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Onset of thermally driven self-motion of a current filament in a bistable semiconductor structure
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We perform an analytical investigation of the bifurcation from static to traveling current density filaments in
a bistable semiconductor structure with S-shaped current-voltage characteristic. Joule self-heating of a semi-
conductor structure and the effect of temperature on electron transport are consistently taken into account in the
framework of a generic reaction—diffusion model with global coupling. It is shown that the self-heating is
capable of inducing translation instability which leads to spontaneous onset of lateral self-motion of the
filament along the structure. This may occur in a wide class of semiconductor structures whose bistability is
caused by impact ionization due to the negative effect of temperature on the impact ionization rate. The
increment of the translation mode and the instability threshold are determined analytically.
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I. INTRODUCTION driven filament motion. Using a recently suggested three-

Current density filament in a bistable semiconductorc@mponent reaction—diffusion model for current filamenta-
structure with S-shaped current-voltage characteristic is 0N in presence of the Joule self-heatiigve perform a
high current density domain embedded in a low current denstability analysis of a static filament. We show that the trans-
sity environment® Typically filaments appear spontane- lation invariance of a static filament in a large structure
ously due to spatial instability of the uniform current flow breaks in presence of the self-heating. This occurs with in-
when the average current density corresponds to the fallingrease of the thermal relaxation time which depends on the
branch of the current—voltage characteridtis.single fila-  heat capacity of the semiconductor structure and the effi-
ment survives after the transiefthe-winner-takes-all prin- ciency of the external cooling. The instability threshold de-
ciple) whereas multifilamentary states are unstdbleA  creases when the effect of temperature on the vertical trans-
static current filament may undergo further bifurcations re{port becomes stronger and increases with heat diffusion
lated to temporal and spatial instabiliti®s??> Spontaneous coefficient.
onset of the lateral movement is an example of such a bifur-
cation which has been recently studied both experimentally
and theoretically’~%2 This effect is of significant practical
importance because the filament motion delocalizes the Joule - rrent filamentation in bistable semiconductors can be

heating of a semiconductor structure operated in the currenfoqerined by a two-component activator—inhibitor model
filamentation regime, and thus dramatically reduces thgnich consists of a nonlinear reaction—diffusion equation,

probability of thermal failuré>~2! Traveling current density ccounting for the internal activator dynamics in a bistable

filaments bear deep similarities to other traveling spots ingemiconductor, and an integrodifferential equation, account-
active medi&?-28in particular, to traveling wave segments in ing for the applied voltage. This model, originally developed

feedback controlled light sensitive Belousov—Zabotinskyr,. pulk semiconductors with so-called overheating

reaction?®30 _ ) instability®* and layered semiconductor structutesSproved

_ The latest experimental observations of movingy, he efficient for a wide class of bistable semiconductors
filaments”18202 have been made using a recently devel-i various mechanims of bistabilitisee Ref. 33, and ref-

oped interferometric mapping technigtfe.Experiments  gronces therejnWe refer to Refs. 34-36 for comprehensive
show that in a device with a stripelike geometry the f”amemgeneral formulation of this model.
travels in a solitonlike manner with a constant velocity ™ 1, qecribe the thermally driven motion of a current den-

~1 m/s and reflects from the device boundaries. Both Mesjty filament, the effect of temperatufe on the cathode—

surements and full-scale numerical simulations of the trans; 44 transport and the heat dynamics in the structure should
port processes suggest that the flament motion is thermall

s 821 ¥e additionally taken into account. The respective extension
driven and related to the Joule self-heattfd¢®21 Thermally

. U _ _ of the conventional two-component mo#ef® has been re-
driven self-motion is possible due to the negative effect of,

X e VR cently suggested in Ref. 22:
temperature on the impact ionization f&t& and may occur
in a wide class of semiconductor structures whose bistability

Il. THE MODEL

is caused by impact ionizatidfi:>? The temperature acts as 72 =V [D, @V, a]+f(au,T) (1)
an inhibitor which provokes translation instability of a steady gt e - B
filament and causes its self-sustained motion toward a cooler
regioni522 T

In th|.s paper we present an analytical investigation of the TTf?_ - €$ALT+ (QUWy+Tog—T), 2)
translation instability which occurs at the onset of thermally t

1098-0121/2005/18)/0853098)/$23.00 085309-1 ©2005 The American Physical Society



PAVEL RODIN PHYSICAL REVIEW B 71, 085309(2005

J aT ag(x)
1 To(x)

