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Resonant impurity and exciton states in a narrow quantum well
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An analytical investigation of resonant impurity and exciton states in a narrow quantum( Qs is
performed. We employ the adiabatic multisubband approximation assuming that the motions parallel and
perpendicular to the heteroplanes separate adiabatically. The coupling between the Coulomb states associated
with the different size-quantized subban@®s=1, 2, ...) is taken into account. In the two- and three-subband
approximation the spectrum of the complex energies of the impurity electron and the exciton optical absorption
coefficient are derived in an explicit form. The spectrum comprises a sequence of series of quasi-Coulomb
levels(n) where only the series belonging to the ground subl¥nd is truly discrete while the excited series
N=2 consist of quasi-discrete energy levels possessing non-zero Wigthslarrowing the QW leads to an
increase of the binding energy and to a decrease of the resonant energy wyidiid the resonant energy shift
AEy, of the impurity electron. Displacing the impurity center from the midpoint of the QW causes the binding
energy to decrease while the widifly, and the corresponding shiftEy, both increase. A Lorentzian form is
recovered for the exciton absorption profile. The absorption peak is narrowed and blue shifted for a narrowing
of the quantum well. A successful comparison with existing numerical data is performed. For GaAs QW's it is
shown that the resonant states analyzed here are sufficiently stable to be observed experimentally.
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[. INTRODUCTION interacting particle in the narrow QW consist of series of
Since Bastartand Bastardet al2 have considered the duasi-Coulomb discrete leve(s), positioned below thélth
problem of an impurity electron or alternatively an exciton in Size-quantized level and of continuous subbaisée Fig. 1
the quantum wel{QW) numerous experimental and theoret- The Rydbergn states adjacent to the excited size-quantized
ical papers have been published on this tdiee Refs. 3,4 levelsN>1 come into resonance with the states of the con-
and references thergirMuch of this work has been devoted tinuous spectrum of lower subban@$-1, N-2, ...) and in
to the narrow QW with a width being much less than thefact turn into so-called quasidiscrete or resonant states. The
Bohr radius of the impurity or exciton. In this case the mo-corresponding energy density consists then of peaks of finite
tion of the impurity electror(exciton possesses quasi-two- width I'y, determining the autoionization rate and lifetime of
dimensional(quasi-2D character, leading to an increase of the resonant state.
stability. In units of the effective Rydberg constaRt the
binding energyE, is thenE,=4R, whereas for the bulk ma- Vi it
terial we haveE,=1R. During the last decade electronic and
optical properties of nanostructures based on narrow GaA:«
QW of width of the order of 35 A have become the subject
of intense research® Recently Barticevicet al® studied
theoretically excitons that are trapped by quantum defects ir
such a narrow QW. Vi
In spite of the diversity of the computational methods and
the strongly varying accuracy of the corresponding results or®
quasi-2D impurities and excitons they have a lot in common
with the early pioneering work's? The absolute majority of
investigations are based on numerical techniques, which em
ploy the variational method developed originally in Refs.
1,2. However, a few investigations developed analytical ap-
proaches to the problem of the impufityand excitof! in
the QW. In these works the adiabatically slow radial motion
parallel to the heteroplanes was governed by the Coulomb g 1. (3 A schematic form of the potentiayy(p) (6) and

potential averaged with respect to the state of M (N guasi-Coulomb discretén) and continuougq) spectra(10) adja-
=1, 2, 3,...) subband. A coupling between the adiabaticcent to the groundN=1) and first excitedN=2) size-quantized
quasi-Coulomb radial states associated with the differenfevelsey=7%272N2/2m.d? in the the QW of widthd. The density of
size-quantized states, i.e., differeNtwere not taken into statesp, (11) is plotted as a function of the ener§y(7) and(10) in
account. In this approximation of isolated subbands, i.e., théhe (b) single-subband12) and (c) multisubband approximations
single-subband approximation, the energies of the Coulomproviding the widths'y,, (31) and (57).
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At first only the discrete spectrum of the impurity and erate widths were under consideration. An analytical study of
exciton states attracted attention, and subsequently the resitre ground and excited resonant impurity and exciton states
nant states were investigated. Greene and Bagajd Fraiz- associated with arbitrary subbands in the narrow QW’s has
zoli et al®® pointed out that in a sufficiently narrow not thoroughly been performed in the literature. However an
GaAs/Ga,AlAs QW the D, state comes into resonance jnvestigation of the resonant states via analytical methods is
with a continuous state associated with the first subbanckertainly of interest because it enables the basic physics of
Using the variational approach and Dyson equation techye problem to be revealed throughout the analysis.
niques Priesteet al'* calculated the energy shift and width In order to fill the above-mentioned gap the present work

of the resonances adjacent to the third subband caused by tEF‘ovides an analytical investigation of resonant impurity and

coupling with the first subband. Resonant states are of pra xciton states in a narrow QW. The impurity center can be

