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We perform an analytical investigation of the bifurcation from static to traveling current density filaments in
a bistable semiconductor structure with S-shaped current-voltage characteristic. Joule self-heating of a semi-
conductor structure and the effect of temperature on electron transport are consistently taken into account in the
framework of a generic reaction–diffusion model with global coupling. It is shown that the self-heating is
capable of inducing translation instability which leads to spontaneous onset of lateral self-motion of the
filament along the structure. This may occur in a wide class of semiconductor structures whose bistability is
caused by impact ionization due to the negative effect of temperature on the impact ionization rate. The
increment of the translation mode and the instability threshold are determined analytically.
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I. INTRODUCTION

Current density filament in a bistable semiconductor
structure with S-shaped current–voltage characteristic is a
high current density domain embedded in a low current den-
sity environment.1–9 Typically filaments appear spontane-
ously due to spatial instability of the uniform current flow
when the average current density corresponds to the falling
branch of the current–voltage characteristic.2 A single fila-
ment survives after the transientsthe-winner-takes-all prin-
cipled whereas multifilamentary states are unstable.3–9 A
static current filament may undergo further bifurcations re-
lated to temporal and spatial instabilities.10–22 Spontaneous
onset of the lateral movement is an example of such a bifur-
cation which has been recently studied both experimentally
and theoretically.17–22 This effect is of significant practical
importance because the filament motion delocalizes the Joule
heating of a semiconductor structure operated in the current
filamentation regime, and thus dramatically reduces the
probability of thermal failure.18–21 Traveling current density
filaments bear deep similarities to other traveling spots in
active media,23–28in particular, to traveling wave segments in
feedback controlled light sensitive Belousov–Zabotinsky
reaction.29,30

The latest experimental observations of moving
filaments17,18,20,21have been made using a recently devel-
oped interferometric mapping technique.17 Experiments
show that in a device with a stripelike geometry the filament
travels in a solitonlike manner with a constant velocity
,1 m/s and reflects from the device boundaries. Both mea-
surements and full-scale numerical simulations of the trans-
port processes suggest that the filament motion is thermally
driven and related to the Joule self-heating.17,18,21Thermally
driven self-motion is possible due to the negative effect of
temperature on the impact ionization rate31,32 and may occur
in a wide class of semiconductor structures whose bistability
is caused by impact ionization.15,22 The temperature acts as
an inhibitor which provokes translation instability of a steady
filament and causes its self-sustained motion toward a cooler
region.15,22

In this paper we present an analytical investigation of the
translation instability which occurs at the onset of thermally

driven filament motion. Using a recently suggested three-
component reaction–diffusion model for current filamenta-
tion in presence of the Joule self-heating,22 we perform a
stability analysis of a static filament. We show that the trans-
lation invariance of a static filament in a large structure
breaks in presence of the self-heating. This occurs with in-
crease of the thermal relaxation time which depends on the
heat capacity of the semiconductor structure and the effi-
ciency of the external cooling. The instability threshold de-
creases when the effect of temperature on the vertical trans-
port becomes stronger and increases with heat diffusion
coefficient.

II. THE MODEL

Current filamentation in bistable semiconductors can be
described by a two-component activator–inhibitor model
which consists of a nonlinear reaction–diffusion equation,
accounting for the internal activator dynamics in a bistable
semiconductor, and an integrodifferential equation, account-
ing for the applied voltage. This model, originally developed
for bulk semiconductors with so-called overheating
instability3,4 and layered semiconductor structures,5–7 proved
to be efficient for a wide class of bistable semiconductors
with various mechanims of bistabilityssee Ref. 33, and ref-
erences thereind. We refer to Refs. 34–36 for comprehensive
general formulation of this model.

