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We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite, single-wall,
metallic carbon nanotubes. The effective mass model is used to describe the slowly varying spatial envelope
wave functions of spinless electrons near the Fermi level at two inequivalent valleyssK-pointsd in terms of the
four component Dirac equation for massless fermions, with the role of spin assumed by pseudospin due to the
relative amplitude of the wave function on the sublattice atomss“A” and “B” d. Using boundary conditions at
the ends of the tube that neither break valley degeneracy nor mix pseudospin eigenvectors, we use degenerate
perturbation theory to show that the presence of impurities has two effects. First, the position of the impurity
with respect to the spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy
level shift as a function of energy. Second, the position of the impurity within the hexagonal graphite unit cell
produces a particular 434 matrix structure of the corresponding effective Hamiltonian. The symmetry of this
Hamiltonian with respect to pseudospin flip is related to degeneracy breaking and, for an armchair tube, the
symmetry with respect to mirror reflection in the nanotube axis is related to pseudospin mixing.
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I. INTRODUCTION

Much of the interest in carbon nanotubes has been moti-
vated by the desire to develop new nanoscale electrical
devices.1,2 The electronic properties of nanotubes follow
from the band structure of a two-dimensional sheet of graph-
ite which is a semimetal, having a vanishing energy gap at
the six corners,K-points, of the hexagonal first Brillouin
zone. A single-wall nanotube may be thought of as a
graphene sheet rolled up to form a nanometre-diameter cyl-
inder. Periodicity around the circumference results in quan-
tized transverse wave vectors leading to metallic or semicon-
ducting behavior depending on whether theK-point wave
vectorK is an allowed wave vector.

A finite nanotube should possess discrete energy levels
corresponding to standing waves typical of a confined quan-
tum particle. Evidence of discrete levels was seen in trans-
port measurements3,4 a few years ago, followed by the direct
observation of sinusoidal standing wave patterns by scanning
tunneling microscopy5,6 with wave vectors corresponding to
those near theK-point K . More recently, Coulomb blockade
measurements on carbon nanotube quantum dots7–9 have
seen varying degrees of evidence for the fourfold periodicity
of shell filling that would be in agreement with expectations
based on the spin and valleysK-pointd structure.

In this paper, we will consider the interplay between two
sources of valley degeneracy breaking in a finite nanotube,
namely isolated impurities and the boundaries themselves.
The aim is to show how the character of an impurity deter-
mines the extent of valley degeneracy breaking, resulting in
the possibility to observe either twofold or fourfold period-
icity of shell filling.9 As far as boundaries are concerned, a
number of authors10–15 have modelled finite-length nano-
tubes in order to describe the atomic scale variation of stand-
ing waves patterns and the opening of an energy gap display-
ing an oscillating dependence on the tube length. For

impurities, theoretical studies of open nanotubes by Ando
and co-workers16–18 have shown that short-ranged potentials
stypical range smaller than the lattice constant of graphited
produce back-scattering, but not long-ranged potentials. For
an armchair tube, it was demonstrated that impurities pre-
serving mirror reflection in the nanotube axis do not mix the
bondingp and antibondingp* energy bands.18–20For closed
nanotubes, a recent density-functional calculation21 has
shown how a small number of defects may reduce the four-
fold periodicity of shell filling to twofold.

In the scanning tunneling microscopy measurements of
Ref. 6 an additional slow spatial modulation of the standing
waves was observed. It was interpreted as being a beating
envelope function with wave vectorq, uqu! uK u, resulting
from the interference of left and right moving waves with
slightly different total wave vectorsK ±q. The effective
mass model22–25 provides an analytical description of the
electronic structure near theK-point where the total wave
vector is k =K +q and the dispersion relation is linearE
=svuqu, v is the Fermi velocity ands= ±1 for the conduction
and valence band, respectively. For spinless electrons, the
envelope wave functionCsq ,r d has four components corre-
sponding to two inequivalent atomic sites in the hexagonal
graphite lattice s“A” and “B” d and to two inequivalent
K-points in the hexagonal first Brillouin zone. The resulting
eigenvalue equation forC is the massless Dirac equation
written in the “chiral” or “spinor” representation,

− iva · ¹ C = EC, a = Ss 0

0 − s
D ,

s = eihsz/2ssxî + syĵde−ihsz/2, s1d

where the role of spin is assumed by the relative amplitudes
on theA andB atomic sitess“pseudospin”d: s is a vector in
the sx,yd plane rotated by the chiral angleh of the tube.
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Also, v=sÎ3/2dag is the Fermi velocity,a is the lattice con-
stant of graphite andg is the nearest neighbor transfer inte-
gral.

Since we are interested in perturbations of a clean nano-
tube that may destroy valley degeneracy, we must identify
the symmetry that preserves degeneracy. The pseudospin of a
two-dimensionals2Dd graphite sheet does not transform in
the same way as real spin because certain transformations
result in a swapping of the orientation ofA andB atoms. This
leads us to identify an operatorrz that flips pseudospin but
commutes with the clean effective Hamiltonian, Eq.s1d,

rz = S 0 isz

isz 0
D . s2d

In general, the two degenerate eigenvectorshC1,C2j corre-
sponding to the two nonequivalentK-points of the Dirac
equation for a clean, metallic nanotube may be labelled using
the component of pseudospin along the tube axisSa or using
pseudohelicityl. Therefore, the pseudospin-flip operatorrz
relates the degenerate eigenvectors to each other,rzC1
→C2. We may make two statements about the consequence
of the symmetry of a particular perturbationdH. The first is
that perturbations that are symmetric in the pseudospin-flip
operatorrz

−1dHrz=dH preserve pseudospin and do not break
valley degeneracy. Second, a perturbation that breaks
pseudospin-flip symmetry,rz

−1dHrzÞdH, but is still sym-
metric with respect to the operatorSa measuring pseudospin
Sa

−1dHSa=dH, will break degeneracy without mixing the
pseudospin eigenvectors. Since pseudospin is the relative
amplitude of the wave function on theA andB atomic sites,
a given perturbation must differentiate between adjacent at-
oms in order to break pseudospin symmetry. In other words,
the influence of the perturbation must vary spatially on the
scale of the graphite lattice constanta, such a perturbation is
described as being short ranged.

We will investigate how a perturbing short-range potential
breaks the intervalley degeneracy. The position of a potential
within the hexagonal graphite unit cell will produce a spe-
cific 434 matrix structure of the resulting effective Hamil-
tonian, and the symmetry of the matrix will determine the
extent of degeneracy breaking. As the ultimate limit of a
short-range potential, we consider a delta function potential
because it simplifies the calculations and the resulting analy-
sis. We would like to stress that our intent is not to produce
exact quantitative results that describe the influence of impu-
rities, but to characterize possible symmetry breaking prop-
erties. The positions of the potential we consider are shown
with relation to the hexagonal graphite unit cell in Fig. 1.
They are near anA-type atomic site, labelledA in the figure,
near aB-type atomic site, labelledB, near the center of the
unit cell, labelledC, or near the half-way point between
neighboring atoms, labelledD.

The paper is organized as follows. In Sec. II, the effective
mass model leading to the Dirac equation is briefly described
along with a discussion of its symmetry properties. Section
III is an introduction to the boundary conditions of a closed
carbon nanotube and the resulting energy spectrum of a clean
nanotube is calculated. In Sec. IV, we use degenerate pertur-

bation theory to show how valley degeneracy is broken by a
short-range potential and to examine the relationship be-
tween the position of the potential and symmetry. In Appen-
dix B we give a brief account of a nonperturbative calcula-
tion of the energy spectrum for the example of an impurity
exactly on an atomic site.

