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An analytical investigation of resonant impurity and exciton states in a narrow quantum wellsQWd is
performed. We employ the adiabatic multisubband approximation assuming that the motions parallel and
perpendicular to the heteroplanes separate adiabatically. The coupling between the Coulomb states associated
with the different size-quantized subbandssN=1, 2, …d is taken into account. In the two- and three-subband
approximation the spectrum of the complex energies of the impurity electron and the exciton optical absorption
coefficient are derived in an explicit form. The spectrum comprises a sequence of series of quasi-Coulomb
levelssnd where only the series belonging to the ground subbandN=1 is truly discrete while the excited series
Nù2 consist of quasi-discrete energy levels possessing non-zero widthsGNn. Narrowing the QW leads to an
increase of the binding energy and to a decrease of the resonant energy widthGNn and the resonant energy shift
DENn of the impurity electron. Displacing the impurity center from the midpoint of the QW causes the binding
energy to decrease while the widthGNn and the corresponding shiftDENn both increase. A Lorentzian form is
recovered for the exciton absorption profile. The absorption peak is narrowed and blue shifted for a narrowing
of the quantum well. A successful comparison with existing numerical data is performed. For GaAs QW’s it is
shown that the resonant states analyzed here are sufficiently stable to be observed experimentally.
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I. INTRODUCTION

Since Bastard1 and Bastardet al.2 have considered the
problem of an impurity electron or alternatively an exciton in
the quantum wellsQWd numerous experimental and theoret-
ical papers have been published on this topicssee Refs. 3,4
and references thereind. Much of this work has been devoted
to the narrow QW with a width being much less than the
Bohr radius of the impurity or exciton. In this case the mo-
tion of the impurity electronsexcitond possesses quasi-two-
dimensionalsquasi-2Dd character, leading to an increase of
stability. In units of the effective Rydberg constantR the
binding energyEb is thenEb=4R, whereas for the bulk ma-
terial we haveEb=1R. During the last decade electronic and
optical properties of nanostructures based on narrow GaAs
QW of width of the order of 35 Å have become the subject
of intense research.5–8 Recently Barticevicet al.9 studied
theoretically excitons that are trapped by quantum defects in
such a narrow QW.

In spite of the diversity of the computational methods and
the strongly varying accuracy of the corresponding results on
quasi-2D impurities and excitons they have a lot in common
with the early pioneering works.1,2 The absolute majority of
investigations are based on numerical techniques, which em-
ploy the variational method developed originally in Refs.
1,2. However, a few investigations developed analytical ap-
proaches to the problem of the impurity10 and exciton11 in
the QW. In these works the adiabatically slow radial motion
parallel to the heteroplanes was governed by the Coulomb
potential averaged with respect to the state of theNth sN
=1, 2, 3, …d subband. A coupling between the adiabatic
quasi-Coulomb radial states associated with the different
size-quantized states, i.e., differentN were not taken into
account. In this approximation of isolated subbands, i.e., the
single-subband approximation, the energies of the Coulomb

interacting particle in the narrow QW consist of series of
quasi-Coulomb discrete levelssnd, positioned below theNth
size-quantized level and of continuous subbandsssee Fig. 1d.
The Rydbergn states adjacent to the excited size-quantized
levelsN.1 come into resonance with the states of the con-
tinuous spectrum of lower subbandssN−1, N−2, …d and in
fact turn into so-called quasidiscrete or resonant states. The
corresponding energy density consists then of peaks of finite
width GNn determining the autoionization rate and lifetime of
the resonant state.

FIG. 1. sad A schematic form of the potentialsVNNsrd s6d and
quasi-Coulomb discretesnd and continuoussqd spectras10d adja-
cent to the groundsN=1d and first excitedsN=2d size-quantized
levels«N="2p2N2/2med

2 in the the QW of widthd. The density of
statesr's11d is plotted as a function of the energyE s7d ands10d in
the sbd single-subbands12d and scd multisubband approximations
providing the widthsGNn s31d and s57d.
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At first only the discrete spectrum of the impurity and
exciton states attracted attention, and subsequently the reso-
nant states were investigated. Greene and Bajaj12 and Fraiz-
zoli et al.13 pointed out that in a sufficiently narrow
GaAs/Ga1-xAl xAs QW the 2p0 state comes into resonance
with a continuous state associated with the first subband.
Using the variational approach and Dyson equation tech-
niques Priesteret al.14 calculated the energy shift and width
of the resonances adjacent to the third subband caused by the
coupling with the first subband. Resonant states are of prac-
tical relevance since they provide a mechanism for negative
differential conductance.15 Raman scattering involving the
resonant states has been observed experimentally.16 Since lo-
calized and extended components are integrated into a com-
mon state Blomet al. pointed out in Ref. 17 that permanent
transitions between these components and corresponding
generation-recombination processes may lead to novel shot-
noise parameters for devices based on the corresponding
semiconductor nanostructures. The idea of population inver-
sion of resonant states by electrically pumped carriers fol-
lowed by the subsequent transition to the ground state and
emission of coherent THz radiation was suggested in Refs.
18 and 4.

More recent works on resonant states in a QW are pro-
vided in Refs. 3,4 and 17. In Refs. 3 and 17 the dependencies
of the binding energies and widths of the resonances on the
position of the impurity and width of the GaAs/GaAlAs QW
have been found numerically. Blomet al.17 considered short-
range and hydrogenlike impurity centers both positioned in
the barrier material while Yen3 studied impurities located
within the QW. In Ref. 3 the bound part of the resonance
treated as a stationary state was calculated by a variational
method within the multisubband model. The extended part of
the resonant states was found by a different method, namely
via the resolvent operator. A comprehensive investigation of
the resonant states associated with shallow donors located
either outside or inside the QW was undertaken recently in
Ref. 4 defining the state of the art. Particularly the binding
energies and widths of the resonant states adjacent to the first
excited subband«2 were calculated numerically for the pa-
rameters of a real Si/SiGe QW. Converting the Schrödinger
equation for the total wave function into a matrix problem
the resonant states for the energies«1,E,«2 were found.
Typically matrices of the dimension 1500 were needed to
obtain results within an accuracy of about 1%.

For an almost complete list of numerical studies we refer
to the references provided in Ref. 3. Basis expansions with
respect to the wave functions of the free electron in the QW
ignoring the Coulomb attraction were used in case of the
nonvariational approaches.4,17 In most studies the obtained
results are for the ground resonant state positioned in the
region bound by the first and second size-quantized levels.
Main attention is paid to the moderate and wide QW’s for
which the lifetime of the resonant impurity states is of the
order of 0.1 ps,3,4 which is not wellsuited for an experimental
study. The latter can be correctly generalized to the resonant
exciton states first observed to our knowledge in an experi-
ment by Oberliet al.19 in the GaAs/AlAs double-well struc-
ture. These states have been studied by the variational20 and
various numerical methods.21–24The QW’s of wide and mod-

erate widths were under consideration. An analytical study of
the ground and excited resonant impurity and exciton states
associated with arbitrary subbands in the narrow QW’s has
not thoroughly been performed in the literature. However an
investigation of the resonant states via analytical methods is
certainly of interest because it enables the basic physics of
the problem to be revealed throughout the analysis.