To decribe the thermally driven motion of a current den-
sity filament, the effect of temperatureT on the cathode–
anode transport and the heat dynamics in the structure should
be additionally taken into account. The respective extension
of the conventional two-component model34–36 has been re-
cently suggested in Ref. 22:

]a

]t
= ¹'fDasad¹'ag + fsa,u,Td, s1d

tT
]T

]t
= ,T

2D'T + sJu/g + Text − Td, s2d

PHYSICAL REVIEW B 71, 085309s2005d

1098-0121/2005/71s8d/085309s8d/$23.00 ©2005 The American Physical Society085309-1



tu
du

dt
= U0 − u − RE

S

Jsa,uddxdy, tu ; RC. s3d

Herea acts as an activator,u andT as inhibitors.
Equationss1d ands3d are the same as in the conventional

two-component model.34,35 The variableasx,y,td character-
izes the internal state of the device andustd is the voltage
over the device. The local kinetic functionf and theJsa,ud
dependence contain the information about the vertical elec-
tron transport in the cathode–anode direction and together
determine the S-shaped local current–voltage characteristic
sFig. 1d. The functionfsa,ud has three zeros corresponding
to the off, intermediate and on states, respectively, when the
voltageu is within the bistability rangefuh,uthg sthe upper
inset in Fig. 1d. The diffusion coefficientDasad characterizes
lateral falong thesx,yd planeg coupling in the spatially ex-
tended semiconductor structure. Equations3d is a Kirchhoff’s
equation for the external circuit.R is the load resitance
switched in series with the semiconductor structure,U0 is the
total applied voltage,C is the effective capacitance of the
sample and the circuit, andS is the device area of the struc-
ture cross section. In the following we consider the current-
controlled regime.

Equations2d describes the heat dynamics in the structure.
Similar to the variablea, the temperatureTsx,y,td depends
only on the lateral coordinatesx andy. Text is the temperature
of the external cooling reservoir,g is heat transfer coeffi-
cient, the termal relaxation timetT and diffusion length,T
are given by

tT ; crw/g, ,T ; kw/g, s4d

wherec, r, andk are specific heat, density, and heat conduc-
tivity of the semiconductor material, respectively, andw is
the device thickness in the cathode–anode direction.

The continuity equations1d is coupled to the heat equa-
tion s2d via the temperature dependence of the local kinetic
function fsa,u,Td. Since the heating suppresses impact ion-
ization, the effect of temperature on the vertical transport is
negative and]Tf ,0.37 The direct dependence of the current
densityJ on T is neglected.

The characteristic size of a filament wall is
,a;ÎDa/]af.34,35 Parameters,a and,T are diffusion lengths
of the activator and inhibitor, respectively. For simplicity, in
the following we takeDasad=const. Next, we take into ac-
count only one lateral dimensionx, assuming that due to the
stripe geometry of the semiconductor structuresLx@,a

@Lyd the current density distribution is uniform along they
directionsthe lower inset in Fig. 1d. We also assume that the
filament is located far from the edges of the stripex
= ±Lx/2. Current density and temperature profiles in a static
filament are shown in the upper panel of Fig. 2. For,a
@,T the temperature profile essentially follows the current
density profilesFig. 2, curve 1 in the upper paneld. For ,a
!,T the characteristic size of the hot area is much larger
than the filament sizesFig. 2, curve 2 in the upper paneld.

III. MECHANISM OF TRANSLATION INSTABILITY

Antisymmetricswith respect to the center of the filamentd
fluctuations of the current density do not change the total
current and therefore are not suppressed by the external cir-
cuit in the current-controlled regime. By increasing the cur-
rent density on one side and decreasing on another such fluc-
tuation effectively leads to a small shift of a filament,
moving one of the filament edges to a cooler region and
another to a hotter region. Due to the heat inertia of the
semiconductor structure the temperature does not follow the
current density instantly. Hence favorable conditions for the
impact ionizationfproduction of the activatora in terms of

FIG. 1. S-shaped current–voltage characteristicJsud of a
bistable semiconductor structure. The upper inset shows the local
kinetic function fsa,ud for u,uh, uh,u,uth, andu.uth scurves
1, 2, and 3, respectivelyd, whereuh and uth are the hold and the
threshold voltages at the edges of the bistability range. Foruh,u
,uth the local kinetic function has three zeros corresponding the
off, intermediate, and on branches of the current-voltage characteri-
sics, respectively. The lower inset sketches the rectangular semicon-
ductor structure elongated along thex axis.

