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We have calculated light absorption spectra of planar metal structures containing a two-dimensionals2Dd
lattice of spherical nanocavities. Two types of porous metal structures are considered:sid unsupported planar
metal films containing a lattice of voids andsii d planar metal films with a lattice of voids supported by the bulk
metal substrate. It is shown that nearly total absorption of light occurs at the plasma resonance of the void
lattice in the visible when the intervoid spacing and the void deepening into the bulk metal substrate are thinner
than the skin depth, which ensures optimal coupling of void plasmons to external light. It is remarkable that
even a single 2D lattice of nanovoids beneath the planar metal surface can produce the total light absorption.
This giant light absorption is accompanied by strong local-field enhancement at the plasma resonance. The
absorption and local-field properties of these types of nanoporous metal structures can be effectively tuned by
nanoengineering the spherical pores.
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I. INTRODUCTION

Planar metal surfaces absorb light very poorly in general.
The reason for this can be found in their high free-electron
density, which reacts to the incident light by sustaining
strong oscillating currents that, in turn, reradiate light effi-
ciently back into the surrounding medium, whereas the light
intensity inside metal remains weak. Actually, the same phe-
nomenon takes place when light excites plasma oscillations
in metallic particles. As a result, the local-field enhancement
inside or near the particles appears to be quite moderate even
at the plasma resonancese.g., local-field enhancement factors
up to 15 have been reported for spherical metallic
nanoparticles1,2d.

In apparent contradiction with the above arguments,
strongsup to −20 dBd resonant dips in the reflectivity spectra
of light have been recently observed3 at oblique incidence
from nanoporous gold surfaces formed by periodical ar-
rangements of close-packed spherical segment voidssnano-
cupsd. Since there is no transmission through the metal sub-
strate, these resonant peaks indicate the presence of strong
resonant absorption on such surfaces.

It was presumed in Ref. 3 that this phenomenon is related
to the excitation of plasmon modes in nanocups, which
couple much more effectively to the light than those in, e.g.,
metallic spheres. As an intuitive explanation of their obser-
vations, the authors of Ref. 3 employed a simple model of
plasmon modes supported by a spherical void in an infinite
metallic medium. Although that model gives eigenfrequency
values that somehow can be fitted to the frequencies of the
resonances in the measured reflectivity spectra, it cannot de-
scribe the coupling between plasmon modes in the nanocav-
ity and the external radiation field. The reason is that the
plasmon modes in a void are nonradiative because their elec-
tromagnetic field cannot radiate into an infinite metal having
a negative permittivity. However, the huge resonant dips in

the reflectivity spectra that were observed in Ref. 3 suggest
effective coupling of nanocavity plasmons to the incident
light. Therefore, a better understanding of the effect of cou-
pling between plasmons in metallic nanocavities and external
radiation becomes important.

In Refs. 4 and 5 the reflectivity spectra of close-packed
segment voids in metallic films were experimentally studied
for normal incidence of light; however, only moderate dips
in the reflectivity spectra were observed. The authors of Ref.
4 and 5 described their experimental observations by making
use of a simple optical ray model. While this theoretical
model explains satisfactorily the optical properties of the
shallow cups of large diametersup to 10mmd studied in the
experiments,4,5 it obviously becomes invalid for nanocups
with smaller diameters comparable to the light wavelength,
for which ray optics is not applicable because it takes into
account only the geometrical aspect of the problem but ne-
glects plasmons confined in every nanocup as well as diffrac-
tion phenomena in the lattice of nanocups altogether.

In this context, it has been shown in Refs. 6–8 that the
spectra of plasma oscillations in spherical metallic nanopar-
ticles with inner voidssnanoshellsd are much richer than
those in solid metallic nanospheres. Both spherelike plas-
monssthose mainly bound to the outer surface of the shelld
and void-like plasmonssbound to the inner surfaced can be
excited in such particles. Optical properties of a single me-
tallic nanoshell and nanoshell clusters can be effectively
tuned by nano-engineering their geometry. As it has been
theoretically shown in Ref. 8, the local-field enhancement
factor at the void-like plasmon resonance can reach ultra-
high values for a specific thickness of the shell layer, accom-
panied by sharply enhanced light absorption at the
resonance.8 Such local-field enhancement at the plasma reso-
nances on metal surfaces with negative curvature may be
relevant to the enhanced Raman scattering of light by mol-
ecules absorbed at those surfaces when they exhibit compli-
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cated profiles.9 References 10 and 11, where enhanced light
absorption in a slab of metallic nanoporous photonic crystal
has been theoretically studied, also should be referred to in
this connection.