ﬁositioned anywhere within the well bound by infinitely high
heterobarriers. The width of the QW is taken to be much less
rH’]an the Bohr radius of the impurity and/or exciton. The
mon state Blonet al. pointed out in Ref. 17 that permanent Com_p'ete wave function is th_en expandeq with respect to the
transitions between these components and correspondift@Sis formed by the one-dimensional size-quantized wave
generation-recombination processes may lead to novel shdgnctions and the radial quasi-Coulomb wave functions de-
noise parameters for devices based on the correspondif§'iPing the in-plane motion. Our method is based on the
semiconductor nanostructures. The idea of population invefnatching of the Coulomb radial wave functions and those
sion of resonant states by electrically pumped carriers foloPtained by the iteration procedure at any point of the inter-
lowed by the subsequent transition to the ground state an@ediate region bound by the width of the QW and the Bohr
emission of coherent THz radiation was suggested in Refdadius. The Coulomb chara_cter of the radial wave functions
18 and 4. allows to calculate analytically for the three- and two-
More recent works on resonant states in a QW are prosub.band apprOXimation the .Cor‘r.IpIeX energy |eve|S.O.f the im-
vided in Refs. 3,4 and 17. In Refs. 3 and 17 the dependencid¥!rity electron and the excitonic absorption coefficient, re-
of the binding energies and widths of the resonances on thePectively. As indicated not only the ground series of the
position of the impurity and width of the GaAs/GaAlAs QW esonant impurity states adjacent to the second subband are
have been found numerically. Blogt al7 considered short- Under consideration but also those associated with the third
range and hydrogenlike impurity centers both positioned irsubband. In the vicinity of the resonances the shape of the
the barrier material while Yénstudied impurities located €xciton peak derived from the general expression attains a
within the QW. In Ref. 3 the bound part of the resonancelorentzian form. In contrast to the approach used in Ref. 3
treated as a stationary state was calculated by a variation@Pth the real and imaginary parts of the complex impurity
method within the multisubband model. The extended part of€Vels and resonant shift and width of the exciton peaks are
the resonant states was found by a different method, namefg@/culatéd in frame of a common procedure. The dependen-
via the resolvent operator. A comprehensive investigation ofi€S of the energy shifts and widths of the impurity resonant
the resonant states associated with shallow donors locatéidtes on the width of the QW and the position of the impu-
either outside or inside the QW was undertaken recently ifity and of the exciton resonances depending on the width of
Ref. 4 defining the state of the art. Particularly the bindingthe QW are obtained in explicit form. It is shown that for a
energies and widths of the resonant states adjacent to the fifsrow QW the resonant widths of the impurity and exciton
excited subband, were calculated numerically for the pa- States are quite small and can be observed experimentally.
rameters of a real Si/SiGe QW. Converting the Schrodingefur analytical results are completely in line with those ob-
equation for the total wave function into a matrix problem tained numerically:* Estimates of the expected experimental
the resonant states for the energigs<E<e, were found. ~Values are made for the parameters for the GaAs QW. We
Typically matrices of the dimension 1500 were needed td'ote that our aim is to elucidate the physics of the resonant
obtain results within an accuracy of about 1%. impurity (exciton) states in the quantum well by deriving
For an almost complete list of numerical studies we refetclosed form analytical expressions for their properties. We do
to the references provided in Ref. 3. Basis expansions witROt intend to compete with the results of computational i.e.,
respect to the wave functions of the free electron in the Qupumerical studies. _ _
ignoring the Coulomb attraction were used in case of the The paperis organized as follows: in Sec. Il the analytical
nonvariational approachéd’ In most studies the obtained aPproach based on the multisubband approximation is de-
results are for the ground resonant state positioned in th&cribed. The complex energies of the impurity electron are
region bound by the first and second size-quantized level§alculated in Sec. lll. A discussion of the results relevant to
Main attention is paid to the moderate and wide QW’s forfesonant states of the impurity electron is provided in Sec.
which the lifetime of the resonant impurity states is of the!V: In Sec. V we discuss the absorption of light induced by
order of 0.1 p$:*which is not wellsuited for an experimental the optical transitions to the resonant exciton states. Section
study. The latter can be correctly generalized to the resonant! contains the conclusions.
exciton states first observed to our knowledge in an experi-
ment by Oberliet al1®in the GaAs/AlAs double-well struc- Il GENERAL THEORY
ture. These states have been studied by the variatfoauad Let us define our physical setup. Theaxis is chosen
various numerical method3-2*The QW’s of wide and mod- perpendicular to the heteroplanes of the QW. The QW is

tical relevance since they provide a mechanism for negativ
differential conductanc®. Raman scattering involving the
resonant states has been observed experimett&@ince lo-

calized and extended components are integrated into a co
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treated as a square well of widthbounded by infinite bar- 2 N7 d

riers at the planeg=+d/2. The parameters relevant to the fn(2) = \/gSin{T<Z— 5)} N=1,23,.. (4
calculations are the impurity Bohr radius(ag

=4meqe h2Ime?), the impurity Rydberg constanfR  describe the longitudinal size-quantized states with the ener-
=#2/2m,a?) and the distance of the impurity centits) from  gies ey=A*7"N?/(2md?). The transverse wave functions
the midpoint of the QW az=0, ¢ is the dielectric constant corresponding to the motion in they plane obey the equa-
and m, is the electron effective mass. We take the energy!Ons

bands to be parabolic, nondegenerate, and separated by a 52 (1 d d

wide energy gap. - __P_>RN(P) + > Van (PR (p) = E \Ru(p),

In the effective mass approximation and employing cylin- 2me\pdp” dp N'=1
drical coordinates, the equation describing the impurity elec- (5)
tron at a positiorr (p,z) has the form
where
h? 3
-2 A- W(r)=EW({r). (1) _ @ 1 ,
2Me  Amege\p’+(z-b)? Vi (p) = 4ree N Vp?+(z-b)? § ©
By solving this equation subject to the boundary conditionsand where
N 2 2
V(p, £d/2)=0 ) E N=E hPmN N=1,2,3,... (7)

2mgd?’