In order to fill the above-mentioned gap the present work
provides an analytical investigation of resonant impurity and
exciton states in a narrow QW. The impurity center can be
positioned anywhere within the well bound by infinitely high
heterobarriers. The width of the QW is taken to be much less
than the Bohr radius of the impurity and/or exciton. The
complete wave function is then expanded with respect to the
basis formed by the one-dimensional size-quantized wave
functions and the radial quasi-Coulomb wave functions de-
scribing the in-plane motion. Our method is based on the
matching of the Coulomb radial wave functions and those
obtained by the iteration procedure at any point of the inter-
mediate region bound by the width of the QW and the Bohr
radius. The Coulomb character of the radial wave functions
allows to calculate analytically for the three- and two-
subband approximation the complex energy levels of the im-
purity electron and the excitonic absorption coefficient, re-
spectively. As indicated not only the ground series of the
resonant impurity states adjacent to the second subband are
under consideration but also those associated with the third
subband. In the vicinity of the resonances the shape of the
exciton peak derived from the general expression attains a
Lorentzian form. In contrast to the approach used in Ref. 3
both the real and imaginary parts of the complex impurity
levels and resonant shift and width of the exciton peaks are
calculated in frame of a common procedure. The dependen-
cies of the energy shifts and widths of the impurity resonant
states on the width of the QW and the position of the impu-
rity and of the exciton resonances depending on the width of
the QW are obtained in explicit form. It is shown that for a
narrow QW the resonant widths of the impurity and exciton
states are quite small and can be observed experimentally.
Our analytical results are completely in line with those ob-
tained numerically.3,4 Estimates of the expected experimental
values are made for the parameters for the GaAs QW. We
note that our aim is to elucidate the physics of the resonant
impurity sexcitond states in the quantum well by deriving
closed form analytical expressions for their properties. We do
not intend to compete with the results of computational i.e.,
numerical studies.

The paper is organized as follows: in Sec. II the analytical
approach based on the multisubband approximation is de-
scribed. The complex energies of the impurity electron are
calculated in Sec. III. A discussion of the results relevant to
resonant states of the impurity electron is provided in Sec.
IV. In Sec. V we discuss the absorption of light induced by
the optical transitions to the resonant exciton states. Section
VI contains the conclusions.

II. GENERAL THEORY

Let us define our physical setup. Thez axis is chosen
perpendicular to the heteroplanes of the QW. The QW is
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treated as a square well of widthd bounded by infinite bar-
riers at the planesz= ±d/2. The parameters relevant to the
calculations are the impurity Bohr radiussa0

=4p«0« "2/mee
2d, the impurity Rydberg constantsR

="2/2mea0
2d and the distance of the impurity centresbd from

the midpoint of the QW atz=0, « is the dielectric constant
and me is the electron effective mass. We take the energy
bands to be parabolic, nondegenerate, and separated by a
wide energy gap.

In the effective mass approximation and employing cylin-
drical coordinates, the equation describing the impurity elec-
tron at a positionr srW ,zd has the form

F−
"2

2me
D −

e2

4p«0«Îr2 + sz− bd2GCsr d = E Csr d. s1d

By solving this equation subject to the boundary conditions

CsrW, ± d/2d = 0 s2d

the energyE and wave functionCsr d can be found in prin-
ciple. Equationss1d and s2d imply that some simplifications
are made. The transverse effective massm'e relating to the
in-planer motion and the dielectric constant« both do not
depend on the longitudinalz-coordinate. In addition to these
assumptions used particularly also in Ref. 4 we take the po-
tential barriers bounding the QW to be infinite and neglect
the z-dependence of the longitudinal effective massmieszd
then settingmieszd=m'e;me. We realize that the approxi-
mation of the infinite barriers is not quite justified for the
narrow QW. However, we believe that the explicit and trans-
parent results calculated by employing this approximation
remain qualitatively correct for the QW of finite depth. In
Sec. VI we discuss the possibility of an extension of our
results to the case of a penetrable QW and different trans-
verse andz-dependent longitudinal effective masses. Follow-
ing Ref. 4 we consider only cylindrically symmetric reso-
nance states.

The solution to Eq.s1d, having the magnetic quantum
numberm=0, can be written in the form

CsrW,zd = o
N8=1

`

fN8szdRN8srd, s3d

where the functions

fNszd =Î2

d
sinFNp

d
Sz−

d

2
DG, N = 1,2,3,… s4d

describe the longitudinal size-quantized states with the ener-
gies «N="2p2N2/ s2med

2d. The transverse wave functions
corresponding to the motion in thex-y plane obey the equa-
tions

−
"2

2me
S1

r

d

dr
r

d

dr
DRNsrd + o

N8=1

`

VNN8srdRN8srd = E'NRNsrd,

s5d

where

VNN8srd = −
e2

4p«0«KNU 1
Îr2 + sz− bd2UN8L s6d

and where

E'N = E −
"2p2N2

2med
2 , N = 1,2,3,…. s7d

In Eq. s6d kNu¯ uN8l is the matrix element calculated with
respect to the functionsfNszd and fN8szd fsee Eq.s4dg.

In the absence of the impurity centersVNN8=0d the sets5d
yields independent equations for differentN. The total en-
ergy E in Eq. s7d then emerges from the sequence of the
subbands formed by the branches of the continuous trans-
verse energiesE'N="2q2/ s2med s"q is the transverse mo-
mentumd on top of the size-quantized energy levels
N=1,2,3,… for which E'N=0. The bottom of the continuous
spectra is determined byE'1=0.

