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We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite, single-wall,
metallic carbon nanotubes. The effective mass model is used to describe the slowly varying spatial envelope
wave functions of spinless electrons near the Fermi level at two inequivalent vidlgy@nts in terms of the
four component Dirac equation for massless fermions, with the role of spin assumed by pseudospin due to the
relative amplitude of the wave function on the sublattice at¢md8 and “B”). Using boundary conditions at
the ends of the tube that neither break valley degeneracy nor mix pseudospin eigenvectors, we use degenerate
perturbation theory to show that the presence of impurities has two effects. First, the position of the impurity
with respect to the spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy
level shift as a function of energy. Second, the position of the impurity within the hexagonal graphite unit cell
produces a particularX4 matrix structure of the corresponding effective Hamiltonian. The symmetry of this
Hamiltonian with respect to pseudospin flip is related to degeneracy breaking and, for an armchair tube, the
symmetry with respect to mirror reflection in the nanotube axis is related to pseudospin mixing.
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[. INTRODUCTION impurities, theoretical studies of open nanotubes by Ando
and co-worker$-18have shown that short-ranged potentials
Much of the interest in carbon nanotubes has been motitypical range smaller than the lattice constant of graphite
vated by the desire to develop new nanoscale electricgdroduce back-scattering, but not long-ranged potentials. For
devices'? The electronic properties of nanotubes follow an armchair tube, it was demonstrated that impurities pre-
from the band structure of a two-dimensional sheet of graphserving mirror reflection in the nanotube axis do not mix the
ite which is a semimetal, having a vanishing energy gap abondings and antibondingr" energy band&3-2°For closed
the six cornersK-points, of the hexagonal first Brillouin nanotubes, a recent density-functional calculdfiohas
zone. A single-wall nanotube may be thought of as ashown how a small number of defects may reduce the four-
graphene sheet rolled up to form a nanometre-diameter cyfold periodicity of shell filling to twofold.
inder. Periodicity around the circumference results in quan- |n the scanning tunneling microscopy measurements of
tized transverse wave vectors leading to metallic or semicorRef. 6 an additional slow spatial modulation of the standing
ducting behavior depending on whether thepoint wave  waves was observed. It was interpreted as being a beating
vectorK is an allowed wave vector. envelope function with wave vectar, |q|<|K|, resulting
A finite nanotube should possess discrete energy levelgom the interference of left and right moving waves with
corresponding to standing waves typical of a confined quanslightly different total wave vector +q. The effective
tum particle. Evidence of discrete levels was seen in transmass modéf-2° provides an analytical description of the
port measurementd a few years ago, followed by the direct electronic structure near th€-point where the total wave
observation of sinusoidal standing wave patterns by scanningector is k=K +q and the dispersion relation is line&
tunneling microscopy® with wave vectors corresponding to =svlq|, v is the Fermi velocity ang=+1 for the conduction
those near th&-point K. More recently, Coulomb blockade and valence band, respectively. For spinless electrons, the
measurements on carbon nanotube quantum’dotmve envelope wave functio’(q,r) has four components corre-
seen varying degrees of evidence for the fourfold periodicitysponding to two inequivalent atomic sites in the hexagonal
of shell filling that would be in agreement with expectationsgraphite lattice (“A” and “B”) and to two inequivalent
based on the spin and vallgl-point) structure. K-points in the hexagonal first Brillouin zone. The resulting
In this paper, we will consider the interplay between twoejgenvalue equation foW is the massless Dirac equation
sources of valley degeneracy breaking in a finite nanotubeyritten in the “chiral” or “spinor” representation,
namely isolated impurities and the boundaries themselves.
The aim is to show how the character of an impurity deter-
mines the extent of valley degeneracy breaking, resulting in
the possibility to observe either twofold or fourfold period-
icity of shell filling.® As far as boundaries are concerned, a
number of authof8-'> have modelled finite-length nano-
tubes in order to describe the atomic scale variation of standwhere the role of spin is assumed by the relative amplitudes
ing waves patterns and the opening of an energy gap displagn the A andB atomic siteg“pseudospin): o is a vector in
ing an oscillating dependence on the tube length. Fothe (x,y) plane rotated by the chiral angle of the tube.
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Also, v:(\f’§/2)ay is the Fermi velocitya is the lattice con-
stant of graphite and is the nearest neighbor transfer inte-
gral.

Since we are interested in perturbations of a clean nano-
tube that may destroy valley degeneracy, we must identify
the symmetry that preserves degeneracy. The pseudospin of a
two-dimensional(2D) graphite sheet does not transform in
the same way as real spin because certain transformations
result in a swapping of the orientation AfandB atoms. This
leads us to identify an operatpy, that flips pseudospin but
commutes with the clean effective Hamiltonian, Eg),

FIG. 1. The positions with respect to the graphite unit cell of the
0 io, perturbing potential are labelled &s B, C, andD. Carbon atomic

pPz= ) 2 positions are at the six corners of the hexagon, there are three
atomic positions {A;,A,,As} and three B atomic positions

In general, the two degenerate eigenvectdrs, ¥} corre- {B1,B,,B3}. We also consider the potential to be near the center of
! 2 the unit cell(C) or at one of six positions half-way between neigh-

spondllng to the two nongqUIvalem-pOInts of the Dirac ._boring atoms(D; to Dg). An additional small deviatiodR of the
equation for a clean, metalllc; nanotube may be Igbellgd USIngotential position is showfgreatly exaggeratedor the C position,
the component of pseudospin along the tube Axisr using it direction described by anglg in the nanotube coordinates

pseudohelicity\. Therefore,_ the pseudospin-flip operatgr (x,y). The figure has chiral angle= /6 corresponding to an arm-
relates the degenerate eigenvectors to each ofdf;  chair tube.

—W¥,. We may make two statements about the consequence

of the symmetry of a particular pertgrbgﬂtﬁhi. The first 'S pation theory to show how valley degeneracy is broken by a
that perturbations that are symmetric in the pseUdOSp'n'ﬂ'%hort-range potential and to examine the relationship be-

_1 _ .
operatorp, dHp,= oM preserve pseudospin and do not breaktween the position of the potential and symmetry. In Appen-

valley degeneracy. Second, a perturbation that breakaix B we give a brief account of a nonperturbative calcula-

. . _l . .
pseqdospln-fllp symmetryp, “oHp, # oM, bUt. is still SYM-  tion of the energy spectrum for the example of an impurity
metric with respect to the operatdr, measuring pseudospin exactly on an atomic site

E;léHEazéH, will break degeneracy without mixing the
pseudospin eigenvectors. Since pseudospin is the relative
amplitude of the wave function on theandB atomic sites, Il. SYMMETRY PROPERTIES OF THE EFFECTIVE
a given perturbation must differentiate between adjacent at- MASS MODEL

oms in order to break pseudospin symmetry. In other words, |n the effective mass model of two-dimensional
the influence of the perturbation must vary spatially on thegraphite?? the total wave function?, is written as a linear
scale of the graphite lattice constantsuch a perturbation is  combination of four components={1,2,3,4 correspond-
described as being short ranged. ing to two K-points ©={1,2} and =-type atomic orbitals