the energyE and wave function¥(r) can be found in prin- " me _ .
ciple. Equationg1) and (2) imply that some simplifications N Ed- (6) (N[---[N") is the matrix element calculated with
are made. The transverse effective mass relating to the ~ espect to the functiony(z) andfy/(2) [see Eq.(4)].
in-plane p motion and the dielectric constaatboth do not In the absence of the impurity cent@fy=0) the set(5)
depend on the longitudinatcoordinate. In addition to these Yields independent equations for differeit The total en-
assumptions used particularly also in Ref. 4 we take the poergy E in Eq. (7) then emerges from the sequence of the
tential barriers bounding the QW to be infinite and neglecSubbands formed by the branches of the continuous trans-
the z-dependence of the longitudinal effective masg(z) ~ Verse energie& y=%%q’/(2me) (hiq is the transverse mo-
then settingm«(z)=m, .=m,. We realize that the approxi- mentum on top of the size-quantized energy levels
mation of the infinite barriers is not quite justified for the N=1,2,3,.. for whichE, y=0. The bottom of the continuous
narrow QW. However, we believe that the explicit and trans-SPectra is determined Hy, ,=0. _
parent results calculated by employing this approximation It follows from Eq. (6) that in the regiorp>d
remain qualitatively correct for the QW of finite depth. In &2 d?
Sec. VI we discuss the possibility of an extension of our Vi (p) = = |:5NN’ +O<_2>}-
results to the case of a penetrable QW and different trans- P
verse and-dependent longitudinal effective masses. Follow-For a narrow QW with
ing Ref. 4 we consider only cylindrically symmetric reso- d
nance states. — <1, (9)

The solution to Eq.(1), having the magnetic quantum
numberm=0, can be written in the form

(8

A1regep

the off-diagonal potential¥yy (N# N’) are dominated by
" the diagonal term¥ [V ~ (d?/@3)VynJ. In this approxi-
V(5,2) = 2 f (DR (p), (3) matio_n _the set(5) deqompo_ses into _indep_endent equations
describing the two-dimensiondPD) impurity states gov-

N’=1
erned by the quasi-Coulomb potentidgn(p), yielding the
where the functions transverse energies
|
iR 1,3,5 ony(d) d forE,N<0O
T A e Ng= 1y ey -~ =
(ng+ 200> e
ELN = ﬁzqz (10)
—, 0sq=wx forE,n=0
2m,

and for the density of the transverse staie$E |)
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oo

pL(EL) =2 pn(ELn), (11
N=1
where
1/2
e EXp'B, =w<£) forE, =0
27h? coshpB E N
E.n= o 12
T ozt (ng +20ng)° l“
[
Thus in the single-band approximation the total endggy & 1d ip 1
consists of the sequence of series of quasi-Coulomb levels | ;2% -+ EVn(p,v) ~2 Ri(p,v)

(10) adjacent on the low energy side to the size-quantized
levelsN=1,2,3,... All series except the one adjacent to the ip

ground levelN=1 are superimposed on tii—1) branches + E[Vlz(p,v)Rz(n,v) +V13(p,v)Ra(v,0)] = 0,
of the continuous spectrél0) emanating from the lower

size-quantised levels. Note that the density of stét#&sis a _4p

sum of &function type singularities(12) at the quasi- v= ipag

Coulomb energie$10). In other words in the single-band

approximation all the quasi-Coulomb states are strictly dis-

crete. In fact discrete energy levels persist only below the [ & 1d anz(n u) 1}R2(

(13

boundary of the continuous spectrum. In our case of the im- d2 udu’ 2
purity potential given in Eq(1) only the quasi-Coulomb se- 4
riesE | ; [see Eq(10)] adjacent to the lowest boundary of the N _ _ P
continuous spectrunE ;=0 consists of strictly discrete 5 VaMUR(PW =0, nay (14
statesny=1,3,5,... All other series adjacent to the excited

size-quantized levelbl=2 are quasidiscrete. The reason is 5 _
that the states of these series are in resonance with the states d_ " }E " KV (K.t) - 1 Ry(k,t)
of the continuous spectrum associated with Nvel sub- d2  tdt 2 227 4] 2"

bands and lead to an autoionization process. The density of .

states(11) then consists of a quasi-Coulomb series of finite 4 BV (k,)Rs(1,1) =0, t= Ap. (15)
peaksny=1,3,5,.. each determined by a nonzero widtk, 2 BEUTED ' ikag

(see Fig. 1 The latter is as usual related to the autoioniza-
tion ratel'y,,/# and lifetimery,=% /Ty, of the resonant state. { @ 1d

. . - o 1
Below we consider a three-band approximation describing| = , =~ ZVss(V: - _} Ry(v,7) + g[Val(V, DR.(p,7)

the interaction between the quasi-Coulomb states
n,=1,3,5,.. adjacent to the size-quantized energy levgls 4

=2,3 on the one hand and the states of the continuous spec-  +Vv,,(y,NR,(k,7]=0, 7= 2P (16)
trum emanating from the size-quantized energy leMstd,2 va

on the other hand. In this approximation the real and imagi- . _ .

nary parts of the complex quasi-Coulomb energy levels deln the above equations the following notations have been
termining the positions and widths of the peaks of the energysed:

d? rdr 2 4

level density. z-1
4)z -
IIl. THREE-BAND APPROXIMATION—RESULTS FOR Vi (n,u) = <N R N’>. 92 = T
THE IMPURITY vurrgin
In the three-band approximation the set of E&s.for N, E, = ﬂ 4= - ﬁ
N’=1,2,3 can be written in the form Heoprr Tt 2’
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4R o 1 a
-—, forE,»,=<0 Ry(n,u)=cy| INu+ay,+i—+nl —-—Julnu
n? 2 U2 2
Bi2=) 4p Uasct
z forE=0 —e (23)
The potentialsVyn (p,v), Vi (K, 1), and Vyn (v, 7) can be
obtained from the potentialyy (n,u) by replacing Ry(k,t) = az{ln t+ By +ie + ik(i - &)t In t] - Cs%,
U< v,t,7andn < ip,ik, » (17) 2 92 2
1%y 1 1 1 (24)
respectively. The quantum numbers obey the relationships
1,1 ,(m%)? 1 1 (Wao)z R(VT):C|:|I’]T+C¥ +iz+v<i—%>7|n7]
n2+p2_3<2d>’ 2R\ 2d ) T 2 \gm 2
1 1 _[mag)? _9a121 93 o5
e ) 19 R =
Equations(13)—(16) are solved by matching the corre- WheregNN/:{N|g(Z)|N'>- . o
sponding solutions in the regiod<p<a, For p In the regionu<1 the functionRx(n,u) Eqg. (19) is given
>d(u,v,t,7>0g) keeping in Egs.(13—(16) only diagonal by
terms~ Sy IN the potentialg8) we arrive at the solutions A 1-n n
- - -
Ry(n,U) = AU YA, o(U), (19 M= r((1—n)/2){'nUI “’( 2 >+2C puin ”]
whereW,, o is the Whittaker functio® andA, is a constant. (26)