II. SYMMETRY PROPERTIES OF THE EFFECTIVE
MASS MODEL

In the effective mass model of two-dimensional
graphite,22 the total wave functionCtot is written as a linear
combination of four componentsm=h1,2,3,4j correspond-
ing to two K-points m=h1,2j and p-type atomic orbitals
w jsr −Rjd on two nonequivalent atomic sitesj =hA,Bj in the
unit cell,

Ctotsr d = o
m=1

4

hFm
s0dsr d − Gmsr d · ¹ + ¯ jcmsr d, s3d

where

Fm
s0dsr d =

1
ÎN

o
Rj

N

eiK m·Rjw jsr − Rjd, s4d

Gmsr d =
1

ÎN
o
Rj

N

eiK m·Rjw jsr − Rjdsr − Rjd, s5d

are Bloch-type functions constructed from the atomic orbit-
als,Rj is the position of an atom in real space and the sum-
mation is over the number of unit cellsN@1. The functions
cmsr d are components of the envelope functionCsq ,r d. Sub-
stituting this expression forCtot into the Schrödinger equa-
tion and integrating with respect to fast degrees of freedom
that vary on the scale of the unit cell leads to the Dirac
equations1d for the envelope functionC. We label the two

FIG. 1. The positions with respect to the graphite unit cell of the
perturbing potential are labelled asA, B, C, andD. Carbon atomic
positions are at the six corners of the hexagon, there are threeA
atomic positions hA1,A2,A3j and three B atomic positions
hB1,B2,B3j. We also consider the potential to be near the center of
the unit cellsCd or at one of six positions half-way between neigh-
boring atomssD1 to D6d. An additional small deviationdR of the
potential position is shownsgreatly exaggeratedd for theC position,
with direction described by anglex in the nanotube coordinates
sx,yd. The figure has chiral angleh=p /6 corresponding to an arm-
chair tube.
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nonequivalentK-points asK and K̃ with wave vectorsK
=s±4p /3a,0d, and the components ofC are written in the

orderKA, KB, K̃B, K̃A. The appearance of the chiral angle of
the tubeh in the Dirac equation shows that the axes of the
sx8 ,y8d “graphite” coordinate system have been rotated to be
transverse and parallel to the tube axis, labelledsx,yd in Fig.
1. Applying periodic boundary conditions to the wave func-
tion Ctot, Eq. s3d, in the direction transverse to the nanotube
axis produces a condition for the envelope functionC that
leads to metallic or semiconducting behavior depending on
whether the transverse component of wave vectorq is al-
lowed to be zero.23,24

In order to highlight the separateK-point space andAB
space structure present in carbon nanotubes we adopt a ma-
trix direct product notation usinghsx,sy,sz,Isj for 232
Pauli matrices and the unit matrix that operate within a block
sAB spaced andhPx,Py,Pz,IPj for 232 Pauli matrices and
the unit matrix that operate inK-point space. For example,
the operatora may be written asa=Pz^ s, and the usual
operators for the reflection of real spin in a plane that re-
verses the Cartesian coordinaten=x, y or z are rn= iPx
^ eihsz/2sne

−ihsz/2. As mentioned in the Introduction, the
pseudospin of a 2D graphite sheet does not transform in the
same way as real spin because certain transformations result
in a swapping of the orientation ofA and B atoms. This
additional operation is described by the “pseudospin-flip”
operator, Eq.s2d, rz=Px ^ isz that corresponds to a reflection
of real spin in thesx,yd plane. For example, an active rota-
tion of the 2D graphite sheet anticlockwise byp /3 about the
perpendicularz axis, Csr 8d=C6Csr d, is described byC6

=rzRsp /3d=Px ^ expss2pi /3dszd where Rsud= IP

^ expssiu /2dszd is a continuous rotation operator.
We consider the nanotube axis to be parallel to the unit

vector n̂=ssinh ,cosh ,0d in the sx8 ,y8d graphite coordi-
nates, so that it points along they-axis in thesx,yd nanotube
coordinates, Fig. 1. In this rotated coordinate system, the
component of the pseudospin operator along the positive
y-axis isSa= IP ^ eihsz/2sye

−ihsz/2 and the pseudohelicity op-
erator isl= uqu−1IP ^ eihsz/2s−isy]yde−ihsz/2. For an armchair
tube, a mirror reflection across the nanotube axissthe y-axis
in Fig. 1d is accompanied by an exchange ofA andB atomic
positions so that it is described not by operatorrx but by the
combinationrzrx representing reflection of real spin accom-
painied by an additional spin-flip. It turns out thatSa
= irzrx, so we may draw the conclusion that, for an armchair
tube, the operator measuring pseudospin also represents a
mirror reflection across the nanotube axis. The situation is
different for a zigzag tube because reflection across the nano-
tube axissthe y8-axis in Fig. 1d is not accompanied by an
exchange ofA andB atomic positions so that it is described
by operatorrx, not Sa= irzrx. This means that potential po-
sitions that are symmetric with respect to mirror reflection
across the axis of an armchair tube, such as positionsD1 and
D4 in Fig. 1, will also be symmetric with respect to the
pseudospin operator and will break degeneracy without mix-
ing the pseudospin eigenvectors. Since pseudospin is related
to the underlying molecular orbital state,25 this statement is
equivalent to saying that impurities preserving mirror reflec-
tion in the nanotube axis do not result in mixing of the bond-

ing p and antibondingp* energy bands.18–20,26,27 On the
other hand, potential positions that are symmetric with re-
spect to mirror reflection across the axis of a zigzag tube,
such as positionsA3 andB1 in Fig. 1, will not be symmetric
with respect to the pseudospin operator.

III. SINGLE PARTICLE ENERGY SPECTRUM
OF A CLOSED NANOTUBE

In this section we calculate the form of noninteracting
single particle standing waves and the corresponding energy
spectrum in a closed nanotube. For simplicity, we will con-
sider only metallic nanotubes with arbitrary chiral angleh.
We suppose that thex axis is perpendicular to the tube axis
and we consider only the zero momentum transverse mode
so that uEu,2pv /Lc where Lc= uChu is the circumference.
The Dirac equation is diagonal inK-point space, so that, for
an open nanotube, there are two right movingsCK

sRd and

C
K̃

sRd
d and two left movingsCK

sLd andC
K̃

sLd
d plane wave solu-

tions,

CK
sRd = Aeiqy1

1

ise−ih

0

0
2, CK

sLd = Be−iqy1
1

− ise−ih

0

0
2 ,

C
K̃

sRd
= Ceiqy1

0

0

1

− ise−ih
2, C

K̃

sLd
= De−iqy1

0

0

1

ise−ih
2 ,

whereA, B, C, andD are arbitrary constants,q is the wave
vector along the tube and we considerqù0 andE=svq, s

= ±1. The solutionsCK
sRd andC

K̃

sLd
are eigenvectors of pseu-

dospin componentSa with eigenvalue +s, whereas the solu-

tions C
K̃

sRd
and CK

sLd have eigenvalue −s. Also, the solutions

CK
sRd and CK

sLd are eigenvectors of pseudohelicityl with ei-

genvalue +s, whereas the solutionsC
K̃

sRd
and C

K̃

sLd
have ei-

genvalue −s.
Note that the HamiltonianH2d given in Eq. s1d is two

dimensional, but, by taking into account only the lowest
transverse mode, it becomes one dimensionalH1d in a me-
tallic tube,

H2d = vPz ^ eihsz/2s− isx]x − isy]yde−ihsz/2, s6d

H1d = vPz ^ eihsz/2s− isy]yde−ihsz/2, s7d

The pseudospin part of the one dimensional HamiltonianH1d

may be diagonalized using a unitary transformation,H̃1d
=U−1H1dU:28

U =
IP

Î2
^ eihsz/2ssy + szde−ihsz/2, s8d
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H̃1d = vPz ^ s− isz]yd, s9d

and the corresponding eigenvectorsC̃
K/K̃

sL/Rd
=U−1C

K/K̃

sL/Rd
are

eigenvectors ofsz in pseudospin space so they have only one
nonzero component out of four.