FIG. 2. Profilea0sxd of the activator and the temperature profile
T0sxd in a steady filamentsthe upper paneld. The current denisity
profile Jfa0sxd ,ug is quailitatively the same asa0sxd. The tempera-
ture profileT0sxd is sketched for weaks,T!,a, curve 1d and strong
s,T@,a, curve 2d heat diffusion. Note that in our analysisLx is
much larger than the filament width. The lower panel shows two

first eigenfunctionsC1 andC2 of the operatorĤa and their eigen-
valuesl1,l2. C1 andC2 are eigenmodes of the steady filament in
a voltage controlled regime and correspond to expansionsshrink-
ingd and translation of the filament, respectively. In the isotheramal
casel2=0 andC2;CG,a08.
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Eq. s1dg appear at one of the filament edges, whereas at an-
other edge the impact ionization is suppressed. This leads to
a further shift of a filament and, for a sufficiently long delay
of the temperature response, to a self-sustained filament mo-
tion. Experiments18,21 show that in a high-quality structure
filaments start to move to the left and to the right with equal
probability. This suggests that motion is triggered by non-
equilibrium fluctuations of the current density.

IV. SETTING UP THE STABILITY PROBLEM

A. Linearization and the eigenvalue problem

Let us consider a stationary solutiona0sxd ,T0sxd ,u0 of
Eqs.s1d–s3d:

Daa09 + fsa0,u0,T0d = 0, s5d

,T
2T09 +

Jsa0,u0du0

g
− T0 = 0, s6d

U0 − u0 − RLykJsa0,u0dl = 0. s7d

Here the primes¯d8 denotes the derivative with respect tox
and angular brackets denote integration over the interval
f−Lx/2 ,Lx/2g.

Linearization in the vicinity of the stationary solution with
respect to the fluctuations

asx,td − a0sxd = dasxdexpsztd,

ustd − u0 = du expsztd,

Tsx,td − T0sxd = dTsxdexpsztd

leads to the eigenvalue problem

zda = Ĥada + ]ufdu + ]TfdT, s8d

tTzdT = ĤT +
u0]aJ

g
da +

Jsa0,u0d + u0]uJ

g
du, s9d

tuzdu = − s1 + RLyk]uJlddu − RLyk]aJdal. s10d

Here

Ĥa ; Da
d2

dx2 + ]af, ĤT ; ,T
2 d2

dx2 − 1 s11d

and all derivatives are computed at the steady–state
a0sxd ,T0sxd ,u0.

B. The reference caseT=Text

Let us briefly summarize the results of the stability analy-
sis in the reference case of constant temperatureT;Text.

35 In
this case Eq.s8d is reduced to

zda = Ĥada + ]ufdu. s12d

The eigenfunctionsCi , i =1, 2,…, of the self-adjoint opera-

tor Ĥa correspond to eigenmodes of the stationary filament in

the voltage-controlled regimeu=constsFig. 2, lower paneld.
These eigenmodes are orthogonal and obey the oscillation
theorem which says thatCk hassk−1d nodes inside the in-
terval f−Lx/2 ,Lx/2g. Due to the translation invariance for an

infinitely large sample the spectrum ofĤa contains a neutral
sso-called Goldstoned mode

CG , a08 s13d

with lG=0. This mode corresponds to the translation of the
filament along thex axis. For a solitary filamenta0sxd has a
single maximum. HenceCG has one node and is identified as
C2.

38 Sincel2=0 andl1.l2, the first eigenvaluel1 is posi-
tive. The first eigenmodeC1 corresponds to spreading or
shrinking of the current filament.

