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We study electron transport through a Coulomb blockaded quantum dot driven by an external periodic
perturbation. The stationary state is determined by the balance between the heating of the dot electrons by the
perturbation and cooling. We analyze two cooling mechanisms: electron exchange with the cold contacts and
emission of phonons. Together with the usual linear Ohmic heating of the dot electrons we consider possible
effects of dynamic localization. The combination of the abovementioned factors may result in a drastic change
of the shape of the Coulomb blockade peak with respect to the usual equilibrium one.
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I. INTRODUCTION

At low temperatures electronic conduction through a
quantum dot weakly coupled to the contacts is governed by
the Coulomb blockade effect1—suppression of transport due
to the energy cost of changing the number of electrons in the
dot. Efficient conduction through such a dot is possible only
when the electrostatic potential of the dot, controlled by ex-
ternal gates, is tuned to a special value where the Coulomb
energies of the states withN andN+1 electrons in the dot are
close for someN. As a result, the linear response conduc-
tance exhibits a sharp peak as a function of the gate voltages.
The theory of the Coulomb blockade in equilibrium is well
developed by now.2

In the last few years several experiments have been done
on quantum dots under an external ac perturbation.3 Under
these nonequilibrium conditions the electronic temperature
of the dot is determined by the balance between heating by
the ac perturbation and cooling due to various mechanisms,
rather than by the external cryostat. One of these mecha-
nisms is simple exchange of electrons between the dot and
the cold contacts, especially important at low temperatures.
As the gate voltage is tuned away from the Coulomb block-
ade peak, the dot becomes effectively more closed, the cool-
ing rate decreases, which affects the electronic temperature,
thus changing the peak shape with respect to the equilibrium
one. This simple qualitative consideration poses the problem,
which is going to be studied in detail in the present work.

Another motivation to study these effects is the search for
experimental signatures of dynamic localizationsDLd. Dy-
namic localization in the kicked quantum rotor4 has been
extensively studied theoretically,5,6 and observed experimen-
tally in trapped ultracold atoms in the field of a modulated
laser standing wave.7 We have shown recently8,9 that an
analogous suppression of the energy absorption may occur in
a chaotic quantum dot under an ac excitation, e.g., similar to
those studied in the experiments of Ref. 3. One of the best
measured characteristics of a quantum dot is its conductance.
To find a signature of the DL in the conductance, one should
perform the measurements under the Coulomb blockade con-
ditions salmost closed dotd, since it is in this regime that the
conduction is sensitive to the internal state of the dot. If the

dot is well open, the effect of electron-electron interaction on
the conduction is weak, and the conductance does not de-
pend on the electron energy distribution in the dot.10,11

Typically, heating of a metallic dot by an ac perturbation
is associated with classical Ohmic microwave absorption at a
frequencyv by a small particle made of a metal with large
conductivity s@v. This picture is valid when the single-
electron mean level spacingd in the dot is small enough.
From the quantum-mechanical point of view this situation is
adequately described by the Fermi golden rule, which deter-
mines the probability of each single-electron transition per
unit time G, proportional to the intensity of the
perturbation.12 The total energyE of electrons in the dotsas
counted from the ground stated then grows linearly with
time: Estd=Gv2t /d;W0t. The criterion of validity of the
Fermi golden rule isd!G, andG!v is also assumedshere
and below"=1d.

This pictureshereafter referred to as Ohmic absorptiond is
based on the assumption that each single-electron transition
occurs independently of the previous ones. However, for a
small but finited the effects of quantum interference accu-
mulate after many transitions, leading to a decrease in the
absorption,8,9 and its complete suppression after a timet*
,G /d2. This effect was named the dynamic localization in
energy space. The corresponding “localization length”sthe
characteristic spread of the electron distribution functiond
T* ,Gv /d plays the role of the effective electronic tempera-
ture reached by the timet* . Note that since the electron spec-
trum is unbounded, DL has nothing to do with the saturation
of absorption by a pumped two-level system. DL is the con-
sequence of level discreteness: atd→0 it takes longer time
for the DL to develop, and for the continuous spectrum there
is no DL. Since this effect drastically modifies the heating
rate, the stationary state of the dot is strongly affected.

The random matrix theory approach, adopted in Refs. 8
and 9, correctly describes the single-particle properties of a
chaotic dot in the energy range determined by the so-called
Thouless energyETh. This energy is defined by the order of
magnitude as the inverse of the ergodic time—the time re-
quired for an electron to travel across the dot, thus random-
izing its motion due to scattering off impurities or the dot
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boundaries. Another important energy scale is the Coulomb
charging energy of the dotEc: the Coulomb blockade effects
are pronounced only if the effective temperature is smaller
than Ec. Thus, in the following, the hierarchy of scalesd
&G&v&T* &ETh, Ec is assumed. From the experimental
point of view it means that one should choose a dot satisfy-
ing the inequalityd!ETh, Ec as strongly as possible. Note
that within validity range of the random matrix theory one
can neglect multiphoton processes as they are of the order of
the inverse matrix size.

Possible cooling mechanisms for electrons in the dot are
sid electron exchange with the contacts andsii d energy ex-
change with the phonon subsystem. Both electrons in the
contacts and phonons in the dot are assumed to be main-
tained at a constant temperatureT0 determined by the cry-
ostat. In the following we analyze the interplay of the above-
mentioned effects in heating and cooling, and see how they
affect the shape of the Coulomb blockade peak. In a short
preliminary version of this study we have considered only
the first cooling mechanism.13 Here we include cooling by
phonon emission which, to the best of our knowledge, has
been little studied for a quantum dot.