It follows from Eq. s6d that in the regionr@d

VNN8srd . −
e2

4p«0«r
FdNN8 + OSd2

r2DG . s8d

For a narrow QW with

d

a0
! 1, s9d

the off-diagonal potentialsVNN8 sNÞN8d are dominated by
the diagonal termsVNNfVNN8,sd2/a0

2dVNNg. In this approxi-
mation the sets5d decomposes into independent equations
describing the two-dimensionals2Dd impurity states gov-
erned by the quasi-Coulomb potentialsVNNsrd, yielding the
transverse energies

E'N =5−
4R

sn0 + 2dn0d2, n0 = 1,3,5,…, dn0sdd ,
d

a0

for E'N ø 0

"2q2

2me
, 0 ø q ø ` for E'N ù 06 s10d

and for the density of the transverse statesr'sE'd
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r'sE'd = o
N=1

`

rNsE'Nd, s11d

where

rNsE'Nd =5
me

2p"2

expb

coshb
, b = pS R

E'N
D1/2

for E'N ù 0

1

pa0
2 o

n0=1

`
8d„E'N + 4Rsn0 + 2dn0d−2

…

sn0 + 2dn0d3 for E'N ø 06 s12d

Thus in the single-band approximation the total energyE
consists of the sequence of series of quasi-Coulomb levels
s10d adjacent on the low energy side to the size-quantized
levelsN=1,2,3,…. All series except the one adjacent to the
ground levelN=1 are superimposed on thesN−1d branches
of the continuous spectras10d emanating from the lower
size-quantised levels. Note that the density of statess11d is a
sum of d-function type singularitiess12d at the quasi-
Coulomb energiess10d. In other words in the single-band
approximation all the quasi-Coulomb states are strictly dis-
crete. In fact discrete energy levels persist only below the
boundary of the continuous spectrum. In our case of the im-
purity potential given in Eq.s1d only the quasi-Coulomb se-
riesE'1 fsee Eq.s10dg adjacent to the lowest boundary of the
continuous spectrumE'1=0 consists of strictly discrete
statesn0=1,3,5,…. All other series adjacent to the excited
size-quantized levelsNù2 are quasidiscrete. The reason is
that the states of these series are in resonance with the states
of the continuous spectrum associated with theN−1 sub-
bands and lead to an autoionization process. The density of
statess11d then consists of a quasi-Coulomb series of finite
peaksn0=1,3,5,… each determined by a nonzero widthGNn
ssee Fig. 1d. The latter is as usual related to the autoioniza-
tion rateGNn/" and lifetimetNn=" /GNn of the resonant state.

Below we consider a three-band approximation describing
the interaction between the quasi-Coulomb states
n0=1,3,5,… adjacent to the size-quantized energy levelsN
=2,3 on the one hand and the states of the continuous spec-
trum emanating from the size-quantized energy levelsN=1,2
on the other hand. In this approximation the real and imagi-
nary parts of the complex quasi-Coulomb energy levels de-
termining the positions and widths of the peaks of the energy
level density.

III. THREE-BAND APPROXIMATION—RESULTS FOR
THE IMPURITY

In the three-band approximation the set of Eqs.s5d for N,
N8=1,2,3 can be written in the form

F d2

dv2 +
1

v

d

dv
+

ip

2
V11sp,vd −

1

4
GR1sp,vd

+
ip

2
fV12sp,vdR2sn,vd + V13sp,vdR3sn,vdg = 0,

v =
4r

ipa0
s13d

F d2

du2 +
1

u

d

du
+

n

2
V22sn,ud −

1

4
GR2sn,ud

+
n

2
V21sn,udR1sp,ud = 0, u =

4r

na0
s14d

F d2

dt2
+

1

t

d

dt
+

ik

2
V22sk,td −

1

4
GR2sk,td

+
ik

2
V23sk,tdR3sn,td = 0, t =

4r

ika0
s15d

F d2

dt2 +
1

t

d

dt
+

n

2
V33sn,td −

1

4
GR3sn,td +

n

2
fV31sn,tdR1sp,td

+ V32sn,tdR2sk,tdg = 0, t =
4r

na0
s16d

In the above equations the following notations have been
used:

VNN8sn,ud =KNU 1
Îu2 + g2/n2UN8L, gszd =

4uz− bu
a0

,

E'1 =
4R
p2 , E'3 = −

4R
n2 ,
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E'2 =5−
4R
n2 , for E'2 ø 0

4R
k2 , for E'2 ù 06

The potentialsVNN8sp,vd ,VNN8sk,td, and VNN8sn ,td can be
obtained from the potentialVNN8sn,ud by replacing

u ↔ v,t,t andn ↔ ip,ik,n, s17d

respectively. The quantum numbers obey the relationships

1

n2 +
1

p2 = 3Spa0

2d
D2

,
1

n2 +
1

p2 = 8Spa0

2d
D2

,

1

k2 +
1

n2 = 5Spa0

2d
D2

. s18d

Equationss13d–s16d are solved by matching the corre-
sponding solutions in the regiond!r!a0. For r
@dsu,v ,t ,t@gd keeping in Eqs.s13d–s16d only diagonal
terms,dNN8 in the potentialss8d we arrive at the solutions

R2sn,ud = A2u
−1/2Wn/2,0sud, s19d

whereWn/2,0 is the Whittaker function,25 andA2 is a constant.
The functionsR1sp,vd ,R2sk,td, andR3sn ,td can be obtained
from the functionR2sn,ud by the replacements17d and re-
placing A2 by A1,B2, and A3, respectively. The functions
R2sn,ud andR3sn ,td correspond to the discrete 2D Coulomb
states while the functionsR1sp,vd andR2sk,td are the func-
tions of the continuous energy spectrum with the asymptotics
of outgoing waves

R1 , A1expF 2ir

pa0
+

ip − 1

2
lnS 4r

ipa0
DG,

4r

pa0
@ 1

In the regionr!a0su,v ,t ,t!1d an iteration procedure is
performed by double integration of Eqs.s13d–s16d using the
trial function R2

s0d and its first derivativesR2
s0dd8

R2
s0dsn,ud = c2flnsu + Îu2 + g2/n2d + a2g, s20d

„R2
s0dsn,ud…8 = c2F 1

Îu2 + g2/n2
−

n

g
−

n

2

u
Îu2 + g2/n2

3lnsu + Îu2 + g2/n2dG . s21d

The trial functionsR1
s0dsp,vd ,R2

s0dsk,td, andR3
s0dsn ,td and

their corresponding first derivatives(R1
s0dsp,vd)8 ,(R2

s0dsk,td)8,
and (R3

s0dsn ,td)8 can be obtained from Eqs.s20d and s21d,
respectively, by the replacements given in Eq.s17d and by
replacingc2 by c1,a2,c3 and a2 by a1,b2,a3, respectively.
As a result of the iteration procedure we have foru,v ,t, t
@gNN8, N, N8=1, 2, 3

R1sp,vd = c1Fln v + a1 + i
p

2
+ ipS 1

g11
−

a1

2
Dv ln vG

− c2
g12a2

2
− c3

g13a3

2
, s22d

R2sn,ud = c2Fln u + a2 + i
p

2
+ nS 1

g22
−

a2

2
Du ln uG

− c1
g21a1

2
, s23d

R2sk,td = a2Fln t + b2 + i
p

2
+ ikS 1

g22
−

b2

2
Dt ln tG − c3

g23a3

2
,

s24d

R3sn,td = c3Fln t + a3 + i
p

2
+ nS 1

g33
−

a3

2
Dt ln tG

− c1
g31a1

2
− a2

g32b2

2
, s25d

wheregNN8=kNugszduN8l.
In the regionu!1 the functionR2sn,ud Eq. s19d is given

by25

R2sn,ud = −
A2

G„s1 − nd/2…Fln u + cS1 − n

2
D + 2C −

n

2
u ln uG ,

s26d

wherecsxd is the psi functionfthe logarithmic derivative of
the gamma-functionGsxdg and C is the Euler constant
s=0.577d. The functionsR1sp,vd ,R2sk,td, and R3sn ,td for
v ,t, t!1 can be obtained from Eq.s26d by the same replace-
ments used to obtain these functions from Eq.s19d. On sub-
stituting the expressionss26d for R2sn,udsu!1d and those
for R1sp,vdsv!1d, R2sk,tdst!1d, and R3sn ,tdst!1d into
the left-hand parts of the corresponding equationss22d–s25d
a comparison of the coefficients is made between the results
of the double integration taken forgNN8!u,v ,t ,t!1 and
the expansions of the Whittaker functions involved particu-
larly in Eq. s26d. When terms of the same order are equated
we obtain a set of four homogeneous algebraic equations for
the coefficientscNsN=1,2,3d, a2. This set is solved by the
determinantal method to give a transcendental equation