Since a0 is symmetric with respect to the center of the

filament, the “potential term”]af in the operatorĤa is also
symmetric. HenceC1 and C2 are symmetric and antisym-
metric, respectively. The increase ofC1 is prevented by the
global constraints3d which effectively fixes the total current
when the external resistanceR is sufficiently large.35 In con-
trast, forda;C2 the last term in the Eq.s10d vanishes due to
the asymmetry ofC2. Hence in this caseda anddu are not
coupled, and we can takedu=0. Physically, it happens be-
causeC2 does not change the total current and therefore the
voltage u also does not change. Thus for the current-
controlled regime the dynamics ofC2 is the same as in the
voltage-controlled regime, andz=l2=0.3,4,35 We conclude
that for the two-component model filaments have neutral sta-
bility with respect to translation when the lateral dimension
of the semiconductor structure is largesLx@,ad.

C. Translation instability

We shall focus on the second eigenmodeC2 with l2=0
and investigate whether for the extended models1d–s3d the
respective incrementz departs from zero due to the coupling
between the master equations1d and the heat equations2d. As
we argued above, in linear approximation the antisymmetric
translation mode does not interact with external circuit and
hencedu=0. The set of equationss8d–s10d reduces to

zda = Ĥada + ]TfdT, s14d

tTzdT = ĤTdT + su0]aJ/gdda. s15d

For the model s1d–s3d the translation Goldstone mode
sdaG,dTGd has two components which are given by

daG ; a08, dTG ; T08. s16d

By taking the space derivative of Eqs.s5d and s6d we find
that sdaG,dTGd indeed satisfies Eqs.s14d and s15d for z=0:

ĤadaG + ]TfdTG = 0, s17d

ĤTdTG + su0]aJ/gddaG = 0. s18d

V. CHARACTERISTIC EQUATION

The incrementz of the translation mode can be found
from Eqs.s14d ands15d by means of the perturbation theory

ONSET OF THERMALLY DRIVEN SELF-MOTION OF A… PHYSICAL REVIEW B 71, 085309s2005d

085309-3



with respect to the isothermal casez=l2=0. Substituting
da=daG in Eq. s15d we obtain

tTzdT = ĤTdT + su0]aJ/gddaG. s19d

The solutiondTfz ,daGg determines the temperature response
to the variationdaG of the activator distribution and depends
on bothdaG and z. Substitution ofdTfz ,daGg into Eq. s14d
leads to

zdaG = ĤadaG + ]TfdTfz,daGg. s20d

Now note that according to Eqs.s18d and s19d dTG can be
presented as

dTG ; dTfz = 0,daGg.

Therefore according to Eq.s17d

ĤadaG + ]TfdTfz = 0,daGg = 0. s21d

Substracting Eq.s21d from s20d, muliplying by daG and in-
tegrating overx, we come to the equation forz:

z =
k]TfsdTfz,daGg − dTfz = 0,daGgda08l

ksa08d
2l

. s22d

In the next two sections we finddTfz ,daGg and solve Eq.
s22d for the limiting cases,a@,T and,a!,T.

VI. WEAK HEAT DIFFUSION

In this section we consider the case,a@,T when lateral
diffusion of the internal parametera is much more efficient
than the heat diffusion. In this case the temperature profile
essentially follows the current density profilesFig. 2, curve 1
in the upper paneld. In the limiting case,T→0 the solution
of Eq. s19d is given by

dTfz,daGg =
u0]aJ

gstTz + 1d
daG. s23d

With this input Eq.s22d yields

z =
z

z + tT
−1L, L ; −

u

g

k]Tf]aJsa08d
2l

ksa08d
2l

. s24d

Two solutionsz=0 andz=L−tT
−1 of this equation appear to

intersect attT=L−1 in the degenerate caseslG=0d under
consideration. The relevant branch can be chosen by starting
from lGÞ0 and taking the limitlG→0 ssee the Appendixd.
This leads to the piecewise linear dependence

z = 0 for tT , L−1,
s25d

z = L − tT
−1 for tT . L−1.

