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Coulomb blockade in quantum dots under ac pumping
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We study electron transport through a Coulomb blockaded quantum dot driven by an external periodic
perturbation. The stationary state is determined by the balance between the heating of the dot electrons by the
perturbation and cooling. We analyze two cooling mechanisms: electron exchange with the cold contacts and
emission of phonons. Together with the usual linear Ohmic heating of the dot electrons we consider possible
effects of dynamic localization. The combination of the abovementioned factors may result in a drastic change
of the shape of the Coulomb blockade peak with respect to the usual equilibrium one.
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I. INTRODUCTION dot is well open, the effect of electron-electron interaction on
At low temperatures electronic conduction through athe conduction is weak, and the conductance does not de-

quantum dot weakly coupled to the contacts is governed bend on the electron energy distribution in the tot.
the Coulomb blockade efféet-suppression of transport due ~ Typically, heating of a metallic dot by an ac perturbation
to the energy cost of changing the number of electrons in thé associated with classical Ohmic microwave absorption at a
dot. Efficient conduction through such a dot is possible onlyfrequencye by a small particle made of a metal with large
when the electrostatic potential of the dot, controlled by ex-conductivity o> w. This picture is valid when the single-
ternal gates, is tuned to a special value where the Coulomelectron mean level spacing in the dot is small enough.
energies of the states withandN+1 electrons in the dot are From the quantum-mechanical point of view this situation is
close for someN. As a result, the linear response conduc-adequately described by the Fermi golden rule, which deter-
tance exhibits a sharp peak as a function of the gate voltageglines the probability of each single-electron transition per
The theory of the Coulomb blockade in equilibrium is well unit time T', proportional to the intensity of the
developed by now. perturbation'? The total energ)E of electrons in the dotas

In the last few years several experiments have been dorgounted from the ground statehen grows linearly with
on quantum dots under an external ac perturbatibmder  time: E(t)=T'w?/5=Wt. The criterion of validity of the
these nonequilibrium conditions the electronic temperaturéermi golden rule i$S<I', andI'< w is also assumethere
of the dot is determined by the balance between heating bgnd belows =1).
the ac perturbation and cooling due to various mechanisms, This picture(hereafter referred to as Ohmic absorpjitn
rather than by the external cryostat. One of these mechdased on the assumption that each single-electron transition
nisms is simple exchange of electrons between the dot anaccurs independently of the previous ones. However, for a
the cold contacts, especially important at low temperaturessmall but finite § the effects of quantum interference accu-
As the gate voltage is tuned away from the Coulomb blockmulate after many transitions, leading to a decrease in the
ade peak, the dot becomes effectively more closed, the cookbsorptiorf® and its complete suppression after a tite
ing rate decreases, which affects the electronic temperature; '/ &°. This effect was named the dynamic localization in
thus changing the peak shape with respect to the equilibriuranergy space. The corresponding “localization lendth&
one. This simple qualitative consideration poses the problentharacteristic spread of the electron distribution fungtion
which is going to be studied in detail in the present work. T.~T'w/é plays the role of the effective electronic tempera-

Another motivation to study these effects is the search foture reached by the tinte. Note that since the electron spec-
experimental signatures of dynamic localizatidpL). Dy-  trum is unbounded, DL has nothing to do with the saturation
namic localization in the kicked quantum rdtdnas been of absorption by a pumped two-level system. DL is the con-
extensively studied theoreticafif,and observed experimen- sequence of level discreteness:sat 0 it takes longer time
tally in trapped ultracold atoms in the field of a modulatedfor the DL to develop, and for the continuous spectrum there
laser standing wave.We have shown recenfly that an is no DL. Since this effect drastically modifies the heating
analogous suppression of the energy absorption may occur nate, the stationary state of the dot is strongly affected.
a chaotic quantum dot under an ac excitation, e.g., similar to The random matrix theory approach, adopted in Refs. 8
those studied in the experiments of Ref. 3. One of the besand 9, correctly describes the single-particle properties of a
measured characteristics of a quantum dot is its conductancehaotic dot in the energy range determined by the so-called
To find a signature of the DL in the conductance, one should’houless energf,. This energy is defined by the order of
perform the measurements under the Coulomb blockade comagnitude as the inverse of the ergodic time—the time re-
ditions (almost closed dot since it is in this regime that the quired for an electron to travel across the dot, thus random-
conduction is sensitive to the internal state of the dot. If theizing its motion due to scattering off impurities or the dot
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boundaries. Another important energy scale is the Coulomb Generally speaking, the dephasing rajgeby itself is not
charging energy of the dd.: the Coulomb blockade effects a well-defined quantity, unless the mechanism of the dephas-
are pronounced only if the effective temperature is smalleing is specified. Equatiofil) was justified in Ref. 14, where
than E.. Thus, in the following, the hierarchy of scalés electron-electron collisions in the dot were considered. In
=I'sw=T.<Eq, E is assumed. From the experimental fact, it has a wider range of applicability: the main condition
point of view it means that one should choose a dot satisfyjs that dephasing should be caused by a sequence of distinct
ing the inequality§<Erp, E. as strongly as possible. Note eyents with average frequenay, each of them destroying
that within validity range of the random matrix theory one ihe electron phase completely, rather than phase diffusion.
can 'neglect mult?phc')ton processes as they are of the order §4,is means that,, roughly coincides with the quasiparticle
the Inverse matrix size. . . relaxation rate. This is certainly the case for electron escape
0 Z?escstlrltjjlr? gggngggrgev(\:/:lﬁntlr?(rensc;ﬂ{ail'ces,czggseIr?eﬁgs ggf A% the contacts, since then the escaping electron is effectively
. replaced by another one with an absolutely random phase.
contacts and phonons in the dot are assumed to be maiﬁ-hi.S is also true for electron-electron and electron-phonon
collisions, since the typical energy transferred in a collision