The functionsR;(p,v),Rx(k,t), andR;(», 7) can be obtained
from the functionR,(n,u) by the replacementl?7) and re-
placing A, by A;,B,, and A;, respectively. The functions
R,(n,u) andRs(v, 7) correspond to the discrete 2D Coulomb
states while the functionR;(p,v) andR,(k,t) are the func-
tions of the continuous energy spectrum with the asymptotic
of outgoing waves

2i ip-1
p+p—ln

where ¢(x) is the psi functior{the logarithmic derivative of
the gamma-functionl'(x)] and C is the Euler constant
(=0.577. The functionsRy(p,v),Rx(k,t), and Ry(v,7) for
v,t, 7<1 can be obtained from E(6) by the same replace-
Qwents used to obtain these functions from B®). On sub-
Stituting the expression&6) for R,(n,u)(u<1) and those
for Ry(p,v)(v<l), Ryk,t)(t<1), and Ry(v,7)(7<1) into
R, ~ Aexp 2P ( A4p )] 4p the left-hand parts of the corresponding equati(@®—(25)

pag 2 ipag pag >1 a comparison of the coefficients is made between the results
In the regionp<ay(u,v,t,7<<1) an iteration procedure is

of the double integration taken fag, <u,v,t,7<1 and
| : - the expansions of the Whittaker functions involved particu-
performed by %ouble integration of Ec(ﬂ.:?—(lG) using the |11y in Eq. (26). When terms of the same order are equated
trial function RY and its first derivativeR,”)’ we obtain a set of four homogeneous algebraic equations for
(20) the coefficientscy(N=1,2,3, a,. This set is solved by the

RP(n,u) = cIn(u+ Vu? + g?/n?) + ay), : . :
determinantal method to give a transcendental equation

(R(O)(n u)’ =c |: 1 n_n u ( 933 )( 22 ) g%B
; ] B e R e oz — Ny — -A =0,
2 2 N,uz + gZ/nZ g 2 \,,uz + gZ/nZ 293 Go0aa 1$2 o011 2$2 911033
—_— 27
XIn(u+ Ju? + gzlnz)] . (21) @7
where
The trial functionsR”(p,v),RY(k,t), andRY(»,7) and 2 1-ip\ 7 2 1-ik\ =
their corresponding first derivativé®.” (p,v))", (R (k,1))’, M= w 2 )Ty 2= O N— )5
and (R(SO)(V,T))’ can be obtained from Eq$20) and (21),
respectively, by the replacements given in Ebj) and by 2 1-n 2 1-v
replacingc, by ¢;,a,,¢3 and a, by a4, Bs, a3, respectively. 2=~ lﬂ(T) Q3= "~ ( > )
As a result of the iteration procedure we have tiou,t, 7 922 Ys3
>guw, N, N'=1, 2, 3
Ri(p,v) = Cl[ln vtagt ig + ip(gi - %)v In v] A. States adjacent to the size-quantized level =2
11

Setting in Eqg.(27) n=ny+2x, ny=1,3,5,.., x<1, p
=3V22d/ mag) <1, v=5"Y42d/mag)<1, k=in, ¢

Q1o c 9133
=2/g33 N\y=2/g,, and neglecting the effect of the subband

2 3 2

-c, (22
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N=3 of the order ofd/ay;<1 we obtain from Eq(27)

giz
¢-—  —=0, (28)
2 MO1G
where
2 1 N 2 i T
Pp=———, = — —
2 022 X ' gu 2

The complex rooty of Eq. (28) determines the quantum

numbern and the transverse ener§y ,=-4R/n?

AR i
E 2(ng) =- F +AE, 5(no) — Erz(no), (29
o
where
s % S 25 2]
12(Ng) = ng 2 2(@) 372 2 21(¢)
(30)
and

r (n)-ﬂ(£)2(9)4®( )by D). (3
2o—ng 3772 a 1\P)PoA Q)P P).

In Egs.(30) and(31) the following notations are used:

4 2
D) = 1+?[%—co§(§)]

1
Dy(p) =1+ §(<p2 - sirfe),

1 2 27

B. States adjacent to the size-quantized levél=3

Below we consider the resonant impurity states adjacent
to theN=3 size-quantized level. The distinct feature of these

PHYSICAL REVIEW B71, 085302(2005

4R i
E 3(ng) =——5 +AE, 3(np) — Ers(no), (33
No
where
st = o1+ 3 )
13(Ng) = ng 2 3(e) ) 2
X[Pgxe) + (1’31(<P)]}i (34
and

d 4
<a_o> D3(@)[Po(@)P3o( @) + P1(0)P31(9)].

(39)
In Egs.(34) and(35) the following notations are employed:

wioso 23] o))

1  [5¢)]|?
q332(<p):4{sin<§> —z—ssin<?¢>] , ¢31(<p):co§‘<§>.