According to Eq.s25d, for sufficiently smalltT the filament
remains neutral with respect to translation. The bifurcation
from static to traveling filaments occurs with increase oftT
at tT=L−1.

Note that in the limiting casetT=0 the temperatureT
instantly follows all changes of the current density. In this

caseT is a local function of the parametera and can be
eliminated by redefining the local kinetic function according
to

f̃sa,ud ; fSa,u,T = Text +
Jsa,udu

g
D . s26d

In this way the three-component model is reduced back to
the two-component model which with respect to the filament
stability is equivalent to the isothermal model forT;Text.
Hence fortT→0 filament has neutral stability, in agreement
with Eq. s25d. In the opposite case of slow self-heatingstT

=`d the incrementz has the largest valuez=L. Generally,
the heat diffusion smoothes the temperature response
dTfz ,daGg, thus shifting the instability threshold to larger
values oftT.

VII. STRONG HEAT DIFFUSION

In the opposite limiting case,T@,a the lateral spreading
of heat is more efficient than the lateral spreading of the
current densitysFig. 2, curve 2 in the upper panneld. We
restrict the analysis to a filament with a flat topsFig. 3d. Such
filaments are typical for large structuressLx@ lad. The fila-
ment width and characteristic width of the filament wall are
denoted asW and, f, respectively. Note that, f ,,a.

34,35

In this case the translation modeCG,a08 is distinct from
zero only within the filament walls where it has a character-
istic value ±saon−aoffd /, f sFig. 3, lower paneld. Taking into
account the scale separation, f !,T, we can approximatedaG
as

daG = Î, f/2fds− W/2d − dsW/2dg, s27d

wheredsxd is the delta function, the center of the filament is
taken atx=0, and the prefactorÎ, f /2 provides normalization
ksdaGd2l=1. For daG given by Eq. s27d the solution
dTfz ,daGg of Eq. s19d is

FIG. 3. Profilea0sxd of the activator and the temperature profile
T0sxd in a wide steady filamentsthe upper paneld. The filament
width W, the width of the filament wall, f and the thermal diffusion
length ,T are indicated. Note that in our analysisLx@W@, f and
,T@, f, whereas the,T/W ratio is arbitrary. As in Fig. 2, the low

panel sketches two first eigenmodesC1 andC2 of the operatorĤa

and their eigenvaluesl1,l2.
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dT =
M,̃T

2 F1 − expF−
W

,̃T
GGexpSx + sW/2d

,̃T
D for x , − W/2,

dT = − M,̃T expF−
W

2,̃T
GsinhS x

,̃T
D for − W/2 , x , W/2,

dT = −
M,̃T

2 F1 − expS−
W

,̃T
DGexpS−

x − sW/2d

,̃T
D

for x . W/2, s28d

where

Mszd ;Î, f

2

u0]aJ

,T
2gs1 + tTzd

, ,̃T ;
,T

Î1 + tTz
. s29d

SubstitutingdTfz ,CGdg into Eq. s22d we obtain

z = ]TfÎ, f

2 SMszd,̃TszdF1 − expS−
W

,̃Tszd
DG

− Ms0d,TF1 − expS−
W

,T
DGD . s30d

Taking into account that near the bifurcation pointz is small,
we expand the right-hand side of Eq.s30d over stTzd and
come to the equation

z = V
tTz

2 + tTz
, V ;

, f

,T

u0]Tf]aJ

2g
AsWd,

s31d

AsWd ; 1 −S1 +
W

,T
DexpS−

W

,T
D .

Equations31d coincides with Eq.s24d whenL is replaced by
V andtT by stT/2d. Hence the solutions have the same struc-
ture as in Eq.s25d:

z = 0 for tT , 2V−1,
s32d

z = V − 2tT
−1 for tT . 2V−1.