tained at a constant temperatufg determined by the cry- | . : !
ostat. In the following we analyze the interplay of the above-S of the order of theeffective electronic temperature in the
ot, which is largeT> 1/t., y, (this inequality follows from

mentioned effects in heating and cooling, and see how the%
affect the shape of the Coulomb blockade peak. In a short*> 1/t due tol';,w> 5, and fromT=T.). _
preliminary version of this study we have considered only In all these cases the following arguments can be applied.
the first cooling mechanisi$. Here we include cooling by AS Y4t-<1, the collisions are rare, so the electrons spend
phonon emission which, to the best of our knowledge, hagnost of the time in the states localized in energy, and have
been little studied for a quantum dot. definite phase relationships. If the phase of some electron is
The paper is organized as follows. In Sec. Il we analyzedestroyed in a collision, its wave packet starts spreading in
the heating and discuss how it is affected by dynamic localenergy. It localizes again after the times, having spread by
ization. In Secs. lll and IV we give a detailed analysis of the~T.. Thus, the ac driven dynamics following the collision
two cooling mechanisms. In Sec. V we consider the resultingeads to a change of the total electronic energy-dk per
stationary state and the Coulomb blockade peak shape. Sespllision. The sign of this change is, however, arbitrary, be-
tion VI contains remarks about another possible way of decause a periodic perturbation can equally cause transitions up
tecting the dynamic localization via the measurement of theind down the spectrum. Only the presence of the filled Fermi
nonlinear absorption, which does not require connecting theea below(i.e., an energy gradient of the electronic distribu-
dot to the contacts. Finally, in Sec. VIl we summarize thetion function makes absorption the preferred direction,
main results. which means that if the electronic temperatiie T., the
energy absorbed per collision is on the averagé/T rather
[l. HEATING BY ac PERTURBATION thanT.. The effective number of electrons that can partici-
ate in a collision is~T/§ (due to the degenerate Fermi
tatisticg. During the time interval~1/y, each of these

; . ; - electrons participates in one collision, so the total number of
remind the reader thdt is a measure of the microwave field collisions per unit time is~(T/8)y,,. This gives the energy

intensity, equal to the probability per unit time of a single b : 2 PR

. : . sorption ratew,,~ (T</T)(T/ )y, which is exactly Eqg.
one-photon transition The same expression can be obtalneda 1) P i )T/ 37y y =
from simple classical arguments considering a small particlé ;

made of a metal with a large finite conductiviiy w.

In the Ohmic regime the energy absorption by electrons i
linear in the field intensity and given bW,=T'w?/§ (we

Equation (1) allows for another simple interpretation.

In the regime of the strong dvnamic localization the ab_Each electron spends a timel/y,, in a localized state with-
9 9 gy out absorbtion. After each collision during the time. it

SOI’ptlon.IS no anger given by. the simple Ohmic EXPressIon, hsorbs the energy from the microwave field, then it local-
For noninteracting electrons in a closed dot the absorptior

becomes completely suppressed by interference correctiorﬁes again and waits for the next evefgrovided thatt.
that develop in a characteristic tinhe~T"/ 6%, and the effec- <1/7,). The absorption rate of the whole system is then

tive temperature of the electrons, reached by that time, iglven by the simple weighted averayé, ~Woy,t:, which

T.~Tw/ 6. Absorption is possible only due to inelastic pro- S again Eq(1).

cesses which destroy the quantum-mechanical phase aggAn Important point is that dephasing rate, generally
thus all interference effects. If the dephasing rage< 1/t., eaking, depends on the electronic temperature, which re-

the residual absorption rate is given by sults in a temperature-dependent absorption rate in the DL
regime. The temperature, in turn, is determined by the bal-
2o ance between energy absorption and cooling. This feedback
Wip ~ Woygte = T I (1) leads to a nontrivial dependence of the characteristics of the
stationary state on the control parameters, which will mani-
If y4=1/ts, the strong dynamic localization is destroyed by fest itself in a change of the Coulomb blockade peak shape,
dephasing, and the absorption is given by the Ohmic express will be shown below. The absorption itself becomes non-
sion with small weak localization corrections considered inlinear with the field intensity through the dependenceygpf
Refs. 8 and 9. on W,
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I1l. COOLING DUE TO ELECTRON ESCAPE 2¢?
(U) = Y172
We characterize the coupling of the dot to the two con- o it
tacts by single-particle escape ratgsand y,. When they are E2(UVE" (U) = E'-(U)E2 (U) + E.(U)E. (U
much smaller than the mean single-particle level spaéiimg in(WFou(V) = Fin(U)Fo,(U) 5 in(Y)Fou ),
the dot, the fluctuations of the total charge on the dot are [Fin(U) + Fou(U)]
small. If the dot is coupled to several gates through capaci- (6)

tancesC; and voltages/; are applied to the gates, the elec-
trostatic energy of the dot witN electrons on it is given by

Fin(U) = J (L-fofyde, FoulV)= f f1-19,)de.
2 AV
E(N)=eZ—N+ Vien c=2>¢C, ()

