layer cases.

Once we have verified that an improvement can be ob-
served not only on the description of the permittivitye, but
also on the calculation of transmission coefficients, we feel
confident to apply our new dispersion model to a more com-
plicated case, namely the calculation of extinction spectra
above gold nanostructures arrays.

III. APPLICATION TO THE CALCULATION
OF EXTINCTION SPECTRA

Recently, several experimental results obtained with gold
nanoparticle arrays have been published.16–21 Various sizes,

FIG. 3. Coefficient of transmission through a layer of 20 nm of
gold, respectively, calculated analytically, with the simple Drude
model and with the Drude-Lorentz model. The relative error onutu
by comparison with the analytical result is also depicted.

FIG. 4. Coefficient of transmission through a layer of 50 nm of
gold, respectively, calculated analytically, with the simple Drude
model and with the Drude-Lorentz model. The relative error onutu
by comparison with the analytical result is also depicted.

IMPROVED ANALYTICAL FIT OF GOLD… PHYSICAL REVIEW B 71, 085416s2005d

085416-3



shapes, and periodicities are used in order to tune the posi-
tion of the extinction, and the influence of these parameters
was reviewed in Ref. 22. These experiments are mainly fo-
cused on the development and the improvement of surface
enhanced Raman spectroscopysSERSd active substrate.

In this section, we will present computations of extinction
spectra on two kinds of gold nanoparticle arrays. As most of
the figures published in previously cited papers show the
spectra as a function of the wavelength, the following figures
will maintain the same convention.

A. Geometry of the problem

The typical shape of the structures used for SERS experi-
ments is depicted in Fig. 6. It consists of a substrate made of
glass on which gold nanoparticles are deposited. For our
forthcoming calculations, the incident field is assumed to be
a plane wave with a Gaussian temporal shape. The sample is

illuminated from thez,0 region at normal incidence. The
value of the electric field is recorded after each time step of
the calculation on a plane above the particles. Once we have
checked that the Gaussian pulse has vanished and that no
electric field remains in the computing window, we stop the
computation, and it is then straightforward to calculate the
extinction spectrum of the structure by performing a Fourier
transform of the field.1,2 The results presented in the follow-
ing subsections are computed with spatial discretizationDx
=5 nm, and the time stepDt is defined asDt=Dx/ s2cd with
c the speed of light in vacuum.

B. Numerical results

In the first case, the particles in Fig. 6 are cylinders with
an elliptical basis and a height of 60 nm. One of the axes of
the ellipse has a constant lengthsm=100 nmd, whereas the
length of the second axis is variablesstructure A: M
=100 nm; structure B: M =125 nm; structure C: M
=150 nmd. The periodicity of the array along the x and y
directions ispx=py=300 nm. The incident light is polarized
along the x axis. The exinction spectra obtained for struc-
tures A, B, and C are plotted in Fig. 7 with thick solid or
dashed curves.

These results are in good agreement with those published
in Ref. 20, where increasing the size of the major axis of the
ellipse induced a strong redshift of the peak. Results ob-
tained with the Drude model are also depicted in Fig. 7 with
thin solid or dashed lines. It can be observed that the posi-
tions of the peaks are almost the same, but oscillations are

FIG. 5. Intensity transmitted above a gold cylinder of radius 15
nm, respectively, calculated analyticallysMie theoryd, with the
simple Drude model and with the Drude-Lorentz model. The rela-
tive error by comparison with the analytical result is also depicted.

FIG. 6. Geometry of the structure studied for the calculation of
the extinction spectrum.

FIG. 7. Extinction spectra calculated for gold cylinders with an
elliptical basis: the height is 60 nm, the grating constant is 300 nm,
and the major and minor axes are, respectively, 100 nm and 100 nm
sstructure Ad, 125 nm and 100 nmsstructure Bd, and 150 nm and
100 nm sstructure Cd. Calculations performed with the Drude-
Lorentz model are depicted with a thick line. Calculations per-
formed with the Drude model are depicted with a thin line. Peak
positions for structures A, B, and C are, respectively,l=637 nm,
l=680 nm, andl=712 nm with the Drude-Lorentz model, andl
=637 nm,l=683 nm, andl=715 nm for the Drude model.
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present on the spectrum calculated with the Drude model for
structure A.

In the second case, particles are cylinders with a diameter
of 100 nm and a height of 60 nm, and the periodicity of the
array is changedsstructure A:px=py=200 nm; structure B:
px=py=250 nm; structure C:px=py=300 nmd. Results are
presented in Fig. 8 with thick solid or dashed lines.

The behavior of the curves in Fig. 8 is consistent with that
of the experimental results published in Ref. 17, where a
small shift to the red was observed when increasing the pe-
riod of the grating. Moreover, our model gives better results

than the discrete dipole approximationsDDAd used in Ref.
17, as it gives the right direction for the shift of the peak.

The benefit of using Eq.s2d instead of the standard Drude
model given in Eq.s1d can be seen by comparing results
obtained with the single Drude model depicted with thin
lines in Fig. 8. Positions of the peaks are still almost the
same, but strong oscillations are present on the left part of
the spectrum for all structures.

IV. CONCLUSION

By adding a Lorentzian term to the widely used Drude
model, we were able to fit the dispersion curve of gold over
a spectrum wider than possible with the single Drude model.
This improved dispersion law was then implemented in a
FDTD code and applied to the calculation of gold nanopar-
ticle arrays extinction spectra. Calculations are in good
agreement with experimental results. When calculations are
made with the original Drude model, only a small shift of the
absorption peak may be observed for some structures, but
strong oscillations in the spectrum are visible for wave-
lengths below the resonance. This behavior is an indication
that intensities calculated above or inside the metallic struc-
ture would then be wrong, leading to inexact estimations of
the SERS gain.