Now we will briefly describe the effective boundary con-
ditions for the envelope functionC in a closed carbon nano-
tube, and refer the reader to Ref. 15 for more details. There it
was shown that energy independent hard wall boundary con-
ditions for the Dirac equation may be expressed in general
terms as

C = MC, M2 = 1, hnB · a,Mj = 0, s10d

whereM is an Hermitian, unitary 434 matrix M2=1 with
the constraint that it anticommutes with the operatornB ·a,
proportional to the component of the current operator normal
to the interface,nB is the unit vector normal to the interface.
There are four possible linear combinations of matrices sat-
isfying these constraints onM, which, assumingnB is a vec-
tor confined to thesx,yd plane, may be written in terms of a
small number of arbitrary parameters,

M1 = cosLsIP ^ n1 · sd + sinLsPz ^ n2 · sd, s11d

M2 = cosYsn1 · P ^ Isd + sinYsn2 · P ^ nB · sd, s12d

M3 = cosVsn2 · P ^ nB · sd + sinVsIP ^ n1 · sd, s13d

M4 = cosQsn1 · P ^ Isd + sinQsPz ^ n2 · sd, s14d

where the anglesL, Y, Q, andV are arbitrary,n1 andn2 are
three-dimensional spacelike vectors satisfying the constraints
n1·nB=n2·nB=n1·n2=0, andn1 andn2 are two-dimensional
fconfined to thesx,yd planeg spacelike vectors satisfying the
constraintn1·n2=0.

In principle, there are different ways of combining the
right and left moving plane waves in order to create standing
waves. The first possibility is that waves at the sameK-point
combine, namelyCK

sRd and CK
sLd form a standing wave with

pseudohelicity eigenvalue +s, and C
K̃

sRd
and C

K̃

sLd
form a

standing wave with pseudohelicity eigenvalue −s. This situ-
ation is realized by the matrixM1, Eq. s11d, because it is
diagonal inK-point space. A second possibility is that waves

from oppositeK-points combine, namelyCK
sRd andC

K̃

sLd
form

a standing wave with pseudospin component eigenvalue +s,

and C
K̃

sRd
and CK

sLd form a standing wave with pseudospin

component eigenvalue −s. This situation is realized by the
matrix M2, Eq. s12d, because it is off-diagonal inK-point
space. A third possibility is a combination of the previous
two, with waves scattered back at the boundary into a mix-
ture of both of theK-points. This situation is realized by the
matricesM3, Eq. s13d, andM4, Eq. s14d, because they have
both diagonal and off-diagonal inK-point space parts.

In the graphite coordinate system, we define the normal to
the boundarynB in terms of the chiral angle of the tubeh
and we choose two mutually orthogonal three-dimensional
s3Dd vectorsn1 and n2, and two additional orthogonal 2D
vectorsn1 andn2:

nB = ssinh,cosh,0d,

n1 = scosh sinz,− sinh sinz,coszd,

n2 = scosh cosz,− sinh cosz,− sinzd,

n1 = scosj,sinj,0d,

n2 = s− sinj,cosj,0d.

This introduces two new mixing angles,z andj, the arbitrary
parameters contained within the boundary conditions de-
scribe the amount of mixing between different discrete sym-
metries. Table I shows a summary of the discrete symmetries
of the boundary conditions in terms of the orientation of the
vectorsn1, n2, n1, andn2. In addition torz andSa we con-
sider parity P=Px ^ Is, corresponding to a rotation byp
about thez axis sx→−x andy→−yd, and charge conjugation
sCd that involves the complex conjugation operator com-
bined withC=−iPy ^ sy. The anglesz andj mix terms with
different symmetry with respect torz, z=0 andj=0 corre-
spond to evenness with respect torz whereasz=p /2 andj
=p /2 correspond to oddness. Since pseudospin and/or
pseudohelicity label different states at the same energy, val-
ues of z and j not equal to multiples ofp /2 will lead to
broken degeneracy. The anglesL, Y, Q, andV mix different
symmetries with respect to combinations ofP, C, andrz.

As representative examples, we consider below the
boundary conditionsM1 sdiagonald and M2 soff-diagonald
separately. We will calculate the form of the standing waves
and the energy spectrum for a nanotube with the same type
of boundary condition on the right-hand sidesat y= +L /2d
and on the left-hand sidesat y=−L /2d. We introduce an in-
dex u=hR,Lj; ±1 to label the right- and left-hand side so
that the normal to the boundary, defined with respect to the
graphite coordinate system, isnB=ussinh ,cosh ,0d, and we
take into account the possibility of different mixing angles,
Lu, Yu, Qu, and Vu, and vectors n1=su cosh sinzu,
−u sinh sinzu,coszud, n2=su cosh coszu,−u sinh coszu,
−sinzud, n1=scosju,sinju,0d andn2=s−sinju,cosju,0d.

TABLE I. Discrete symmetries of the boundary conditions.

M rz P C Sa

IP ^ n1·s n1=sî , ĵd z= p/2 −1 +1 +1 −1

n1= k̂ z=0 +1 +1 +1 −1

Pz^ n2·s n2=sî , ĵd z=0 +1 −1 −1 −1

n2= k̂ z= p/2 −1 −1 −1 −1

n1·P ^ Is n1= î j=0 +1 +1 +1 +1

n1= ĵ j= p/2 −1 −1 +1 +1

n2·P ^ nB ·s n2=−î j= p/2 −1 +1 −1 +1

n2= ĵ j=0 +1 −1 −1 +1
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A. Diagonal boundary conditions

With the above definitions of the mixing angles, the
boundary conditionC=M1C produces the following rela-
tions between the components of the wave function at the
interface:

u sinszu + Lude−ihcAK − f1 + cosszu + LudgcBK = 0,

s15d

u sinszu − Lude+ihcAK̃ − f1 − cosszu − LudgcBK̃ = 0.

s16d

The equations are diagonal inK-point space so do not
describe intervalley scattering. With these boundary condi-
tions on the rightsat y= +L /2d and on the leftsat y=−L /2d,
standing wavesC1 corresponding toK-point K are created
from combiningCK

sRd andCK
sLd and are labelled by pseudohe-

licity l= +s, and standing wavesC2 corresponding to

K-point K̃ are created fromC
K̃

sRd
and C

K̃

sLd
and have labell

=−s,

C1 = N1
eiq1y + s− 1dp1eiszm+isLm−iq1y

ise−ihfeiq1y − s− 1dp1eiszm+isLm−iq1yg
0

0
2 , s17d

C2 = N1
0

0

eiq2y + s− 1dp2e−iszm+isLm−iq2y

− ise−ihfeiq2y − s− 1dp2e−iszm+isLm−iq2yg
2 , s18d

where the normalization factor isN=1/s2ÎLcLd and the
wave vectors are

q1 = s− szp − sLp + pp1d/L, s19d

q2 = s+ szp − sLp + pp2d/L. s20d

Here hp1,p2j are integers such thatq1s2dù0, zp=szR+zLd /2,
zm=szR−zLd /2, Lp=sLR+LLd /2, andLm=sLR−LLd /2. Us-
ing E=svq shows that the mixing angleszR and zL break
K-point degeneracy whereasLR andLL break electron-hole
symmetry.