Sl2w3 −
g23

2

g22g33
DSl1w2 −

g12
2

g22g11
D − l2w2

g13
2

g11g33
= 0,

s27d

where

l1 =
2

g11
− cS1 − ip

2
D + i

p

2
, l2 =

2

g22
− cS1 − ik

2
D + i

p

2
,

w2 =
2

g22
− cS1 − n

2
D, w3 =

2

g33
− cS1 − n

2
D .

A. States adjacent to the size-quantized levelN=2

Setting in Eq. s27d n=n0+2x, n0=1,3,5,…, x!1, p
.3−1/2s2d/pa0d!1, n.5−1/2s2d/pa0d!1, k. in, w3

.2/g33, l2.2/g22 and neglecting the effect of the subband
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N=3 of the order ofd/a0!1 we obtain from Eq.s27d

w2 −
g12

2

l1g11g22
= 0, s28d

where

w2 =
2

g22
−

1

x
, l1 =

2

g11
+ i

p

2

The complex rootx of Eq. s28d determines the quantum
numbern and the transverse energyE'2=−4R /n2

E'2sn0d = −
4R
n0

2 + DE'2sn0d −
i

2
G2sn0d, s29d

where

DE'2sn0d =
8R
n0

3 S d

a0
DF2swdF1 +S 16

3p2D2S d

a0
D2

F21swdG
s30d

and

G2sn0d =
pR
n0

3 S 32

3p2D2S d

a0
D4

F1swdF2swdF21swd. s31d

In Eqs.s30d and s31d the following notations are used:

F1swd = 1 +
4

p2Fw2

4
− cos2Sw

2
DG,

F2swd = 1 +
1

p2sw2 − sin2wd,

F21swd = sin2Sw

2
DF− 1 +

1

3
sin2Sw

2
DG2

, w =
2pb

d
.

B. States adjacent to the size-quantized levelN=3

Below we consider the resonant impurity states adjacent
to theN=3 size-quantized level. The distinct feature of these
states is their nonzero width produced by the impurity posi-
tioned at the midpoint of the QW. Note that for the reso-
nances associated with theN=2 subband considered above
and in Refs. 3 and 4 the widthG2sn0d s31d vanishes atb
=0sw=0d. Putting in Eq.s27d n=n0+2z, n0=1,3,5,…, z!1,
k.5−1/2s2d/pa0d!1, p.8−1/2s2d/pa0d!1, n. ik, w2

.2/g22 we have

w3 −
g32

2

l2g22g33
−

g31
2

l1g33g11
= 0, s32d

where

w3 =
2

g33
−

1

z
, l2 =

2

g22
+ i

p

2
.

The complex rootz of Eq. s32d determines the quantum
numbern and the transverse energyE'3=−4R /n2

E'3sn0d = −
4R
n0

2 + DE'3sn0d −
i

2
G3sn0d, s33d

where

DE'3sn0d =
8R
n0

3 S d

a0
DF3swdH1 +S 2

p2D2S d

a0
D2

3fF32swd + F31swdgJ; s34d

and

G3sn0d =
16R
n0

3p3S d

a0
D4

F3swdfF2swdF32swd + F1swdF31swdg.

s35d

In Eqs.s34d and s35d the following notations are employed:

F3swd = 1 +S 2

3p
D2FS3w

2
D2

− cos2S3w

2
DG ,

F32swd = 4FsinSw

2
D −

1

25
sinS5w

2
DG2

, F31swd = cos8Sw

2
D.

Equationss30d and s31d and s34d and s35d determine the
corrections to the real partsDE'Nsn0d of the Coulomb levels
E

'

s0d=−4R /n0
2, sn0=1,3,5,…d and their resonant widths

GNsn0d caused by the finite widthd of the QW for the quasi-
discrete states adjacent to the size-quantized levelsN=2 and
N=3, respectively. The correctionsDE'Nsn0d s30d and s34d
each consists of two terms. The first termss,d/a0d can be
obtained in the single-subband approximation while the sec-
ond oness,sd/a0d3d are the resonant impurity shifts

DE'2
srd sn0d =

8R
n0

3 S 16

3p2D2S d

a0
D3

F2swdF21swd s36d

and

DE'3
srd sn0d =

8R
n0

3 S 2

p2D2S d

a0
D3

F3swdfF32swd + F31swdg

s37d

that result from the intersubband coupling.

IV. DISCUSSION OF THE RESULTS ON IMPURITIES

We define the binding energy of the impurity electronEb
as the real part of the difference between the size-quantized
energy"2p2N2/2med

2 of the free electron and the energy of
the impurity electronE. It follows from Eq. s7d that

EbNsn0d =
4R
n0

2 − DE'Nsn0d, N = 2,3,…, n0 = 1,3,5,…,

s38d

where the energiesDE'Nsn0d are given by Eqs.s30d ands34d
for N=2 andN=3, respectively. We observe that for the 2D
layer sd=0dEb2sn0d=Eb3sn0d=4R /n0

2 which subsequently
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decreases with increasing widthd. This is in agreement with
the well established numerical results.1,3,4 In the single-band
approximation the contribution to a redshift of the binding
energy DEbNsdd caused by the finite widthd becomes
DEbNsdd,−Rsn0

−3dsd/a0dFNswd, while the resonant shift re-
sulting from the interband coupling is DEbNsdd
,−Rsn0

−3dsd/a0d3FNswdFNN8swd.
The dependence of the binding energyEbN s38d on the

displacement of the impurity centerb is described by the
functions FNswd ,F

NN8
swd, N=2,3, N8=1,2 fsee Eqs.s30d

and s34dg. It follows from these equations and Eq.s38d that
the binding energy decreases when the impurity shifts from
the midpoint of the QWz=0 towards the boundariesz
= ±d/2. This result coincides with those calculated in Refs.
1, 4, and 26–28. To our knowledge, only Yen recently
reported about the opposite dependencefsee Fig.1sad in
Ref. 3d.