The paper is organized as follows. In Sec. II we analyze
the heating and discuss how it is affected by dynamic local-
ization. In Secs. III and IV we give a detailed analysis of the
two cooling mechanisms. In Sec. V we consider the resulting
stationary state and the Coulomb blockade peak shape. Sec-
tion VI contains remarks about another possible way of de-
tecting the dynamic localization via the measurement of the
nonlinear absorption, which does not require connecting the
dot to the contacts. Finally, in Sec. VII we summarize the
main results.

II. HEATING BY ac PERTURBATION

In the Ohmic regime the energy absorption by electrons is
linear in the field intensity and given byW0=Gv2/d swe
remind the reader thatG is a measure of the microwave field
intensity, equal to the probability per unit time of a single
one-photon transitiond. The same expression can be obtained
from simple classical arguments considering a small particle
made of a metal with a large finite conductivitys@v.

In the regime of the strong dynamic localization the ab-
sorption is no longer given by the simple Ohmic expression.
For noninteracting electrons in a closed dot the absorption
becomes completely suppressed by interference corrections
that develop in a characteristic timet* ,G /d2, and the effec-
tive temperature of the electrons, reached by that time, is
T* ,Gv /d. Absorption is possible only due to inelastic pro-
cesses which destroy the quantum-mechanical phase and
thus all interference effects. If the dephasing rategf!1/t* ,
the residual absorption rate is given by

Win , W0gft* = T*
2gf

d
. s1d

If gf*1/t* , the strong dynamic localization is destroyed by
dephasing, and the absorption is given by the Ohmic expres-
sion with small weak localization corrections considered in
Refs. 8 and 9.

Generally speaking, the dephasing rategf by itself is not
a well-defined quantity, unless the mechanism of the dephas-
ing is specified. Equations1d was justified in Ref. 14, where
electron-electron collisions in the dot were considered. In
fact, it has a wider range of applicability: the main condition
is that dephasing should be caused by a sequence of distinct
events with average frequencygf, each of them destroying
the electron phase completely, rather than phase diffusion.
This means thatgf roughly coincides with the quasiparticle
relaxation rate. This is certainly the case for electron escape
to the contacts, since then the escaping electron is effectively
replaced by another one with an absolutely random phase.
This is also true for electron-electron and electron-phonon
collisions, since the typical energy transferred in a collision
is of the order of theseffectived electronic temperature in the
dot, which is large:T@1/t* ,gf sthis inequality follows from
T* @1/t* due toG,v@d, and fromT*T*d.

In all these cases the following arguments can be applied.
As gft* !1, the collisions are rare, so the electrons spend
most of the time in the states localized in energy, and have
definite phase relationships. If the phase of some electron is
destroyed in a collision, its wave packet starts spreading in
energy. It localizes again after the time,t* , having spread by
,T* . Thus, the ac driven dynamics following the collision
leads to a change of the total electronic energy of,T* per
collision. The sign of this change is, however, arbitrary, be-
cause a periodic perturbation can equally cause transitions up
and down the spectrum. Only the presence of the filled Fermi
sea belowsi.e., an energy gradient of the electronic distribu-
tion functiond makes absorption the preferred direction,
which means that if the electronic temperatureT@T* , the
energy absorbed per collision is on the average,T*

2/T rather
than T* . The effective number of electrons that can partici-
pate in a collision is,T/d sdue to the degenerate Fermi
statisticsd. During the time interval,1/gf each of these
electrons participates in one collision, so the total number of
collisions per unit time is,sT/ddgf. This gives the energy
absorption rateWin,sT*

2/TdsT/ddgf, which is exactly Eq.
s1d.

Equation s1d allows for another simple interpretation.
Each electron spends a time,1/gf in a localized state with-
out absorbtion. After each collision during the time,t* it
absorbs the energy from the microwave field, then it local-
izes again and waits for the next eventsprovided thatt*
!1/gfd. The absorption rate of the whole system is then
given by the simple weighted averageWin,W0gft* , which
is again Eq.s1d.

An important point is that dephasing rate, generally
speaking, depends on the electronic temperature, which re-
sults in a temperature-dependent absorption rate in the DL
regime. The temperature, in turn, is determined by the bal-
ance between energy absorption and cooling. This feedback
leads to a nontrivial dependence of the characteristics of the
stationary state on the control parameters, which will mani-
fest itself in a change of the Coulomb blockade peak shape,
as will be shown below. The absorption itself becomes non-
linear with the field intensity through the dependence ofgf

on W0.
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III. COOLING DUE TO ELECTRON ESCAPE

We characterize the coupling of the dot to the two con-
tacts by single-particle escape ratesg1 andg2. When they are
much smaller than the mean single-particle level spacingd in
the dot, the fluctuations of the total charge on the dot are
small. If the dot is coupled to several gates through capaci-
tancesCi and voltagesVi are applied to the gates, the elec-
trostatic energy of the dot withN electrons on it is given by

EsNd =
e2N2

2C
+ o

i

CiVi

C
eN, C ; o

i

Ci , s2d

wheree2/ s2Cd;Ec is the charging energy. The energy cost
of adding an electron is

U ; EsN + 1d − EsNd =
e2

CFN +
1

2
+ o

i

CiVi

e G . s3d

If all gates have the same voltage, thensup to a constantd U
is given by this voltage. Generally, we will callU the re-
duced gate voltage; it is a natural control parameter for the
system. If the expression in the brackets is of the order of
unity and the temperatureT!Ec, the conductance through
the dot is suppressed due to the Coulomb blockade. If the
gate voltages are tuned so that the expression in the brackets
is small for some particularN, the dot conductanceGsUd
exibits a peak for these values ofU. The width of the peak
DU,T, which can be used to measure the temperature of the
system.