2c T C (7

wheree?/(2C) =E, is the charging energy. The energy cost IN the equilibrium case, whef=f° as well, the last fraction
of adding an electron is in the right-hand side of E(6) reduces to the familiar ex-

pression(1/2)(U/T)/sinl(U/T).
e 1 GV, Tunneling events lead to the change in the distribution
U=EN+1)-EN)= E{N or 2 e | (3 function in the dot. The kinetic equation describing this pro-
cess can be obtained straightforwardly from equations of
If all gates have the same voltage, tHemp to a constantU Ref. 15 and reads
is given by this voltage. Generally, we will cdl the re-

T T
duced gate voltagst is a natural control parameter for the Jfe = (y, + 72)(1 ~fIfdyFoulV) — 1 ~ f2y)Fin(V)
system. If the expression in the brackets is of the order of Jdt Fin(U) + Fou(U)
unity and the temperaturé<E;, the conductance through (8)

the dot is suppressed due to the Coulomb blockade. If the .
gate voltages are tuned so that the expression in the brackdfsve introduce the functions

is small for some particulaN, the dot conductanc&(U)
exibits a peak for these values Of The width of the peak En(U) = f (1 —fe)fIEUede, (9
AU~ T, which can be used to measure the temperature of the
system.
gout(u) = f f(l- fl—EU)Edel (10

A. Sequential tunneling

WhenU is tuned to the peak, the main contribution to thef"md denote byy=1y,+y, the total single-electron broaden-

conductance comes from the leading order of the perturbeipg' the coql|ng rate for the_ dot electrofthe total energy

: : : ... 10Ss per unit timgcan be written as

tion theory in the dot-contact coupling. For characteristic

temperature3 > & one can describe the system by rate equa- ¥ EoulU)Fin(U) = Ein(U)Fo (V)

tions of Kulik and Shekhtel® We consider these equations Wou(U) =~ . . (1D
o . o Fin(U) + Fou(U)

for the case when the electron energy distribution function in

the dotf, is nonequilibrium. Let the distribution in theth Fror_n the kinetic equatio(B) one can _also extract the single-

contact bef'”. Assuming the dot to have eithét or N+1  particle escape rate for a particle with the eneegy

electrons with the probabilitiepy, pn+q t0 haveN or N+1 F. (U)

electrons on the dotall others are neglected, @+ py.1 Yesc= Y1 =10 ) ——————.

=1), we can write the rate equation as Fin(U) + Fou(U)

(12

dpy de In the f_ollowing we yviII use the expressio_n f_cygscat e=0as
=N = 2PNy D yaJ f(1 _f(:ﬁu)— an estimate. We will also use the Fermi-Dirac form for the
dt a=1,2 6 electronic distribution function with some temperature
de This is true only if electron-electron collisions restore the
-2py > y“f (1 -fe)fgu—, (4) Fermi-Dirac shape much faster than it is modified by other
a=1,2 6 processes. If this is not the cadestill gives the character-
istic width of the distribution function. It is determined by
fhe balance between heating by the ac field and cooling con-
Sidered in the previous section.
We also assume the electronic temperature in the dot to be
T 1 much higher than the temperature of the contéitts latter
feo= o 1 (5  can be made as low as10 mK (Ref. 16] which is true if
the pumping power is high enough. Then we can set the
As usual, we requirgyy and py.; to be stationary. Shifting temperature of the contacts to be zero, which allows an ex-
the distribution in one of the contacts by an infinitesimalplicit calculation in Egs.(6)—(11) [we denotex=U/(2T),
voltage, one obtains the linear response conduct&ice Go=G(U=0)]:

where the factor of 2 comes from the spin degeneracy. Th
distributions in the contacts are assumed to be Fermi-Dira
ones with the temperaturg:

flo) =
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,y2

Fin(U)=TIn[1+e %], (13)

o
Yesc™ EU_25(T2 + 2T(2))- (24)
FoulU) =Fi,(—U), 14 ) . ..
oulU) = Fin(~U) (149 If we set, as beforeT,=0, we obtain the following explicit
GU) . xtanhx " expressions:
Gy~ In(2cosh’ Wou _m¥6 G _ 7y Yo m YO
(YOT?> 30x2" Gy 6x2' y 24x*°
En(U) = - 212 J (1 - tanhy)ydy, (16) (25
X
C. Photon-assisted tunneling
EoulU) == Ein(= V), (17)

So far the only effect of the ac perturbation we were in-
terested in was to cause transitions between single-particle

X
WoulY) = ﬂ—'z - X%+ LI ytanhydy, (18)  states in the dot. The perturbation, however, may possess a
(VOT? 12 In(2 coshx) J componentV coswt, proportional to the unit matrix in the
dot single-particle Hilbert space. In a closed dot this compo-
YesdU) 1 IX| nent does not cause any transitions and can be gauged out

y —E—m- (19 cpmpletely, so it does not.affect any ob'servab'les, either
single-particle or many-particle oném particular, it does
not affect electron-electron collisions
However, when the dot is connected to contacts, this is no
B. Inelastic cotunneling longer the case, as the diagonal component is responsible for