We will investigate how a perturbing short-range potential {(r—R:) on two nonequivalent atomic sit¢s{A,B} in the
breaks the intervalley degeneracy. The position of a potenti

ioc, O

within the hexagonal graphite unit cell will produce a spe- nit cell

cific 4 X4 matrix structure of the resulting effective Hamil- 4

tonian, and the symmetry of the matrix will determine the Vi) = 2 AP =Gr) - V + - Y1), (3)
extent of degeneracy breaking. As the ultimate limit of a m=1

short-range potential, we consider a delta function potentiajyhere

because it simplifies the calculations and the resulting analy-

sis. We would like to stress that our intent is not to produce © 1 K R

exact quantitative results that describe the influence of impu- Ppy (r) = _NE etuTigyr - Ry, (4)

rities, but to characterize possible symmetry breaking prop- VIV R,

erties. The positions of the potential we consider are shown N

with relation to the hexagonal graphite unit cell in Fig. 1. 1 -

They are near aA-type atomic site, labelled in the figure, Gm(r) = \_Ng e uig(r =R (r = Ry), (5)

near aB-type atomic site, labelle®, near the center of the i

unit cell, labelledC, or near the half-way point between are Bloch-type functions constructed from the atomic orbit-

neighboring atoms, labelled. als, R; is the position of an atom in real space and the sum-
The paper is organized as follows. In Sec. Il, the effectivemation is over the number of unit celié> 1. The functions

mass model leading to the Dirac equation is briefly described,(r) are components of the envelope functitg,r). Sub-

along with a discussion of its symmetry properties. Sectiorstituting this expression foW,, into the Schrodinger equa-

[l is an introduction to the boundary conditions of a closedtion and integrating with respect to fast degrees of freedom

carbon nanotube and the resulting energy spectrum of a cledhat vary on the scale of the unit cell leads to the Dirac

nanotube is calculated. In Sec. IV, we use degenerate pertugquation(1) for the envelope functioW. We label the two

N
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nonequivalent<-points ask and K with wave vectorsk ~ ing 7 and antibondingz” energy band$?-2°2%270On the
=(+4m/3a,0), and the components oF are written in the Other hand, potential positions that are symmetric with re-

orderKA, KB, KB, KA. The appearance of the chiral angle of spect to mirrpr reflection across the 'axis of a zigzag Fube,

the tube# in the Dirac equation shows that the axes of theSL.JCh as positionAg andB, in Flg. 1, will not be symmetric

(x',y’) “graphite” coordinate system have been rotated to b&Vith réspect to the pseudospin operator.

transverse and parallel to the tube axis, labelled) in Fig.

1. Applying periodic boundary conditions to the wave func- Ill. SINGLE PARTICLE ENERGY SPECTRUM

tion ¥y, Eq. (3), in the direction transverse to the nanotube OF A CLOSED NANOTUBE

axis produces a condition for the envelope functibrihat

leads to metallic or semiconducting behavior depending on In this section we calculate the form of noninteracting

whether the transverse component of wave veqtas al-  single particle standing waves and the corresponding energy

lowed to be zer@32?* spectrum in a closed nanotube. For simplicity, we will con-
In order to highlight the separaté-point space andAB  sider only metallic nanotubes with arbitrary chiral angle

space structure present in carbon nanotubes we adopt a m#&e suppose that the axis is perpendicular to the tube axis

trix direct product notation usingoy,oy,0;,1,} for 2X2  and we consider only the zero momentum transverse mode

Pauli matrices and the unit matrix that operate within a blockso that|E|<2mv /L, where L.=|C;| is the circumference.

(AB space and{Il,,I1,,TL,, Iy} for 22 Pauli matrices and The Dirac equation is diagonal K-point space, so that, for

the unit matrix that operate iK-point space. For example, an open nanotube, there are two right movi(nlgff) and

the operatore may be W'rltten asa—HZ<§<> o, and the usual quR)) and two left moving(\lf(") and\IfLL)) plane wave solu-

operators for the reflection of real spin in a plane that re-_ K K K

verses the Cartesian coordinatex, y or z are p,=iIl,  tons,

® €7742q, 77742 As mentioned in the Introduction, the

pseudospin of a 2D graphite sheet does not transform in the 1_ 1 .

same way as real spin because certain transformations result ise'” —ise'”

in a swapping of the orientation ok and B atoms. This \P&R):Aéqy o | \P%):Be v 0 '

additional operation is described by the “pseudospin-flip”

operator, Eq(2), p,=11,®io;, that corresponds to a reflection 0 0

of real spin in thex,y) plane. For example, an active rota-

tion of the 2D graphite sheet anticlockwise #y3 about the 0 0

perpendicularz axis, W(r')=CgW¥(r), is described byCg _ 0 _ 0

=pR(m/3) =1L ®exp(2m/3)s,)  where  R(O)=Iy v = e , WY =pew ,

®@exp((i0/2)o,) is a continuous rotation operator. 1 . 1_
We consider the nanotube axis to be parallel to the unit —ise"” ise"”

vector N=(sin ,cos7,0) in the (x’,y’) graphite coordi- . )

nates, so that it points along tiyeaxis in the(x,y) nanotube ~WhereA, B, C, andD are arbitrary constants, is the wave
coordinates, Fig. 1. In this rotated coordinate system, th¥€ctor along the tube and We(L)CO”S'dEBO andE=svq, s
component of the pseudospin operator along the positive 1. The solutiongk!’? andW_" are eigenvectors of pseu-

y-axis is2,=Iy ® €77#%g 677772 and the pseudohelicity op- dospin component, with eigenvalue s, whereas the solu-

isn=lal™t inod2(—j i 7072 i . R . .
erator is\=|q| ™Iy ® €77%(~igydy)e” 2% For an armchair ¢ \PLK) and ¥’ have eigenvalue s: Also, the solutions

tube, a mirror reflection across the nanotube &tkis y-axis ® WL . ) o
in Fig. 1) is accompanied by an exchangefoandB atomic Yk and¥ are eigenvectors of ps(%udohell(cLP)ty\Mth el-

positions so that it is described not by operaipbut by the ~ genvalue 8, whereas the solutiond~>" and V==~ have ei-
combinationp,p, representing reflection of real spin accom- genvalue =.

painied by an additional spin-flip. It turns out that, Note that the HamiltoniaH,y given in Eq. (1) is two
=ip,py, SO We may draw the conclusion that, for an armchairdimensional, but, by taking into account only the lowest

tube, the operator measuring pseudospin also representsiransverse mode, it becomes one dimensidhglin a me-
mirror reflection across the nanotube axis. The situation igallic tube,

different for a zigzag tube because reflection across the nano-

tube axis(the y’-axis in Fig. 1 is not accompanied by an Hog= vl ® e72(~ g0, - igy(;y)e-in(r#, (6)
exchange ofA andB atomic positions so that it is described
by operatorp,, not . ,=ip,p,. This means that potential po-

sitions that are symmetric with respect to mirror reflection
gir?r?slztir;f ?L),(I?/vﬁr leqsirnt:ghsa;/rrr?rfr?(aet’riiu\?v?tr? srggpsgg_ri]dthe The pseudospin part of the one dimensional Hamiltoﬂw
pseudospin operator and will break degeneracy without mixmay be diagonalized using a unitary transformatiehg
! o . o —7/-1 .28

ing the pseudospin eigenvectors. Since pseudospin is relat&d! Hid/:

to the underlying molecular orbital staf®this statement is

equivalent to saying that impurities preserving mirror reflec- U= In ® eimzjz(aer o )e 12, ®)