In this paper, we study the optical plasmonic properties of
hexagonal two-dimensionals2Dd lattices of spherical nano-
voids inside metals. In Sec. II, we start with a simple model
of the resonant surface layer that captures the essential phys-
ics underlying unusual optical properties of the void lattice
buried in metal. We consider two types of structures:sid un-
supported planar metal films containing a lattice of voids and
sii d planar metal films with a lattice of voids supported by the
bulk metal substratesi.e., the lattice of voids lies right be-
neath the planar surface of the metald. In Sec. IV, we cor-
roborate the results derived from our simple model of Sec. II
by comparing them with transmission and absorption spectra
of nanoporous metal structures calculated in the framework
of a self-consistent electromagnetic multiple-scattering
layer–Korringa-Kohn-RostokersKKRd approach,12–14 which
is briefly described in Sec. III and which allows us to take
into account the actual structure of void lattice. We show that
the frequencies of absorption resonances can be effectively
tuned by varying the diameter of the voids or by filling them
with different dielectric materials. We also estimate the local-
field enhancement factor at the plasma resonances of the
void lattice and show that enhanced resonant light absorption
is accompanied by strong local-field enhancement. The con-
clusions are summarized in Sec. V.

II. SIMPLE MODEL FOR A RESONANT SURFACE LAYER

A. Effective surface impedance of a void lattice in metal

In order to examine the essential physics of energy trans-
formation in the system, we elaborate in this section a simple
model describing a 2D lattice of voids in metalsFig. 1d by its
equivalent impedanceZeff. In this section, we use the local
Drude model to describe the conductivity of the metal,

sesvd =
e2Ne

msne − ivd
,

where Ne is the bulk free-electron density,ne is the free-
electron scattering rate, ande andm are the electron charge
and mass, respectively. For a planar surface of homogeneous
solid metal, its effective areal impedance can be written as

Ze =
1

sed
= Re − ivLe,

where d is the skin depth, characteristic for a constitutive
metal. The effective areal electronic resistanceRe

=mne/ se2dNed determines the amount of power absorbed on
the metal surface, and the areal reactance −vLe determined
by kinetic electronic inductanceLe=m/ se2dNed accounts for
the phase shift between the electric field and surface current
induced in the surface skin layer.

For a metallic nanoporous surface, we also have to ac-
count for the effective areal capacitance in order to describe
the charge accumulation in the void boundaries. We describe
plasma oscillations of thelth mode in the lattice of voids by
an equivalentRLC circuit composed of the equivalent areal
capacitanceCl connected in parallel to theRlLl branchssee
Fig. 1d. The equivalent impedance of this circuit can be writ-
ten as

Zl =
Rl − ivLl

1 − v2LlCl − ivRlCl
. s1d

Here Rl =2mnl / se2DldNed is the equivalent areal electronic
resistance andLl =m/ se2DldNed is the areal kinetic electronic
inductance characteristic of thelth plasmon mode, wherenl
is the damping of thelth plasmon mode due to all dissipative
processes except radiative damping, andDl is the fraction of
free electrons participating in the plasma oscillations at the
lth mode. We estimate the equivalent areal capacitance as
Cl = uf lu2d«0, whered is the void diameter,«0 is the electrical
constant,uf lu2 is the dimensionless phenomenological form
factor characteristic of a givenlth multipole plasmon mode
of a void, which is a free parameter in this simple model.
Substituting the expressions forRl, Ll, andCl given above in
Eq. s1d, one finds

Zl =
m

e2DldNe

vl
2s2nl − ivd

svl
2 − v2 − 2ivnld

,

where

vl =
1

ÎLlCl

=Î e2DldNe

uf lu2d«0m
s2d

is the frequency of thelth plasmon mode. In the vicinity of
the resonance,v.vl, assuming that 2nl !vl, we finally ob-
tain

Zl . −
1

2
i

m

e2DldNe

vl
2

svl − v − inld
.

With this consideration, we can easily obtain the total
frequency-dependent equivalent areal impedance of the 2D
lattice of voids in the form

Zeff .
m

e2dNe
sne − ivd − i

m

2e2o
l=1

` ublu2

DldNe

vl
2

svl − v − inld
,

s3d

where ublu2,1 is the phenomenological coefficient of
coupling between the external oscillating electric field
E exps−ivtd and thelth plasmon mode, which depends on
the geometry of the particular structure under consideration.
The first term in Eq.s3d describes the Drude response of
homogeneous portions of the metal within intervoid regions
to the external field.