A. Sequential tunneling

WhenU is tuned to the peak, the main contribution to the
conductance comes from the leading order of the perturba-
tion theory in the dot-contact coupling. For characteristic
temperaturesT@d one can describe the system by rate equa-
tions of Kulik and Shekhter.15 We consider these equations
for the case when the electron energy distribution function in
the dot fe is nonequilibrium. Let the distribution in theath
contact befe

sad. Assuming the dot to have eitherN or N+1
electrons with the probabilitiespN, pN+1 to haveN or N+1
electrons on the dotsall others are neglected, sopN+pN+1
=1d, we can write the rate equation as

dpN

dt
= 2pN+1 o

a=1,2
gaE fes1 − fe+U

sad d
de

d

− 2pN o
a=1,2

gaE s1 − fedfe+U
sad de

d
, s4d

where the factor of 2 comes from the spin degeneracy. The
distributions in the contacts are assumed to be Fermi-Dirac
ones with the temperatureT0:

fe
sad = fe

T0 ;
1

ee/T0 + 1
. s5d

As usual, we requirepN and pN+1 to be stationary. Shifting
the distribution in one of the contacts by an infinitesimal
voltage, one obtains the linear response conductanceG:

GsUd =
2e2

d

g1g2

g1 + g2

3
Fin

2 sUdFout8 sUd − Fin8 sUdFout
2 sUd + FinsUdFoutsUd

fFinsUd + FoutsUdg2 ,

s6d

FinsUd ; E s1 − fedfe+U
T0 de, FoutsUd ; E fes1 − fe+U

T0 dde.

s7d

In the equilibrium case, whenfe= fe
T0 as well, the last fraction

in the right-hand side of Eq.s6d reduces to the familiar ex-
pressions1/2dsU /Td /sinhsU /Td.

Tunneling events lead to the change in the distribution
function in the dot. The kinetic equation describing this pro-
cess can be obtained straightforwardly from equations of
Ref. 15 and reads

] fe

] t
= sg1 + g2d

s1 − fedfe+U
T0 FoutsUd − fes1 − fe+U

T0 dFinsUd
FinsUd + FoutsUd

.

s8d

If we introduce the functions

EinsUd ; E s1 − fedfe+U
T0 ede, s9d

EoutsUd ; E fes1 − fe+U
T0 dede, s10d

and denote byg;g1+g2 the total single-electron broaden-
ing, the cooling rate for the dot electronssthe total energy
loss per unit timed can be written as

WoutsUd =
g

d

EoutsUdFinsUd − EinsUdFoutsUd
FinsUd + FoutsUd

. s11d

From the kinetic equations8d one can also extract the single-
particle escape rate for a particle with the energye:

gesc= gs1 − fe+U
T0 d

FinsUd
FinsUd + FoutsUd

. s12d

In the following we will use the expression forgescat e=0 as
an estimate. We will also use the Fermi-Dirac form for the
electronic distribution function with some temperatureT.
This is true only if electron-electron collisions restore the
Fermi-Dirac shape much faster than it is modified by other
processes. If this is not the case,T still gives the character-
istic width of the distribution function. It is determined by
the balance between heating by the ac field and cooling con-
sidered in the previous section.

We also assume the electronic temperature in the dot to be
much higher than the temperature of the contactsfthe latter
can be made as low as,10 mK sRef. 16dg which is true if
the pumping power is high enough. Then we can set the
temperature of the contacts to be zero, which allows an ex-
plicit calculation in Eqs.s6d–s11d fwe denotex;U / s2Td,
G0;GsU=0dg:
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FinsUd = T lnf1 + e−2xg, s13d

FoutsUd = Fins− Ud, s14d

GsUd
G0

= 1 −
x tanhx

lns2 coshxd
, s15d

EinsUd = − 2T2E
x

`

s1 − tanhydydy, s16d

EoutsUd = − Eins− Ud, s17d

WoutsUd
sg/ddT2 =

p2

12
− x2 +

2x

lns2 coshxdE0

x

y tanhydy, s18d

gescsUd
g

=
1

2
−

uxu
2 lns2 coshxd

. s19d

B. Inelastic cotunneling

At large U@T sequential tunneling becomes suppressed
exponentially. In this situation both the conduction and cool-
ing become dominated by cotunneling—a second-order pro-
cess whose probability contains an additional small factor
gd /U2. Obviously, only inelastic cotunneling17 can contrib-
ute to cooling. Elastic cotunneling,18 which does not change
the electronic state of the dot, contributes to conduction at
temperaturesT,ÎEcd. We will be interested in higher tem-
peratures and do not consider this contribution.