-L,/2 Lx/lz x

A
¥,

A /
A %

L2 e

FIG. 2. Profileag(x) of the activator and the temperature profile
To(X) in a steady filamentthe upper pangl The current denisity

FIG. 1. S-shaped current-voltage characteristic) of a  profile Jay(x),u] is quailitatively the same a@(x). The tempera-
bistable semiconductor structure. The upper inset shows the locglire profileT,(x) is sketched for weakf< ¢,, curve 1 and strong
kinetic functionf(a,u) for u<up, uy<u<uy, andu>uy, (curves  (¢:>¢, curve 2 heat diffusion. Note that in our analysis, is
1,2, and 3, respectivelywhereu, and uy, are the hold and the  much larger than the filament width. The lower panel shows two
threshold voltages at the edges of the bistability range.ukeru first eigenfunctionsV; and 'V, of the operatonl:|a and their eigen-

<uy, the local kinetic function has three zeros corresponding th'%/aluesxl,)\z. ¥, and W, are eigenmodes of the steady filament in
off, intermediate, and on branches of the current-voltage characteri; voltage controlled regime and correspond to expangbrink-

Z'CS' respectively. IThe |0V\(Ijel’ :nsett;ket(.:hes the rectangular Sem'conig) and translation of the filament, respectively. In the isotheramal
uctor structure elongated along thexis. casen,=0 andW,=Vg~a,.

Tu

du_ _ The continuity equatioril) is coupled to the heat equa-
dt Yo u RLJ(a,u)dxdy, Tu=RC ®) tion (2) via the temperature dependence of the local kinetic
function f(a,u, T). Since the heating suppresses impact ion-
Herea acts as an activatog and T as inhibitors. ization, the effect of temperature on the vertical transport is
Equations(1) and(3) are the same as in the conventional negative andf <037 The direct dependence of the current
two-component modét® The variablea(x,y,t) character- densityJ on T is neglected.
izes the internal state of the device and) is the voltage The characteristic size of a filament wall is
over the device. The local kinetic functidnand theJ(a,u)  €,= D,/ d,f.3*3% Parameterg, and ¢ are diffusion lengths
dependence contain the information about the vertical eleosf the activator and inhibitor, respectively. For simplicity, in
tron transport in the cathode—anode direction and togethdhe following we takeD,(a)=const. Next, we take into ac-
determine the S-shaped local current—voltage characteristzpunt only one lateral dimension assuming that due to the
(Fig. 1). The functionf(a,u) has three zeros corresponding stripe geometry of the semiconductor structuite > €,
to the off, intermediate and on states, respectively, when the-L,) the current density distribution is uniform along the
voltageu is within the bistability rangduy,uy] (the upper  direction(the lower inset in Fig. L We also assume that the
inset in Fig. 1. The diffusion coefficienD,(a) characterizes filament is located far from the edges of the strige
lateral[along the(x,y) plang coupling in the spatially ex- ==%L,/2. Current density and temperature profiles in a static
tended semiconductor structure. Equati8nis a Kirchhoff’'s  filament are shown in the upper panel of Fig. 2. Hqr
equation for the external circuilR is the load resitance > {1 the temperature profile essentially follows the current
switched in series with the semiconductor structutgis the  density profile(Fig. 2, curve 1 in the upper paneFor ¢,
total applied voltageC is the effective capacitance of the <€y the characteristic size of the hot area is much larger
sample and the circuit, arfflis the device area of the struc- than the filament sizérig. 2, curve 2 in the upper panel
ture cross section. In the following we consider the current-

controlled regime. I1l. MECHANISM OF TRANSLATION INSTABILITY
Equation(2) describes the heat dynamics in the structure. ) o ]
Similar to the variables, the temperaturd@(x,y,t) depends Antisymmetric(with respect to the center of the filamgnt

fluctuations of the current density do not change the total
current and therefore are not suppressed by the external cir-
cuit in the current-controlled regime. By increasing the cur-
rent density on one side and decreasing on another such fluc-
tuation effectively leads to a small shift of a filament,

rr=cpwWly, {1= xkwly, (4) ~ moving one of the filament edges to a cooler region and

another to a hotter region. Due to the heat inertia of the

wherec, p, andk are specific heat, density, and heat conduc-ssemiconductor structure the temperature does not follow the
tivity of the semiconductor material, respectively, ands  current density instantly. Hence favorable conditions for the
the device thickness in the cathode—anode direction. impact ionization[production of the activatoa in terms of

only on the lateral coordinatesandy. T,y is the temperature
of the external cooling reservoity is heat transfer coeffi-
cient, the termal relaxation time; and diffusion length¢
are given by
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Eq. (1)] appear at one of the filament edges, whereas at arthe voltage-controlled regime=const(Fig. 2, lower panel
other edge the impact ionization is suppressed. This leads fbhese eigenmodes are orthogonal and obey the oscillation
a further shift of a filament and, for a sufficiently long delay theorem which says thalb, has(k—1) nodes inside the in-

of the temperature response, to a self-sustained filament meerval[-L,/2,L,/2]. Due to the translation invariance for an