In order to understand the form of the wave functions, we
set all mixing angles equal to zerozp=zm=Lp=Lm=0. In
this case the boundary conditions simplify tocBK=cBK̃=0 at
both ends of the nanotube, and the componentscBK andcBK̃
have the form of standing wave solutions of the Schrödinger
equation for a confined particle, namely successive cosine
and sine functions. The componentcBK is shown explicitly
in Fig. 2 ssolid linesd and the componentcAK, which is pro-
portional to the derivative ofcBK, is shown by dashed lines.

B. Off-diagonal boundary conditions

The boundary conditionC=M2C is equivalent to the fol-
lowing relations between the components of the envelope
wave function at the interface:

cAK + u sinYue
+ih−ijucAK̃ − cosYue

−ijucBK̃ = 0, s21d

cBK − u sinYue
−ih−ijucBK̃ − cosYue

−ijucAK̃ = 0. s22d

The equations are off-diagonal inK space so describe inter-
valley scattering. We label the standing waves asC1 with
pseudospin eigenvalueS= +s, created from combiningCK

sRd

andC
K̃

sLd
, andC2 with pseudospin eigenvalueS=−s, created

from combiningC
K̃

sRd
andCK

sLd. We find that

C1 = N1
eiq1y

ise−ih+iq1y

s− 1dp1eisYm+ijp−iq1y

iss− 1dp1e−ih+isYm+ijp−iq1y
2 , s23d

C2 = N1
s− 1dp2eisYm−ijp−iq2y

− iss− 1dp2e−ih+isYm−ijp−iq2y

eiq2y

− ise−ih+iq2y
2 , s24d

where the normalization factor isN=1/s2ÎLcLd and the
wave vectors are

q1 = s− sYp − jm + pp1d/L, s25d

q2 = s− sYp + jm + pp2d/L. s26d

Here hp1,p2j are integers such thatq1s2dù0, Yp=sYR

+YLd /2, Ym=sYR−YLd /2, jp=sjR+jLd /2, and jm=sjR

−jLd /2. The anglejm breaks degeneracy whereasYp breaks
electron-hole symmetry.

The physical relevance of the envelope wave functions
may be understood by examining the total wave function
Ctot, Eq. s3d, that is constructed from linear combinations of
products of envelope wave functions with Bloch functions
that vary rapidly in space on the atomic scale. If we only take

FIG. 2. Plot of the modulus squared wave functionuC1u2 of the
lowest states for diagonal boundary conditions: the solid lines show
the second componentucBKu2 and the dashed lines show the first
componentucAKu2. The lowest statesp1=0,1,2,3 areshown from
top to bottom. Values of the mixing angles are taken to bezm

=Lm=0 so that the boundary conditions are satisfied bycBK=0 at
the ends of the nanotubey= ±L /2.
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into account the first term in the gradient expansion, Eq.s3d,
and the contribution from a single atomic orbital atr =RA or
RB, then Ctot,1s2d is the sum of two components ofC1s2d,
each multiplied by an additional oscillating factor
expsiK m .Rjd. For example, if we setYm=jp=0 for an arm-
chair tubeh=p /6 then

Ctot,1sr d ~ Hcossq1y + K · r 7 p/6d:ss− 1dp1 = + 1,

sinsq1y + K · r 7 p/6d:ss− 1dp1 = − 1,
J

Ctot,2sr d ~ Hsinsq2y − K · r ± p/6d:ss− 1dp2 = + 1,

cossq2y − K · r ± p/6d:ss− 1dp2 = − 1,
J

where the upper sign refers tor =RA and the lower tor
=RB. These equations reproduce the atomic scale variation
of standing wave patterns obtained by Rubioet al.10 with an
additional modulation due to the wave vectorq1s2d. Figure 3
is a schematic of the wave function amplitudeCtot,1
~cossK ·r 7p /6d determined on the atomic sites, following
Fig. s1dd in Ref. 10. Figures 4 and 5 show plots of the modu-
lus squared wave function for the four lowest states above
the Fermi level, evaluated along two different lines parallel
to the tube axis, labelled scan A and scan B in Fig. 3, respec-

tively. Figure 4, scan A, is for a line through the middle of
bonds making an angle with the tube axis and it tends to
show a pair of equidistant peaks within every Fermi wave-
length whereas Fig. 5, scan B, is for a line through bonds
perpendicular to the tube axis and it tends to show peak
pairing.10 In order to ensure that the successive wave func-
tions are not degenerate, we takejm=p /4 andYp=−p /2 so
that the four lowest states above the Fermi level have ener-
gies E=pv / s4Ld, 3pv / s4Ld, 5pv / s4Ld, 7pv / s4Ld with
wave vector indicesp1=0, p2=0, p1=1, p2=1, and respec-
tive correspondence to the wave functions drawn schemati-
cally in Figs. 1sdd, 1sad, 1scd, 1sbd of Ref. 10. As well as a
different long range modulation, due to different values of
q1s2d, the successive wave functions show a distinct even/odd
variation due to the different forms of pseudospin eigenvec-
tors C1 andC2.

IV. DEGENERATE PERTURBATION THEORY IN THE
PRESENCE OF AN IMPURITY

In this section we derive 434 Hamiltonians of the effec-
tive mass model describing a short range potential at differ-
ent positionsR in the nanotube wall. Each effective Hamil-
tonian has a different structure, depending on the location of
the potential with respect to the hexagonal graphite unit cell.
The following sections describe different impurity positions

TABLE II. Impurity positions discussed in the following
sections.

Impurity position with respect
to the graphite unit cell

Label in
Fig. 1

Discussed in
section

Atomic site Ai, Bi IV A

Center of unit cell C IV B

Half-way along a bond Di IV C

FIG. 3. Relative amplitude of the wave functionCtot,1sr d
~cossK ·r 7p /6d determined on the atomic sites, following Fig.
1sdd in Ref. 10. Dashed lines, labelled scanA and scanB, are
parallel to the tube axis.

FIG. 4. Plot of the modulus squared total wave functionuCtotu2
sarbitrary unitsd for off-diagonal boundary conditions that break
valley degeneracy. The wave function is evaluated along lineA
parallel to the axis of an armchair nanotubeh=p /6, length L
=50a. The four lowest energy states above the Fermi level are
shown from top to bottom. Parameter values ares=1, zm=p /4,
Yp=−p /2, andYm=zp=0.