FIG. 1. Lattice of voids and its equivalent circuit.
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In the vicinity of thelth plasma resonance,v.vl, the lth
term of the summation dominates the right-hand side of Eq.
s3d and we have

Zeff < − i
mublu2

2e2DldNe

vl
2

svl − v − inld
. s4d

B. Porous metal film suspended in vacuum

Consider an external electromagnetic plane wave incident
normally onto the metal porous film containing the 2D lattice
of voids and suspended in vacuumsFig. 2d. We describe the
metal porous film by an equivalent sheet with the effective
surface impedanceZeff obtained in the previous subsection.
Obviously, the phenomenological coupling parameterublu2
depends on the void-to-surface distanceh in such a structure.
We solve the Maxwell equations in the surrounding media
with the boundary conditions for electricE and magneticH
fields in the form

Ein + Erf = Etr,
s5d

Ein + Erf = Zefffn 3 sH in + H rf − H trdg,

where subscripts in, rf, and tr refer to the incident, reflected,
and transmitted waves, respectively, andn is the external
normal to upper planar surface of the metal filmssee Fig. 2d.
As a result, we obtain the complex amplitude reflection and
transmission coefficients as15

r = −
Z0

2Zeff + Z0
, t =

2Zeff

2Zeff + Z0
, s6d

whereZ0 is the free-space impedance.
The surface impedance given by Eq.s4d leads to the fol-

lowing expressions for the reflectance, transmittance, and ab-
sorbance of light in the neighborhood of thelth plasma reso-
nance:

R= rr * <
nl

2 + svl − vd2

svl − vd2 + snl + gl
sfdd2 ,

T = tt* <
sgl

sfdd2

svl − vd2 + snl + gl
sfdd2 , s7d

A = 1 −R− T <
2nlgl

sfd

svl − vd2 + snl + gl
sfdd2 ,

where

gl
sfd = ubl

sfdu2
mvl

2

Z0e
2DldNe

. s8d

If we ignore electron scattering in metalsnl =0d, then the full
linewidth of thelth resonance would be given by the value of
gl

sfd; correspondingly,gl
sfd describes the radiative broadening

of the plasma resonance.
It should be noted that the transmission and absorption

resonances have Lorentzian line shape with full width at half
maximumsFWHMd 2snl +gl

sfdd. The free parametersuf l
sfdu2/Dl

and ubl
sfdu2/Dl can be obtained by fitting the resonance fre-

quency and FWHM yielded by this simple model of resonant
porous metal film to those obtained by a self-consistent elec-
tromagnetic model, which is done in Sec. IV of this paper.

At resonance,v=vl, one finds

Tres=
sgl

sfdd2

snl + gl
sfdd2, Rres=

nl
2

snl + gl
sfdd2 ,

s9d

Ares= 1 −Rres− Tres=
2nlgl

sfd

snl + gl
sfdd2 .

It is readily seen thatAresø0.5 for any values ofgl
sfd andnl.

The maximum value,Ares=0.5, occurs whengl
sfd=nl. The

transmittanceT also grows at the resonance and reaches a
value 0.25, while the reflectivityR drops down to the same
value of 0.25. This means that in the case of a symmetric
environment the nanoporous metal film reradiates the energy
of incident light equally into each surrounding medium, as it
should when light is coupled to a resonance in a symmetric
system like our film.

Formulas8d suggests that the radiative dampinggl
sfd itself

may be conceived as the coupling coefficient that controls
the strength of interaction between the plasmon mode and
light. Note that the role of radiative damping as a coupling
coefficient describing the interaction between the eigenoscil-
lations and external radiation has been shown for different
open electromagnetic systems: plasmons16 and cyclotron
polaritons17,18 in 2D electron systems, exciton polaritons in
quantum wells,19 and plasmons in metallic nanoshells.8 For
small gl

sfd, gl
sfd!nl, this coupling is weak and the plasmon

mode absorbs light poorly. In the opposite limit,gl
sfd@nl, the

strong plasma-oscillation currents that flow on the metal film
surfaces reradiate incident light back into the surrounding
media, which again reduces absorption drastically. In the in-
termediate case, it is possible to realize the condition of
maximum absorption of light by plasmons in porous metal

FIG. 2. Nanoporous metal film containing an hexagonal lattice
of spherical voids. The void-to-surface distanceh is chosen to be
equal to the intervoid spacing.
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films by choosing a specific value of the coupling coefficient
ubl

sfdu2, which yieldsgl
sfd=nl. The optimal value ofublu2 can be

easily realized for voidlike plasmon modes in the spherical
voids buried in metal. For example, the conditiongl =nl can
be easily satisfied for voidlike plasmons in a metallic
nanoshell by choosing a specific value of the shell-layer
thickness, as shown in Ref. 8.