Equations(30) and (31) and(34) and (35) determine the
corrections to the real partsE | \(ng) of the Coulomb levels
E(f):—472/n§, (np=1,3,5,..) and their resonant widths
I'n(ng) caused by the finite widtd of the QW for the quasi-
discrete states adjacent to the size-quantized l&Nel® and
N=3, respectively. The correctionsE | y(ny) (30) and (34)
each consists of two terms. The first terfasd/ay) can be
obtained in the single-subband approximation while the sec-
ond ones ~(d/ay)®) are the resonant impurity shifts

1
F3(n0) - ngﬂ_g,

8R( 16 \%(d)*
AET;(no =F<§) (a—o) C()P21(0)  (36)
0

and

0 ~ SR 2 2 d 3
AE5(no) = F ;2 a_o D3(@)[P3a() + P3s(@)]
0

states is their nonzero width produced by the impurity posi- (37)
tioned at the midpoint of the QW. Note that for the reso-
nances associated with ti=2 subband considered above
and in Refs. 3 and 4 the width,(ny) (31) vanishes atb
=0(¢=0). Putting in Eq.(27) v=ng+2¢, np=1,3,5,.., {<1,
k=5"Y22d/mag) <1, p=8YA2d/may)<1, n=ik, ¢,
=2/g,, we have

that result from the intersubband coupling.

IV. DISCUSSION OF THE RESULTS ON IMPURITIES

We define the binding energy of the impurity electiBn
as the real part of the difference between the size-quantized

% % energyh2m?N?/2md? of the free electron and the energy of
32 Ua;

- =0, (32)  the impurity electrork. It follows from Eq.(7) that
No022033  N1033011 iR
Where EbN(no):?_AELN(no), N:2,3,..., n0:1,3,5,...,
o
2 1 2 @
e3=— ==, N=—+i7 (38)
O3 ¢ O 2

where the energieSE | \(ng) are given by Eqs30) and(34)
The complex root of Eq. (32) determines the quantum for N=2 andN=3, respectively. We observe that for the 2D
numberv and the transverse energy ;=-4R /12 layer (d=0)Ep,(ng)=Eps(ng)=4R/n3 which subsequently
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FIG. 2. The dimensionless
resonant widthl',(1)/R (31) of
the ground impurity statény=1)
adjacent to théd=2 subband plot-
ted as a function of the relative
impurity position |b|/(d/2) and
the width of the QWd (R anday
are the impurity Rydberg constant
and the Bohr radius, respectivily

decreases with increasing widtdh This is in agreement with  shift AE&”Z(nO) (36) on the displacemerltis qualitatively the

the well established numerical resuli? In the single-band same as that for the resonant width(ny) (31) (see Fig. 3

approximation the contribution to a redshift of the binding |n spite of the fact that the QW seems to be narrow it pro-

energy AE,\(d) caused by the finite widthd becomes yjdes the strong dependence of the resonant impurity states

AEy(d) ~ =R(ng*)(d/ ag) @(¢), while the resonant shift re- on the position of the impurity centre within the well. Over

sulting from the interband coupling isAEy\(d) the range|b| from d/4 to d/2 (edge, the resonant shift

~ =R (ng>)(d/ ag) P (@) P (). AE")(ny) (36) and the resonant width,(no) (31) increase
The dependence of the binding enerigyy (38) on the by factors of 2.23 and 4.27, respectively. In an effort to the

displacement of the impurity centdr is described by the qualitative comparison only we extrapolate the numerical

functions ¢N(¢)yq)NN/(¢)y N=23,N'=12[see Egs(30)  data for the maximum impurity resonant widf§" of the

and (34)]. It follows from these equations and E@8) that 2P0 State (the binding energy isk/4) in the GaAs QW
the binding energy decreases when the impurity shifts fron{R =5.83 meV of width 70 A<d=<400 A (Ref. 3 to the

the midpoint of the QWz=0 towards the boundaries  width d=30 A(d/a;=0.3. We obtain the result"y"
=+d/2. This result coincides with those calculated in Refs.=0.090 meV, that is close to the value 0.082 meV calculated
1, 4, and 26-28. To our knowledge, only Yen recentlyfrom Eq. (31). The lifetime corresponding to this width is
reported about the opposite dependefsee Fig.la) in  about 7 ps. Thus the resonant impurity states in narrow QW’s
Ref. 3. should be observed experimentally.

Since the dependencies of the binding energies on the The dependencies of the binding eneEgg(ny) (38) and
width of the QWd and the impurity positio found in the  (34) and the resonant widthi(ng) (35) and shift AE,(ng)
multisubband approximation coincide qualitatively with (37) of the states adjacent to tiN=3 subband on the width
those calculated for the isolated subbands below we concenf the QWd and displacemerit are qualitatively the same as
trate on the resonant width,(ny) and shiftsAE(L')N(nO) just  those for theN=2 states. Equatio(85) shows that the width
caused by the intersubband coupling. It is clear from Eqgsof the resonant state adjacent to the third subband can be
(31) and (35 that increasingd leads to increasing presented as a sum of contributions provided by the coupling
widths I‘N(no)~R(n53)(d/aO)4. This is similar to what has of this subband to the firgt~®3;) and second~®3,) sub-
been obtained by Yénand Blom et al? The resonant bands. The same result is obtained in Ref. 3. In the region
shifts AE!)\(np) (36) and (37) increase asAE!\(n,  |b/<<d for which o<1, ®3,=0 the subbandN=1 contrib-
~R(ngd)(d/ag)®. Note that for the impurity positioned at the utes mostly to the widt’s(no) (35) while for [b]=d/2(¢
mid-point of the QW(b=0) the widthI',(ny)=0. The reason =m,®3;=0) the subband\N=2 plays a leading role. The
for this is that the coupling between ti=2 andN’=1, 3  position of the impurityb, at which the effects of the above
subbands vanishes Bt 0(g,;=0,3=0). If the impurity dis- mentioned subbands on the widkh(ng) are in balance is
places from the mid-poin(b=0) the width I'(ny) (31)  determined by the roapy=2ho/d of the equation
monotonically increases and reaches a maximum for the im-
purity positioned at the edge of the QY,,|=d/2). Analo- _
gous dependence was obtained numerically by3@hereas P2l ¢0) Pz ¢0) = P1(¢0) Pl ¢o)