VIII. DISCUSSION

A. Onset of filament motion for weak and strong heat
diffusion

For ,T!,a the condition for the onset of filament motion
is given by Eq.s25d and can be presented as

tT . t1
th ; L−1 =

g

u0

ksa08d
2l

k]Tf]aJsa08d
2l

. s33d

In the opposite limiting case,T@,a this condition is given
by

tT . t2
th ;

4,T

, fAsWd
g

u0]Tf]aJ
. s34d

In both cases,a!,T and,a@,T the instability occurs when
the thermal relaxation timetT is sufficiently large. This sug-

gests thattT is a bifurcation parameter also in the intermedi-
ate case,a,,T.

The relation betweent1
th and t2

th becomes transparent
when]Tf and]aJ are considered as constants.sNote also that
, f ,,a.d In this case

t2
th ,

4,T

,aAsWd
t1

th. s35d

For widesW@,Td and narrowsW!,Td filaments the expan-
sion of AsWd over W/,T fsee Eq.s31dg leads to

t2
th ,

,T

,a
t1

th for W@ ,T,

s36d

t2
th ,

2s,Td3

,aW
2 t1

th for W! ,T.

Thus the threshold timet2
th exceedst1

th by a factor which is
always larger than,T/,a.

For ,T@,a the instability threshold has been previously
obtained in Ref. 22 for the current density profile as shown
in Fig. 3. The argument is based on the finding that the
velocity v of the stationary filament motion is proportional to
the difference of temperatures at the front and back filament
edgesDT: v=CDT.22 This temperature difference, in turn,
depends on thev. Hence the velocity of stationary motion
can be found from the equationv=CDTsvd. Since forv=0
the temperature profile is symmetric,DTs0d=0. Therefore
v=0 is always a solution of this equation. However, this
solution is unstable ifDTsvd increases faster thanv /C with
increase ofv. In this case whenv deviates fromv=0, the
“overproduction” of the the temperature differenceDT leads
to further increase ofv. The respective condition is given
by22

v0

2vT
AsWd . 1, v0 ;

sJon − Joffdu0

gksa08d
2l E

aoff

aon

]Tfda. s37d

Here v0 has the meaning of the upper limit of the filament
velocity andvT;,T/tT is the thermal velocity.Jon,Joff and
aoff , aon are the current denisties and the values of the vari-
able a corresponding to the uniform on and off states atu
=u0, respectivelysFig. 3d. AsWd is exactly the same as in Eq.
s30d. The criteriums37d can be rewritten as

tT . t̃2
th, t̃2

th =
2

AsWd
,T

v0
. s38d

Taking into account that for a wide filament

ksa08d
2l < 2saon − aoffd2/, f s39d

and considering the function]Tf as a constant, we find

v0 < −
]Tfu0

2g

Jon − Joff

aon − aoff
. s40d

Hence
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t̃2
th =

4,T

, fAsWd
g

u0]Tf

aon − aoff

Jon − Joff
. s41d

Comparing Eqs.s34d ands41d, we see thatt̃2
th coincides with

t2
th fsee Eq.s34dg if we approximate the partial derivative]aJ

by the finite difference

]aJ , sJon − Joffd/saon − aoffd.

B. Traveling filament

Remarkably, the difference between the regimes of weak
and strong heat diffusion, which is well pronounced near the
bifurcation from static to traveling filament, vanishes for fast
self-sustained filament motion with velocityv@vT. In this
regime the static thermal diffusion length,T=ÎDTtT should
be replaced byLT=ÎDTt f, wheret f =W/v is the time of the
filament passage over its widthW andDT=k /cr is thermal
diffusivity. For LT!W the heat diffusion is negligible. This
condition yields

v @ DT/W= vT,T/W. s42d

For typical filament widthW,10 mm the conditions42d
yields v@103 cm/s for Si andv@250 cm/s for GaAssDT
=0.92 and 0.25 cm2/s, respectivelyd.