C. Porous metal film supported by the bulk metal substrate

Now let us consider an electromagnetic plane wave inci-
dent from vacuum normally onto a planar surface of bulk
metal that contains a 2D lattice of voids just beneath the
surface. In this caseEtr and H tr vanish in Eq.s5d and one
obtains the impedance boundary condition20

Ein + Erf = Zefffn 3 sH in + H rfdg. s10d

Solving Maxwell’s equations in the ambient medium
svacuumd together with boundary condition equations10d, it
is easy to obtain the complex amplitude reflection coefficient

r =
Zeff − Z0

Zeff + Z0
. s11d

The surface impedance given by Eq.s4d leads to the fol-
lowing expression for the reflectance and absorbance of light
in the neighborhood of thelth plasma resonance:

R= rr * <
svl − vd2 + sgl

ssd − nld2

svl − vd2 + sgl
ssd + nld2 ,

s12d

A = 1 −R<
4nlgl

ssd

svl − vd2 + sgl
ssd + nld2 .

Here

gl
ssd = ubl

ssdu2
mvl

2

2Z0e
2DldNe

s13d

is the radiative damping of thelth plasmon mode on the
nanoporous metal surface. Comparing Eqs.s8d and s13d one
can see that the radiative broadening of the plasma resonance
in the nanoporous metal film is twice of that at the nano-
porous metal surface,gl

sfd=2gl
ssd sunder the assumption that

the coupling coefficientublu2 is the same in both casesd, be-
cause void plasmons in the film reradiate into either sur-
rounding medium. The absorption resonance described by
Eq. s12d has a Lorentzian line shape with FWHM 2snl

+gl
ssdd. Again, the free parametersuf l

ssdu2/Dl andubl
ssdu2/Dl can

be obtained by fitting the resonance frequency and FWHM
yielded by this simple model of resonant porous metal sur-
face to those obtained by a self-consistent electromagnetic
model, which is done in Sec. IV of this paper.

Finally, at resonance,v=vl, one finds

Rres<
sgl

ssd − nld2

sgl
ssd + nld2 ,

Ares<
4nlgl

ssd

sgl
ssd + nld2 .

It is readily seen that nearly total light absorption by thelth
plasmon modesAres<1d occurs whennl =gl

ssd, while the re-
flectivity, Rres, drops down to zero.

III. SELF-CONSISTENT ELECTROMAGNETIC MODEL:
SCATTERING-MATRIX LAYER-KKR APPROACH

Here we consider a more specific periodic 2D hexagonal
lattice of spherical voids inside a metal with primitive lattice
vectorsa and b, where uau= ubu and a·b= uau2cos 60°. The
lattice of voids may reside inside a planar metal film or may
be buried beneath the planar surface of bulk metal. We as-
sume that external light shines normally onto the planar sur-
face of the metal.

To calculate light absorption in such a porous structure we
use a rigorous solution of Maxwell’s equations based upon a
multiple-scattering layer-KKR approach that makes use of a
reexpansion of the plane-wave representation of the electro-
magnetic field in terms of spherical harmonics.12–14,21,22This
approach involves the following steps. First, we divide the
whole structure into parts separated by parallel planes that
form two homogeneous semi-infinite media and a planar
layer in between that contains the periodic lattice of voids.
This periodic layer may be formed either by the actual planar
porous metal film or by a porous layer beneath the surface of
bulk metal. In the latter case, the homogeneous semi-infinite
space below the periodic layer is filled with the homoge-
neous metal medium. The periodic layer is treated within the
KKR method in a spherical-wave representation, whereas the
interaction between the field in the periodic layer and the
field in the homogeneous semispaces is treated separately in
a plane-wave representation.

One of the advantages of this scattering-matrix approach
is that it employs explicitly the decomposition of the total
field into a sum of waves propagatingsor decayingd along
and counter to then direction ssee Fig. 2d. It allows one to
avoid difficulties with convergence when describing the eva-
nescent waves. The total fields in the homogeneous media
surrounding the periodic metal layer result from the superpo-
sition of propagatingsand evanescentd plane waves

Etot
± = o

g

Eg
± expsiK g

± · r d

with transverse wave vectors

K g
± = fg, ± Îk2 − g2g,

wherek=k0Î«svd inside the metal,k=k0 is the momentum
of light in the surrounding vacuum,g=pA +qB are the in-
plane reciprocal lattice vectors,A =2psb3nd / ua3bu and
B=2psn3ad / ua3bu are the primitive vectors of the recip-
rocal 2D lattice,p and q are integers, andr is the radius
vector. The superscripts1 and2 label waves that propagate
sor decayd along and counter to then direction, respectively.
The square root of the frequency-dependent dielectric func-
tion «svd is chosen here to have a non-negative imaginary
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part. It should be noted that every plane wave in the metal
substrate is evanescent at frequencies below the bulk plasma
frequency.