A straightforward generalization of the considerations of
Ref. 17 to the nonequilibrium case leads to the following
expression for the conductance in terms of the electronic
distribution functions and the kinetic equation for the distri-
bution in the dot:

GsUd =
4e2g1g2

pU2d2 E fe−Vs1 − feds1 − fe8
T0dS−

] fe8+V
T0

] e8
Ddede8dV,

s20d

] fe

] t
=

g2

pU2d
E fs1 − fedfe−Vs1 − fe8

T0dfe8+V
T0

− fes1 − fe−Vdfe8
T0s1 − fe8+V

T0 dgde8dV. s21d

For a Fermi-Dirac distributionfe= fe
T the integrals can be

calculated explicitly for any temperaturesT, T0:

GsUd =
2pe2g1g2

3U2d2 sT2 + T0
2d, s22d

WoutsUd =
2sg1 + g2d2

15pd2U2 sT4 − T0
4d. s23d

The electron escape rate ate=0 can be extracted from the
kinetic equations21d:

gesc=
p

6

g2

U2d
sT2 + 2T0

2d. s24d

If we set, as before,T0=0, we obtain the following explicit
expressions:

Wout

sg/ddT2 =
p3

30

g/d

x2 ,
G

G0
=

p

6

g/d

x2 ,
gesc

g
=

p

24

g/d

x2 .

s25d

C. Photon-assisted tunneling

So far the only effect of the ac perturbation we were in-
terested in was to cause transitions between single-particle
states in the dot. The perturbation, however, may possess a
componentV cosvt, proportional to the unit matrix in the
dot single-particle Hilbert space. In a closed dot this compo-
nent does not cause any transitions and can be gauged out
completely, so it does not affect any observables, either
single-particle or many-particle onessin particular, it does
not affect electron-electron collisionsd.

However, when the dot is connected to contacts, this is no
longer the case, as the diagonal component is responsible for
the photon-assisted tunneling.19 This effect can be taken into
account by replacing the dot electron distribution functionfe

in the above formulas by

fe → o
n=−`

`

Jn
2sV/vdfe+nv, s26d

where Jn is the Bessel function. Photon-assisted tunneling
will not be important for our considerations if the smearing
of the distribution function given by Eq.s26d is much smaller
than the thermal smearing. Using the asymptotic expansion
of Jnszd at largen, this condition can be written as

Jnszd ,
1

Î2pn
S ez

2n
Dn

⇒ maxhV,vj ! T. s27d

The conditionv!T is authomatically fulfilled ifG@d and
T.T* =Gv /d. As for the conditionV!T we note that within
theN3N random matrix approximation, adopted in Ref. 13,
we havekV2l=s1/NdGd so thatV→0 asN→`.

In addition to the random component with zero mean in-
cluded in the random-matrix treatment,V can have a deter-
ministic part. It is given by the spatial average of the pertur-
bation potential over the dot volume, and enters our model as
an independentparameter. Thus in order to fulfill the condi-
tion V!T a special experimental care should be taken.

IV. COOLING DUE TO PHONON EMISSION

A. General expressions

Another important mechanism of electronic energy relax-
ation is emission of phonons. For mesoscopic metallic rings
with diffusive electronic motion this problem was addressed
in Ref. 20 For quantum dots energy relaxation at frequencies
smaller than the mean level spacing has been considered;21,22

here we are interested in the opposite limiting case,d being
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the smallest energy scale. Below we estimate the correspond-
ing cooling rate for cleansballisticd quantum dots made out
of 2D electron gas s2DEGd in a GaAs/AlGaAs
heterostructure3 and bulk 3D phonons.

For ballistic dotsswhose sizeL is smaller than the elastic
mean free path,d one does not need to take into account
phonon-induced impurity displacements,23 so the phonon-
induced potential felt by the electrons can be written in the
form

V̂sr d =E d3q

s2pd3V̂sqdeiq·r = o
q,l

Vq,lb̂q,leiq·r + H.c., s28d

whereb̂q,l is the annihilation operator for a phonon model
with the wave vectorq. The detailed form of the coupling
Vq,l depends on the specific coupling mechanism to be speci-
fied below.

The probability of the electronic transition from an initial
single-particle states with the energyes and the wave func-
tion cssr d to the final states8 with the energyes8 and the
wave functioncs8sr d, accompanied by absorption or emis-
sion of one phonon, is given by the Fermi golden rule

ws→s8
abssemd = 2po

q,l
UE cs8

* sr de±iq·rcssr dddrU2

uVq,lu2

3SNq,l +
1

2
7

1

2
Ddses8 − es 7 vq,ld, s29d

whereNq,l is the phonon occupation number before the tran-
sition andvq,l is the phonon frequency; the upper sign cor-
responds to the phonon absorption, the lower one to emis-
sion. Introducing the transition rate

wse,e8d = d2o
s,s8

sws→s8
abs + ws→s8

em ddse − esddse8 − es8d,

s30d

averaged over the random dot realizations, we can write the
kinetic equation for the electronic distribution functionfe:

] fe

] t
=E fwse8,eds1 − fedfe8 − wse,e8dfes1 − fe8dg

de8

d
.

s31d

The average rates30d is determined by the electronic wave
function correlations in the dot:

Pe,e8sr ,r 8d ; o
s,s8

cssr dcs
*sr 8dcs8sr 8dcs8

* sr d

3dse − esddse8 − es8d, s32d

averaged over the dot realizations. Then we can write the
average transition rate as

wse,e8d = 2pd2o
q,l

Pe,e8sq,qduVq,lu2

3fNq,ldse8 − e − vq,ld

+ sNq,l + 1ddse8 − e + vq,ldg, s33d

with the Fourier transform defined as

Pe,e8sq,q8d ; E Pe,e8sr ,r 8de−iq·r+iq8·r8d3rd3r 8. s34d

Statistical properties of ballistic dots have been extensively
studiedsin Refs. 24 and 25, for a review see Refs. 2 and 26d.
For ue−e8u smaller than the Thouless energyETh one can use
the following estimate:

Pe,e8sq,qd ,
1

EThd
minh1,sqiLd2j, s35d

where the factorsqiLd2 appears whenqiL!1 sqi is the com-
ponent of the wave vector parallel to the plane of the 2DEGd.
As a result, the transition ratewse ,e8d depends only on the
transferred energyv;e−e8.