=

tion in the nanotube axis do not result in mixing of the bond- V2

Hyg=vll, ® €777%(- i()'y&y)e_i 1042 (7)
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~ . TABLE |. Discrete symmetries of the boundary conditions.
Hig=oll, ® (-ioyd,), (9) Y 4

. . ~ (LIR L/R
and the corresponding elgenvectdlsifg):bfl\I’(KR) are M pz P C 3,

eigenvectors ofr, in pseudospin space so they have only one | @n;-o n=Gj) ¢{=7/2 -1 +1 +1 -1
nonzero component out of four. -

Now we will briefly describe the effective boundary con- ”l:Ak ¢=0 oAl
ditions for the envelope functioW in a closed carbon nano- ~ z®nz:o n,=(i,)) ¢+ -1 -1 -1
tube, and refer the reader to Ref. 15 for more details. There it n,=k (=m/2 -1 -1 -1 -1
was shown that energy independent hard wall boundary con- o Y sl £=0 1 +1 +1 +1
ditions for the Dirac equation may be expressed in general 7 =
terms as m=j  &=7/2 -1 -1 41 41

V=MW, M2=1, [ng a,M}=0, 10 MM =i fmm/2 -1+l -1l
p=] =0 +1 -1 -1 +1

whereM is an Hermitian, unitary & 4 matrix M2=1 with
the constraint that it anticommutes with the operatgre,
proportional to the component of the current operator normal
to the interfaceng is the unit vector normal to the interface.
There are four possible linear combinations of matrices sat-
isfying these constraints avl, which, assumingg is a vec- n, = (cosxsinZ,—sinysin,cos?),
tor confined to thex,y) plane, may be written in terms of a

small number of arbitrary parameters,

ng = (sin ,cos7,0),

N, =(cosn cos{,— siny cos{,—sin{),
M;=cosA(lg® ny o) +sinA(Il,® n,- o), (11) z g ¢ g £ £

Mo=cosY (v -II®1,) +sinY (v, - Il @ ng - o), (12) vy = (C0sé,siné,0),

Mz=cosQ(v,- Il ® ng - o) +sinQ(Ilg ® ny - o), (13 )
vy = (= sin§,cosé,0).
My=cosO(v, - II®1,) +sinOI,@n,-0), (14 o o _

) This introduces two new mixing anglesandé, the arbitrary
where the angles, Y, ©, and(} are arbitraryn, andn, are  narameters contained within the boundary conditions de-
three-dimensional spacelike vectors satisfying the constraini§:ripe the amount of mixing between different discrete sym-
Ny-Ng=Np-Ng=n;-N,=0, andw, and v, are two-dimensional  metries. Table | shows a summary of the discrete symmetries
[confined to thetx,y) plang spacelike vectors satisfying the of the boundary conditions in terms of the orientation of the
constraintv, - 1,=0. _ o vectorsny, n,, v;, and v,. In addition top, and, we con-

~ In principle, there are different ways of combining the siger parity P=II,®1,, corresponding to a rotation by
right and left moving plane waves in order to create standingypout thez axis (x— —x andy— -y), and charge conjugation
waves. The first IOO(%SIb”lty li)that waves at the satmeoint  (C) that involves the complex conjugation operator com-
combine, namely¥,” and ¥, form ?R)standlng(jL;Nave with  pined withC=~-ill,® oy. The angles’ and¢ mix terms with
pseudohelicity eigenvalues;+ and ‘lf? and ‘Ifz form a  different symmetry with respect tp,, {=0 and£=0 corre-

standing wave with pseudohelicity eigenvalue Fhis situ-  SPond to evenness with respectgpwhereas(=m/2 and¢
ation is realized by the matriM,, Eq. (11), because it is —7/2 correspond to oddness. Since pseudospin and/or
diagonal inK-point space. A second possibility is that waves Pseudohelicity label different states at the same energy, val-

e . R (L) ues of ¢ and ¢ not equal to multiples ofr/2 will lead to
from oppositeK-points combine, namely and\IfK form broken degeneracy. The angleésY, ®, and() mix different

a stan(de)ng wave with pseudospin component eigenvasiie +symmetries with respect to combinationsRfC, andp,.
and \Ifz and \Iff? form a standing wave with pseudospin  As representative examples, we consider below the
component eigenvalues-This situation is realized by the Poundary conditionsM; (diagonal and M, (off-diagona)
matrix M,, Eq. (12), because it is off-diagonal iK-point separately. We will calculate the form of the_ standing waves
space. A third possibility is a combination of the previous@nd the energy spectrum for a nanotube with the same type
two, with waves scattered back at the boundary into a mix©f boundary condition on the right-hand sidet y=+L/2)
ture of both of theK-points. This situation is realized by the and on the left-hand sid@t y=-L/2). We introduce an in-
matricesMs, Eq. (13), andM,, Eq. (14), because they have dex u={R,L}=+1 to label the right- and left-hand side so
both diagonal and off-diagonal i§-point space parts. that the normal to the boundary, defined with respect to the
In the graphite coordinate system, we define the normal t@raphite coordinate system, fig=u(sin »,cosz,0), and we
the boundaryng in terms of the chiral angle of the tube  take into account the possibility of different mixing angles,
and we choose two mutually orthogonal three-dimensional\y, Yy ©,, and €, and vectorsn;=(ucosysing,,
(3D) vectorsn; andn,, and two additional orthogonal 2D —usSin zsin{,,cos{,), N,=(uCcoszCos{,,—u sin 7 cosy,,
vectorsy; and vy: -sin{,), r=(cosé,,sin&,,0) and v,=(-sin&,,cosé,,0).
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A. Diagonal boundary conditions 10 e e

With the above definitions of the mixing angles, the
boundary condition# =M,;¥ produces the following rela-
tions between the components of the wave function at the
interface:

usin(Z, + A e Mk —[1 + cogdy + Ay gk =0,
(15)

usin(g, — Aye" Ty —[1 - cogd, — Ay 1k = 0.

(16) 05 00 05

L
The equations are diagonal K-point space so do not g

describe intervalley scattering. With these boundary condi- FIG. 2. Plot of the modulus squared wave functjign|? of the
tions on the rightaty=+L/2) and on the lef(aty=-L/2), lowest states for diagonal boundary conditions: the solid lines show
standing wavesP; corresponding td<-point K are created the second componem#gy|? and the dashed lines show the first
from combining\lff(R) and‘If,&") and are labelled by pseudohe- componenty/2 The lowest statep;=0,1,2,3 areshown from
licity A=+s, and standing wavesV, corresponding to top to bottom. Values of the mixing angles are taken tolhe

ANt I (R (L) =A,=0 so that the boundary conditions are satisfied/gy=0 at
K-point K are created from[’K and \IfK and have labek the ends of the nanotulye= +1./2,