At large U>T sequential tunneling becomes suppressedhe photon—assistgd tunnelifYThis effeclt can bp taken into
exponentially. In this situation both the conduction and cool-2ccount by replacing the dot electron distribution function

ing become dominated by cotunneling—a second-order prd! the above formulas by

cess whose probability contains an additional small factor %
y8/U2. Obviously, only inelastic cotunnelifgcan contrib- fo— > BVIo)feine, (26)
ute to cooling. Elastic cotunnelin§,which does not change n=—c

the electronic state of the dot, contributes to conduction al here J. is the Bessel function. Photon-assisted tunnelin
temperatured < (Eco. We will be interested in higher tem- will not rE)e important for our Coﬁsiderations if the smearin ;
peratures and do not consider this contribution. P 9

A straightforward generalization of the considerations of?g;:etgfttrr:g?rt#%? 2?’22222 g'ngir?y Eﬁzgslsmmltjgtri]csgqxalfr:sion
Ref. 17 to the nonequilibrium case leads to the following 9. 9 ymp P

expression for the conductance in terms of the electroni(?f Ju(2) at largen, this condition can be written as
distribution functions and the kinetic equation for the distri- (

bution in the dot: (2 ~ —

ez\"
— | O maXV,w} <T. 27
V2

2n

T
4¢? af.r S : s

U);1;’22 fo(1-f)(1 —fIf’)(- TQ dede’dQ, The conditionw<T is authomatically fulfilled ifl'> & and
T

G(U) = T>T.=T'w/ 4. As for the conditiorlV<T we note that within

(20) the N X N random matrix approximation, adopted in Ref. 13,
we have(V3)=(1/N)I'é so thatV— 0 asN— .
In addition to the random component with zero mean in-
ar = Y f [(1-f)f _o(1—fO)fT0 cluded in the random-matrix treatmei,can have a deter-
at  wU%s oo e ministic part. It is given by the spatial average of the pertur-
T T , bation potential over the dot volume, and enters our model as
~ 1 =fe0)f X1 -10 ) Jde'dD. (21) an indeF;))endenparameter. Thus in order to fulfill the condi-
For a Fermi-Dirac distributiorf,.=fT the integrals can be tonV<T a special experimental care should be taken.
calculated explicitly for any temperatur@s T;

IV. COOLING DUE TO PHONON EMISSION

271y,
G) = W(Tz +To), (22) A. General expressions
Another important mechanism of electronic energy relax-
2n+v)® 4 4 ation is emission of phonons. For mesoscopic metallic rings
Woul(U) = 155207 (T*=To). (23)  with diffusive electronic motion this problem was addressed

in Ref. 20 For quantum dots energy relaxation at frequencies
The electron escape rate @0 can be extracted from the smaller than the mean level spacing has been considéféd,;
kinetic equation(21): here we are interested in the opposite limiting casbeing
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the smallest energy scale. Below we estimate the correspond- T

ing cooling rate for clearballistic) quantum dots made out I.(q,9') = f I o(r,r)e ™ drd’ . (34)

of 2D electron gas (2DEG in a GaAs/AlGaAs

heterostructureand bulk 3D phonons. Statistical properties of ballistic dots have been extensively

For ballistic dotg\whose sizd. is smaller than the elastic studied(in Refs. 24 and 25, for a review see Refs. 2 anfl 26
mean free patif) one does not need to take into accountFor|e—€’| smaller than the Thouless enery, one can use
phonon-induced impurity displacemeftsso the phonon- the following estimate:
induced potential felt by the electrons can be written in the

(.

form e (0,0) ~ Z—min{L(qL)%, (35

. d3q R . R . Th

vi(r) =f (ZW)SV(q)e'q "= 2 Vaabg €T+ H.e., (28)  where the factotq,L)? appears when,L <1 (q, is the com-

ar ponent of the wave vector parallel to the plane of the 2DEG
whereb,, is the annihilation operator for a phonon made ~AS a result, the transmon’ rate(e, ¢’) depends only on the
with the wave vecto. The detailed form of the coupling transferred energy=e-e¢'. _
V., depends on the specific coupling mechanism to be specj- We assume the electronic temperat(determined by the
fied below. balance between heating and coo)itggbe much higher than
The probability of the electronic transition from an initial the lattice temperaturletermined by the external cryostat

single-particle stats with the energye, and the wave func- In this case one can neglect any phonon population present,
tion y(r) to the final states’ with the energye, and the Nga=0, so only emission of phonons can occur, av(a)

wave functionys (r), accompanied by absorption or emis- * #(). For a power-law dependenceyw) < w*f(w), and

rate is given by

2
[Vaal?

at+3

Wou= f L L) (@6)

abgem) _
Ws s = 2772
q.\

f e, (1) €597 (1) dr

1
X(Nq,ﬁa + §>5(€s'—651 wgn), (29 Obviously, such a power-law dependence can be param-
etrized by a single parametéf,, and written asWy
whereNy , is the phonon occupation number before the tran:T“+3/T“;‘;1. From the kinetic equatiori31l) one can also
sition andwy, is the phonon frequency; the upper sign cor-extract the single-particle relaxation rajg, For electrons
responds to the phonon absorption, the lower one to emiswith the typical energy~T and w(w) = o*8(w) we obtain
sion. Introducing the transition rate Yor(T) ~ ST/ Tpp) 2,

w(e, €)= & Wabs,+Wem, e—€)0(€ —ey),
(e€’) z( s T Wy Olem €O ) B. Specific mechanisms
(30) To consider specific electron-phonon coupling mecha-

o ) nisms, we describe phonons in terms of the lattice displace-
averaged over the random dot realizations, we can write thg,ent operator for each normal phonon mode