The total field inside the layer with a periodic lattice of
voids is represented as a superposition of the incoming plane
wavessboth propagating and evanescentd and the field scat-
tered from every void,

Escsr d = o
l

o
m=−l

l S i

k
blm

E = 3 o
Rn

hl
+skrndX lmsr̂ nd

+ blm
H o

Rn

hl
+skrndX lmsr̂ ndD , s14d

wherehl
+skrd is the spherical Hankel function oflth order,

which has the asymptotic form describing an outgoing
spherical wavehl

+skrd<s−idlexpsikrd / ikr at r →`; r n=r
−Rn; Rn is the radius vector of the center of thenth void;
X lmsr̂ d is a vector spherical harmonic defined by

Îlsl + 1dX lmsr̂ d = − i r̂ 3 Ylmsr̂ d,

where the unit vectorr̂ denotes the angular variablessu ,fd
of the radius vectorr in spherical coordinates andYlm are
spherical harmonics. The amplitude coefficientsblm

E,H of the
scattered spherical waves withE andH polarizations in Eq.
s14d are determined using the scattering matrix of a void that
relates the total electromagnetic field incident upon a given
single void with the electromagnetic field scattered from this
void:

SbE

bH D = STE 0

0 TH DSaE

aH D , s15d

wherebE,H;hblm
E,Hj are the column matrices oflmaxslmax+2d

elements,aE,H;halm
E,Hj are the column matrices with the am-

plitude coefficients of the combined electromagnetic field in-
cident upon a given single void as their elements,lmax is
cutoff value of the angular momentum in the spherical-wave
expansion to reach a desired level of convergence. The ele-
ments of the scattering matrices of spherical voids depend
only on l as

Tlm;l8m8
E,H = Tl

E,Hdll8dmm8,

where13,23

Tl
E =

− «svd j lsr1dfr0j lsr0dg8 + fr1j lsr1dg8 j lsr0d
«svdhl

+sr1dfr0j lsr0dg8 − fr1hl
+sr1dg8 j lsr0d

,

s16d

Tl
H =

− j lsr1dr0j8lsr0d + r1j8lsr1d j lsr0d
hl

+sr1dr0j8lsr0d − r1fhl
+sr1dg8 j lsr0d

,

r0=k0d/2, r1=k0dÎ«svd /2, and the prime denotes differen-
tiation with respect to the argument.

The field scattered from each void reaches out other voids
and contributes to the their scattered fields. The layer-KKR
method incorporates this effect by translating outgoing
spherical waves from each void to other voids, where they
are expressed as spherical components of plane waves. The
details of this translation procedure have been taken from

Ref. 12. Then, a summation has to be performed over all of
these in-plane scattering contributions, which is performed
directly in real space in our case, since the metal provides a
natural space cutoff distance beyond which the voids cannot
seeeach other through the intervoid metal portions.

Therefore, we have decomposed the combined field inci-
dent upon a given single void into spherical waves that are
scattered according to the above equations. Then, we trans-
form the combined field scattered from all voids into the
plane-wave representation that is expressed as a sum over
in-plane reciprocal vectorsg,

Esc
± = o

g

fEsc
± ggexpsiK g

± · r d,

and apply the boundary conditions at the interfaces of the
layer containing the lattice of voids with the surrounding
media. As a result we construct the scattering matrix of the
entire structure, which allows us to calculate the reflectance,
R, transmittance,T, and absorpbance,A=1−R−T, of the en-
tire structure. This procedure is explained in great detail in
Ref. 12, together with the extension to an arbitrary number
of layers is done.

It is interesting to point out that, even if different voids in
the lattice are close packed, they are only weakly coupled
through the metal, so that each void interacts directly only
with its nearest neighbors. Accordingly, the Bragg reso-
nances controlled by the periodicity of the system are not
exhibited in the calculated spectra. Therefore, only reso-
nances originating in the excitation of Mie plasmon modes in
every single void influenced by nearest void neighbors show
up in the spectra.

In our calculations we assume that the intervoid spacing
along the lattice vectorsa and b is equal to the void-to-
surface distanceh ssee Fig. 2d. Below we present the results
of numerical calculations performed withl ø12 and up to
151 g’s, which ensure that our calculations are closer than
1% with respect to the converged ones.