Since the dependencies of the binding energies on the
width of the QWd and the impurity positionb found in the
multisubband approximation coincide qualitatively with
those calculated for the isolated subbands below we concen-
trate on the resonant widthsGNsn0d and shiftsDE

'N
srd sn0d just

caused by the intersubband coupling. It is clear from Eqs.
s31d and s35d that increasing d leads to increasing
widths GNsn0d,Rsn0

−3dsd/a0d4. This is similar to what has
been obtained by Yen3 and Blom et al.4 The resonant
shifts DE

'N
srd sn0d s36d and s37d increase asDE

'N
srd sn0d

,Rsn0
−3dsd/a0d3. Note that for the impurity positioned at the

mid-point of the QWsb=0d the widthG2sn0d=0. The reason
for this is that the coupling between theN=2 andN8=1, 3
subbands vanishes atb=0sg21=g23=0d. If the impurity dis-
places from the mid-pointsb=0d the width G2sn0d s31d
monotonically increases and reaches a maximum for the im-
purity positioned at the edge of the QWsubmu=d/2d. Analo-
gous dependence was obtained numerically by Yen,3 whereas
Blom et al.4 report the resultubmu=0.7 d/2. The resonant
width G2s1d s31d versus the QW widthd and the impurity
shift b is depicted in Fig. 2. The dependence of the resonant

shift DE
'2
srd sn0d s36d on the displacementb is qualitatively the

same as that for the resonant widthG2sn0d s31d ssee Fig. 3d.
In spite of the fact that the QW seems to be narrow it pro-
vides the strong dependence of the resonant impurity states
on the position of the impurity centre within the well. Over
the rangeubu from d/4 to d/2 sedged, the resonant shift
DE

'2
srd sn0d s36d and the resonant widthG2sn0d s31d increase

by factors of 2.23 and 4.27, respectively. In an effort to the
qualitative comparison only we extrapolate the numerical
data for the maximum impurity resonant widthG2

smaxd of the
2p0 state sthe binding energy isR /4d in the GaAs QW
sR=5.83 meVd of width 70 Åødø400 Å sRef. 3d to the
width d=30 Åsd/a0.0.3d. We obtain the resultG2

smaxd

.0.090 meV, that is close to the value 0.082 meV calculated
from Eq. s31d. The lifetime corresponding to this width is
about 7 ps. Thus the resonant impurity states in narrow QW’s
should be observed experimentally.

The dependencies of the binding energyEb3sn0d s38d and
s34d and the resonant widthG3sn0d s35d and shiftDE

'3
srd sn0d

s37d of the states adjacent to theN=3 subband on the width
of the QWd and displacementb are qualitatively the same as
those for theN=2 states. Equations35d shows that the width
of the resonant state adjacent to the third subband can be
presented as a sum of contributions provided by the coupling
of this subband to the firsts,F31d and seconds,F32d sub-
bands. The same result is obtained in Ref. 3. In the region
ubu!d for which w!1, F32.0 the subbandN=1 contrib-
utes mostly to the widthG3sn0d s35d while for ubu.d/2sw
.p ,F31.0d the subbandN=2 plays a leading role. The
position of the impurityb0 at which the effects of the above
mentioned subbands on the widthG3sn0d are in balance is
determined by the rootw0=2pb0/d of the equation

F2sw0dF32sw0d = F1sw0dF32sw0d

to give the result w0=0.73subu=0.23d/2d. The root w0

=0.81subu=0.26d/2d of the equation

FIG. 2. The dimensionless
resonant widthG2s1d /R s31d of
the ground impurity statesn0=1d
adjacent to theN=2 subband plot-
ted as a function of the relative
impurity position ubu / sd/2d and
the width of the QWd sR anda0

are the impurity Rydberg constant
and the Bohr radius, respectivelyd.
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F32sw0d = F31sw0d

determines the position of the impurity providing the equal
contributions of the above-mentioned subbands to the reso-
nant shift DE

'3
srd sn0d s37d. The contribution of theN=1

subband leads to resonant widthsG3sn0d s35d and shifts
DE

'3
srd sn0d s37d that differ from zero for any position of the

impurity.

V. OPTICAL TRANSITIONS TO RESONANT EXCITON
STATES

The equation describing the exciton formed by the elec-
tron sed and holeshd having the effective massesmj and
positionsr jsrW j ,zjd, s j =e,hd can be written in the form

F− o
j=e,h

"2

2mj
D j −

e2

4p«0«ÎsrWe − rWhd2 + sze − zhd2GCsr e,r hd

= EexCsr e,r hd, s39d

whereCsr e,r hd is the exciton wave function satisfying the
boundary conditions

CSrWe, ±
d

2
;rWh, ±

d

2
D = 0, s40d

and whereEex is the total energy of the exciton.
As established11,21,23dipole optical transitions are allowed

only to an exciton states withNe=Nh;N=1,2,3,…, where
Njs j =e,hd are the quantum numbers determining the size-
quantized energy levels. Besides this, transitions are possible
to the exciton states withK '.0 and m=0, where"K ' is
the transversesin x-y plane of squareSd momentum of the
exciton andm is the magnetic quantum number. As a result
the wave functionCsr e,r hd becomes

Csr e,r hd =
1

2pS
o
N=1

`

fNszedfNszhdRNsrd, rW = rWe − rWh,

s41d

where the functionsfNszd are given by Eq.s4d.

Substituting the wave functionCsr e,r hd s41d into Eq.s39d
we arrive at a set of equations for the radial functionsRNsrd

−
"2

2m
S1

r

d

dr
r

d

dr
DRNsrd + o

N8=1

`

VNN8srdRN8srd = E'N
sexdRNsrd.

s42d

In Eq. s42d the following notations are made

VNN8srd = −
e2

4p«0«KNU 1
Îr2 + sze − zhd2UN8L , s43d

E'N
sexd = Eex −

"2p2N2

2md2 − Eg, N = 1,2,3,… s44d

HerekNu…uN8l is the matrix element calculated with respect
to the functionsfNszedfNszhd s4d, m=memhsme+mhd−1 is the
reduced effective mass of the exciton, andEg is the forbid-
den gap. In Eq.s42d we keep the diagonal matrix elements
s43d and only those off-diagonal matrix elementss43d pro-
viding the resonant coupling. The other matrix elements cal-
culated with respect to the functionsfNe8

szedfNh8
szhd s4d, Ne8

ÞNh8sNe8 ,Nh8=1,2d describing the “forbidden” exciton states,
vanish because of the different parity of the “allowed” and
“forbidden” exciton statesssee Refs. 21 and 23 for detailsd.