kinetic equation for the electronic distribution functidn
1
it , : de’ INGEDIEY e
ot - f [W(E 16)(1 - fe)fe’ - W(G,G )fe(l - fe’)]? A q ZVp)\wq')\
(31)  The displacement of each mode is directed along the unit
vectorg; . To each mode corresponds some mass which is
the total mass of the unit cell for acoustic phonons or the
reduced mass for optical phonons; dividing it by the unit cell
_(rr')= DYt ) o (0 (1 volume one obtains the corresponding dengjtyFinally, V
e (1) E YY) (1) (1) is the 3D quantization volume. At low temperatures we are
) interested in, only acoustic phonons can be emitted. We ap-
X ole-€)dle ~ &), (32)  proximate their dispersion byw,=veg, with vs being the
Sound velocity, while the density, coincides with the den-
Sity of the crystalp,.
Deformational couplingo the acoustic phonons is due to
W(e, €)= 2w, 1‘[66,(q,q)|vq A2 the local change of the electronic energy bands under strain:
q.\

eth[f)q')\eiq'r + E)gv)\e"iq'r]. (37

The average rat€30) is determined by the electronic wave
function correlations in the dot:

S,S

averaged over the dot realizations. Then we can write th
average transition rate as

Veel(q) = Zjiq;i(q), (38)

X[qub‘(e’ — €~ (L)q’)\)
where E;, is the deformational coupling tensor. In a bulk
’_ jl
(g + Dl = e+ g, (33 crystal it, generally speaking, depends on the electronic wave
with the Fourier transform defined as vectork (Ref. 279. In doped GaAs, when typical electronic
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wave vectors are close to the Brillouin zone center and one _ 4med™Ma 4med™Ma
approximates the periodic part of the Bloch function by that &=, na=, e O
for k=0, this dependence vanishes &8g=Z= 4. The lead-

ing anisotropid(i.e., dependent on the direction lof COIEC- for the screened isotropic deformation potential, anisotropic
tion at small finitek should be smaller by a factor k&), geformation potential, screened in-plane piezoelectric field,
wherea is the lattice const_ar(the first order ink correction  gnd the perpendicular piezoelectric field, respectively.
should vanish due to the tlme-revezrial syrzllm)eﬂience we Let us estimate the relative importance of these mecha-
can estimate its magnitude agkg2)°= ~na’E, whereke s pisms, using the numbers for GaAs from Ref. 28. The bare
the electronic Fermi wave vector amdis the 2D electron  geformation potential= ~ 10 eV, the screening lengths
density. o o ~50 A, and the lattice constamt=5 A. We will be inter-
The isotropic(independent of the direction &) part of  ested in temperaturéE~0.1-1 K, so we indeed haveas
the deformation potential is subject to screerihghe elec- <1, and we are in the regimgL>1 (for L~1 um). For
trons inside the dot can screen the fields with wave vecjors vg=1 K we haveq=3x 103 A1 (v,~5x10° cm/9, so
down to~1/L. We assume that the Fourier components Withqaszo.ls. For n=1022cm2 na?~2.5x103 so the
qi<1/L are also screened, either by the 2DEG outside thgcreened isotropic part is more important than the anisotropic

dot, or by the metallic gate. Thus, by the order of magnitudegne The only independent component of the electromechani-
we can use the expression for the statitie 10vs<ve)  ca tensor in GaA€ST~1.4x 107 V/cm, the dielectric con-

screening by an infinite 2DEG, which results in the renor-gianie ~13 so 4re€Ta /e ~7 eV, which is of the order of
malization: the unscreened deformation potential. For the screened po-

= tential due to the perpendicular piezoelectric field, as typi-
E— T+ 1/ = Qas=, (390 cally a,~100 A (Ref. 29, we have a smallness ofa,. In
(@2 conclusion, contrary to the estimates of Ref. 22, we obtain

wherea is the 2D screening lengtfequal to half the elec- that the in-plane piezoelectric coupling is more important

tronic Bohr radiuy and we consideqa;<1. Thus, the ef- than the deformational one.

fective deformation potential is suppressed by a small factor: As a result, we arrive at the estimate

either byg,a, for the isotropic part of the potential, or Ing?

for the anisotropic part. W, (T) ~ (477eee"‘a5/s)2T6 _ T_G
Piezoelectric couplingo acoustic phonons is due to the ou Pongwﬁ Tgh'

longitudinal electric field induced by the strain. We express

the potential in terms of the electromechanical tergt  For GaAspw2~(0.074 eV},* (the densitypy~5.3 g/cnd),

which relates the induced polarization to the strain tensor for a typical do? ~1 ueV, Er,~ 100 eV, so we obtain

Tpn~0.1 meV~1 K.

(43

. 4medqq;
VP g) = - J'L%ﬂ.(q» (40)
&
. . . . V. STATIONARY STATE
Heree is the background dielectric constant of the material.
The in-plane piezoelectric field is also subject to screening, A. Ohmic absorption

which brings a factor ofjas.