FIG. 5. Plot of the modulus squared total wave functionuCtotu2
sarbitrary unitsd for off-diagonal boundary conditions that break
valley degeneracy. The wave function is evaluated along lineB
parallel to the axis of an armchair nanotubeh=p /6, length L
=50a. The four lowest energy states above the Fermi level are
shown from top to bottom. Parameter values ares=1, zm=p /4,
Yp=−p /2, andYm=zp=0.
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as shown in Fig. 1 and summarized in Table II.
As well as degeneracy arising from the real spin of elec-

trons, it was shown in the preceding section that the energy
levels of a clean metallic nanotube may be degenerate due to
pseudospin symmetry, depending on the symmetry of the
boundary conditions. Now we would like to concentrate on
the role of an additional perturbing potential, so we will con-
sider the case of degenerate levels in the clean nanotube, and
use degenerate perturbation theory to calculate the level
splitting due to the presence of the potential Hamiltonian.
The perturbation theory takes into account the interaction of
the potential with the degenerate levels, but neglects the ef-
fect of higher levels, so it is valid for energy level shifts that
are smaller than the spacingDE=pv /L between pairs of
unperturbed levels. As before, we suppose that thex axis is
perpendicular to the tube axis and we consider only the zero
momentum transverse mode so thatuEu,2pv /Lc whereLc
= uChu is the circumference. We will use off-diagonal bound-
ary conditions M2 because they correspond to the usual situ-
ation in metallic nanotubes,15 so the unperturbed degenerate
wave functions areC1 and C2, Eqs.s23d and s24d, respec-
tively, with jR=jL=0 corresponding to pseudospin symmetry
preserving boundaries,q1=q2;q, p1=p2;p, and q=spp
−sYpd /L.

As explained in Sec. II, we perform a gradient expansion
of the total wave function, Eq.s3d, and keep the lowest order
term. Then, we calculate matrix elementsVmn
=edrCm

* dHCn between the clean wave functions Eqs.s23d
and s24d and the effective Hamiltonians in order to apply
degenerate perturbation theory. The matrix elements for a
general effective Hamiltonian with arbitrary coefficients are
given in Appendix A: a particular position of the potential
will define the values of the arbitrary coefficients. The posi-
tions of the potential we consider are shown with relation to
the hexagonal graphite unit cell in Fig. 1. They are near an
A-type atomic site, labelledA in the figure, near aB-type
atomic site, labelledB, near the center of the unit cell, la-
belled C, or near the half-way point between neighboring
atoms, labelledD. Furthermore, we introduce a small addi-
tional deviation of the potential positiondR, the orientation
of which is shown in the figure for the potential near the unit
cell center. The labelssx8 ,y8d represent the coordinate axes
of the graphite sheet, whereas labelssx,yd represent the co-
ordinate axes of the nanotube, rotated by the chiral angleh.
The nanotube axis is parallel to they direction, and the di-
rection of the deviation of the potential position is described
by angle x in the nanotube coordinatesdR
=sdRcosx ,dRsinxd;sdX,dYd.

A. Potential near an atomic site

The origin of real space coordinates is placed in the center
of the Wigner-Seitz unit cell and the perturbative potential is
placed at positionR=R0+dR near an arbitrary atomic site.
For example, it may be near anA site, Fig. 1, so thatR0
=RA represents the exact position of theA atom, anddR is a
small additional deviation from it. In deriving the effective
mass model Hamiltonian, we take into account nearest
neighbor interactions: within nearest neighbor distanced

=a/Î3 of the perturbative potential, there is oneA atom and
three B atoms. In addition to the gradient expansion, we
perform an expansion in the small additional deviation of the
potential positiondR in order to generate a number of effec-
tive Hamiltonians with different symmetries.

The effective HamiltoniandH is a 434 Hamiltonian with
matrix elements involving the Bloch functionFm

s0d, Eq. s4d,
and a short ranged potentialdHsr d of strengthU,

dHnm=E ddrFn
s0d*sr ddHsr dFm

s0dsr d. s27d

Integration with respect to fast degrees of freedom that vary
on the scale of the unit cell produces a product of Bloch
functionsFm

s0d evaluated at the potential position and a delta
function representing the fact that the envelope wave func-
tions interact with a localized potential of scale less than the
graphite lattice constanta,

dHnm; vaULddsr − RdFn
s0d*sRdFm

s0dsRd. s28d

Here va is the volume of the graphite unit cell. There is a
strong dependence of the phase factors contained within the
Bloch functionsFm

s0d on the position of the potential within
the graphite unit cell. The Bloch functions also depend on
p-type atomic orbitalsw j on the nonequivalent atomic sites
j =hA,Bj in the unit cell. Since we consider the perturbative
potential to be in the same plane as the carbon atoms, we
only need to describe the behavior of the atomic orbitals in
the sx,yd coordinates. They are radially symmetric in the
plane and for simplicity we model them aswA/Bsr d;wsr d
=w0 exps−ur u /ld wherel,a/Î3.

For the potential exactly on anA site,dR=0, the effective
Hamiltonian is

dHA = va
2w2s0dUdsr − Rd1

1 0 0 e−ik

0 0 0 0

0 0 0 0

e+ik 0 0 1
2 , s29d

wherek is a phase factor associated with intervalley scatter-

ing at the impurityk=R0·sK −K̃ d. As expected for a poten-
tial on an atomic site, this Hamiltonian breaks pseudospin-
flip symmetry dHAÞrz

−1dHArz. For completeness, we note
that the equivalent effective Hamiltonian for an impurity
near aB site, Fig. 1, is

dHB = va
2w2s0dUdsr − Rd1

0 0 0 0

0 1 e−ik 0

0 e+ik 1 0

0 0 0 0
2 . s30d

Applying the general results for matrix elements given in
Appendix A to the effective HamiltoniansdHA/B, we find
that V12V21=V11V22 so that the energy level shifts aredE8
=0 anddE9=V11+V22. In terms of the model parameters,
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dE9 =
va

2w2s0dU
LcL

f1 + ass− 1dp cossk + ahdsins2qY0 − sYmdg,

s31d

where q=spp−sYpd /L and −L /2,Y0,L /2 is the coordi-
nate of the perturbative potential along the nanotube axis.
Here the factora= ±1 is used to distinguish between the case
of the potential being near an A sitea=1 or near aB site a
=−1. There is an oscillating dependence of the energy level
shift on the indexp of the clean energy levels that has a
period equal to 1/sY0/Ld. In terms of energy, and the spacing
of pairs of degenerate levelsDE=pv /L, the period is
DE/ sY0/Ld=pv /Y0. Figure 6 shows the splitting of the two
levels as a function of the energy for two different potential
positions. The upper curve is forY0=0.025L spotential is
one-twentieth of the way from the center of the nanotube to
the endd, and shows an oscillating pattern with period 40,
whereas the lower curve is forY0=0.125L spotential is a
quarter of the way from the center of the nanotube to the
endd, and shows an oscillating pattern with period 8.

The degenerate perturbation theory produces two new
zero-order wave functions that are linear combinations of the
original ones. We use them to plot the corresponding modu-
lus squared total wave functionsuCtotu2 near the Fermi level
in Fig. 7. The special case ofq=0 is considered, where the
long-range variation due to the envelope function is absent.
The top panel shows the wave function corresponding to
dE=0, C18~C1−sV11/V12dC2, that has a matrix element
with the effective Hamiltonian equal to zeroV118
=edrC18

*dHC18=0. This wave function is zero on every third
A site having the same phase factork as the impurity site.
The lower panel in Fig. 7 shows the wave function corre-
sponding todE=V11+V22, C28~C1+sV22/V12dC2 that has a

nonzero matrix element with the effective Hamiltonian. It
has a sharp peak on every thirdA site where the other stand-
ing wave is zero.