We assume the electronic temperaturesdetermined by the
balance between heating and coolingd to be much higher than
the lattice temperaturesdetermined by the external cryostatd.
In this case one can neglect any phonon population present,
Nq,l=0, so only emission of phonons can occur, andwsvd
~usvd. For a power-law dependence,wsvd~vausvd, and
Fermi-Dirac electron distribution in the dots5d the cooling
rate is given by

Wout =E de

d

dv

d
vwsvdfes1 − fe−vd ~

Ta+3

d2 . s36d

Obviously, such a power-law dependence can be param-
etrized by a single parameterTph and written asWout
=Ta+3/Tph

a+1. From the kinetic equations31d one can also
extract the single-particle relaxation rategph. For electrons
with the typical energye,T and wsvd~vausvd we obtain
gphsTd,dsT/Tphda+1.

B. Specific mechanisms

To consider specific electron-phonon coupling mecha-
nisms, we describe phonons in terms of the lattice displace-
ment operator for each normal phonon model:

ûlsr d = o
q
Î 1

2Vrlvq,l
eq,lfb̂q,leiq·r + b̂q,l

† e−iq·rg . s37d

The displacement of each mode is directed along the unit
vectoreq,l. To each mode corresponds some mass which is
the total mass of the unit cell for acoustic phonons or the
reduced mass for optical phonons; dividing it by the unit cell
volume one obtains the corresponding densityrl. Finally, V
is the 3D quantization volume. At low temperatures we are
interested in, only acoustic phonons can be emitted. We ap-
proximate their dispersion byvq=vsq, with vs being the
sound velocity, while the densityrl coincides with the den-
sity of the crystalr0.

Deformational couplingto the acoustic phonons is due to
the local change of the electronic energy bands under strain:

V̂defsqd = J jl iqjûlsqd, s38d

where J jl is the deformational coupling tensor. In a bulk
crystal it, generally speaking, depends on the electronic wave
vector k sRef. 27d. In doped GaAs, when typical electronic
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wave vectors are close to the Brillouin zone center and one
approximates the periodic part of the Bloch function by that
for k =0, this dependence vanishes andJ jl =Jd jl . The lead-
ing anisotropicsi.e., dependent on the direction ofkd correc-
tion at small finitek should be smaller by a factor ofskad2,
wherea is the lattice constantsthe first order ink correction
should vanish due to the time-reversal symmetryd. Hence we
can estimate its magnitude as,skFad2J,na2J, wherekF is
the electronic Fermi wave vector andn is the 2D electron
density.

The isotropicsindependent of the direction ofkd part of
the deformation potential is subject to screening.27 The elec-
trons inside the dot can screen the fields with wave vectorsqi

down to,1/L. We assume that the Fourier components with
qi !1/L are also screened, either by the 2DEG outside the
dot, or by the metallic gate. Thus, by the order of magnitude,
we can use the expression for the staticsdue to vs!vFd
screening by an infinite 2DEG, which results in the renor-
malization:

J → J

1 + 1/sqiasd
< qiasJ, s39d

whereas is the 2D screening lengthsequal to half the elec-
tronic Bohr radiusd, and we considerqias!1. Thus, the ef-
fective deformation potential is suppressed by a small factor:
either byqias for the isotropic part of the potential, or byna2

for the anisotropic part.
Piezoelectric couplingto acoustic phonons is due to the

longitudinal electric field induced by the strain. We express
the potential in terms of the electromechanical tensoreijl

em,
which relates the induced polarization to the strain tensor

V̂piezosqd = −
4peeijl

em

«

qiqj

q2 ûlsqd. s40d

Here« is the background dielectric constant of the material.
The in-plane piezoelectric field is also subject to screening,
which brings a factor ofqias.

The component of the piezoelectric field perpendicular to
the dot plane is not screened by the electrons. Instead, it
affects the confinement and shifts the subbands, which can
be viewed as a Stark effect. IfqiÞ0, the shift of the subband
depends on the in-plane coordinate and represents an addi-
tional effective potential felt by the electrons. If we assume
the confinement of the electrons by an asymmetric triangular
potential well formed by the constant forceF on one side and
a hard wall on the other, the confinement energyez
,s"2F2/md1/3, while ]ez/]F;az is of the order of the extent
of the confined state in thez direction. Thus, we can estimate

V̂Starksqd , qzazV̂
piezosqd. s41d

This effective in-plane potential is also subject to screening,
which brings an additional factor ofqias. As a result, we can
generally write

Vq , AÎ q

Vr0vs
, s42d

with A given by

qasJ, na2J,
4peeemas

«
, qzaz

4peeemas

«
,

for the screened isotropic deformation potential, anisotropic
deformation potential, screened in-plane piezoelectric field,
and the perpendicular piezoelectric field, respectively.

Let us estimate the relative importance of these mecha-
nisms, using the numbers for GaAs from Ref. 28. The bare
deformation potentialJ,10 eV, the screening lengthas
<50 Å, and the lattice constanta<5 Å. We will be inter-
ested in temperaturesT,0.1−1 K, so we indeed haveqas
!1, and we are in the regimeqL@1 sfor L,1 mmd. For
vsq=1 K we haveq<3310−3 Å−1 svs<53105 cm/sd, so
qas<0.15. For n=1012 cm−2 na2<2.5310−3, so the
screened isotropic part is more important than the anisotropic
one. The only independent component of the electromechani-
cal tensor in GaAse14

em<1.43107 V/cm, the dielectric con-
stant«<13, so 4pee14

emas/«<7 eV, which is of the order of
the unscreened deformation potential. For the screened po-
tential due to the perpendicular piezoelectric field, as typi-
cally az,100 Å sRef. 29d, we have a smallness ofqzaz. In
conclusion, contrary to the estimates of Ref. 22, we obtain
that the in-plane piezoelectric coupling is more important
than the deformational one.