The component of the piezoelectric field perpendicular t
the dot plane is not screened by the electrons. Instead,
affects the confinement and shifts the subbands, which ¢
be viewed as a Stark effect.df # 0, the shift of the subband

First, consider the case of the simple Ohmic absorption
ith cooling only due to the contacts in the sequential tun-
eling regime with the rate given by E(L8). At small de-

atrﬂmings;(U<T) we have

depends on the in-plane coordinate and represents an addi- 272 U2
tional effective potential felt by the electrons. If we assume W, (T) = Y { -— 4 o(u4)] (44)
the confinement of the electrons by an asymmetric triangular oL 12 4

potential well formed by the constant forEeon one side and . o
a hard wall on the other, the confinement energy SO that the stationary temperature is given by
~ (#?F?/m)Y3, while e,/ JF = a, is of the order of the extent

i i irecti i 2 (3w 15)U?
of the confined state in thedirection. Thus, we can estimate Tw)=2 _0|:1 LU O(U“)] . )
T N Y6 8W

VeE(q) ~ g,a,VPeq). (41)
This effective in-plane potential is also subject to screening) "€ temperaturél(U=0) determines the curvature of the

which brings an additional factor @fas. As a result, we can Coulomb blockade peak &t=0: from Eq.(15) we have

generally write
G(U) _ 1 U2

=1- ) (46)
Vg~ Ay| —— (42) Go 41n2T4U=0)
Vpovs

At large detunings>T we can approximate the right-hand
with A given by side of Eq.(18) by |xje2¥ and write
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Wo
(yl&)T?

~ |X| _le‘,

T~ v (47)
T In[(Y/HUH(2Wp)]' 02f

with the logarithmic precision. It is correct if the logarithm in

the denominator is large, &> T(U=0). This result means g
that the tails of the Coulomb blockade peak have the form 0.1F
G(U 2W, 18)U?
L) __2Wo_ [(7) } 8
Gy (¥/9U 2Wo 0

The weak power-law fall-off of the tails is drastically differ-
ent from the exponential one occurring in equilibrium: .

_ X . FIG. 1. Normalized conductance versus reduced gate voltage
G(U)/GO_(U/T)/SIn“U/T) (Ref. 15. The reason for this (Coulomb blockade tajil (a) only sequential tunneling is taken into
difference is very S|mple._as the gate voltage is turned AWaY%ccount,(b) cotunneling is added, ant) cooling by phonons is
from the degeneracy point, the exchange of electrons bep—resent as wellRef. 30.
tween the dot and the contacts becomes weaker, so the cool-

ing rate decreases leading to an increase in the temperature N . .
and hence in the conductance. cotunneling is added, an@) cooling by phonons is present

At large enough detunings the cooling becomes domi®S well% In Fig. 2 we plot the electronic temperatuféU)

nated by the inelastic cotunneling, E@5), rather then se- ©f the same three cases.
quential tunneling, Eq(18). In this regime the dot tempera-

; B. Dynamic localization
ture and the conductance are given by

As we have discussed in Sec. Il, in the strong dynamic
G(U) \/TO\WO localization regime the residual absorption is determined by
= 32 U (490  dephasing. Using the results of the previous sections we can
3m U identify three sources of dephasing.
(i) Escape to the contact§he quasiparticle relaxation
rates for the sequential tunneling and inelastic cotunneling
are given by Eqgs(19) and(25).

~ (Ewouz)lm
29?2 T G

The switching to the inelastic cotunneling occurs at

GU) 96

—0

U~ \/WO—mZE, —~ = ] (50) (i) Phonon emissiarAccording to the arguments given in
y v Go Indly) the end of Sec. IV A, we can write
The logarithmic precision of these estimates, however, T~ T 4 51
makes them applicable only for extremely smg[lsuch that Yor(T) T (51)

In(6/y)>1]. In reality, if one takes directly the expressions o _
(18 and (25) for the cooling rate, forW,=30 ueV? (ii) Electron-electron collisionsThe corresponding qua-

~ 46 peV/s,yl 5=0.2(see Ref. 30 for the numberthe con- siparticle relaxation rate in a quantum dot was calculated by
tribution of the inelastic cotunneling starts to affect the sta-Sivan, Imry, and Aronov?

tionary electronic temperature noticeabg compared to the T\2

precision of Eq.(47)] only as far asV>1 meV. At V Yool T) ~ 5(—) , (52)
=1 meV the conductanc&(1 meV)/Gy=0.01, and about Em

18% of it is still due to the sequential tunneling. whereEqy, is the Thouless energy. The derivation of this ex-

If one takes now into account cooling by phonons with pression implies the effective continuity of the many-particle
the rate(43), it sets the upper limit for the electronic tem-

peratureT q=(WoTy) . If the pumping is strong enough (Y T — S S
(or the dot is closed enoufhT < VWpd/ y, the phonon s
cooling mechanism dominates, the dot temperature is con- o6k ::‘l/(i) 1
stant and equal td,,,, for all U, so that the Coulomb block-

ade peak shape is given explicitly by Ef5), and its tails by ) //"

EQ. (25). In the opposite limiting casel ., VWyé/ y the = 04F 2 ©
electronic temperature in the peak region is determined by

electron escape, and only in the peak tails, when the dot 0.2 7
effectively becomes more and more closed, phonon emission

starts to dominate. This will manifest itself as a crossover 0 | .

from the 10 tail (49) to the 1MJ? one given by Eq(25) at 0 IOOU(HCV)M 300

fixed T=Ta This crossover occurs &t~ (y/ 8T,/ VW,

G/ Gy~ (8 y)Wo/ T4 (Ref. 3D We plot the tails of the FIG. 2. Electronic temperature in K versus reduced gate voltage:
Coulomb blockade peat(U)/Gy in Fig. 1 for three cases (a) only sequential tunneling is taken into accouib, cotunneling
when(a) only sequential tunneling is taken into accoui, is added, andc) cooling by phonons is present as wéRef. 30.
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spectrum, which imposes a conditida> /E,6/In(Exy/ 6) I
(Ref. 33. Obviously, for the dynamic localization to have
any chance to develop, the conditigg(T.)t- <1 should be 8- g
satisfied. Y |