Below we consider the exciton optical absorption in the
short-period QW structure29 obeying the conditiond+D
!2pc/v whereD is the width of the barriers separating the
neighboring QW’s and wherev=Eex/" is the frequency of
the absorbed photon. The exciton absorption is induced by
the transition of an electron-hole pair from the ground state
described by the functionCs0dsr e,r hd=dsr e−r hd to the ex-
cited state corresponding to the functionCsr e,r hd s41d. It
was justified originally in Ref. 30 that the coefficient of the
exciton absorptionasvd can be written in the form

FIG. 3. The dependence of the
resonant shiftDE

'2
srd s1d s36d of the

ground impurity statesn0=1d ad-
jacent to theN=2 subband given
in terms of the impurity Rydberg
constantR on the relative impu-
rity position ubu / sd/2d and the
width of the QWd scaled to the
impurity Bohr radiusa0.
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asvd = a0svdLsvd, Lsvd =
uRs0du2

uRs0ds0du2
, s45d

wherea0svd is the coefficient of the fundamental absorption
associated with the free electron and hole in the conduction
and valence subbands. The functionLsvd can be treated as
the relative coefficient of the exciton absorption or the di-
mensionless density of exciton states.Rs0dsrd and Rsrd are
the radial wave functions of free electron-hole pair and ex-
citon, respectively, both being normalized to thed function
dsE'−E'8 d. Further we consider the region

"2p2

2md212 , s"v − Egd ,
"2p2

2md222 s46d

bounded by the groundN=1 and first excitedN=2 reduced
size-quantized levels. The expression for the wave function
Rs0dsrd can be found from Eq.s42d for VN,N8=0 with the
result

Rs0dsrd =Î m

"2J0sqrd, q =Î2mE'

"2 , s47d

whereJ0sxd is the Bessel function. The exciton wave func-
tion Rsrd can be obtained by solving Eqs.s42d. Since Eq.
s42d can be derived from Eq.s5d by replacingme with m, the
averaging procedures6d with Eq. s43d and the energyE'N

s7d with the energyE
'N
sexd s44d only an outline of the corre-

sponding calculations will be provided below.
In the two-band approximation the set of equations for the

functionsR1srd andR2srd can be derived from Eqs.s13d and
s14d by takingV13=0 and then

E'1 =
4Rsexd

p2 , E'2 = −
4Rsexd

n2

whereRsexd="2/2maex
2 is the exciton Rydberg constant and

whereaex=4p«0«"2/me2 is the exciton Bohr radius.
Further more we employ the technique different from that

providing the impurity complex energies in Sec. III. The di-
mensionless density of statesLsvd s45d will be found. The
resonant exciton states are treated as states of the continuous
spectrum with real energies. In the regionr@d the wave
functionR2srd is provided by Eq.s19d with u=4r /aexn while
the functionR1srd is taken in the form

R1sp,vd =Î m

p"2expS−
pp

4
DfexpsiQdv−1/2Wip/2,0svd

+ exps− iQds− vd−1/2W−ip/2,0s− vdg,

v =
4r

iaexp
. s48d

In the regionr!aex we define the trial functionR2
s0dsn,ud

and its derivative(R2
s0dsn,ud)8 by Eqs.s20d ands21d, respec-

tively, while for the trial functionR1
s0dsp,vd and its derivative

(R1
s0dsp,vd)8 we take the real parts of the corresponding ex-

pressions used in Sec. IIIfsee below Eq.s21dg. The wave
functionsR2sn,ud andR1sp,vd obtained by the iteration pro-

cedure can be derived from Eq.s23d and from the real part of
Eq. s22d, respectively by settingc3=0. Then we compare
these iterated functions and those obtained by the expansion
of Eqs. s19d and s48d in the regiond!r!aex. When terms
of the same order are equated we have

c1 = − 2Î m

p"2expS−
pp

4
DÎcoshspp/2d

p

3cosfQ + sspdg, aN =
2

gNN
, s49d

c1Sl +
p tanfQ + sspdg
1 + exps− ppd D + c2

g12

g22
= 0,

c1
g21

g11
+ c2w = 0. s50d

Here

lspd =
1

2
FcS1 + ip

2
D + cS1 − ip

2
DG −

2

g11
, s51d

wsnd = cS1 − n

2
D −

2

g22
,

sspd = argGS1 + ip

2
D,

gNN8 =
4

aex
kNuze − zhuN8l ! 1,

N,N8 = 1,2. s52d

The set of linear algebraic equationss50d is solved by the
determinantal method to give in turn the transcendental
equation for the quantum numbersnsEexd ,psEexd and the
phaseQ

wSl +
p tan„Q + sspd…
1 + exps− ppd D −

g12g21

g11g22
= 0, s53d

with

1

n2 +
1

p2 =
3p2aex

2

4d2 @ 1.

It follows from Eq. s20d for the wave functionR2
s0dsn,ud

and analogously for the wave functionR1
s0dsp,vd that using

Eqs.s50d, s53d, ands49d the exciton wave function reads

Rs0d = R2sn,0d + R1sp,0d . 2S c2

g22
+

c1

g11
D ,

which yields together with Eq.s47d the analytical expression
for the coefficient of the exciton absorptionasvd s45d with
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Lsvd =
8

p2g11
2

f1 + exps− ppdgSw −
g12

g22
D2

w2 +
1

p2f1 + exps− ppdg2S g12
2

g11g22
− lwD2 ,

s54d

where

g11 =
4

3
S1 −

15

4p2D d

aex
, g22 =

4

3
S1 −

9

16p2D d

aex
,

g12 = g21 = −
40

9p2

d

aex
.

The dependencies of the quantum numbersn andp as well as
the functionswsnd s52d andlspd s51d on the frequencyv are
given by

"v = Eg +
"2p2

2md2 +
4Rsexd

p2 = Eg +
"2p2

2md24 −
4Rsexd

n2 . s55d

Equations54d is valid under the conditionsd/aexd!1 and
for any frequencies in the regions46d. In the limiting case
of a free electron and holesaex→`, gNN8→0, p→0, w.
−2/g22, l.−2/g11d we obtain from Eq.s54d Lsvd→1 and
the coefficientasvd=a0svd, Eq. s45d, describes the inter-
band fundamental optical absorption.