Further work is still required in order to be able to fit the
permittivity of gold over the full visible spectrum. This could
be achieved by adding at least one more Lorentzian term.
Moreover, other metals often used for the design of nano-
structures, like silver or aluminum, should be studied too.
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APPENDIX: 3D NUMERICAL IMPLEMENTATION OF THE DRUDE-LORENTZ MODEL

For a three-dimensional computation window, with a spatial discretizationDx and a temporal discretizationDt, we represent
the value of any fieldU at positionx= iDx, y= jDx, z=kDx and for the instantt=nDt by uUui,j ,k

n , and the standard recursion
equations in a nondispersive and nonmagnetic medium for the electric and magnetic fields are

uHxui−1/2,j+1,k+1
n+1/2 = uHxui−1/2,j+1,k+1

n−1/2 +
Dt

m0Dx
usEyui−1/2,j+1,k+3/2

n − uEyui−1/2,j+1,k+1/2
n + uEzui−1/2,j+1/2,k+1

n − uEzui−1/2,j+3/2,k+1
n d, sA1d

uHyui,j+1/2,k+1
n+1/2 = uHyui,j+1/2,k+1

n−1/2 +
Dt

m0Dx
usEzui+1/2,j+1/2,k+1

n − uEzui−1/2,j+1/2,k+1
n + uExui,j+1/2,k+1/2

n − uExui,j+1/2,k+3/2
n d, sA2d

uHzui,j+1,k+1/2
n+1/2 = uHzui,j+1,k+1/2

n−1/2 +
Dt

m0Dx
usExui,j+3/2,k+1/2

n − uExui,j+1/2,k+1/2
n + uEyui−1/2,j+1,k+1/2

n − uEyui+1/2,j+1,k+1/2
n d, sA3d

uExui,j+1/2,k+1/2
n+1 = uExui,j+1/2,k+1/2

n +
Dt

e0ei,j+1/2,k+1/2Dx
usHzui,j+1,k+1/2

n+1/2
− uHzui,j ,k+1/2

n+1/2 + uHyui,j+1/2,k
n+1/2 − uHyui,j+1/2,k+1

n+1/2 d, sA4d

FIG. 8. Extinction spectra calculated for gold cylinders: the
height is 60 nm, the diameter is 100 nm, and grating contants are,
respectively, 200 nmsstructure Ad, 250 nmsstructure Bd, and 300
nm sstructure Cd. Calculations performed with the Drude-Lorentz
model are depicted with a thick line. Calculations performed with
the Drude model are depicted with a thin line. Peak positions for
structures A, B, and C are, respectively,l=625 nm,l=630 nm,
and l=638 nm with the Drude-Lorentz model, andl=628 nm,l
=630 nm, andl=638 nm for the Drude model.
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uEyui−1/2,j+1,k+1/2
n+1 = uEyui−1/2,j+1,k+1/2

n +
Dt

e0ei−1/2,j+1,k+1/2Dx
usHxui−1/2,j+1,k+1

n+1/2
− uHxui−1/2,j+1,k

n+1/2 + uHzui−1,+1j ,k+1/2
n+1/2 − uHzui,j+1,k+1/2

n+1/2 d,

sA5d

uEzui−1/2,j+1/2,k+1
n+1 = uEzui−1/2,j+1/2,k+1

n +
Dt

e0ei−1/2,j+1/2,k+1Dx
usHyui,j+1/2,k+1

n+1/2
− uHyui−1,j+1/2,k+1

n+1/2 + uHxui−1/2,j ,k+1
n+1/2 − uHxui−1/2,j+1,k+1

n+1/2 d.

sA6d

For a dispersive medium whose dispersion is described by
Eq. s3d, we need to introduce two new vector fieldsCD and
CL known as “recursive acumulators” and Eqs.sA4d–sA6d
have to be replaced by the following three equations:

uCDun = uCD
r CDun−1 + uCD

d Eun, sA7d

uCLui
n = uCL

rCLun−1 + uCL
dEun, sA8d

uEun+1 = uCaEun + Cb ¹ 3 Hn+1/2 + Cg ResuCDun + uCLund,

sA9d

where the coefficientsCa, Cb, Cg, Cd, andCr depend on the
coefficients of Eq.s3d.

For the Drude term, we definede=−svD /gDd2, xD
0

=des1−e−gDDtd, DxD
0 =des1−e−gDDtd2, and sD=vD

2 /gD. Then
the coefficientsCD

r andCD
d are defined as

CD
r = e−gDDt, sA10d

CD
d = DxD

0 . sA11d

For the Lorentz term, we first definea=GL /2, b
=ÎVL

2−a2, andg=DeVL
2 /b. Then we define

xL
0 = − i

g

a − ib
s1 − es−a+ibdDtd, sA12d

DxL
0 = − i

g

a − ib
s1 − es−a+ibdDtd2. sA13d

CoefficientsCL
r andCL

d can now be written as

CL
r = es−a+ibdDt, sA14d

CL
d = DxL

0. sA15d

Finally, we definex0=xD
0 +ResxL

0d, and the last three co-
efficients needed are

Ca =
e`

e` + x0 + sDDt
, sA16d

Cb =
Dt

Dxe0se` + x0 + sDDtd
, sA17d

Cg =
1

e` + x0 + sDDt
. sA18d
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