Suppose for a moment that dephasing is dominated by M
electron-electron collisions, while cooling is dominated by & 04l _
the escape to the contadiater we will analyze the condi- ]
tions for this to be true From Eqgs.(15), (18), and(25) it is 02k i
seen that for both sequential tunneling and cotunneélinG, ]
and W, (U)/[(y/8)T?] are functions ofx=U/(2T) only. ) i E
This allows us to write a relation T(ueV)

Wout= (7/5)T2W(G/G0)r (53) FIG. 3. Dependence of the electronic temperature in the peak

T(U=0) on the perturbation intensityl' for y/6=0.02, §
=0.3 ueV, w=3 ueV, Er,=100 neV; in reality the sharp angle is
replaced by a smooth crossover.

whereW(G/G) is a given function, whose overall behavior
is quite similar toG/G, itself.® Equation(53) is actually
analogous to the Wiedemann-Franz lam extra power o

arises because here we consider hot electrons in the dot, ) . lid in the d ic localizati
while those in the contacts are &t0, instead of a small Equation(46) remains valid in the dynamic localization

temperature difference used in the definition of heat conduc®9ime as well, as it does not depend on the details of heating

tivity). The energy balance condition takes the form and cooling me_chanisms. Thus, one can extract the tempera-
ture of the stationary state &t=0 measuring the curvature

, T2 Y, of the peak, and study its dependence on control parameters:
Win ~ Tomg = Wour= T W(GIGy) (54  intensityl” and coupling to the contacts From Eq.(56) it is
h seen that this dependence is the strongest vgliéris close
or (yl YW(GIGy) =(T+/Ey,)% SinceU and T have dropped to Tf/E%h (up to a numerical coefficienti.e., when the dy-
out, the solution of this equation f@ is independent o, ~ namic localization in the peak is about to be destroyed. If we
leading to a flat plateau on the Coulomb blockade curvelot T(U=0) versusl’ (Fig. 3), we see that destruction of the
G(U) (Ref. 13. If one approximate3\(G/Gy) ~ G/ Gy, the  dynamic localization manifests itself as a crossover from the
level of the plateau is given b§/Gy~ (8/y)(T./Eq)% IineqLdependencEmF deep in the DL regimésmallI’) to
Note that the largest possible value)(G/Gy) is w2/12 T \I'"in the Ohmic regime. According to the abovesaid, this
reached aG/G,=1 (corresponding t&J=0). Therefore, the ~Crossover can be quite pronounded is shown in the figuye
solution exists only if when

2
T* 2 " T* _ 1
1>( ) (55) Y~ o < (57
S Eth Th b

Physically, this means that the dot should be sufficiently Ast_U Iis detune:j av(vjay fr((j)m_theltpeak, tlhetﬁot blectome_s
open, so that the cooling is intense enough and the stationa ectively more closed, and simuftaneously he electronic

temperature is not too high to destroy the localization. Notdemperature grows and electron-electron collisions become
that for the observation of the plateau the conditign more frequent. Thus, the crossover.from the peak to t.he pla-
<1/t is notnecessary: even if a1=0 the dynamic local- teau occurs where the two mechanisms equally contribute to

ization is absent, abl is increased, the dot becomes eﬁec-the dephasing. With the logarithmic precision this happens at

tively more closed, so the dephasing by escape becomes less =
efficient. Of course, for the Coulomb blockade itself to be T~T.,, U~Upp~Tm 1.3 T [ (58)

present, the conditiory/ <1 should be satisfie¥.
In the very top of the peakU=0) we can include the depending on whether the plateau is in the region of sequen-
dephasing due to both escape and electron-electron collital tunneling, y/§<T./Eq, or of inelastic cotunneling,

sions, and write the conditiow,,=W,, as vl 6> T./Eq,. The plateau ends when the temperature of the
5 dot becomes so large that the dynamic localization is de-
ZT§+T_T3~ ZTz (56) stroyed by dephasing. Obviously, this happens when the

) = 5 horizontal lineG/Gy=(4/y)(T«/Eq,)? hits the curve(48) or

49), which happens at
Here the first term on the left-hand side comes from the( ), whi PP

dephasing due to escape, and the second term represents the P vEm
contribution from collisions. The conditiot65) ensures the U~ Unax~ Em rma l’ST_ :
smallness of the second term as compared to the right-hand :
side, so Eq(56) gives T(U=0) ~T.. Thus, for the dynamic again, with logarithmic precision. The two boundari{&8)
localization to be possible the dephasing in the very peak o&ind (59) give a nonzero range dfl (i.e., Uyin<Upnay, if
the Coulomb blockadenustbe dominated by escape. T.<EV6/T, which can be equivalently rewritten as

(59

085311-8



COULOMB BLOCKADE IN QUANTUM DOTS... PHYSICAL REVIEW B 71, 085311(2005

' ' the dynamic localization. An isolated mesoscopic sample can
be put into a microwave cavity, and the energy absorption
rate W, can be measured as it affects tQefactor of the

\\ cavity38 In this case the only cooling mechanism is phonon
o \\\\(d) emission, while the dephasing can be due to electron-
© AN ANy . electron interactions as well. Equatilig, =W, and finding
N©) S~ the stationary temperature, as before, we find that the dy-
® = b namic localization regime the absorption rate depends non-
@ o~< linearly on the ac field intensity
% 50100 " T56 300 T \3
UueV) Wiy ~ <—> Tonoe I8, (61)
Emnd

FIG. 4. Normalized conductance versus reduced gate voltag;? he dephasing is domi d by el | llisi
(Coulomb blockade tgil dynamic localization regime withcurve It the dephasing is dominated by electron-electron collisions

(a)] and without[curve (b)] phonon cooling taken into account, and (Tph> VErl'w/ 9), or

the same for the purely Ohmic absorptimurves(c) and(d)] (Ref. TFo\® 1
30). i ( ) — «T®, (62)
Ton
YeelT+) <1/t., i.e., @ necessary condition for the dynamicif the dephasing is dominated by electron-phonon interaction
localization itself. (Toh<VErp['w/ 9).