Blom et al* report the resultb,|=0.7d/2. The resonant
width I'x(1) (31) versus the QW widthd and the impurity to give the result ¢,=0.73|b|=0.231/2). The root ¢
shift b is depicted in Fig. 2. The dependence of the resonars0.81(|b|=0.26d/2) of the equation
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FIG. 3. The dependence of the
resonant shiﬂAE(l')z(l) (36) of the
ground impurity statgng=1) ad-
jacent to theN=2 subband given
in terms of the impurity Rydberg
constantR on the relative impu-
rity position [b|/(d/2) and the
width of the QWd scaled to the
impurity Bohr radiusag.

D3,(pg) = P31( ) Substituting the wave functioWr(r,ry,) (41) into Eq.(39)

. - . . - we arrive at a set of equations for the radial functi
determines the position of the impurity providing the equal g Bigo)

contributions of the above-mentioned subbands to the reso-

nant shift AE(i):.;(no) (37). The contribution of theN=1 #22/1d d >
subband leads to resonant widthg(n,) (35) and shifts —2—<—d—pd—)RN(p)+ > Vi (p)Ry (p) = ERYRy(p).
AE(&(nO) (37) that differ from zero for any position of the prAPTP TP N'=1
impurity. (42
V. OPTICAL TRANSITIONS TO RESONANT EXCITON In Eq. (42) the following notations are made
STATES
The equation describing the exciton formed by the elec- Vi (p) = - e 1 N/ (43)
tron (e) and hole(h) having the effective masses; and NN Amrege VP2 + (2o- 2)2 ’
positionsrj(ﬁj,zj), (j=e,h) can be written in the form
h? e
-2 o A- — }\P(re,rh) 127N
|: j=eh ij : 477808V(Pe_l)h)2+ (Ze_zh)2 E(Leﬁ) =Eex— 2,LLd2 -B; N=1,2.3,. (44)
=EexW(rern), (39

whereW(re,ry) is the exciton wave function satisfying the pere(N|...|N') is the matrix element calculated with respect

boundary conditions to the functionsfy(zo)fn(z) (4), w=mgmy(me+my) L is the
. . d_ d reduced effective mass of the exciton, dglis the forbid-
‘I’(Pe, 5Pt 5) =0, (40)  den gap. In Eq(42) we keep the diagonal matrix elements
(43) and only those off-diagonal matrix elemeri&3) pro-
and whereE,, is the total energy of the exciton. viding the resonant coupling. The other matrix elements cal-
As establishett?1-23dipole optical transitions are allowed culated with respect to the functioﬁﬁé(zg)fNé(zh) (4), N,
only to an exciton states withe=N,=N=1,2,3,.., where  #N/(N/,N/=1,2) describing the “forbidden” exciton states,
N;(j=e,h) are the quantum numbers determining the sizevanish because of the different parity of the “allowed” and
quantized energy levels. Besides this, transitions are possibteorbidden” exciton stategsee Refs. 21 and 23 for details
to the exciton states witK ;, =0 and m=0, where?iK | is Below we consider the exciton optical absorption in the
the transverséin x-y plane of squares) momentum of the short-period QW structuf® obeying the conditiond+D
exciton andm is the magnetic quantum number. As a result<2zc/w whereD is the width of the barriers separating the
the wave functionV/(re,ry,) becomes neighboring QW’s and where=E,,/# is the frequency of
Lz the absorbed photon. The exciton absorption is induced by
_ T S - o the transition of an electron-hole pair from the ground state
Plrarn) = Zws,qzzlfN(ZE)fN(zh)RN(p)' P=Pe™Ph: described by the functioW©(r,,r)=48(r.—r;) to the ex-
(41) cited state corresponding to the functidn(re,ry,) (41). It
was justified originally in Ref. 30 that the coefficient of the
where the function$y(z) are given by Eq(4). exciton absorptionv(w) can be written in the form
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|R(0)[2 cedure can be derived from E@3) and from the real part of
a(w) = ag(w)A(w), A(w):W, (45 Eq. (22), respectively by setting;=0. Then we compare
these iterated functions and those obtained by the expansion
whereay(w) is the coefficient of the fundamental absorption of Egs.(19) and (48) in the regiond< p<a,,. When terms
associated with the free electron and hole in the conductionf the same order are equated we have
and valence subbands. The functiéfw) can be treated as

the relative coefficient of the exciton absorption or the di- % wp coshmp/2)
mensionless density of exciton stat&?(p) and R(p) are €1 == 2y ﬁexp<— T) \V -
the radial wave functions of free electron-hole pair and ex-
citon, respectively, both being normalized to théunction xco§® +o(p)], an= 2 (49)
S(E, -E')). Further we consider the region ' Onn.

s h2m’

2,ud212 < (hw-Ey < 2Md222 (46) Cl<>\ e+ a(p)]> v, 820

1+exd-mp) 922

bounded by the ground=1 and first excitedN=2 reduced
size-quantized levels. The expression for the wave function