As a result, we arrive at the estimate

WoutsTd ,
s4peeemas/«d2

r0vs
5EThd

T6 ;
T6

Tph
4 . s43d

For GaAsr0vs
5<s0.074 eVd,4 sthe densityr0<5.3 g/cm3d,

for a typical dot3 d,1 meV, ETh,100 meV, so we obtain
Tph,0.1 meV,1 K.

V. STATIONARY STATE

A. Ohmic absorption

First, consider the case of the simple Ohmic absorption
with cooling only due to the contacts in the sequential tun-
neling regime with the rate given by Eq.s18d. At small de-
tuningssU!Td we have

WoutsTd =
g

d
Fp2T2

12
−

U2

4
+ OsU4dG , s44d

so that the stationary temperature is given by

TsUd =
2

p
Î3W0

g/d
F1 +

sg/ddU2

8W0
+ OsU4dG . s45d

The temperatureTsU=0d determines the curvature of the
Coulomb blockade peak atU=0: from Eq.s15d we have

GsUd
G0

= 1 −
1

4 ln 2

U2

T2sU = 0d
. s46d

At large detunings@T we can approximate the right-hand
side of Eq.s18d by uxue−2uxu and write
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W0

sg/ddT2 < uxue−2uxu, T <
U

lnfsg/ddU2/s2W0dg
, s47d

with the logarithmic precision. It is correct if the logarithm in
the denominator is large, orU@TsU=0d. This result means
that the tails of the Coulomb blockade peak have the form

GsUd
G0

<
2W0

sg/ddU2lnF sg/ddU2

2W0
G . s48d

The weak power-law fall-off of the tails is drastically differ-
ent from the exponential one occurring in equilibrium:
GsUd /G0=sU /Td /sinhsU /Td sRef. 15d. The reason for this
difference is very simple: as the gate voltage is turned away
from the degeneracy point, the exchange of electrons be-
tween the dot and the contacts becomes weaker, so the cool-
ing rate decreases leading to an increase in the temperature
and hence in the conductance.

At large enough detunings the cooling becomes domi-
nated by the inelastic cotunneling, Eq.s25d, rather then se-
quential tunneling, Eq.s18d. In this regime the dot tempera-
ture and the conductance are given by

T = S 15

2p3

W0U
2

sg/dd2D1/4

,
GsUd
G0

=Î 10

3p2

ÎW0

U
. s49d

The switching to the inelastic cotunneling occurs at

U , ÎW0
d

g
ln2d

g
,

GsUd
G0

,
g/d

ln2sd/gd
. s50d

The logarithmic precision of these estimates, however,
makes them applicable only for extremely smallg fsuch that
lnsd /gd@1g. In reality, if one takes directly the expressions
s18d and s25d for the cooling rate, for W0=30 meV2

<46 meV/s,g /d=0.2ssee Ref. 30 for the numbersd the con-
tribution of the inelastic cotunneling starts to affect the sta-
tionary electronic temperature noticeablyfas compared to the
precision of Eq. s47dg only as far asV.1 meV. At V
=1 meV the conductanceGs1 meVd /G0<0.01, and about
18% of it is still due to the sequential tunneling.

If one takes now into account cooling by phonons with
the rates43d, it sets the upper limit for the electronic tem-
peratureTmax=sW0Tph

4 d1/6. If the pumping is strong enough
sor the dot is closed enoughd, Tmax!ÎW0d /g, the phonon
cooling mechanism dominates, the dot temperature is con-
stant and equal toTmax for all U, so that the Coulomb block-
ade peak shape is given explicitly by Eq.s15d, and its tails by
Eq. s25d. In the opposite limiting case,Tmax@ÎW0d /g the
electronic temperature in the peak region is determined by
electron escape, and only in the peak tails, when the dot
effectively becomes more and more closed, phonon emission
starts to dominate. This will manifest itself as a crossover
from the 1/U tail s49d to the 1/U2 one given by Eq.s25d at
fixed T=Tmax. This crossover occurs atU,sg /ddTmax

2 /ÎW0,
G/G0,sd /gdW0/Tmax

2 sRef. 31d. We plot the tails of the
Coulomb blockade peakGsUd /G0 in Fig. 1 for three cases
whensad only sequential tunneling is taken into account,sbd

cotunneling is added, andscd cooling by phonons is present
as well.30 In Fig. 2 we plot the electronic temperatureTsUd
for the same three cases.

B. Dynamic localization

As we have discussed in Sec. II, in the strong dynamic
localization regime the residual absorption is determined by
dephasing. Using the results of the previous sections we can
identify three sources of dephasing.

sid Escape to the contacts. The quasiparticle relaxation
rates for the sequential tunneling and inelastic cotunneling
are given by Eqs.s19d and s25d.

sii d Phonon emission. According to the arguments given in
the end of Sec. IV A, we can write

gphsTd , dS T

Tph
D4

. s51d

siii d Electron-electron collisions. The corresponding qua-
siparticle relaxation rate in a quantum dot was calculated by
Sivan, Imry, and Aronov:32

ge-esTd , dS T

ETh
D2

, s52d

whereETh is the Thouless energy. The derivation of this ex-
pression implies the effective continuity of the many-particle

FIG. 1. Normalized conductance versus reduced gate voltage
sCoulomb blockade taild: sad only sequential tunneling is taken into
account,sbd cotunneling is added, andscd cooling by phonons is
present as wellsRef. 30d.