The effective Hamiltonians Eqs.s29d and s30d for a po-
tential exactly on an atomic site break axis reflection sym-
metry. In order to demonstrate the role of symmetry, we take
the sum of Hamiltonians arising from potentials on adjacent
A andB atoms with the same component along the tube axis,
for example, positionsA1 and B1 in Fig. 1. In this case the
Hamiltonian is

dHA + dHB = va
2w2s0dUdsr − Rd1

1 0 0 e−ik

0 1 e−ib 0

0 e+ib 1 0

e+ik 0 0 1
2 ,

s32d

wherek=RA ·sK −K̃ d andb=RB ·sK −K̃ d. We find that

V12V21 ~ fcossk + hd + cossb − hdg2,

sV11 − V22d2 ~ fsinsk + hd − sinsb − hdg2.

For the positionsA1 and B1 in Fig. 1, the phase factors are
k=2p /3 and b=0 in which case the HamiltoniandHA1
+dHB1 preserves axis reflection symmetrySa

−1dHSa=dH
andV12V21=0 for an armchair tubeh=p /6. There is no mix-
ing of the pseudospin eigenfunctions, but degeneracy is still
brokenV11−V22Þ0. Alternatively, using the unitary transfor-
mationU, Eq. s8d, to change to the system where the clean
wave functions are eigenvalues ofsz, it is possible to

FIG. 6. Splitting dE9−dE8 of the pairs of degenerate energy
levels of a clean nanotube Eq.s31d due to the effective Hamiltonian
dHA of a perturbative potential on anA atomic site. The symbols
show the energy shift as a function of the energy of the unperturbed
levels, solid lines are a guide for the eye. The upper curve is for the
potential atY0=0.025L spotential is one-twentieth of the way from
the center of the nanotube to the endd, lower curve is forY0

=0.125L spotential is a quarter of the way from the center of the
nanotube to the endd. UA=va

2w2s0dU and parameter values ares
=1, k=2p /3, h=p /6, andYp=Ym=0.

FIG. 7. Plot of the modulus squared total wave functionsuCtotu2
sarbitrary unitsd at the Fermi levelsq=0d in the presence of an
impurity on an atomic site, evaluated using degenerate perturbation
theory. The wave functions are evaluated along lineB parallel to the
axis of an armchair nanotubeh=p /6, lengthL=50a. The standing
wave corresponding todE=0 is shown on top, that corresponding
to dE=V11+V22 is below. Parameter values ares=1, p=0, andYp

=Ym=zp=zm=0.
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produce a matrix that has no off-diagonal spin parts and
clearly does not mix the pseudospin eigenfunctions,

U−1sdHA1 + dHB1dU = va
2w2s0dUdsr − Rd

31
1 0 e−pi/3 0

0 1 0 e2pi/3

epi/3 0 1 0

0 e−2pi/3 0 1
2 .

s33d

Returning to a single impurity potential on an atomic site,
and taking into account first order terms in the deviationdR
of the potential position, we find an effective Hamiltonian
with a different structure,

dHA/B8 = UA/B8 dsr − Rd

31
0 iae−ix̃ − ieiax̃−ik 0

− iae+ix̃ 0 0 − ieiax̃−ik

ie−iax̃+ik 0 0 iae−ix̃

0 ie−iax̃+ik − iae+ix̃ 0
2 ,

s34d

where UA/B8 =3udRue−d/lva
2w2sudRudU /2l and x̃=x−h is the

angle of the deviationdR in the graphite coordinates as
shown in Fig. 1. The factora= ±1 is used to distinguish
between the case of the potential being near anA sitea=1 or
near aB site a=−1. We find that the energy level shifts are

dE = −
UA/B8

LcL
s− 1dp coss2qY0 − sYmdsinsk + ah − axd

±
UA/B8

LcL
Îf1 + ass− 1dpsins2qY0 − sYmdcossk + ahdgf1 + ass− 1dpsins2qY0 − sYmdcossk + ah − 2xdg, s35d

wherex is the angle of the deviation of the potential in the
nanotube coordinates. Figure 8 shows the splitting of the
energy levels as a function of the energy for two different
potential positions. The upper curve is forY0=0.025L spo-
tential is one-twentieth of the way from the center of the
nanotube to the endd, and shows an oscillating pattern with

period 40, whereas the lower curve is forY0=0.125L spoten-
tial is a quarter of the way from the center of the nanotube to
the endd, and shows an oscillating pattern with period 8. The
oscillation periods are the same as for the HamiltoniandHA,
but this time there is a shift of both of the energy levels, one
positive, one negative, instead of one of the levels remaining
stationary while the other moves.

B. Impurity at the center of the unit cell

In this section, we consider the perturbative potential to
be placed near the center of the graphite unit cell, positionC
in Fig. 1. For the zeroth order gradient term, we find that the
effective Hamiltonian for the potential exactly at the center
of the unit cell is equal to zero, such a position does not
break the rotational symmetry of graphene. The first nonzero
contribution arises from a quadratic deviation from the cen-
ter of the unit cell,

dHC = iUCdsr − Rd

31
1 e2ix̃ − e−ik − e2ix̃−ik

e−2ix̃ 1 − e−2ix̃−ik − e−ik

− e+ik − e2ix̃+ik 1 e+2ix̃

− e−2ix̃+ik − e+ik e−2ix̃ 1
2 ,

s36d

where UC=s3udRu / s2ldd2va
2w2sddU. Applying degenerate

perturbation theory in the same way as before we find that
the energy level shifts aredE8=0 and dE9=V11+V22. In
terms of the model parameters,

FIG. 8. Splitting dE9−dE8 of the pairs of degenerate energy
levels of a clean nanotube Eq.s35d due to the effective Hamiltonian
dHA8 of a perturbative potential with a first order deviationdR from
anA atomic site. The symbols show the splitting as a function of the
energy of the unperturbed levels, lines are a guide for the eye. The
upper curve is for the potential atY0=0.025L spotential is one-
twentieth of the way from the center of the nanotube to the endd,
lower curve is forY0=0.125L spotential is a quarter of the way
from the center of the nanotube to the endd. Parameter values are
s=1, k=2p /3, h=p /6, Yp=Ym=0, and the angle of deviation of
the potential isx=p /4.
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dE9 =
2UC

LcL
f1 − s− 1dp coss2qY0 − sYmdcosk

+ ss− 1dpsins2qY0 − sYmdsins3h − 2xdsinkg,

s37d

The results are similar to those for the potential exactly on an
atomic site, one of the energy levels does not move and
corresponds to a linear combination of clean wave functions
that has zero matrix element with the effective Hamiltonian,
whereas the other energy level suffers a shift that oscillates
with the indexp and has a period equal to 1/sY0/Ld. Figure
9 shows the energy level splitting as a function of the energy
for two different potential positions. The upper curve is for
Y0=0.025L spotential is one-twentieth of the way from the
center of the nanotube to the endd, and shows an oscillating
pattern with period 40, whereas the lower curve is forY0
=0.125L spotential is a quarter of the way from the center of
the nanotube to the endd, and shows an oscillating pattern
with period 8. The oscillation of the level splitting as a func-
tion of energy with a period determined by the positionY0 of
the impurity along the tube axis, −L /2,Y0,L /2, may be
understood as arising from the slow spatial modulation of the
envelope wave functions since, for standing waves, the po-
sitions of peaks and nodes vary as a function of energy.
Therefore the extent to which they scatter from a given im-
purity position also depends on their energy.