(0) = i
R™(p) can be found from Eq(42) for Vyn =0 with the Clg—21+02(p=0. (50)
result O
2uE
RO(p)=\13klap), q=/" 25, @p e
. . . 1 1+ip 1-ip 2
whereJy(x) is the Bessel function. The exciton wave func- Np)==| ¢ +il — )| -—, (51
tion R(p) can be obtained by solving Eg&t2). Since Eg. 2 2 2 911
(42) can be derived from Ed5) by replacingm, with u, the
averaging procedurés) with Eq. (43) and the energy | \ 1-n 2
(7) with the energyE(fﬁ) (44) only an outline of the corre- o(n) =y 2 | g_
sponding calculations will be provided below. 22
In the two-band approximation the set of equations for the
functionsR;(p) andR,(p) can be derived from Eq$13) and (p) = argT 1+ip
(14) by takingV;5=0 and then op)=argl|{ — )
4R 4R 4
E,,=——, E ,=——F%— = —(N|z.— N,<1,
11 02 12 2 ONN aex< |Ze— Z:|N")
where R(®¥=#2/2ua2, is the exciton Rydberg constant and NN =1,2. (52)

whereag,=4meeh?/ ue? is the exciton Bohr radius.
Further more we employ the technique different from tha'[de

providing the impurity complex energies in Sec. lll. The di- ;
mensionless density of statdgw) (45 will be found. The eﬂgzgg)n for the quantum numbergE,,),p(E,) and the

resonant exciton states are treated as states of the continuJﬁs

The set of linear algebraic equatiofi®) is solved by the
terminantal method to give in turn the transcendental

spectrum with real energies. In the regipe-d the wave
functionRy(p) is provided by Eq(19) with u=4p/aq,n while <p< mtan® + ‘T(p))) g (s
the functionR,(p) is taken in the form 1+exp-7p) 911922
7T o with
R(p.v) = \/ﬁzexp(— f)[expm)v AW o)
_ / 1 1 37%%
+exp-i0)(-v)™ —ip/2,0(_ v)], ﬁ + E T AR >1.
4p It follows from Eg. (20) for the wave functioﬂ%“”(n,u)
v= iAe,p” (48) and analogously for the wave functicRiO)(p,v) that using

0 Egs.(50), (53), and(49) the exciton wave function reads
In the regionp<a,, we define the trial functiorR(z)(n,u)

and its derivative(R(zo)(n,u))’ by Egs.(20) and(21), respec-
tively, while for the trial functiorR(lo)(p,v) and its derivative
(R?(p,v))’ we take the real parts of the corresponding ex-
pressions used in Sec. llsee below Eq(21)]. The wave which yields together with Eq47) the analytical expression
functionsR,(n,u) andR,(p,v) obtained by the iteration pro- for the coefficient of the exciton absorptieriw) (45) with

R(0) =Rx(n,0) + Ry(p,0) = 2(2 + &),
O22 Ou1

085302-9



MONOZON AND SCHMELCHER

_ 91\’
[1 +exp wp)](qo )

8
A(w): gz 1 99222 21
11 - 2 12
¢°+ —[1+exgd—mp)] ( —MD)
s 011922
(54)
where
_ﬂ<1_£)i _i‘(l_ 9 )i
911—3 472) a, 922—3 1672 a,
40 d
9122921:_ﬁ£-

The dependencies of the quantum numiveasdp as well as
the functionsp(n) (52) and\(p) (51) on the frequency are
given by

nem? 4R fi2a?
+ =E,+

2/-Ld2 p2 9 2/-Ld2

Equation(54) is valid under the conditiofd/a,.,) <1 and
for any frequencies in the regio@6). In the limiting case
of a free electron and hol@g,— >, gyn — 0, p—0, o=
-2/gy5, N=-2/g;;) we obtain from Eq(54) A(w)—1 and
the coefficienta(w)=ap(w), Eq. (45), describes the inter-
band fundamental optical absorption.

ﬁw:Eg+ 4 -

VI. EXCITON SPECTRUM. RESULTS AND DISCUSSION

In the vicinity of the resonant energyE »(vp)
=—R(®/ 13 determined by the quantum numbeg calcu-
lated in the single-band approximatiap(ry)=0 [see Eqg.
(52)], Eq. (54) may be rearranged to

(ex)

3 O22
Ao, vg) =——F—==°
0 Vg O11
% 1—‘ex(VO)
2m{[fiw = Eex(v0) = AEex(w0) 2 + T2 (vo)/4}

(56)

In Eq. (56) the following notations for the resonant width

I'e(vo) and the resonant shikE.(vy) of the resonant exci-

ton peak both caused by the intersubband interaction By

made
SR(eX) 2
To(vg) = %2922[1 - exf- mp)]sirts,  (57)
Vo011
1
AEg,(vp) = - EFeX( vp)COt 8, (598)
where
1
cotd=—[1+exg— mp)I\. (59)
o

PHYSICAL REVIEW B71, 085302(2005

quasi-Coulomb series of peaks marked by the quantum num-
bersyy=1, 3, 5,... adjacent to the size-quantized levéls
=1, 2, 3,... of the electron-hole pair possessing the reduced
massu. The ground seriedl=1 consists of ther-function
type peaks for whiclw(w, vg) ~ 8(hw—Eg(vy)) while the ex-
cited seriedN=2, 3, ... are formed by the resonant peaks

of widths I'g,(vg) shifted towards higher energies by an
amountAEg,(vg). The widthsl',(vg) and shiftsAE.,(v,) of

the peaks forming thbl=2 series are given by Eg&7) and
(58), respectively. It follows from Eq(55) that with narrow-

ing the QW the exciton peaks are subject to a blue shift. This
is in agreement with the results of the numerical
approaches!?® The optical maximay, of the excited series
possess a Lorentzian for(B6). Equations(57)—59) enable

us to obtain the qualitative dependencies of the optical width
I'e(vp) and the shiftAE.(vy) on the widthd of the QW