VI. EXCITON SPECTRUM. RESULTS AND DISCUSSION

In the vicinity of the resonant energyE'2sn0d
=−Rsexd /n0

2 determined by the quantum numbern0 calcu-
lated in the single-band approximationwsn0d=0 fsee Eq.
s52dg, Eq. s54d may be rearranged to

Lsv,n0d =
32Rsexd

n0
3

g22

g11

3
Gexsn0d

2phf"v − Eexsn0d − DEexsn0dg2 + Gex
2 sn0d/4j

s56d

In Eq. s56d the following notations for the resonant width
Gexsn0d and the resonant shiftDEexsn0d of the resonant exci-
ton peak both caused by the intersubband interaction are
made

Gexsn0d =
8Rsexdg12

2 g22

pn0
3g11

f1 − exps− ppdgsin2d, s57d

DEexsn0d = −
1

2
Gexsn0dcotd, s58d

where

cotd =
1

p
f1 + exps− ppdgl. s59d

It follows from above that the exciton absorption in the
short-period QW structure is reflected in the sequence of the

quasi-Coulomb series of peaks marked by the quantum num-
bersn0.1, 3, 5,… adjacent to the size-quantized levelsN
=1, 2, 3,… of the electron-hole pair possessing the reduced
massm. The ground seriesN=1 consists of thes-function
type peaks for whichasv ,n0d,d("v−Eexsn0d) while the ex-
cited seriesN=2, 3, … are formed by the resonant peaksn0
of widths Gexsn0d shifted towards higher energies by an
amountDEexsn0d. The widthsGexsn0d and shiftsDEexsn0d of
the peaks forming theN=2 series are given by Eqs.s57d and
s58d, respectively. It follows from Eq.s55d that with narrow-
ing the QW the exciton peaks are subject to a blue shift. This
is in agreement with the results of the numerical
approaches.21,23 The optical maximan0 of the excited series
possess a Lorentzian forms56d. Equationss57d–s59d enable
us to obtain the qualitative dependencies of the optical width
Gexsn0d and the shiftDEexsn0d on the widthd of the QW

p . 0, l . −
2

g11
, sind . d . −

pg11

4
, cosd . 1,

Gexsn0d .
Rsexd

n0
3 S d

aex
D4

, DEexsn0d .
Rsexd

n0
3 S d

aex
D3

.

The relative coefficient of the exciton absorptionLsv ,n0d
calculated from Eqs.s45d ands54d is plotted as a function of
the photon energy"v in the vicinity of the ground staten0
.1 in Fig. 4. If the width of the QWd decreases the binding
energy of the resonant exciton stateEg+«2−"v increases,
the resonant widthGexs1d decreases and the maximum value
Lmaxsv ,1d increases proportional toGexs1d,sd/aexd4 and
Lmaxsv ,1d,Gex

−1s1d,sd/aexd−4, respectively. The exciton
peak positions associated with the transitions to the excited
resonant statesn0.3, 5, … are determined by the values
s0.−0.11, −0.04,…. These peaks are much narrower com-
pared to the peak associated with the ground statefGexsn0d
.Gexs1dn0

−3g and have the maximum values of the same or-
der fLmaxsv ,n0d.Lmaxsv ,1dg for given widthd of the QW.
Each peak is slightly asymmetricssee inset in Fig. 4 corre-
sponding to the ratiod/aex=0.3d. Taking for the heavy hole
exciton in the GaAs QW the Rydberg constantRsexd

.5.5 meV we find that the exciton resonant life-timetex
=" /Gex in the well of widthd.30 Å is of the order of 15 ps.
Obviously the coupling between the different subbands does
not destroy the stability of the exciton states in the narrow
QW’s. The feasibility of the spectroscopic manifestation of
these states depends on the homogeneous line broadening
caused by a number of mechanisms. Oberliet al.19 observed
in the luminescent exciton spectrum of the GaAs/AlAs
double-quantum-well structuresd1=48 Å, d2=165 Åd at
T=4.2 K the ground nonresonant peak of width
G=0.85 meV and the resonant peak with the width
G.1.2 meV. The width of the ground peak is of the same
order as that of the resonant statesG.0.70 meVd calculated
by Yen3 for the QW of widthd=150 Å. We therefore con-
clude that the contribution of these mechanisms to the total
widths of the impurity and exciton states compared to the
contribution provided by the resonant coupling is compa-
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rable in the case of moderatesdùa0d QWs and significantly
greater in the case of narrowsd!a0d wells.

Our results correlate well with those derived from the
Fano theory31 taking into account the interference of a de-
generate initially discrete and continuous states. Following
this theory the density of the above considered exciton states
in the vicinity of maxima has the Lorentzian formfthe same
as that given by Eq.s54dg with

Gexsn0d = 2pukR2sn0,rduV21srduR1sp0,rdlu2

and

DEexsn0d = PE ukR2sn,rduV21srduR1sp,rdlu2

E − E8
dE8

where the potentialV21srd is determined by eq.s6d and
where R2sn ,rd and R1sp,rd are the wave functions of the
discrete(n0sEd ,nsE8d) and continuous(p0sEd ,psE8d) spectra
of the energyE="v, Eq. s55d. Each peak is fitted with a
shallow minimum like that given in the inset in Fig. 4. Tak-
ing for the functionR2sn0,rd in Eq. s19d n0.n=1, 3, 5,…,
and normalizing it and taking forR1sp,rd the expression
derived from Eq.s48d for p.2d/Î3pae!1 and from Eq.
s50d for g12=0sQ=p /2d we immediately obtain for the
width the resultGexsn0d.sRex/n0

3dsd/aexd4 identical to that
derived from our approach. The principal part of the integral
in the equation for the resonant shiftDEexsn0d implies the
wave functionR1sp,rd s48d to be determined for a wide

range of the quantum numberpsE8d that requires cumber-
some mathematics.

The resonant widthGexsn0d s57d and shiftDEexsn0d s58d of
the exciton peak coincide, respectively, with those involved
in the complex energy of the exciton. This energy can be
calculated employing the technique used in Sec. IIIfsee Eq.
s28dg. The roots of this equation are the same as those of the
equation

wSl − i
p

2
D −

g12
2

g11g22
= 0,

converting the denominator of Eq.s54d to zero.
As expected the width of the excitonic peakGexsn0d and

the shift DEexsn0d decrease with decreasing widthd. In the
single-band approximation setting in Eq.s56d g12=g21=0 we
arrive at the equations

Gexsn0d = DEexsn0d = 0, Lsv,n0d =
32Rsexd

n0
3 d„"v − Eexsn0d…

describing the optical absorption caused by the transitions to
the strictly discrete localized exciton states.

Some remarks of general character follow. The two-
subband approximation is sufficient to calculate correctly the
resonant shiftsDE'2sn0d s30d and DEexsn0d s58d and the
widthsG2sn0d s31d andGexsn0d s57d. The reason for this is the
chosen basis comprising the radial Coulomb functionsRNsrd
of the discretes19d and continuous spectrum. A set of plane
waves,expsiqWrWd would require a considerable amount of

FIG. 4. The relative coefficient
of the exciton absorptionLsv ,n0d
s45d calculated from Eq.s54d for
the different widthsd in the vicin-
ity of the ground peaksn0*1d
s56d. The parameters=s"v−Eg

−«2d /4Rsexd is the shift of the
photon energy"v related to the
edge of absorptionEg+«2 given in
terms of the exciton Rydberg con-
stantRsexd.
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coupled subbands to yield similar effects. In the presented
approach the localised and extended components of the reso-
nant state are derived in a unified method in contrast to Ref.
3 where these parts are calculated employing different tech-
niques. The dependencies of the binding energyEbN s38d,
s30d, ands34d, the resonant shift,sd/a0d3 in Eqs.s30d and
s34d and that determined by Eq.s58d and widthGNsn0d s31d
and s35d andGexsn0d s57d of the impurity electron and exci-
ton on the widthd of the QW are in complete qualitative
agreement with those calculated numerically.3,4 The fact that
Refs. 3,4,20,21,23 and 24 considered moderate and wide
QW’s sd.a0d prevents a detailed quantitative comparison
with our results.