=-S5,
€Y + (= 1)Prg/Stm*isAmidry Yak +USINY &1 uyr — cosY g g =0,  (21)
ise—in[eiqu _ (_ 1)p1eis§m+isAm—iq1y] o _
W, = N , (17 Yk — usSinY & T i — cosY € vy =0. (22
0 The equations are off-diagonal kK space so describe inter-
valley scattering. We label the standing wavesyaswith
0 pseudospin eigenvaluig=+s, created from combiningfff)
0 and\IfLKL), and W, with pseudospin eigenvalle=-s, created
Vo= €92 + (= 1)P2giStm*iSAm~idzy . (18) from combining\If-(}ZR) and\IfﬁP. We find that
— ise [ - (= 1)PagistnisAniaaY] gy
where the normalization factor i:A/:l/(Z\s’LTL) and the isgi7tiary
wave vectors are V1= (= 1)PreSYm*igpiday ' (23)
01 = (= 8o = sAp + 7Py /L, (19 iS(— 1)Prg 7Yt &pTidwy
0 = (+ 52, = SAp + 7P/ (20 (= 2)PagYariéyricny
Here{p,,p,} are integers such tha =0, {,=((r+ /2, Y is(= 1)pze__'77+ISYm_'§p_'q2y (24)
{n=(lr=0)12, Ap=(Ag+A)/2, andAp=(Ag=Ap)/2. Us- ’ e ’
ing E=svq shows that the mixing angle& and ¢, break —jggimtiayy
K-point degeneracy whereas; and A, break electron-hole o ) J—
symmetry. where the normalization factor i8/=1/(2JL.L) and the
In order to understand the form of the wave functions, wevave vectors are
set all mixing angles equal_t_o zergg:gm:Ap:Amzo. In = (= SYp = én+ mpyIL, (25)
this case the boundary conditions simplifyig, =g =0 at
both ends of the nanotube, and the componégisand ¢z o= (~SYp+ én+ TPIL. (26)

have the form of standing wave solutions of the Schrédinger
equation for a confined particle, namely successive cosinklere {p;,p,} are integers such thatj;;=0, Y,=(Yg
and sine functions. The compone is shown explicitly — +Y)/2, Y, =(Yr-Y)/2, &=(&RTED12, and &,=(&
in Fig. 2 (solid lineg and the componen,k, which is pro-  —¢)/2. The anglek,, breaks degeneracy whereds breaks
portional to the derivative ofgk, is shown by dashed lines. glectron-hole symmetry.
The physical relevance of the envelope wave functions
may be understood by examining the total wave function
The boundary conditio =M, W is equivalent to the fol- Wy, Eq.(3), that is constructed from linear combinations of
lowing relations between the components of the envelop@roducts of envelope wave functions with Bloch functions
wave function at the interface: that vary rapidly in space on the atomic scale. If we only take

B. Off-diagonal boundary conditions

085415-5



E. McCANN AND V. I. FALKO PHYSICAL REVIEW B 71, 085415(2005

1.0 -

1.0k ' -
0.0 WMMMMWMMMM
1.0 F

FIG. 3. Relative amplitude of the wave functioffy 1(r) 10 [ ' ]
«cogK -r ¥ 7/6) determined on the atomic sites, following Fig. MMWMM_MN\MMM
1(d) in Ref. 10. Dashed lines, labelled sc&nand scanB, are 0.0 [ ]
parallel to the tube axis. 05 3/3 05
into account the first term in the gradient expansion, (By. FIG. 5. Plot of the modulus squared total wave functit,|*
and the contribution from a single atomic orbitaraR, or ~ (arbitrary unit for off-diagonal boundary conditions that break
Rg, then W,y 15 is the sum of two components oF;,, valley degeneracy. The wave function is evaluated along Bne

parallel to the axis of an armchair nanotulye-7/6, length L
=50a. The four lowest energy states above the Fermi level are
shown from top to bottom. Parameter values srel, {,=/4,
Yp=-7/2, andY,,={,=0.

each multiplied by an additional oscillating factor
expliK ,.R;). For example, if we se¥,,=£,=0 for an arm-
chair tuben=7/6 then

codquy +K -r ¥ @/6):s(- )Pr= +1,
sin(gyy + K -r  m/6):s(- 1)P1=— 1 tively. Figure 4, scan A, is for a line through the middle of

bonds making an angle with the tube axis and it tends to

Wigra(r) = {

) show a pair of equidistant peaks within every Fermi wave-
Vo ) sin(gy — K «1 £ 7/6):8(— 1)P2= + 1, length whereas Fig. 5, scan B, is for a line through bonds
ot.2 cogqpy —K 1+ a/6):s(— )P2=-1, perpendicular to the tube axis and it tends to show peak

pairing1® In order to ensure that the successive wave func-
where the upper sign refers =R, and the lower tor  tions are not degenerate, we tafg=m/4 andY ,=-m/2 so
=Rg. These equations reproduce the atomic scale variatiofhat the four lowest states above the Fermi level have ener-
of standing wave patterns obtained by Rubtal1° with an gies E=mv/(4L), 3mv/(4L), 5mv/(4L), 7mv/(4L) with
additional modulation due to the wave vectp[,). Figure 3 wave vector indicep,=0, p,=0, p;=1, p,=1, and respec-
is a schematic of the wave function amplitudg.,; tive correspondence to the wave functions drawn schemati-
«codK -r = 7/6) determined on the atomic sites, following cally in Figs. 1(d), 1(a), 1(c), 1(b) of Ref. 10. As well as a
Fig. (1d) in Ref. 10. Figures 4 and 5 show plots of the modu-different long range modulation, due to different values of
lus squared wave function for the four lowest states above;,), the successive wave functions show a distinct even/odd

the Fermi level, evaluated along two different lines parallelyariation due to the different forms of pseudospin eigenvec-
to the tube axis, labelled scan A and scan B in Fig. 3, respegors ¥, and V.

1.0 F ' f
WAMMMANWWMAAMAMAW IV. DEGENERATE PERTURBATION THEORY IN THE
00 - ' :

PRESENCE OF AN IMPURITY
1.0

VAMMWMWMMJMMWWWA‘M# In this section we derive % 4 Hamiltonians of the effec-
0.0 tive mass model describing a short range potential at differ-
10 ent positionsR in the nanotube wall. Each effective Hamil-

MN\AMMMM\MMMM[‘MMAMNW tonian has a different structure, depending on the location of
0.0 | . ] the potential with respect to the hexagonal graphite unit cell.

10 F ' ] The following sections describe different impurity positions
°‘°_05 00 o5 TABLE Il. Impurity positions discussed in the following
’ yiL ’ sections.
FIG. 4. Plot of the modulus squared total wave functitf,* Impurity position with respect  Label in Discussed in
(arbitrary unitg for off-diagonal boundary conditions that break to the graphite unit cell Fig. 1 section
valley degeneracy. The wave function is evaluated along Ane —
parallel to the axis of an armchair nanotube /6, length L Atomic site A, B; VA
=50a. The four lowest energy states above the Fermi level are Center of unit cell C IV B
shown from top to bottom. Parameter values arel, {,=/4, Half-way along a bond D vV C

Y,=-m/2, andY ,={,=0.
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as shown in Fig. 1 and summarized in Table II. =a/\3 of the perturbative potential, there is oAeatom and
As well as degeneracy arising from the real spin of electhree B atoms. In addition to the gradient expansion, we

trons, it was shown in the preceding section that the energgerform an expansion in the small additional deviation of the

levels of a clean metallic nanotube may be degenerate due tmtential positionSR in order to generate a number of effec-

pseudospin symmetry, depending on the symmetry of théve Hamiltonians with different symmetries.

boundary conditions. Now we would like to concentrate on The effective HamiltoniadH is a 4X 4 Hamiltonian with

the role of an additional perturbing potential, so we will con-matrix elements involving the Bloch functicmfg), Eq. (4),

sider the case of degenerate levels in the clean nanotube, aadd a short ranged potentidH(r) of strengthU,

use degenerate perturbation theory to calculate the level

splitting due to the presence of the potential Hamiltonian. .