The dependence of the energy level shift onh and x
arises because the position of the impurity determines the
extent of degeneracy breaking. As a special case, we note
that when the angle of deviation of the impurity isx=p /2
ssee Fig. 1d, the HamiltoniandHC preserves axis reflection
symmetry for an armchair tube and the factor sins3h−2xd

=−1. Degeneracy is still broken but there are no off-diagonal
matrix elementsV12=V21=0 and no mixing of the pseu-
dospin eigenvectors. Alternatively, using the unitary transfor-
mationU, Eq. s8d, to change to the system where the clean
wave functions are eigenvalues ofsz, it is possible to pro-
duce a matrix that has no off-diagonal spin parts and clearly
does not mix the pseudospin eigenfunctions,

U−1dHCU = 2iUCdsr − Rd1
0 0 0 0

0 1 0 − e−ik

0 0 0 0

0 − eik 0 1
2 . s38d

C. Impurity half-way between atomic sites

In this section, we consider the perturbative potential to
be placed near the half-way point between two neighboring
atoms, positionD in Fig. 1. There is a nonzero contribution
of the zeroth order gradient term for the potential exactly at
the half-way point,

dHD = iUDdsr − Rd1
1 e−isa−bd e−isa+bd e−2ia

eisa−bd 1 e−2ib e−isa+bd

eisa+bd e2ib 1 e−isa−bd

e2ia eisa+bd eisa−bd 1
2 ,

s39d

whereUD=va
2w2sd/2dU, and the phase factorsa=K ·RA and

b=K ·RB are evaluated for the two atomic positionsRA and
RB nearest the impurity. We find that the matrix elements are

V11/22=
UD

2LcL
h2 ± 2ssinsh + a − bd

+ 2s− 1dpcossa + b ± s2qY0 − sYmdd

± ss− 1dpsins2a + h ± s2qY0 − sYmdd

7 ss− 1dpsins2b − h ± s2qY0 − sYmddj,

V12V21 = S UD

2LcL
D2

hcoss2a + hd + coss2b − hd

+ 2s− 1dp cossh + a − bdcoss2qY0 − sYmdj2.

Generally, there are two nonzero energy shifts, the exact val-
ues of which depend on the phase factorsa andb that may
take the values 0, 2p /3, or −2p /3, depending on the particu-
lar position, there are sixD positions shown in Fig. 1.

However, as a special case, we note that for positionsD1
andD4 in Fig. 1 the HamiltoniandHD preserves axis reflec-
tion symmetry Sa

−1dHDSa=dHD for an armchair tubeh
=p /6. Degeneracy is still broken but there are no off-
diagonal matrix elementsV12=V21=0 and no mixing of the
pseudospin eigenvectors. For example,a=0 and b=2p /3
for positionD1 and, using the unitary transformationU, Eq.
s8d, to change to the system where the clean wave functions
are eigenvalues ofsz, it is possible to produce a matrix that
has no off-diagonal spin parts and clearly does not mix the
pseudospin eigenfunctions,

FIG. 9. Splitting dE9−dE8 of the pairs of degenerate energy
levels of a clean nanotube Eq.s37d due to the effective Hamiltonian
dHC of a perturbative potential near the center of the graphite unit
cell. The symbols show the energy shift as a function of the energy
of the unperturbed levels, solid lines are a guide for the eye. The
upper curve is for the potential atY0=0.025L spotential is one-
twentieth of the way from the center of the nanotube to the endd,
lower curve is forY0=0.125L spotential is a quarter of the way
from the center of the nanotube to the endd. Parameter values are
s=1, k=2p /3, h=p /6, Yp=Ym=0, and the angle of deviation of
the potential isx=p /4.
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U−1dHDU = 2iUDdsr − Rd1
0 0 0 0

0 1 0 − epi/3

0 0 0 0

0 − e−pi/3 0 1
2 .

s40d

Since pseudospin is related to the underlying molecular or-
bital state,25 the statement that impurities preserving mirror
reflection in the nanotube axis manage to break degeneracy
without mixing the pseudospin eigenvectors is equivalent to
saying that impurities preserving mirror reflection do not re-
sult in mixing of the bondingp and antibondingp* energy
bands.18–20,26,27

V. CONCLUSION

In this paper, we considered degeneracy breaking due to
short-ranged impurities in finite, single-wall, metallic carbon
nanotubes. The effective mass model was used to describe
the slowly varying spatial envelope wave functions of spin-
less electrons near the Fermi level at two inequivalent val-
leys sK-pointsd in terms of the four component Dirac equa-
tion for massless fermions, with the role of spin assumed by
pseudospin due to the relative amplitude of the wave func-
tion on the sublattice atoms. Using boundary conditions at
the ends of the tube that neither break valley degeneracy nor
mix pseudospin eigenvectors, we used degenerate perturba-
tion theory to study the influence of impurities. The position
of a short-ranged impurity potential within the hexagonal
graphite unit cell produces a particular 434 matrix structure
of the corresponding effective Hamiltonian, and the symme-
try of the Hamiltonian with respect to pseudospin flip and
mirror reflection in the nanotube axis is related to degeneracy
breaking and pseudospin mixing, respectively. Table III
shows a summary of the position dependence for an armchair
tubesaxis is parallel to they-axis in Fig. 1d. It shows how the
character of an impurity determines the extent of valley de-
generacy breaking, resulting in the possibility to observe ex-
perimentally either twofold or fourfold periodicity of shell
filling.9 For example, an impurity on an atomic site will
break valley degeneracy and tend to give twofold periodicity,
corresponding to spin degeneracy only, whereas a potential
at the center of the graphite unit cell will not break valley
degeneracy and it will preserve fourfold periodicity corre-

sponding to both spin and valley degeneracy.
In addition to position dependence on the scale of the

graphite unit cell, the level splitting displays a sinusoidally
varying energy dependence that has a period determined by
the positionY0 of the impurity along the tube axis −L /2
,Y0,L /2. This arises from the slow spatial modulation of
the envelope wave functions since, for standing waves, the
location of peaks and nodes varies as a function of energy.
Therefore the extent to which they scatter from a given im-
purity position also depends on their energy. It means that, in
experimental observations, the shell filling properties may
not be the same in different parts of the spectrum.
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APPENDIX A: GENERAL FORM OF THE MATRIX
ELEMENTS OF DEGENERATE PERTURBATION THEORY

In this appendix, we present expressions for matrix ele-
mentsVmn=edrCm

* dHCn between the clean wave functions
Eqs.s23d and s24d and a general effective Hamiltonian with
arbitrary coefficients. We setjR=jL=0 corresponding to
pseudospin symmetry preserving boundaries,q1=q2;q, p1
=p2;p, andq=spp−sYpd /L. The only constraints we apply
to the general effective Hamiltonian are due to hermicity and
time reversal symmetry, because these constraints are obeyed
by every specific effective Hamiltonian that we derive. The
results are used in Sec. IV where a particular position of the
potential corresponds to particular values of the arbitrary co-
efficients.

We use the constraints of Hermicity and time reversal
symmetry to write a general effective Hamiltonian as

dH = Udsr − Rd1
a ce+id me−im le−ia

ce−id b we−ib me−im

meim weib b ce+id

leia meim ce−id a
2 , sA1d

where all the variables represent arbitrary real numbers. We
find that the matrix elements are

TABLE III. The dependence of degeneracy breaking on the impurity position for an armchair
nanotube.