IV. OPTICAL SPECTRA OF NANOPOROUS STRUCTURES

A. Drude model

In this section, we describe the dielectric response of the
metal to an electric fieldE exps−ivtd in the local Drude
model as

«svd = 1 −
vp

2

vsv + ined
,

wherevp is the bulk plasmon frequency andne is a phenom-
enological bulk electron relaxation rate. For our calculations
we chose the parametersvp=8.7 eV and ne=45 meV,24

which are characteristic for silver.
Figure 3sad shows the calculated absorption spectra of

light incident normally onto an unsupported silver film con-
taining a single hexagonal lattice of voids. The absorption of
light grows resonantly at the frequencies of plasma reso-
nances in nanovoids when the void-to-surface distanceh is
of the order of the skin depthswhich is about 23 nm for
silverd. The maximum resonant light absorption,Ares=0.5,
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occurs whenh=20 nm. Although the frequency of the
plasma resonance in the porous metal film is close to the
frequency of the fundamentalsthe orbital quantum number,l,
is unityd Mie plasmon mode of a single spherical void in an
infinite metallic medium, they do not coincide. As clearly
seen in Fig. 3sad, the shift between these two frequencies
grows with decreasing the intervoid spacing, which shows
that the reason for such a shift is the coupling of plasmons in
adjacent voids. It should be noted that the linewidth of
plasma resonance gradually increases with decreasing void-
to-surface distance, i.e., increase of the coupling parameter
ublu2 due to growing radiative contribution to the linewidth.

In Fig. 3sbd we compare the light transmission spectrum
of the nanoporous silver film in the case of maximum light
absorptions50% at resonanced with the transmission spec-
trum of the same film calculated by neglecting electron re-

laxation in the metalsne=0d. The curves are normalized to
have the same height for the sake of comparison. Without
electron relaxation taking into account, the FWHM of the
transmission resonance is entirely of the radiative origin, and
hence, the FWHM is equal to 2gl

sfd in this casessee relevant
discussion in Sec. IId. The FWHM of the transmission reso-
nance curve corresponding to the maximum light absorption
is exactly twice broader. This is proof of the criterion derived
in Sec. II in the framework of a simple equivalent model,
which proposes that the maximum absorption at plasma reso-
nance occurs when the radiative and dissipative broadening
of the resonance equal each other.

Figure 4sad shows the calculated absorption spectra of
light incident normally onto a nanoporous silver surface
snanoporous silver film supported by the bulk silver sub-

FIG. 3. Optical spectra of light incident normally onto a planar
silver film with an hexagonal lattice of spherical voids of diameter
d=300 nm. The metal is described by dielectic function in the
Drude modelssee textd. sad Variation of the absorption spectra with
void-to-surface distanceh, which is chosen to be equal to the int-
ervoid spacing. The vertical arrow marks the energy of the funda-
mental plasmon mode of a single void in bulk silver.sbd Transmis-
sion spectra calculated by taking into account electron relaxation,
ne=45 meV ssolid curved, and without electron relaxationsdashed
curved. The void-to-surface distanceh=20 nm produces an absorp-
tion maximums50%d at resonancefseesadg. Curves are normalized
to have the same height for comparison sake.

FIG. 4. sad Absorption spectra of light incident normally onto a
planar nanoporous silver surface with an hexagonal lattice of
spherical voids of 300 nm in diameter beneath the surface for dif-
ferent values of void-to-surface distanceh, which is chosen to be
equal to the intervoid spacing. The metal is described by the dielec-
tic function in the Drude model. The vertical arrow marks the en-
ergy of the fundamental plasmon mode of a single void in bulk
silver. sbd Light absorption spectra by a nanoporous silver film sus-
pended in vacuumsdashed lined and a nanoporous silver surface
ssolid lined for the same parameters:d=300 nm andh=15 nm.
Curves are normalized to have the same height for comparison
sake. The FWHM’s of these two resonance curves are interrelated
by Gl

sfd=3Gl
ssd /2.
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strated. Again the light absorption exhibits resonant enhance-
ment at the frequencies of nanovoid plasma resonances. The
total resonant light absorption predicted by the simple model
of Sec. II occurs when the lattice of spherical voids is buried
in the metal substrate at a specific distance from the metal
surface, which ensures optimal coupling of void plasmons to
the external light. Remarkably,even a singlelattice of nano-
voids beneath the planar metal surface can produce the total
light absorption on such a nanoporous metal surface,
whereas this surface is highly reflective away from the
plasma resonance.