FIG. 2. Electronic temperature in K versus reduced gate voltage:
sad only sequential tunneling is taken into account,sbd cotunneling
is added, andscd cooling by phonons is present as wellsRef. 30d.
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spectrum, which imposes a conditionT* @ÎEThd / lnsETh/dd
sRef. 33d. Obviously, for the dynamic localization to have
any chance to develop, the conditiongfsT*dt* !1 should be
satisfied.

Suppose for a moment that dephasing is dominated by
electron-electron collisions, while cooling is dominated by
the escape to the contactsslater we will analyze the condi-
tions for this to be trued. From Eqs.s15d, s18d, ands25d it is
seen that for both sequential tunneling and cotunnelingG/G0
and WoutsUd / fsg /ddT2g are functions ofx;U / s2Td only.
This allows us to write a relation

Wout = sg/ddT2WsG/G0d, s53d

whereWsG/G0d is a given function, whose overall behavior
is quite similar toG/G0 itself.13 Equation s53d is actually
analogous to the Wiedemann-Franz lawsan extra power ofT
arises because here we consider hot electrons in the dot,
while those in the contacts are atT=0, instead of a small
temperature difference used in the definition of heat conduc-
tivity d. The energy balance condition takes the form

Win , T*
2 T2

ETh
2 = Wout =

g

d
T2WsG/G0d s54d

or sg /ddWsG/G0d=sT* /EThd2. SinceU andT have dropped
out, the solution of this equation forG is independent ofU,
leading to a flat plateau on the Coulomb blockade curve
GsUd sRef. 13d. If one approximatesWsG/G0d,G/G0, the
level of the plateau is given byG/G0,sd /gdsT* /EThd2.

Note that the largest possible value ofWsG/G0d is p2/12
reached atG/G0=1 scorresponding toU=0d. Therefore, the
solution exists only if

g

d
@ S T*

ETh
D2

. s55d

Physically, this means that the dot should be sufficiently
open, so that the cooling is intense enough and the stationary
temperature is not too high to destroy the localization. Note
that for the observation of the plateau the conditiong
!1/t* is not necessary: even if atU=0 the dynamic local-
ization is absent, asU is increased, the dot becomes effec-
tively more closed, so the dephasing by escape becomes less
efficient. Of course, for the Coulomb blockade itself to be
present, the conditiong /d!1 should be satisfied.34

In the very top of the peaksU=0d we can include the
dephasing due to both escape and electron-electron colli-
sions, and write the conditionWin=Wout as

g

d
T*

2 +
T2

ETh
2 T*

2 ,
g

d
T2. s56d

Here the first term on the left-hand side comes from the
dephasing due to escape, and the second term represents the
contribution from collisions. The conditions55d ensures the
smallness of the second term as compared to the right-hand
side, so Eq.s56d givesTsU=0d,T* . Thus, for the dynamic
localization to be possible the dephasing in the very peak of
the Coulomb blockademustbe dominated by escape.

Equations46d remains valid in the dynamic localization
regime as well, as it does not depend on the details of heating
and cooling mechanisms. Thus, one can extract the tempera-
ture of the stationary state atU=0 measuring the curvature
of the peak, and study its dependence on control parameters:
intensityG and coupling to the contactsg. From Eq.s56d it is
seen that this dependence is the strongest wheng /d is close
to T*

2/ETh
2 sup to a numerical coefficientd, i.e., when the dy-

namic localization in the peak is about to be destroyed. If we
plot TsU=0d versusG sFig. 3d, we see that destruction of the
dynamic localization manifests itself as a crossover from the
linear dependenceT~G deep in the DL regimessmall Gd to
T~ÎG in the Ohmic regime. According to the abovesaid, this
crossover can be quite pronouncedsas is shown in the figured
when

g , d
T*

2

ETh
2 !

1

t*
. s57d

As U is detuned away from the peak, the dot becomes
effectively more closed, and simultaneously the electronic
temperature grows and electron-electron collisions become
more frequent. Thus, the crossover from the peak to the pla-
teau occurs where the two mechanisms equally contribute to
the dephasing. With the logarithmic precision this happens at

T , T* , U , Umin , T*maxH1,
g

d

ETh

T*
J , s58d

depending on whether the plateau is in the region of sequen-
tial tunneling, g /d!T* /ETh, or of inelastic cotunneling,
g /d@T* /ETh. The plateau ends when the temperature of the
dot becomes so large that the dynamic localization is de-
stroyed by dephasing. Obviously, this happens when the
horizontal lineG/G0=sd /gdsT* /EThd2 hits the curves48d or
s49d, which happens at

U , Umax, EThÎd

G
maxH1,

g

d

ETh

T*
J , s59d

again, with logarithmic precision. The two boundariess58d
and s59d give a nonzero range ofU si.e., Umin,Umaxd, if
T* !ETh

Îd /G, which can be equivalently rewritten as

FIG. 3. Dependence of the electronic temperature in the peak
TsU=0d on the perturbation intensityG for g /d=0.02, d
=0.3 meV, v=3 meV, ETh=100meV; in reality the sharp angle is
replaced by a smooth crossover.
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ge-esT*d!1/t* , i.e., a necessary condition for the dynamic
localization itself.