Impurity position with respect
to the graphite unit cell

Label in
Fig. 1

Breaks valley
degeneracy

Breaks axis
reflection symmetry

Atomic site Ai, Bi yes yes

Center of unit cell C no no

Midway along a bond that is
perpendicular to tube axis

D1, D4 yes no

Midway along a bond
at 30° angle with tube axis

D2, D3, D5, D6 yes yes
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V11/22=
U

2LcL
ha + b ± 2scsinsh − dd

+ 2ms− 1dp cossm ± s2qY0 − sYmdd

± sls− 1dpsinsa + h ± s2qY0 − sYmdd

7 sws− 1dpsinsb − h ± s2qY0 − sYmddj, sA2d

V12V21 = S U

2LcL
D2

hs− 1dpsa − bdsins2qY0 − sYmd

+ 2scs− 1dp cossh − ddcoss2qY0 − sYmd

+ sl cossa + hd + swcossb − hdj2, sA3d

where the upper sign in Eq.sA2d refers toV11 and the lower
to V22.

The HamiltoniandH preserves axis reflection symmetry
Sa

−1dHSa=dH for an armchair tubeh=p /6 if b=a, w= l, d
=2p /3 andb=a−2p /3. Degeneracy is still broken but there
are no off-diagonal matrix elementsV12=V21=0 and no mix-
ing of the pseudospin eigenvectors. Using the unitary trans-
formationU, Eq.s8d, to change to the system where the clean
wave functions are eigenvalues ofsz, it is possible to show
explicitly that the Hamiltonian preserving axis reflection
symmetry has no off-diagonal spin parts and clearly does not
mix the pseudospin eigenfunctions,

U−1dHU = Udsr − Rd1
a − c 0 m̃* + l̃* 0

0 a + c 0 m̃* − l̃*

m̃+ l̃ 0 a − c 0

0 m̃− l̃ 0 a + c
2 ,

sA4d

wherem̃=meim and l̃ = leia−pi/3.
The HamiltoniandH preserves pseudospin-flip symmetry

rz
−1dHrz=dH if b=a, c=0, m=0 sor m=0d, and l =−w and

a=−b sor l =w=0d, in which case V12V21=V11−V22=0
meaning that degeneracy is not broken.

APPENDIX B: NONPERTURBATIVE DETERMINATION
OF THE SPECTRUM IN THE PRESENCE OF AN

IMPURITY

In this section, we present a nonperturbative calculation
of the energy level spectrum in the presence of an impurity.
We consider the additional potential to be placed at an arbi-
trary positionY0 along the tube −L /2øY0,L /2, and we use
the off-diagonal boundary conditions, Sec. III B, at the ends
of the tubey= ±L /2. Since the potential is a delta function in
space, the wave functions away from it are simply the solu-
tions of the clean Hamiltonian. However, the delta function
potential does introduce nontrivial matching conditions atY0
for the standing waves to the left and the right. In general, we
have an equation of the form

f− iva · ¹ + dsr − RdVgC = EC, sB1d

whereV is a 434 matrix as found in Sec. IV. To produce the
matching conditions, we integrate the equation with respect

to y over a vanishingly small intervalY0−døyøY0+d near
the additional potential. The first term in Eq.sB1d gives a
discontinuity in the componentscm of the envelope wave
function at the potential position, producing expressions such
asc1sY0+dd−c1sY0−dd. The second termdsr −RdVC gives
the value of the wave function components at the potential
position and the term on the right-hand side of Eq.sB1d, EC,
gives zero contribution, althoughC is not necessarily con-
tinuous, it is not infinite. The wave functions are then deter-
mined, using the resulting matching conditions, and the en-
ergy level spectrum is found. As before, we will consider
only metallic nanotubes with arbitrary chiral angleh. We
suppose that thex axis is perpendicular to the tube axis and
we consider only the zero momentum transverse mode so
that uEu,2pv /Lc whereLc= uChu is the circumference.

In order to demonstrate what is in principle possible, we
consider in detail the case of the additional potential exactly
on anA site with the following effective Hamiltonian:

dHA = UAdsr − Rd1
1 0 0 e−ik

0 0 0 0

0 0 0 0

e+ik 0 0 1
2 , sB2d

wherek is a phase factor associated with intervalley scatter-

ing at the impurityk=R0·sK −K̃ d. It results in the following
matching conditions at the impurity:

c1sY0 + dd − c1sY0 − dd = 0, sB3d

c2sY0 + dd − c2sY0 − dd = ue−ihfc1sY0d + e−ikc4sY0dg,

sB4d

c3sY0 + dd − c3sY0 − dd = ueihfeikc1sY0d + c4sY0dg,

sB5d

c4sY0 + dd − c4sY0 − dd = 0, sB6d

where u=va
2w2s0dU /vLc. Using these matching conditions,

we find that the wave vectors are given by solutions of the
following equation:

0 = sinsqL + sYp + jmdsinsqL + sYp − jmd

−
u

2
sinsqL + sYp − jmdfscossqL + sYp + jmd

+ sinsk + h − sYm − jp + 2qY0dg

−
u

2
sinsqL + sYp + jmd

3fscossqL + sYp − jmd − sinsk + h + sYm − jp − 2qY0dg.

sB7d

In the degenerate case,jm=0, expansion of this equation for
weak potential strength up to linear inu recovers the results
of the degenerate perturbation theory Eq.s31d. Moreover, for
arbitrary potential strength andjm=0, sinsqL+sYpd is always
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a common factor of Eq.sB7d, meaning that half of the levels
suffer no energy shift in the presence of an impurity for
degeneracy preserving boundary conditions. Here we are in-
terested in the nondegenerate case where the degeneracy has
already been lifted by the boundary conditions aty= ±L /2.
In the limit u=0, the first term in Eq.sB7d reproduces the
results for a clean nanotube, Eqs.s25d ands26d, and we now
label these wave vectors asq1

s0d and q2
s0d, respectively. The

angle jm breaks degeneracy,q2
s0d−q1

s0d=2jm/L for p2=p1.
Now we will present a perturbative result for weak potential

strength obtained by expanding Eq.sB7d up to linear inu
with jmÞ0,

q1 < q1
s0d +

su

2L
f1 + ss− 1dp1sinsk + h − sYm − jp + 2q1

s0dY0dg,

sB8d

q2 < q2
s0d +

su

2L
f1 − ss− 1dp2sinsk + h + sYm − jp − 2q2

s0dY0dg.

sB9d

For simplicity we setp2=p1;p in order to show that the
impurity potential may enhance or reduce the spacing be-
tween adjacent levels:

q2 − q1 =
2jm

L
−

u

L
s− 1dp cosSsYm − 2spp − sYpd

Y0

L
D

3sinSk + h − jp − 2jm
Y0

L
D . sB10d

Figure 10 shows the evolution of energy levels nearE=0 as
a function of the strength of the potential found by solving
Eq. sB7d numerically. In this example, there is degeneracy
breaking in the clean tube due to the boundary conditions,
jm=p /8. In a similar way to the degenerate case, one of the
levels in each nearly degenerate pair does not move very
much as a function of impurity strength, while its partner
suffers a shift that oscillates from pair to pair as a function of
energysbecause of the nonzero position of the impurityY0
with respect to the center of the tubed. Some levels are
brought closer together by the presence of the impurity po-
tential, some appear not to move, while others are split fur-
ther apart.
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