Comparing Figs. 3sad and 4sad one can see that the void-
to-surface distance producing the maximum light absorption
is less for the nanoporous surfacefFig. 4sadg. This is due to
the smaller radiative damping inherent in near-surface lat-
tices of voids as compared to that in the metal filmfcf. Eqs.
s8d and s13dg. Therefore, to satisfy the condition of optimal
coupling between light and void plasmons at nanoporous
metal surface,gl

ssd=nl, one should place the lattice of voids
closer to the metal surface in order to increase the value of
the coupling parameterublu2.

It is worth noting that the FWHM of resonant curves with
maximum absorption at resonance are very close to each
other in either structure: the nanoporous metal filmsh
=20 nmd and nanoporous metal surfacesh=15 nmd. Taking
into account this fact and the condition of optimal coupling
gl

sf,sd=nl obtained in Sec. II, one can conclude that the dissi-
pative broadening of plasma resonances is almost the same
for both structures, which suggests that void-plasmon fields
are strongly confined inside the voids, so that the void-to-
surface distance does not influence much the dissipative
broadening of the resonance.

In Fig. 4sbd the absorption spectra of light are shown for
our two different structures: a nanoporous silver film sus-
pended in vacuumsdashed lined and a nanoporous silver sur-
face ssolid lined for the same parametersd andh. The void-
to-surface distanceh=15 nm in Fig. 4sbd corresponds to the
maximum absorptions<100%d at resonance in Fig. 4sad,
wheregl

ssd=nl. One can see that the FWHM of the plasma
resonance in the nanoporous film is by 50% broader than that
on the nanoporous metal surface. The FWHM of resonance
curve is given byGl

ss,fd=2snl +gl
ss,fdd. Because the dissipative

broadening of the resonance is almost the same in both struc-
tures as deduced above we havegl

sfd=2gl
ssd, which yields

Gl
sfd=3Gl

ssd /2 fsee Fig. 4sbdg. This consideration confirms the
conclusion drawn in Sec. II: the radiative broadening of
plasma resonance in the nanoporous film is twice as much as
that at nanoporous metal surface for the same void-to-surface
distancesi.e., the same coupling coefficientublu2d for both
structures.

Now, we can estimate the free parametersuf lu2/Dl and
ublu2/Dl introduced in Sec. II by fitting Eqs.s2d, s8d, ands13d
to the resonance frequency and FWHM in the case of maxi-
mum light absorption at resonance. As it was shown in Sec.
II the FWHM acquires the value of 4gl

sf,sd in this casefsolid
lines in Figs. 3sbd and 4sbdg. In these calculations we assume
d=23 nm andNe=5.8631022 cm−3 for silver. We obtain the
free parameters uf l

sf,sdu2/Dl <0.6, ubl
sfdu2/Dl <0.07 and

ubl
ssdu2/Dl <0.13. The form-factorsuf l

sfdu and uf l
ssdu are very

close to each other because the positions of resonances of the
plasmon Mie modes localized in voids do not depend essen-
tially on the void-to-surface distance. As expected, the cou-
pling coefficientubl

ssdu2 for the nanoporous metal surface is
almost twice as much as that for the nanoporous metal film,
ubl

sfdu2.

B. Dielectric function of metal based upon experimental data

We have described the dielectric response of the metal by
the simple Drude model in the previous subsection to reveal
essential physics of light-plasmon interaction in two different
nanoporous structures. However, as seen from Figs. 3 and 4,
the frequencies of plasma resonances in the structures under
consideration fall rather close to the interband absorption
edges3.5 eV for silver25d. In this frequency range the Drude
model becomes inaccurate and direct experimental optical
data should be used to describe the dielectric response of the
metal.

Figure 5 shows the calculated absorption spectra of light
incident normally onto nanoporous silver and gold surfaces
with a single periodic layer of close-packed voids buried
beneath the surface for different void diameters. Hereafter,
we use experimental optical data26 to describe the dielectric

FIG. 5. Absorption spectra of light incident normally onto pla-
nar sad silver andsbd gold surfaces with a lattice of spherical voids
right beneath itssee Fig. 2d. The metal is described by dielectic
function based upon experimental optical constant datasRef. 26d.
The plots show the variation of the spectra with the void diameter
for an intervoid spacingh=5 nm, chosen to be equal to the void-
to-surface distance. The void diameter issfrom right to leftd sad 260,
300, 320, 340, and 360 nm;sbd 420, 440, 460, 480, 500 nm. The
absorption of light on the homogeneous surfaces of bulk silversad
and goldsbd is shown by dash-dotted curves.
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function of silver and gold in our calculations. Almost total
resonant light absorption occurs when the lattice of voids is
buried in a silver substrate at distances smaller than the skin
depthfFig. 5sadg and rather high resonant absorption occurs
on the nanoporous gold surfacefFig. 5sbdg.