; : 1 : e e ° _
tion. Experiments2* show that in a high-quality structure infinitely large sample the spectrum Hf, contains a neutral
filaments start to move to the left and to the right with equal(so-called Goldstonemode

probability. This suggests that motion is triggered by non-

equilibrium fluctuations of the current density.

IV. SETTING UP THE STABILITY PROBLEM
A. Linearization and the eigenvalue problem

Let us consider a stationary soluti@g(x),Ty(X),Uy Of

Ve~ ag (13
with A\g=0. This mode corresponds to the translation of the
filament along thex axis. For a solitary filamerdy(x) has a

single maximum. Henc® g has one node and is identified as
W,.38 Sinceh,=0 and\; > \,, the first eigenvalug, is posi-

tive. The first eigenmodeél; corresponds to spreading or
shrinking of the current filament.
Since ay is symmetric with respect to the center of the

filament, the “potential termd,f in the operatoH, is also
symmetric. Hencel'; and ¥, are symmetric and antisym-
metric, respectively. The increase ¥f; is prevented by the
global constraint3) which effectively fixes the tgtal current
when the external resistan&eis sufficiently large®® In con-

Uo ~ to ~ RL(J(@0,Up)) = 0. (@) trast, forsa= W, the last term in the Ec{lO)yvan?shes due to
Here the primd:--)’ denotes the derivative with respectto the asymmetry off’,. Hence in this caséa and éu are not
and angular brackets denote integration over the intervsgoupled, and we can tak&u=0. Physically, it happens be-
[-L/2,L,/2]. causeV, does not change the total current and therefore the

Linearization in the vicinity of the stationary solution with Vvoltage u also does not change. Thus for the current-
respect to the fluctuations controlled regime the dynamics df, is the same as in the
voltage-controlled regime, ang=x,=0343%We conclude

a(x,t) —ag(x) = sa(x)exp({t), that for the two-component model filaments have neutral sta-
bility with respect to translation when the lateral dimension
of the semiconductor structure is largg > ¢,).

Egs. (1)—(3):
Dadg + f(ag,Up, To) = 0, (5

J(ap, up)u
g M 7 g (6)

u(t) — up = du exp({t),
T(x,t) = To(X) = ST()eXHZY) C. Translation mstab.lllty |
We shall focus on the second eigenmoHe with \,=0

and investigate whether for the extended mddeH3) the
respective incremeritdeparts from zero due to the coupling

leads to the eigenvalue problem

{da=Hada+a,fou+orfdT, (8)  petween the master equatiti and the heat equatid®). As
we argued above, in linear approximation the antisymmetric
_ 0 . UYodad J(ag, Up) + Ugd,J translation mode does not interact with external circuit and
Tr{oT=Hr+ v oat y o, ©) hencesu=0. The set of equation®)—(10) reduces to
(8a=H,da+ df T, (14)

7{8u=—(L+RL{d,J)du-RL(IJsa).  (10)

Here 8T = |:|T5T+ (Ugdadly) ba. (15

2

2
Ha=Da 5 +daf, Hr= e%d—xz -

and all derivatives are computed at the steady—state

For the model (1)=(3) the translation Goldstone mode
(dag, 8Tg) has two components which are given by

1 (11)

ag(X), To(X), Ug.