So far, when analyzing the dynamic localization, we did
not take phonons into account. Now consider another ex-
treme case: both cooling and dephasing are entirely due to
phonons. Then the energy balance condition in the localiza-
tion regime reads

Win , T*
2 T4

Tph
4 =

T6

Tph
4 = Wout, s60d

giving T,T* . Note that this conclusion is independent of the
power of temperature in the phonon cooling ratefor of a
appearing in Eq.s36dg. Obviously, phonons will dominate if
Tph!T*sd /gd1/4, Tph!ÎT*ETh. In this case the shape of the
peak is given explicitly by Eq.s15d, its tails by Eq.s25d, and
the width corresponds to the electronic temperature of the
dot. The signature of the dynamic localization effect would
be the linear dependence of the temperature on the micro-
wave power, in contrast to the 1/6 power for the Ohmic
absorption casessee the previous subsectiond. The localiza-
tion regime exists as long asgphsT*d!1/t* , or T*

5!vTph
4 .

The solution for the Ohmic regime isTmax=svT*Tph
4 d1/6, and

it is stable as long asgphsTmaxd@1/t* , which gives T*
5

@vTph
4 . Thus, at a certain intensity such thatT* ,svTph

4 d1/5

there is a crossover between the localization and Ohmic re-
gimes.

Including all mechanisms, we can note that if the
electron-phonon interaction is weak enough,Tph

2 @ETh
3 v /T*

2,
the phonon cooling plays any role only in the Ohmic part of
the Coulomb blockade tail. Otherwise, phonons start to “eat
up” the plateau from the largeU side.35 The plateau will
disappear atTph,ÎT*ETh. As an illustration, for the interme-
diate case, we plot the Coulomb blockade tail in Fig. 4 in the
dynamic localization regime with and without phonon cool-
ing slower and upper solid curves, respectivelyd together
with the corresponding Ohmic curves shown by dashed lines.

VI. INTENSITY DEPENDENCE OF THE ABSORPTION

In this section we wish to remark that conductance mea-
surements are not necessarily the only possible way to detect

the dynamic localization. An isolated mesoscopic sample can
be put into a microwave cavity, and the energy absorption
rate Win can be measured as it affects theQ factor of the
cavity.36 In this case the only cooling mechanism is phonon
emission, while the dephasing can be due to electron-
electron interactions as well. EquatingWin=Wout and finding
the stationary temperature, as before, we find that the dy-
namic localization regime the absorption rate depends non-
linearly on the ac field intensity

Win , S Gv

EThd
D3

Tph
2 ~ G3, s61d

if the dephasing is dominated by electron-electron collisions
sTph@ÎEThGv /dd, or

Win , SGv

d
D6 1

Tph
4 ~ G6, s62d

if the dephasing is dominated by electron-phonon interaction
sTph!ÎEThGv /dd.

This nonlinear dependence represents a crossover be-
tween two qualitatively different linear regimes withWin
~G. The high-intensity Ohmic regime withWin=W0 can be
viewed as “classical” linear response regime, asW0 is inde-
pendent of the inelastic scattering rate. At lower intensites
one has the nonlinear regime described above, while at very
low intesitiesG!d one has to recover the linear response
regimeswhich can be called “quantum”d with the absorption
entirely due to inelastic processes which allow the electron
relaxation between essentially discrete energy levelsssome-
what similarly to Ref. 37d. This regime will take place when
the intensity-dependent electronic temperatureT!v, and the
inelastic rateswith the corresponding value of the transferred
energy ,v@Td gfsvd!d. Then the absorption rateWin

,W0gf /d. The condition of existence of such two distinct
linear response regimes is the large difference of the corre-
sponding proportionality coefficients, i.e., smallness of the
level broadening due to inelastic processes compared to
mean level spacing:gfsvd!d. It is precisely this inequality
that opens the intensity range for the dynamic localization
gfsvd!gfsT*d!1/t* ,d2/G!d, assumed throughout the
present paper.

VII. CONCLUSIONS

We have studied electronic conduction through a quantum
dot in the Coulomb blockade regime under an external peri-
odic perturbation. In contrast to the well-studied equilibrium
case, the electronic temperature of the dot under pumping is
different from that of the contacts and the substrate. It is
determined by the balance between heating by the perturba-
tion and cooling due to electron exchange with contacts and
phonon emission. When the cooling is dominated by the
former mechanism, its rate depends on the gate voltage, and
so does the dot temperature. As the gate voltage is detuned
away from the peak, the cooling rate decreases, and the tem-
perature increases. As a result, the tails of the Coulomb
blockade peak fall off less rapidly than in the equilibrium
case: instead of the usual exponential fall-off for the sequen-

FIG. 4. Normalized conductance versus reduced gate voltage
sCoulomb blockade taild: dynamic localization regime withfcurve
sadg and withoutfcurvesbdg phonon cooling taken into account, and
the same for the purely Ohmic absorptionfcurvesscd andsddg sRef.
30d.
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tial tunneling, under pumping one has a power-law depen-
dences48d, while for the inelastic cotunneling the equilib-
rium power law is replaced by a weaker one, Eq.s49d. At
sufficiently high temperatures cooling by phonons becomes
important, which sets an upper limit for the dot temperature
sdepending on the pumping intensityd, which, however, can
be significantly higher than the cryostat temperature.

In the strong dynamic localization regime the heating rate
is determined by dephasing, as the usual linear absorption is
blocked by quantum interference. The dephasing can be due
to electron-electron collisions, electron escape to the con-
tacts, as well as phonon emission. The most peculiar situa-

tion is realized when the cooling is due to the contacts, while
the dephasing is due to electron-electron collisions: in this
case the Coulomb blockade peak has a flat shoulder, where
the conductance does not depend on the gate voltage. Such a
shape could be an experimental signature of the dynamic
localization effect.
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