If the conditionLT!W is met together with the condition
t f !tT, the heating is not only local but also adiabatic.sNote
that for ,T,W these two conditions are equivalent.d In this
case the rate of temperature increase in each point is propor-
tional to the local power dissipation. The velocity of such
fast narrow filament has been obtained in Ref. 22:

v < Îv0W/tT. s43d

Substituting the definitionstT andv0 fsee Eqs.s4d ands40dg,
we find that the filament velocity is proportional to the
square root of the total Joule power which is dissipated in the
filament:

v =ÎKP

cr
, P ;

sJon − JoffdWu0

w
<

JonWu0

w
, s44d

wherecr is specific heat per unit volume and the coefficient
K is given by

K ;
1

ksa08d
2lEaoff

aon

]Tfda,
, f]Tf

2saon − aoffd2 . s45d

Alternative elementary derivation of the square root depen-
dence is presented in Ref. 21.

Apparently, the square root dependencess43d and s44d
reflect the experimental situation which is favorable for ob-
servation of traveling filaments because large velocity corre-
sponds to low instability threshold. It has been reported21

that the results of experimental measurements of the filament
velocity in a Si devicesv,33104 cm/s,W,10 mmd in-
deed obey the square root dependence.

C. The type of bifurcation

The piecewise linear dependences25d and s32d of the in-
crementz on the bifurcation parametertT

−1 as well as the

square root behavior of the filament velocity near the bifur-
cation point, predicted in Ref. 22, are qualitatively the same
as obtained in Ref. 26 for the three-component “cubic”
model for a traveling spot. These features seem to be typical
for a degenerate “drift pitchfork” bifurcation associated with
lG=0. Note that the mechanism of self-motion described
here for one-dimensional spatial domains is also valid for
two-dimensional domains. The difference between the model
s1d–s3d and three-component models for traveling spots stud-
ied in Refs. 23–27 has been discussed in Ref. 22.

D. The alternative mechanism for self-motion of a current
filament

Generally, the self-motion of a current filament becomes
possible when a semiconductor structure, apart from the ac-
tivator mechanism which leads to bistability, posseses an in-
ternal mechanism of slow inhibition. As we described here,
such mechanim can appear due to the effect of Joule heating
on the cathode–anode electron transport. Another inhibitor
mechanism of purely electrical origin has been discussed in
Refs. 16 and 39–41. For this mechanism inhibition is asso-
ciated with the internal voltage drop across the plasma layer
inside the semiconductor structure. The regions of activation
and inhibition are spatially separated. The effective reaction–
diffusion model16,42,43 for such two-layer system has the
same structure as Eqs.s1d–s3d. Recent numerical simulations
demonstrate that this mechanism leads to filament motion
during the switching-off transients in power diodes.41 The
applicability of this concept to thyristorlikep+−n+−p−n−

−n+ structures discussed in Ref. 16 should be considered in
view of the latest studies44–46which reveal complexity of the
vertical transport processes in these multilayer structures.

IX. CONCLUSIONS

Joule self-heating of a static current-density filament may
lead to the translation instability and the onset of thermally
driven self-motion. This may occur in a wide class of semi-
conductor devices whose bistability is caused by impact ion-
ization because impact ionization coefficients decrease with
temperature. The eigenvalue of the respective translation
mode, which is zero when heating is neglected, becomes
positive due to the suppressive effect of temperature on the
electron transport in the cathode–anode direction. Increments
of the translation mode are found for the limiting cases of
weak s25d and strongs32d heat diffusion. In both cases the
instability thresholds33d and s34d is controlled by the ther-
mal relaxation timetT and is directly proportional to]Tf. It
scales as,T/,a with increase of the thermal diffusion length
,T.
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APPENDIX: INCREMENT OF THE TRANSLATION MODE

To indentify the physical branch of the solution of Eq.
s24d, we note that forlGÞ0 this equation becomes

z = lG +
z

z + tT
−1L. sA1d

Smooth solution of this quadratic equation

z =
lG + L − tT

−1

2
+ÎslG + L − tT

−1d2

4
+

lG

tT
sA2d

for lG→0 tends to the piecewise linear dependence given by
Eq. s25d. Note the similarity of Eqs.sA1d and sA2d and Eq.
s9d in Ref. 25.
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