B. The reference casél =Tgy;

Let us briefly summarize the results of the stability analy-

sis in the reference case of constant temperafeFd ,.>° In
this case Eq(8) is reduced to

{da=H,sa+ a,féu. (12)

The eigenfunction®;, i=1, 2,..., of the self-adjoint opera-

By taking the space derivative of Eg&) and (6) we find
that (Sag, 6Tg) indeed satisfies Eq$14) and(15) for £=0:

H,da + ¢f6Te =0, (17

HTJTG+ (Uo(?aJ/’y)éaG: 0. (18)

V. CHARACTERISTIC EQUATION
The increment{ of the translation mode can be found

tor I:|a correspond to eigenmodes of the stationary filament ifrom Eqgs.(14) and(15) by means of the perturbation theory
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with respect to the isothermal cageA,=0. Substituting
da=dag in Eg. (15 we obtain

78T = HeST + (Ugdadl y) Sag. (19)

The solutionsT[ ¢, Sag] determines the temperature response

to the variationdag of the activator distribution and depends
on both dag and £. Substitution ofST[{, Sag] into Eqg. (14)
leads to

{62 = Hadag + orf ST, Sac]. (20)

Now note that according to Eq§l8) and (19) 6T can be
presented as

OTg = 8T[¢{=0,dag].
Therefore according to Eq17)

H,dag + éfST[ = 0,8a5] = 0. (21)
Substracting Eq(21) from (20), muliplying by dag and in-
tegrating overx, we come to the equation fdi

_ {of(ST[E, dag] - 6T[{ = 0,885])ag)

(= = .
((a0)?

In the next two sections we findll[, Sag] and solve Eq.
(22) for the limiting cased ;> ¢+ and{,<{.

(22)

VI. WEAK HEAT DIFFUSION

In this section we consider the caég> ¢+ when lateral
diffusion of the internal parameteris much more efficient

PHYSICAL REVIEW B 71, 085309(2005
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FIG. 3. Profileag(x) of the activator and the temperature profile
To(X) in a wide steady filamentthe upper pangl The filament
width W, the width of the filament walf; and the thermal diffusion
length €1 are indicated. Note that in our analydig>W> ¢; and
1> ¢, whereas th&1/W ratio is arbitrary. As in Fig. 2, the low
panel sketches two first eigenmodés and W, of the operatol:|a
and their eigenvalues;, \,.

caseT is a local function of the parameter and can be
eliminated by redefining the local kinetic function according
to

J(a, u)u) . 26
Y

f(a,u) = f(a,u,T:Text+

In this way the three-component model is reduced back to
the two-component model which with respect to the filament
stability is equivalent to the isothermal model fOE= Tgy,
Hence form— 0 filament has neutral stability, in agreement

than the heat diffusion. In this case the temperature profilevith Eq. (25). In the opposite case of slow self-heatitwg

essentially follows the current density profileig. 2, curve 1
in the upper pangl In the limiting casef+— 0 the solution
of Eqg. (19) is given by

Ugdad
Ol ¢, dag)|= ———— dag. 23
(¢, dag] Sl + 1) ac (23
With this input Eq.(22) yields
l u(drfad(@)?
- L A=--T Rl 24
Craa v (@ o

Two solutions{=0 andng—r}l of this equation appear to
intersect atrr=A"! in the degenerate cagag=0) under

=) the increment has the largest valué=A. Generally,

the heat diffusion smoothes the temperature response
8T, 8ag], thus shifting the instability threshold to larger
values ofrr.

VIl. STRONG HEAT DIFFUSION

In the opposite limiting casé;> €, the lateral spreading
of heat is more efficient than the lateral spreading of the
current density(Fig. 2, curve 2 in the upper panneWe
restrict the analysis to a filament with a flat tdfg. 3). Such
filaments are typical for large structuréls,>1,). The fila-
ment width and characteristic width of the filament wall are

consideration. The relevant branch can be chosen by startingenoted asV and ¢;, respectively. Note thatt; ~ ¢,.3435

from g # 0 and taking the limit\g— O (see the Appendix
This leads to the piecewise linear dependence

(=0for <A
(25)
{=A-rfor mp> AT

According to Eq.(25), for sufficiently smallr; the filament

In this case the translation modé&; ~ aj is distinct from
zero only within the filament walls where it has a character-
istic value fa,,—aqx)/{; (Fig. 3, lower pangl Taking into
account the scale separatién< €+, we can approximatéag
as

Sag = \€:12[ (- WI2) - 5(WI2)], (27)

remains neutral with respect to translation. The bifurcation

from static to traveling filaments occurs with increaserpf
at TT:A_l.
Note that in the limiting cases=0 the temperaturd

where8(x) is the delta function, the center of the filament is

taken atx=0, and the prefactoy¢;/2 provides normalization
((Sag)®)=1. For dag given by Eq. (27) the solution

instantly follows all changes of the current density. In this 5T[, dag] of Eq. (19) is
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M7 W X+ (WI2) gests thatrr is a bifurcation parameter also in the intermedi-
oT= TTll - exp{—:} ]exp(~—) for x<-W/2, ate case,~ (.