The perturbation theory takes into account the interaction of OHpym= f dUr e () SHN®R(r). (27)

the potential with the degenerate levels, but neglects the ef-

fect of higher levels, so it is valid for energy level shifts that

are smaller than the spacin§E=nv/L between pairs of

unperturbed levels. As before, we suppose thatxthgis is

perpendicular to the tube axis and we consider only the zer

momentum transverse mode so that<2mv/L. wherel,

=|C,| is the circumference. We will use off-diagonal bound-

ary conditions M2 because they correspond to the usual sit

ation in metallic nanotub€s,so the unperturbed degenerate

wave functions arel; andW¥,, Egs.(23) and (24), respec-

tively, with ég=¢ =0 corresponding to pseudospin symmetry , , , i

preserving boundaries;=q,=q, p;=p,=p, and q=(mp Hereu, is the volume of the graphite unit ceII.. Ther(_a is a

—SY,)/L. strong dependence of the phase factors contained within the

o rBloch functionscbfg) on the position of the potential within

of the total wave function, Eq3), and keep the lowest order the graphite_unit (_:eII. The Bloch functi_ons also de_pen_d on

term. Then, we calculate matrix elements/,, 7T—type a@om|c orb_ltalspj on the nonequ!valent atomic sngs

=[dr ¥’ SH, between the clean wave functions E(23) JZ{A,B} in the unit cell. Since we consider the perturbative

and (24) and the effective Hamiltonians in order to apply Potential to be in the same plane as the carbon atoms, we

degenerate perturbation theory. The matrix elements for NIy need to describe the behavior of the atomic orbitals in

general effective Hamiltonian with arbitrary coefficients aretn® (X,y) coordinates. They are radially symmetric in the

given in Appendix A: a particular position of the potential Plane and for simplicity we model them &syg(r)= e(r)

will define the values of the arbitrary coefficients. The posi-=®o €XP(=|r|/\) wherex ~a/\3.

tions of the potential we consider are shown with relation to  For the potential exactly on aksite, SR=0, the effective

the hexagonal graphite unit cell in Fig. 1. They are near afiamiltonian is

A-type atomic site, labelle@ in the figure, near &8-type

Integration with respect to fast degrees of freedom that vary
on the scale of the unit cell produces a product of Bloch
Bmctionsd)fg) evaluated at the potential position and a delta
unction representing the fact that the envelope wave func-
tions interact with a localized potential of scale less than the
Lgraphite lattice constara,

SHum= v,ULIS(r —R)OP" (RIPD(R). (29

As explained in Sec. Il, we perform a gradient expansio

atomic site, labelled, near the center of the unit cell, la- 1 0 0 ¢
belled C, or near the half-way point between neighboring 00 O
atoms, labelledD. Furthermore, we introduce a small addi- SHa=v3e%(0)US(r - R) 0o ol (29
tional deviation of the potential positiofR, the orientation i o0 1
e K

of which is shown in the figure for the potential near the unit
cell center. The label&x’,y’) represent the coordinate axes
of the graphite sheet, whereas lab@lsy) represent the co- wherex is a phase factor as§gciated with intervalley scatter-
ordinate axes of the nanotube, rotated by the chiral anpgle ing at the impurityk=Rg-(K —K). As expected for a poten-
The nanotube axis is parallel to tlyedirection, and the di- tial on an atomic site, this Hamiltonian breaks pseudospin-
rection of the deviation of the potential position is describedflip symmetry SH,# p,*6Hap,. For completeness, we note
by angle x in the nanotube coordinateséR  that the equivalent effective Hamiltonian for an impurity

=(8Rcosy, SRsin y) = (X, 8Y). near aB site, Fig. 1, is
A. Potential near an atomic site 00 O 0
. . . : 0 1 g
The origin of real space coordinates is placed in the center SHp = v2e?(0)US(r - R) ‘i (30
of the Wigner-Seitz unit cell and the perturbative potential is 0 e 10
placed at positiorR=Ry+ SR near an arbitrary atomic site. 0 0 0 O

For example, it may be near ah site, Fig. 1, so thaR,

=R, represents the exact position of thatom, anddR isa  Applying the general results for matrix elements given in
small additional deviation from it. In deriving the effective Appendix A to the effective HamiltoniangH g, we find
mass model Hamiltonian, we take into account nearesthat V;,V,1=V;;V,, so that the energy level shifts aiE’
neighbor interactions: within nearest neighbor distadce =0 andSE’=V,,+V,,. In terms of the model parameters,
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P
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FIG. 7. Plot of the modulus squared total wave functiphig,|?

FIG. 6. Splitting SE”"—SE’ of the pairs of degenerate energy (arbitrary unitg at the Fermi level(q=0) in the presence of an
levels of a clean nanotube E@1) due to the effective Hamiltonian impurity on an atomic site, evaluated using degenerate perturbation
S6H, of a perturbative potential on af atomic site. The symbols theory. The wave functions are evaluated along Brigarallel to the
show the energy shift as a function of the energy of the unperturbeexis of an armchair nanotubg=7/6, lengthL=50a. The standing
levels, solid lines are a guide for the eye. The upper curve is for thevave corresponding téE=0 is shown on top, that corresponding
potential atYy=0.028_ (potential is one-twentieth of the way from to SE=V,;+V,, is below. Parameter values ael, p=0, andY
the center of the nanotube to the @ntbwer curve is forY, =Yn={p=¢{m=0.
=0.128 (potential is a quarter of the way from the center of the

—. 22 . . . . .
nanotube to the endU,=v,¢"(0)U and parameter values a&  nonzero matrix element with the effective Hamiltonian. It

=1, x=27/3, y=wl6, andY,=Yn=0. has a sharp peak on every thitcsite where the other stand-
ing wave is zero.
2 2 : oo
,_ vae (OU ) The effective Hamiltonians Eq$29) and (30) for a po-
6B’ = [1+as-DPcosk+an)sin2qYo—sYm],  tential exactly on an atomic site break axis reflection sym-

¢ metry. In order to demonstrate the role of symmetry, we take

(31) the sum of Hamiltonians arising from potentials on adjacent
where q=(mp-sY,)/L and -L/2<Y,<L/2 is the coordi- A andB atoms with the same component along the tube axis,

nate of the perturbative potential along the nanotube axi%._c"r example, position#, andB, in Fig. 1. In this case the

Here the factoa=*1 is used to distinguish between the case amiltonian is
of the potential being near an A site=1 or near &B site a

=-1. There is an oscillating dependence of the energy level 1 0 0 eix
shift on the indexp of the clean energy levels that has a