The resonant states of the Coulomb particle in the narrow
QW are analogous to those in bulk material in the presence
of a strong magnetic fieldB,32,33providing the effective two-
dimensional confinement in the plane perpendicular to the
magnetic field B bounded by the magnetic lengthaB
=s" /eBd1/2. The resonance comes from the coupling of the
one-dimensional quasi-Rydberg and extended Coulomb
states each associated with the different equidistant Landau
subbands. The investigations of these diamagnetic resonant
states based on the theory of Fano31 were undertaken in Refs.
34–36 whereas the multi-subband approximation was em-
ployed in Refs. 37 and 38. Our results derived for the reso-
nant states in the QW are in complete qualitative agreement
with those corresponding to the diamagnetic resonant states
in bulk material. The binding energy increases and the reso-
nant shift and width both decrease with increase of the con-
finement i.e. with the decrease of the widthd of the QW and
the increase of the magnetic fieldB.

In the case of the anisotropic energy bands with the effec-
tive massesmi,' js j =e,hd corresponding to the motion paral-
lel and perpendicular to the QWz axis, respectively, the im-
purity and exciton states depend on the ratiom' j /mi j that in
principle requires a numerical study. A variational approach
has shown that in bulk material and for wide QW’ssd
.a0d for the ratiomie=4.63m'e the donor binding energy is
one and a half times the corresponding value formie=m'e.

39

In a narrow QWsd,a0d the in-plane motion is governed by
the Coulomb potential and the effective massm' j while the
massmi j determines thez states. This allows to obtain the
final results for the impurity binding energy, the exciton peak
position and for the resonant shifts and widths of the impu-
rity and exciton states by the following replacements. In Eq.
s7d me is replaced bymie, in Eqs.s29d–s31d ands33d–s38d R
by Rsm'e/med anda0 by a0sme/m'ed, in Eq. s44d m by mi,
and in Eqs. s54d–s56d Rsexd by Rsexdm' /m and aex by
aexsm /m'd where mi,'

−1 =mi,'e
−1 +mi,',h

−1 . For a more realistic
model of the QW of finite depth having thez-dependent
effective massesmiehszd the wave functionsfNszd s4d should
be replaced by those relevant to the mentioned properties.40

In particular as it follows from Ref. 41 for the QW of finite
depthV under the conditiond@ r0, r0=s"2/2mVd1/2 the cri-
terion of the narrow QWs9d should be replaced by the new
oned!a0−2r0 both for the groundN=1 and for the excited
N.1 size-quantised subbands. In Ref. 3 the parameters for
the GaAs QW were taken to beV.188 meV,r0.17.5 Å,
a0.98 Å. Clearly the QW of widthd.30 Å is not the best

candidate of a narrow well providing the 2D character of the
impurity states. As a result the 2p0 state considered by Yen3

in such a well attains significantly the 3D state with the
effective Rydberg constantR /4. Consequently only a quali-
tative agreement between the numerical data of Yen3 and our
analytical results can be achieved. Moreover the finite depth
V and the electron density related to the quasi-3D 2p0 state
could contribute to the discrepancy between the dependen-
cies of the binding energy on the position of the impurity
obtained by Yen3 and those calculated in this paper. However
the new criterion for a narrow QW of finite depth is satisfied
much better for the Ga0.47In0.53As/Al0.48In0.52As QW having
the parametersV.450 meV,r0.14.7 Å, a0.184 Å sRef.
42d and d.40−50 Å. Thus we believe that our analytical
method can be applied to the resonant impurity states in the
narrow QWs of realistic width and finite depth.

Along the barriers of finite height the image charges
caused by the difference between the dielectric constants of
the well and barrier materials influence the impurity and ex-
citon states. The effect of the dielectric-constant mismatch
has been comprehensively studied by Fraizzoliet al. in Ref.
13 in which the binding energy of the impurity in the
GaAs/Ga1−xAl xAs QW was calculated as a function of the
width of the QW and the impurity position for the Al com-
positionx=0.3, 0.4. For the relative correction to the binding
energy of the on-center impurity the resultDEb/Eb,0.22x
was found. On extrapolating the data obtained in Ref. 13 to
the concentrationx=0.2 taken by Yen3 and widthd=30 Å
we find the resultsDEb/Eb.5.7% andDEb/Eb.6.4% for
the impurity positioned at the midpoint of the QWb=0 and
shifted towards the edge of the QW by a distanceb=d/4,
respectively. Note that the correction to the binding energy
associated with the dielectric-constant mismatch remains less
than that provided by the finite depth of the QW. The pre-
sented method can be extended to the case of an external
electric field directed perpendicular to the heteroplanes. The
matrix elementsgij are calculated then with respect to the
wave functions of the electronsholed in the QW subjected to
the electric fieldF fNsF ,zd sRef 43d instead offNszd s4d used
in this paper. For the QW of intermediate width comparable
to the impurity or exciton Bohr radius the two- or three-
subband approximations become inappropriate. Nevertheless
the resonant states can be found in the multisubband approxi-
mation. Only at the final stage of the determinantal proce-
dure some minor numerical study is necessary. We expect
that in the multisubband approximation the seriess3d and
s41d are rapidly convergent as happens with the series de-
scribing the diamagnetic resonant states.38 However these
states demonstrate that the multi-subband approximation38

does not lead to significant qualitative changes relative to the
two-subband model.37

VII. CONCLUSIONS

We have developed an analytical approach to the problem
of the resonant states of an impurity electron and exciton in
a narrow QW. The resonant character is caused by the inter-
subband coupling of the states treated as strictly discrete and
extended in the single-subband approximation. The three-
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and two-subband approximations are sufficient to obtain the
complex energies of the impurity electron and the coefficient
of the exciton absorption in explicit form. The wider the QW
is the larger are the widths both of the impurity energy levels
and the exciton peaks and the less are the impurity and ex-
citon binding energies. As the impurity center shifts from the
midpoint of the QW, the binding energy of the impurity elec-
tron decreases and the width of the energy level increases.
With an increase of the width of the narrow QW the effect of
the displacement of the impurity becomes more pronounced.
Our analytical results are in complete agreement with those
calculated previously numerically. Estimates of the expected
values associated with the GaAs QW’s show that for narrow

wells we expect the resonant impurity and exciton states to
be observable experimentally. The presented results can eas-
ily be extended to the case of an external electric field di-
rected perpendicular to the heteroplanes. In principle our ap-
proach is appropriate for QWs of finite depth and moderate
width comparable to the impurity or exciton Bohr radius.
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