tr The relation between”" and 7' becomes transparent
whend;f andd,J are considered as constaritdote also that

~ W |  [X {;~4€,) In this case
oT=—-Mlrexpl — — |sinhf — | for —W/2<x<W/2,

ot tr "
e —T_gh 35
- 2 AW T (39
M W x— (W/2)
oT=- > 1-ex _? exp - 7 For wide (W ¢7) and narrom(W< ¢+) filaments the expan-
T T sion of A(W) over W/ ¢+ [see Eq(31)] leads to
for x > W/2, (28)
4
where e~ €—T711h for W> (1,
a
€5 Ugdad ~ {1 (36)
M) =252 To=—T— (29
PN Gaemn T et ) n__ 20’

7'2 € W2 Tg_h fOI’W< €T'
SubstitutingsT[{, V)] into Eq. (22) we obtain a

7 B W Thus the threshold time! exceeds!" by a factor which is
= orf\| = M(0)€ l-exg -—— always larger thai+/¢,.
{=or 5 DL

€1(0) For £1> €, the instability threshold has been previously
W obtained in Ref. 22 for the current density profile as shown
—M(O)fT{l—eXF<—_>D- (30) in Fig. 3. The argument is based on the finding that the
O velocity v of the stationary filament motion is proportional to
the difference of temperatures at the front and back filament
edgesAT: v=CAT.?? This temperature difference, in turn,
depends on the. Hence the velocity of stationary motion
can be found from the equatiar=CAT(v). Since forv=0

Taking into account that near the bifurcation pajns small,
we expand the right-hand side of E@®O) over (7¢) and
come to the equation

Y4 Ay Ugdrfa,d the temperature profile is symmetrid,T(0)=0. Therefore
2+l = f_T 2y AW), v=0 _is z_ilways a so_lution _of this equation. Howeve_r, this
(31) solution is unstable iAT(v) increases faster tharn/C with
W W increase ofv. In this case whew deviates fromv =0, the
AW =1- <1 + —)exp(— —) . “overproduction” of the the temperature differens@ leads
& tr to further increase ob. The respective condition is given

Equation(31) coincides with Eq(24) whenA is replaced by by?2
Q andr; by (71/2). Hence the solutions have the same struc-

=0

i : Jon— Joif)Ug (%0

ture as in Eq(25): ZU—OA(W) >1, vo= (On—log)of ofda. (37)
{=0 for rp <2071, vt (@)%  Jay

(320  Herev, has the meaning of the upper limit of the filament
-1 -1
{=Q =27 for > 207" velocity andvr= ¢/ 7 is the thermal velocityJ,,, Jos and
aoif, Aon are the current denisties and the values of the vari-
VIIl. DISCUSSION able a corresponding to the uniform on and off statesuat

=uo, respectively(Fig. 3. A(W) is exactly the same as in Eq.

A. Onset of filament motion for weak and strong heat (30). The criterium(37) can be rewritten as

diffusion
For 1< {, the condition for the onset of filament motion S 2
is given by Eq.(25) and can be presented as T T2 T AW) v’ (38
2
> T‘lh =A"1z l«LH,Z_ (33) Taking into account that for a wide filament

U (drfdd(ag)?) , ,

In the opposite limiting casé;> ¢, this condition is given ((80)°) = 2(80n = a1) ¢t (39
by and considering the functioff as a constant, we find
4¢ vy
>h=——L : 34 drfug Jon— J

2T G AW) Ugdrfagd (39 g = — 2120 "on = ot (40)

2y oy~ At

In both cased ;< {1 and € > {1 the instability occurs when
the thermal relaxation timey is sufficiently large. This sug- Hence
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—h 401 Y gy Agff square root behavior of the filament velocity near the bifur-
= €AW) Ugdrf Jon— ot (41) cation point, predicted in Ref. 22, are qualitatively the same
onoff as obtained in Ref. 26 for the three-component “cubic”
Comparing Eqgs(34) and(41), we see tha"flzh coincides with  model for a traveling spot. These features seem to be typical
712h [see Eq(34)] if we approximate the partial derivativgd  for a degenerate “drift pitchfork” bifurcation associated with

by the finite difference Ag=0. Note that the mechanism of self-motion described
here for one-dimensional spatial domains is also valid for
Jad ~ (Jon = Joir)/(@on = o) - two-dimensional domains. The difference between the model
(1)—(3) and three-component models for traveling spots stud-
B. Traveling filament ied in Refs. 23—-27 has been discussed in Ref. 22.