. . 1 €8 0
penod_ equal to 1V,/L). In terms of energy, and the_spa(_:lng SHp+ SHg = vggoz(O)Ué(r -R) s ,
of pairs of degenerate levelAE==v/L, the period is e 1 0
AE/(Yo/L)=mv!Y,. Figure 6 shows the splitting of the two gix 0 0 1
levels as a function of the energy for two different potential (32)

positions. The upper curve is fof,=0.029. (potential is
one-twentieth of the way from the center of the nanotube to
the end, and shows an oscillating pattern with period 40, P (K_W P (KW -
whereas the lower curve is fory;=0.128. (potential is a wherex=Ry-(K~K) and f=Rg (K ~K). We find that
qguarter of the way from the center of the nanotube to the
end, and shows an oscillating pattern with period 8. V1.V, % [cogk + ) + cogB— ) 1%,

The degenerate perturbation theory produces two new
zero-order wave functions that are linear combinations of the
original ones. We use them to plot the corresponding modu- _ 2 ; a2 T2
lus squared total wave functiofi¥,,|? near the Fermi level (V1= Vo)™ < [sin(x + 77) = sin(B = )"
in Fig. 7. The special case gf=0 is considered, where the
long-range variation due to the envelope function is absenfor the positionsA; and B, in Fig. 1, the phase factors are
The top panel shows the wave function corresponding tac=27/3 and 8=0 in which case the Hamiltonia®H
6E=0, VoW —(Vy1/Vip)¥,, that has a matrix element +5Hg, preserves axis reflection symmet®;'sHS = 6H
with the effective Hamiltonian equal to zerdv;;  andV;,V,,=0 for an armchair tubgy=/6. There is no mix-
=[dr;" HW;=0. This wave function is zero on every third ing of the pseudospin eigenfunctions, but degeneracy is still
A site having the same phase factoias the impurity site. brokenV;;—V,,# 0. Alternatively, using the unitary transfor-
The lower panel in Fig. 7 shows the wave function corre-mation/, Eq. (8), to change to the system where the clean
sponding toSE=Vy;+Va,, W,oc W +(V,,/ Vi)W, that has a  wave functions are eigenvalues of,, it is possible to
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produce a matrix f[hat has no off.-diagonal spin parts and  sH);=U,gd(r - R)
clearly does not mix the pseudospin eigenfunctions,

u’l(5HA1 N 5HBl)u: v§¢2(0)u5(r B R) - 0 - jae'x —jedxlx | ?~_l
. —iae™x 0 0 —jexe
1 0 e_’”/3 O X ie—ia}'(+il< 0 0 iae—i}
% O 1 0 e2’7T|/3 . 0 ie—ia}+ix _ iae+i;( 0
em/3 0 1 0 (34)

0 e—27Ti/3 0 1

(33 \where Une=3|0R|e P v2e?(|6R|)U/2N\ and y=x-7 is the
Returning to a single impurity potential on an atomic site,angle of the deviationsR in the graphite coordinates as
and taking into account first order terms in the deviat#®  shown in Fig. 1. The factoa=+1 is used to distinguish

of the potential position, we find an effective Hamiltonian between the case of the potential being neaAaitea=1 or
with a different structure, near aB sitea=-1. We find that the energy level shifts are

U/
SE=- ﬁB(_ DP cod2qYp = sY )sin(x +an - ax)
C

+ %v’[l +as(— 1)Psin(2qY, — sY pcogk +an)|[1 +as— 1)Psin(2qY,— sY)codk +an—2x)], (35)

c

where y is the angle of the deviation of the potential in the period 40, whereas the lower curve is fy=0.123_ (poten-

nanotube coordinates. Figure 8 shows the splitting of theial is a quarter of the way from the center of the nanotube to

energy levels as a function of the energy for two differentthe end, and shows an oscillating pattern with period 8. The

potential positions. The upper curve is fg§=0.029. (po-  oscillation periods are the same as for the Hamiltorilp,

tential is one-twentieth of the way from the center of theput this time there is a shift of both of the energy levels, one

nanotube to the endand shows an oscillating pattern with positive, one negative, instead of one of the levels remaining
30 , : , , stationary while the other moves.

=
= 20
% o NWWWWWW B. Impurity at the center of the unit cell
;.;J In this section, we consider the perturbative potential to
- 00 " m p” " 100 be placed near the center of the graphite unit cell, posffion
in Fig. 1. For the zeroth order gradient term, we find that the
%0 effective Hamiltonian for the potential exactly at the center
;°20 of the unit cell is equal to zero, such a position does not
= break the rotational symmetry of graphene. The first nonzero
’w; 1.0 WWWWWWV contribution arises from a quadratic deviation from the cen-
W ter of the unit cell,
0.0 . : ' '
0 20 40 S 60 80 100 5HC - IUC5(T _ R)
o ) 1 926( _ e—iK _ e2i}—ik
FIG. 8. Splitting SE"-6E’ of the pairs of degenerate energy - - ,

levels of a clean nanotube E@5) due to the effective Hamiltonian g 2 1 —g e —glx

SH, of a perturbative potential with a first order deviatiéR from X —gfic  _ g2ixtix 1 et2ix

anA atomic site. The symbols show the splitting as a function of the Coirix ix o

energy of the unperturbed levels, lines are a guide for the eye. The e -€ e X 1

upper curve is for the potential af,=0.023_ (potential is one- (36)

twentieth of the way from the center of the nanotube to the),end 92 o ]
lower curve is forY,=0.123 (potential is a quarter of the way Where Uc=(3[dR[/(2N)?vae*(d)U. Applying degenerate

from the center of the nanotube to the gnBarameter values are Perturbation theory in the same way as before we find that
s=1, k=2m/3, =76, Y,=Y,=0, and the angle of deviation of the energy level shifts aréE’'=0 and oE"=V1;+V,,. In
the potential isy=m/4. terms of the model parameters,
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20 =-1. Degeneracy is still broken but there are no off-diagonal

15 ¢ matrix elementsV,,=V,;=0 and no mixing of the pseu-

. ; . dospin eigenvectors. Alternatively, using the unitary transfor-
mationi, Eq. (8), to change to the system where the clean

05 ) wave functions are eigenvalues @f, it is possible to pro-

duce a matrix that has no off-diagonal spin parts and clearly
does not mix the pseudospin eigenfunctions,

0 0 0 ©O

. L _ 0 1 0-e'™*
Z/{’6HCL{=2|U(;§(r—R)O 0 0 0 . (38

0 -« 0 1

(SE"=SE'W(ULcL)
P

g
=3

0 20 40 60 80 100

n
=)

-
(5]

ot
2}

(BE"=SE"UL.L)
P

4
o

20 40 60 80 100
E/(rviL)

o

FIG. 9. Splitting SE”-SE’ of the pairs of degenerate energy C. Impurity half-way between atomic sites

levels of a clean nanotube E®7) due to the effective Hamiltonian |n this section, we consider the perturbative potential to
dHc of a perturbative potential near the center of the graphite unibe placed near the half-way point between two neighboring
cell. The symbols show the energy shift as a function of the energutoms, positiorD in Fig. 1. There is a nonzero contribution

of the unperturbed levels, solid lines are a guide for the eye. Thef the zeroth order gradient term for the potential exactly at
upper curve is for the potential af,=0.024. (potential is one- the half-way point

twentieth of the way from the center of the nanotube to the),end . ' .