So far, when analyzing the dynamic localization, we did This nonlinear dependence represents a crossover be-
not take phonons into account. Now consider another extween two qualitatively different linear regimes with,,
treme case: both cooling and dephasing are entirely due t@[". The high-intensity Ohmic regime wit,,=W, can be
phonons. Then the energy balance condition in the localizaziewed as “classical” linear response regime\sis inde-

tion regime reads pendent of the inelastic scattering rate. At lower intensites
T 16 one has the nonlinear regime described above, while at very
W, ~ T3—4 = — =W, (60) low intesitiesI"< 6 one has to recover the linear response
ph Tﬁh regime(which can be called “quantumWith the absorption

he€ntirely due to inelastic processes which allow the electron
power of temperature in the phonon cooling rite of « relaxat_ior_l between essentie}lly di§crete_ energy letsme-
appearing in Eq(36)]. Obviously, phonons will dominate if Wha}t SImII.arIy to Ref. 37. This regime will take place when
Tph<T*(5/7)1’4, Ton< \T—ETh In this case the shape of the itrr:elmtt_ansny-d(?pendentelectronl_c temperafirew, and the
peak is given explicitly by Eq(15), its tails by Eq.(25), and elastic ratgwith the corresponding value of the transferred

the width corresponds to the electronic temperature of thgn\(/-:‘vrgy /~6w'>l?hT) W%‘fié % fT he.ntthe abfs orptéo? rat:‘/‘ﬂ[‘. t
dot. The signature of the dynamic localization effect would '0Ys/ ©- € condition of existence ot such two distinc
be the linear dependence of the temperature on the micrt&'—near response regimes 1S the_ I_arge o!lfference of the corre-
wave power, in contrast to the 1/6 power for the OhmicSpond'”g proportlonallty cc_)efflue_nts, i.e., smallness of the
absorption casésee the previous subsectjoifhe localiza- level broadenlng due to meIa;tm processes _compared to
tion regime exists as long ag,y(T:) <1/t., or To<wTh, mean level spacingy,(w) < 4. It is precisely this inequality

; : : _ 1/6 that opens the intensity range for the dynamic localization
The solution for the Ohmic regime TEmax—(wT*Tgh) , and (w)i (T.) <1/t~ 5);/1“35 assumeg roLabont th
it is stable as long asypy(Tma)>1/t., which gives TS~ 741®) =Yallx . * 9

> wTy, Thus, at a certain intensity such tHat~ (wTg)Y® present paper.

there is a crossover between the localization and Ohmic re-

gimes. VIl. CONCLUSIONS
Including all mechanisms, we can note that if the

electron-phonon interaction is weak enou@f,> E3,w/T?,

the phonon cooling plays any role only in the Ohmic part of

the Coulomb blockade tail. Otherwise, phonons start to

up” the plateau from the largel side3® The plateau will

giving T~ T.. Note that this conclusion is independent of t

We have studied electronic conduction through a quantum
dot in the Coulomb blockade regime under an external peri-
. odic perturbation. In contrast to the well-studied equilibrium

eatI:ase, the electronic temperature of the dot under pumping is
! J ; . . different from that of the contacts and the substrate. It is

disappear aln~ VT-Eqp. As an illustration, for the interme- yo10rmined by the balance between heating by the perturba-
diate case, we plot the Coulomb blockade tail in Fig. 4in thgjoy anq cooling due to electron exchange with contacts and
Qlynamlc localization regime with and W'thOUt. phonon cool- phonon emission. When the cooling is dominated by the

Ing (lower and upper So"d. curves, respectl\aely)gether_ former mechanism, its rate depends on the gate voltage, and
with the corresponding Ohmic curves shown by dashed lineg, goes the dot temperature. As the gate voltage is detuned
away from the peak, the cooling rate decreases, and the tem-
perature increases. As a result, the tails of the Coulomb

In this section we wish to remark that conductance meablockade peak fall off less rapidly than in the equilibrium
surements are not necessarily the only possible way to detecase: instead of the usual exponential fall-off for the sequen-

VI. INTENSITY DEPENDENCE OF THE ABSORPTION
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tial tunneling, under pumping one has a power-law depention is realized when the cooling is due to the contacts, while
dence(48), while for the inelastic cotunneling the equilib- the dephasing is due to electron-electron collisions: in this
rium power law is replaced by a weaker one, E4Q). At  case the Coulomb blockade peak has a flat shoulder, where
sufficiently high temperatures cooling by phonons becomeghe conductance does not depend on the gate voltage. Such a
important, which sets an upper limit for the dot temperatureshape could be an experimental signature of the dynamic
(depending on the pumping intensityvhich, however, can localization effect.

be significantly higher than the cryostat temperature.
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