Remarkably, the difference between the regimes of weak
and strong heat diffusion, which is well pronounced near the D, The alternative mechanism for self-motion of a current
bifurcation from static to traveling filament, vanishes for fast filament
self-sustained filament motion with velocity>v1. In this
regime the static thermal diffusion length=\D+7 should
be replaced b)CT:v‘m, wherer;=W/v is the time of the
filament passage over its widilV and Dt=«/cp is thermal
diffusivity. For £L+<<W the heat diffusion is negligible. This
condition yields

Generally, the self-motion of a current filament becomes
possible when a semiconductor structure, apart from the ac-
tivator mechanism which leads to bistability, posseses an in-
ternal mechanism of slow inhibition. As we described here,
such mechanim can appear due to the effect of Joule heating
on the cathode—anode electron transport. Another inhibitor
v > Dy/W=v0/W. (42) mechanism of purely electrical origin has been discussed in
Refs. 16 and 39-41. For this mechanism inhibition is asso-
ciated with the internal voltage drop across the plasma layer
inside the semiconductor structure. The regions of activation
and inhibition are spatially separated. The effective reaction—
NLT , diffusion modet®#243 for such two-layer system has the
7 < 7r, the heating is not only local but also adiabatote  ggme structure as Eqd)—(3). Recent numerical simulations
that for {x~W these two conditions are equivalenin this  jemonstrate that this mechanism leads to filament motion
case the rate of temperature increase in each point is ProPQfuring the switching-off transients in power diodésThe
tional to the local power dissipation. The velocity of such applicability of this concept to thyristorlikg*—n*—p-n-
fast narrow filament has been obtained in Ref. 22: -n* structures discussed in Ref. 16 should be considered in

b~ V’M- (43) view of the latest studiéé—%w_hich reveal complexity of the
vertical transport processes in these multilayer structures.

For typical filament widthW~10 um the condition(42)
yields v>10° cm/s for Si andy>250 cm/s for GaAgD+
=0.92 and 0.25 cAis, respectively

If the conditionL+<<W is met together with the condition

Substituting the definitions; andv, [see Eqs(4) and(40)],
we find that the filament velocity is proportional to the
square root of the total Joule power which is dissipated in the

filament: Joule self-heating of a static current-density filament may

B lead to the translation instability and the onset of thermally
U= A /E, pP= (Jon = Jotr) Wih ~ JO”WLb, (44)  driven self-motion. This may occur in a wide class of semi-
C

IX. CONCLUSIONS

w w conductor devices whose bistability is caused by impact ion-
wherecp is specific heat per unit volume and the coefficientization because impact ionization coefficients .decrease with
K is given by temperature. The eigenvalue of_ the_ respective translation

mode, which is zero when heating is neglected, becomes

don Ciorf positive due to the suppressive effect of temperature on the

K=-"2 drfda~ -————. (45) electron transport in the cathode—anode direction. Increments
(@)% J agy 2(aon = 1)

of the translation mode are found for the limiting cases of

Alternative elementary derivation of the square root depenweak (25) and strong(32) heat diffusion. In both cases the
dence is presented in Ref. 21. instability threshold(33) and (34) is controlled by the ther-

Apparently, the square root dependen¢4d) and (44)  mal relaxation timerr and is directly proportional tof. It
reflect the experimental situation which is favorable for ob-scales ag+/{, with increase of the thermal diffusion length
servation of traveling filaments because large velocity corre€r.
sponds to low instability threshold. It has been repdtted
that the results of experimental measurements of the filament
velocity in a Si device(v ~3x 10* cm/s W~ 10 um) in-
deed obey the square root dependence. The author is grateful to A. Alekseev for critical reading
of the manuscript and the hospitality at the mathematical
department of the University of Geneva and to D. Pogany for

The piecewise linear dependen@b) and(32) of the in-  helpful discussions. This work has been supported by the
crement{ on the bifurcation parametef;* as well as the Swiss National Science Foundation.
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APPENDIX: INCREMENT OF THE TRANSLATION MODE B Ao+ A - 7_;1 \/O\G"‘A— 7_}1)2 Ae
To indentify the physical branch of the solution of Eq. (= 2 + 4 * T_T (A2)
(24), we note that folg # O this equation becomes
S _ L .
{=Ngt A (A1) for A\g— 0 tends to the piecewise linear dependence given by

——A.
{tm Eq. (25). Note the similarity of Eqs(Al) and(A2) and Eq.

Smooth solution of this quadratic equation (9) in Ref. 25.
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