lower curve is forYy=0.128_ (potential is a quarter of the way 1 gllah gilath)  g2a

from the center of the nanotube to the gnBlarameter values are gla=p) 1 2B  grilarp)

s=1, k=2m/3, n==l6, Y,=Y,=0, and the angle of deviation of SHp =iUpd(r -R)| . ) L ,

the potential isy= /4. dlh b 1 elleh
gla  dlatp)  dla=p) 1

2U
SE" = —[1 - (- 1)P cog2qY, - SY,;,)COS K (39)
Ll whereUD=v§<p2(d/2)U, and the phase factors=K -R, and
+ (= 1)Psin(2q Yy — sY ) sin(3n — 2x)sin k], B=K -Rg are evaluated for the two atomic positioRg and
37) Rg nearest the impurity. We find that the matrix elements are

The results are similar to those for the potential exactly on an Vi1/9= Up {2+ 2ssin(n+a-p)

atomic site, one of the energy levels does not move and 2L.L

corresponds to a linear combination of clean wave functions _ 1P _

that has zero matrix element with the effective Hamiltonian, +2(- Dicodat B (29Yo = Y )

whereas the other energy level suffers a shift that oscillates +s(=1)Psin(2a+ 7+ (29Yy —sY )

with the indexp and has a period equal to &/L). Figure T s(= 1)Psin(28 - n+ (2qYo - SY)}

9 shows the energy level splitting as a function of the energy

for two different potential positions. The upper curve is for 2

Y,=0.028_ (potential is one-twentieth of the way from the VyoVop = <h> {cod2a + 7) + cog2B - )

center of the nanotube to the gndnd shows an oscillating 2L.L

pattern with period 40, whereas the lower curve is Ygr _1\p _ _ 2

=0.1213_ (potential is a quarter of the way from the center of +2(- D codn+ a = B)eod2qYo -~ sY )"

the nanotube to the ehdand shows an oscillating pattern Generally, there are two nonzero energy shifts, the exact val-

with period 8. The oscillation of the level splitting as a func- ues of which depend on the phase facterand g that may

tion of energy with a period determined by the positigyof  take the values 0,2/3, or —27/3, depending on the particu-

the impurity along the tube axis,L42<Y,<L/2, may be lar position, there are si® positions shown in Fig. 1.

understood as arising from the slow spatial modulation of the However, as a special case, we note that for positiops

envelope wave functions since, for standing waves, the pcandD, in Fig. 1 the HamiltoniarsHp, preserves axis reflec-

sitions of peaks and nodes vary as a function of energyion symmetry 3;'6Hp3,=6Hp for an armchair tuber

Therefore the extent to which they scatter from a given im=m/6. Degeneracy is still broken but there are no off-

purity position also depends on their energy. diagonal matrix element¥,,=V,;=0 and no mixing of the
The dependence of the energy level shift gnand y ~ pseudospin eigenvectors. For examples0 and B=27/3

arises because the position of the impurity determines théor positionD; and, using the unitary transformatiof Eq.

extent of degeneracy breaking. As a special case, we not8), to change to the system where the clean wave functions

that when the angle of deviation of the impurity ys7/2  are eigenvalues af,, it is possible to produce a matrix that

(see Fig. 1, the HamiltoniansH preserves axis reflection has no off-diagonal spin parts and clearly does not mix the

symmetry for an armchair tube and the factor(3ip-2y)  pseudospin eigenfunctions,
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TABLE Ill. The dependence of degeneracy breaking on the impurity position for an armchair
nanotube.
Impurity position with respect Label in Breaks valley Breaks axis
to the graphite unit cell Fig. 1 degeneracy reflection symmetry
Atomic site A, B yes yes
Center of unit cell C no no
Midway along a bond that is D4, Dy yes no
perpendicular to tube axis
Midway along a bond D,, D3, D5, Dg yes yes

at 30° angle with tube axis

0 0 0O O sponding to both spin and valley degeneracy.

0 1 0 —ei3 In addition to position dependence on the scale of the
U eHpU = 2iUp8(r - R) i graphite unit cell, the level splitting displays a sinusoidally

0 0 0 0 varying energy dependence that has a period determined by

0 -e™ 0 1 the positionY, of the impurity along the tube axisL+2

(40) <Y,<L/2. This arises from the slow spatial modulation of

the envelope wave functions since, for standing waves, the
Since pseudospin is related to the underlying molecular oriocation of peaks and nodes varies as a function of energy.
bital state?® the statement that impurities preserving mirror Therefore the extent to which they scatter from a given im-
reflection in the nanotube axis manage to break degeneragurity position also depends on their energy. It means that, in
without mixing the pseudospin eigenvectors is equivalent texperimental observations, the shell filling properties may
saying that impurities preserving mirror reflection do not re-not be the same in different parts of the spectrum.
sult in mixing of the bondingr and antibondingr energy
bandsl.8‘2°'26’27
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In this paper, we considered degeneracy breaking due to
short-ranged impurities in finite, single-wall, metallic carbon  AppPENDIX A: GENERAL FORM OF THE MATRIX
nanotubes. The effective mass model was used to descrikg EMENTS OF DEGENERATE PERTURBATION THEORY
the slowly varying spatial envelope wave functions of spin-
less electrons near the Fermi level at two inequivalent val- |n this appendix, we present expressions for matrix ele-
leys (K-points in terms of the four component Dirac equa- mentsV,,,= [dr ¥, sHW¥, between the clean wave functions
tion for massless fermions, with the role of spin assumed b¥gs.(23) and(24) and a general effective Hamiltonian with
pseudospin due to the relative amplitude of the wave funcarbitrary coefficients. We sefz=¢ =0 corresponding to
tion on the sublattice atoms. Using boundary conditions apseudospin symmetry preserving boundar®gs;q,=q, p;
the ends of the tube that neither break valley degeneracy nerp,=p, andq=(mp—sY)/L. The only constraints we apply
mix pseudospin eigenvectors, we used degenerate perturb@rthe general effective Hamiltonian are due to hermicity and
tion theory to study the influence of impurities. The positiontime reversal symmetry, because these constraints are obeyed
of a short-ranged impurity potential within the hexagonalpy every specific effective Hamiltonian that we derive. The
graphite unit cell produces a particulax4} matrix structure  results are used in Sec. IV where a particular position of the

of the corresponding effective Hamiltonian, and the symmepotential corresponds to particular values of the arbitrary co-
try of the Hamiltonian with respect to pseudospin flip andefficients.

mirror reflection in the nanotube axis is related to degeneracy We use the constraints of Hermicity and time reversal
breaking and pseudospin mixing, respectively. Table Illsymmetry to write a general effective Hamiltonian as
shows a summary of the position dependence for an armchair
tube(axis is parallel to thg-axis in Fig. 1. It shows how the
character of an impurity determines the extent of valley de- _ _ _
generacy breaking, resulting in the possibility to observe ex- ce” b we'? me'~
perimentally either twofold or fourfold periodicity of shell oH=UAr -R) me* weéB b cegid |’ (A1)
filling.® For example, an impurity on an atomic site will ia i is

break valley degeneracy and tend to give twofold periodicity, le' me#  ce a

corresponding to spin degeneracy only, whereas a potential

at the center of the graphite unit cell will not break valley where all the variables represent arbitrary real numbers. We
degeneracy and it will preserve fourfold periodicity corre-find that the matrix elements are

a ced melr |gTe

085415-11



E. McCANN AND V. I. FALKO PHYSICAL REVIEW B 71, 085415(2005

U _ to y over a vanishingly small intervaly—é<y=<Y,+ 6 near
Viuze= o L{a+ b+ 2scsin(7 - 9) the additional potential. The first term in E(B1) gives a
¢ discontinuity in the componentg,, of the envelope wave
+2m(- 1P cogu £ (29Yp = SY ) function at the potential position, producing expressions such
+ sl(- 1)Psin(a + 7 (29Y, - SY ) asn(Yo+0) =i (Yo— ). The second ternd(r —-R)VW gives