It should be noted that resonant absorption decreases with
deviation of the void diameter from the optimal valuesFig.
5d. The reason is that the variation of the void diameter
changes the radiative damping of void plasmons and hence
breaks the condition of optimal couplingsgl

ssd=nld between
light and plasmons. This fact is consistent with radiative
damping calculations performed for plasmons in metallic
nanoshell,8 where the increasing of shell-core diameter leads
to a decrease in the radiative damping of voidlike plasmons
in nanoshells. Our calculations show that the absorption
spectra are independent of the polarization of normally inci-
dent light by virtue of the hexagonal symmetry of the void
lattice.

Figure 5 depicts the spectra of resonant absorption of light
caused by the excitation of the fundamental Mie plasmon
modesl =1d in voids. The frequencies of high-order plasma
resonances fall within the interband absorption spectrasat
frequencies higher than 3.5 eV for silver and 2.2 for gold25d,
and therefore, these resonances can hardly be observed in the
reflectivity spectra. The frequencies of plasma resonances at
a nanoporous metal surface can be reduced by filling the
pores with a dielectric material. Figure 6 shows the calcu-
lated absorption spectra of light incident normally onto silver
and gold surfaces with filled spherical nanopores. In this case
the second and the third plasmon resonances along with the
fundamental plasma resonance show up in the visible. As
seen in Fig. 6 a giant light absorption can also be achieved at
high-order plasma resonances.

We can estimate the local-field enhancement factor at
plasma resonances asuf u=vres/G, wherevres is the resonance
frequency andG is the FWHM of the resonance. The height
of the resonance peaks in Fig. 6 is measured from the smooth
nonresonant background contribution. The local-field en-
hancement factors exceeding 50 and 70 are reached at
plasma resonances at silver and gold surfaces with dielectric
spherical inclusions, respectively, which are shown in Fig. 6.
Even greater local field enhancement factorssup to 85d can
be achieved at the nanoporous silver surface for deeper lo-
cation of the void lattice in the silver substratesfor the void-
to-surface distanceh=20 nmd. Notice for comparison that
the local-field enhancement factor obtained at plasma reso-
nances in a gold solid nanosphere is below 15.1,2 In general,
much greater field enhancement is characteristic of the plas-
mons on metal surfaces with negative curvature. For ex-
ample, it was shown in Ref. 8 that ultrahigh values of the
local-field enhancement factor exceeding 60 and 150 for
gold and silver nanoshells, respectively, can be achieved at
voidlike plasmon resonance for specific values of shell-layer
thickness.

Close-packed segment void structures with different seg-
ment depths have been studied experimentally.3–5 Although
the geometry studied in our paper is not that of segment
voids, our theoretical results for voids completely buried in
metal unambiguously show that in every nanoporous metal
structure a specific optimal value of light-plasmon coupling

sdepending on the void-to-surface distanced exists producing
the maximum light absorption, similar to the results found in
experiment.

V. CONCLUSIONS

We have shown theoretically that nanoporous metals ex-
hibit remarkable resonant absorption properties. Nearly total
light absorption on a nanoporous surface of metal can be
achieved at the plasma resonance. This phenomenon occurs
when the lattice of spherical voids is buried in the metal
substrate at a specific distance from the metal surface, which
ensures optimal coupling of plasmons in the voids to the
external light. Based upon a simple model, corroborated by
detailed calculations later on, we have found a physical cri-
terion for the optimal coupling, which proposes that the ra-
diative broadening of the plasma resonance must be equal to
its dissipative broadening in order to produce maximum light
absorption at the resonance. It is worth mentioning that the
resonant light absorption by void plasmons is accompanied
by high local-field enhancement. This could be used to trig-
ger nonlinear effects.27 The frequencies of plasma resonances
can be easily tuned by varying the diameter of the voids or

FIG. 6. Absorption spectra of light incident normally onto silver
sad and goldsbd surfaces with a lattice of spherical inclusions of a
material with dielectric constant«=4.5 ssolid curvesd and «=3.3
sdashed curvesd. The void-to-surface distanceh is equal to 5 nm
and diameter of spherical inclusionsd is 300 nmsad and 400 nm
sbd. The absorption of light on homogenous surfaces of bulk silver
and gold is shown by dash-dotted curves. The vertical arrows mark
the energies of the fundamentalsl =1d, secondsl =2d, and thirdsl
=3d plasmon Mie modes of a single void in respective bulk metal.
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by filling them with dielectric materials. This makes this type
of nanoporous metals a very attractive choice for a variety of
applications ranging from nanophotonics to biophysics.
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