_ the value of the wave function components at the potential
+swW-1Psin(B- 7+ (2qYo—SYw)}, (A2)  position and the term on the right-hand side of &), EV,
gives zero contribution, althougff is not necessarily con-

3 2 0 ) tinuous, it is not infinite. The wave functions are then deter-
ViVor = SLL {(= DX@a-b)sin(2qYo — sY) mined, using the resulting matching conditions, and the en-
¢ ergy level spectrum is found. As before, we will consider
+2s0- 1)P cog - §)cog2qY, — sY ) only metallic nanotubes with arbitrary chiral angle We
+slcoda + 7) +swcod B— 7)1, (A3) suppose that the axis is perpendicular to the tube axis and

we consider only the zero momentum transverse mode so
where the upper sign in E¢A2) refers toVy; and the lower  that|E| < 2mv /L, whereL.=|C,| is the circumference.
to Voo In order to demonstrate what is in principle possible, we
The HamiltonianéH preserves axis reflection symmetry consider in detail the case of the additional potential exactly

3 '6HS,=8H for an armchair tubey=/6 if b=a, w=I, on anA site with the following effective Hamiltonian:
=2m/3 andB=«a—-27/3. Degeneracy is still broken but there

are no off-diagonal matrix elemeni§,=V,;=0 and no mix- 1 00¢e™

ing of the pseudospin eigenvectors. Using the unitary trans- 00 O

formationi/, Eq.(8), to change to the system where the clean SHaA=Up8(r = R) 00 ol (B2)
wave functions are eigenvalues @f, it is possible to show .

explicitly that the Hamiltonian preserving axis reflection e 00 1

symmetry has no off-diagonal spin parts and clearly does not . . I :
mix the pseudospin eigenfunctions, Wherex is a phase factor associated with intervalley scatter

ing at the impurityk=R,- (K ~K). It results in the following

a-c 0 m+I 0 matching conditions at the impurity:
0 a+c 0 ®m-T Yo+ &) = (Y-8 =0 B3
u—lmuzuﬁ(r_R) _ , wl( O+ ) ‘ﬂl( 0 ) ’ ( )
m+l O a-c 0 . A
0 m-1 O a+c P(Yo+ 8) = (Yo = 0) =ue' (o) + € “Yu(Yo)],
(B4)
(A4)
wherem=mé* and|=lele /3, (Yo + 8) = a(Yo = 8) = ue ey (Yo) + tha(Yo)],
The HamiltoniansH preserves pseudospin-flip symmetry (B5)
p, 8Hp,=6H if b=a, ¢=0, u=0 (or m=0), andl=-w and
a=-B (or I=w=0), in which caseV;,V,;=V;1—Vs=0 Uu(Yo+ 8) = (Yo 8) =0, (B6)

meaning that degeneracy is not broken.
where u:vggoZ(O)U/vLc. Using these matching conditions,
we find that the wave vectors are given by solutions of the
following equation:

APPENDIX B: NONPERTURBATIVE DETERMINATION
OF THE SPECTRUM IN THE PRESENCE OF AN
IMPURITY

In this section, we present a nonperturbative calculation® = SINAL+SYp+ &msin(gL+sYy, = &)

of the energy level spectrum in the presence of an impurity. u .

We consider the additional potential to be placed at an arbi-  ~5 sin(qL +sY, — &r)[scodgl + s + &)
trary positionY, along the tube E/2<Y,<L/2, and we use

the off-diagonal boundary conditions, Sec. Il B, at the ends ~ + Sin(k + 7—sY,— & +2qYy)]

of the tubey=+L/2. Since the potential is a delta function in

. . . u .
space, the wave functions away from it are simply the solu- -~ sin(qL +sY, + &)
tions of the clean Hamiltonian. However, the delta function 2
potential does introduce nontrivial matching condition¥ gt X[scodqL +8Y, — &m) — sin(k + p+sY 1, — &, 2qY)].

for the standing waves to the left and the right. In general, we
have an equation of the form
[~iva-V +8r - R)V]¥ = EV, (B1) In the degen_erate cas§,=0, ex_pansi(_)n of this equation for
weak potential strength up to linear inrecovers the results
whereV is a 4x 4 matrix as found in Sec. IV. To produce the of the degenerate perturbation theory E2{). Moreover, for
matching conditions, we integrate the equation with respedarbitrary potential strength arg},=0, sifgL+sY ) is always

(B7)
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ST I ' ' strength obtained by expanding E@®7) up to linear inu
with &,#0,
40 | su .
oy = 0 + S (1 +S(- DPisin(i + 7= SV~ &+ 20Yo)],

230 1 (B8)
2
< 20 su _
E 0 = o + (1= S(= DP2sin(i+ 7+ SY = 5= 20" Yo)).

10t 1 (B9)
For simplicity we setp,=p;=p in order to show that the
00 40 230 20 —1.0 00 10 20 30 40 50 impurity potential may enhance or reduce the spacing be-
E/(nviL) tween adjacent levels:
FIG. 10. Position of energy levels as a function of the strength —q. = 26m_ U _ 1)P COS(SY —2(mD - SY ﬁ)

of a potential on arA atomic site in the presence of degeneracy U L L( ) m ™ 2P p) L

breaking due to off-diagonal boundary conditigis= /8. The po- v

sition of the impurity isYy=0.128_ (potential is a quarter of the ><sin<;<+ n-& - 2§m_0>_ (B10)

way from the center of the nanotube to the grahd other param- P L

eter values ara=2m/3, »=m/6, §=Yp=Ym=0. Figure 10 shows the evolution of energy levels nEai0 as

a function of the strength of the potential found by solving

. Eqg. (B7) numerically. In this example, there is degenerac
a common factor of EB7), meaning that half of the levels brqeaking in the clegn tube due to Fzthe boundary c%ndition)é,
suffer no energy shift in the presence of an impurity for. _ /" |n a similar way to the degenerate case, one of the
degeneracy preserving boundary conditions. Here we are ifayels in each nearly degenerate pair does not move very
terested in the_nondegenerate case wherg .the degeneracy Rasch as a function of impurity strength, while its partner
already been lifted by the boundary conditionsyattL/2.  gyffers a shift that oscillates from pair to pair as a function of
In the limit U:O, the first term in Eq(B?) repl’oduces the energy(because of the nonzero pOSition of the |mpuh‘w
results for a clean nanotube, E¢85) and(26), and we now it respect to the center of the tybeSome levels are
label these wave vectors &’ and qy’, respectively. The prought closer together by the presence of the impurity po-
angle &, breaks degeneracy}(zo)—q(lo):me/L for p,=p;. tential, some appear not to move, while others are split fur-
Now we will present a perturbative result for weak potentialther apart.
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