sind=6=- ﬂ”,
4

R(eX)< d )3
Vg Aex

The relative coefficient of the exciton absorptidfw, vg)
calculated from Eq945) and(54) is plotted as a function of
the photon energyiw in the vicinity of the ground state,
=1 in Fig. 4. If the width of the QW decreases the binding
energy of the resonant exciton stdig+e,—-%w increases,
the resonant width',,(1) decreases and the maximum value
Amaf®,1) increases proportional td., (1)~ (d/a.)* and
Amad®,1) ~T2X1) ~ (d/ag) ™, respectively. The exciton
peak positions associated with the transitions to the excited
resonant stateg,=3, 5, ... are determined by the values
S=-0.11, -0.04,.... These peaks are much narrower com-
pared to the peak associated with the ground gt o)
=T(1)1,°] and have the maximum values of the same or-
der[Amad®, vp) = Ana{w,1)] for given widthd of the QW.
Each peak is slightly asymmetrisee inset in Fig. 4 corre-
sponding to the ratial/a.,=0.3). Taking for the heavy hole
exciton in the GaAs QW the Rydberg constam(®®
=55 meV we find that the exciton resonant life-ting,
=#/T o, in the well of widthd=30 A is of the order of 15 ps.
ously the coupling between the different subbands does
not destroy the stability of the exciton states in the narrow
QW'’s. The feasibility of the spectroscopic manifestation of
these states depends on the homogeneous line broadening
caused by a number of mechanisms. Obetrial 1° observed
in the luminescent exciton spectrum of the GaAs/AlAs
double-quantum-well structuréd,=48 A, d,=165 A) at
T=4.2K the ground nonresonant peak of width
'=0.85 meV and the resonant peak with the width
I'=1.2 meV. The width of the ground peak is of the same
order as that of the resonant stéfe=0.70 meV calculated
by Yer? for the QW of widthd=150 A. We therefore con-
clude that the contribution of these mechanisms to the total

2
p=0, A=-—, cosé=1,

Jd11

(ex) d\4
1_‘ex(VO) = _3(g> v AEedwo) =

VO X

It follows from above that the exciton absorption in the widths of the impurity and exciton states compared to the
short-period QW structure is reflected in the sequence of theontribution provided by the resonant coupling is compa-
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rable in the case of moderaté=a;) QWs and significantly range of the quantum numb@(E’) that requires cumber-
greater in the case of narrold<ay) wells. some mathematics.

Our results correlate well with those derived from the The resonant widtli.,(vo) (57) and shiftAE.,(vp) (58) of
Fano theory* taking into account the interference of a de- the exciton peak coincide, respectively, with those involved
generate initially discrete and continuous states. Followingn the complex energy of the exciton. This energy can be
this theory the density of the above considered exciton statesalculated employing the technique used in Sec/déle Eq.
in the vicinity of maxima has the Lorentzian forfthe same (28)]. The roots of this equation are the same as those of the

as that given by Eq54)] with equation
2
Tev0) = 271(Ry(10,9)| Vas(p) [Ra(Po. p))I2 «p(x _ iz) _ G g
2/ 91192
and ) )
converting the denominator of E¢G4) to zero.
[(Ry(v,p)[Va1(p) |Ra(p, p))? As expected the width of the excitonic peBk,(v,) and
AEe(vo) =P E_E dE’ the shift AE.,(1o) decrease with decreasing width In the

single-band approximation setting in E§6) g1,=9,;=0 we
where the potential,(p) is determined by eq(6) and arrive at the equations

where Ry(v,p) and Ry(p,p) are the wave functions of the 3R (e
discrete(vo(E), »(E’)) and continuougpy(E),p(E’)) spectra  D'el(vg) = AEe(vg) =0, A(w,vg) = 37— 0(hw — Eey(vp))

of the energyE=%w, Eq. (55). Each peak is fitted with a Yo

shallow minimum like that given in the inset in Fig. 4. Tak- describing the optical absorption caused by the transitions to
ing for the functionRy(vo, p) in Eq. (19) vy=n=1, 3,5,...,  the strictly discrete localized exciton states.

and normalizing it and taking foR;(p,p) the expression Some remarks of general character follow. The two-

derived from Eq.(48) for p=2d/y3ma,<1 and from Eq. subband approximation is sufficient to calculate correctly the
(50) for g1,=0(@=7/2) we immediately obtain for the resonant shiftsAE, ,(ny) (30) and AE.(v) (58 and the
width the resultl’o(vg) = (R/ vg)(d/ ag,)* identical to that  widthsT'y(n) (31) andl.,(v,) (57). The reason for this is the
derived from our approach. The principal part of the integralchosen basis comprising the radial Coulomb functiBgép)

in the equation for the resonant shifE.(vo) implies the  of the discretg19) and continuous spectrum. A set of plane
wave functionR;(p,p) (48) to be determined for a wide waves~expigp) would require a considerable amount of
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coupled subbands to yield similar effects. In the presentedandidate of a narrow well providing the 2D character of the
approach the localised and extended components of the resieapurity states. As a result thepg state considered by Yén
nant state are derived in a unified method in contrast to Rein such a well attains significantly the 3D state with the
3 where these parts are calculated employing different techeffective Rydberg constarR /4. Consequently only a quali-
niques. The dependencies of the binding eneffgy (38),  tative agreement between the numerical data of el our
(30), and(34), the resonant shift-(d/ap)* in Eqs.(30) and  analytical results can be achieved. Moreover the finite depth
(34) and that determined by E¢8) and widthI'y(ng) (31) v and the electron density related to the quasi-3ig @ate
and(35) andl¢,(vp) (57) of the impurity electron and exci- could contribute to the discrepancy between the dependen-
ton on the widthd of the QW are in complete qualitative cjes of the binding energy on the position of the impurity
agreement with those calculated numericafifthe fact that  optained by Yehand those calculated in this paper. However
Refs. 3,4,20,21,23 and 24 considered moderate and wid@e new criterion for a narrow QW of finite depth is satisfied
QW's (d>ag) prevents a detailed quantitative comparisonmch better for the GaANg sAS/ Alg 4N s,As QW having
with our results. the parameter¥/=450 meV,r,=14.7 A, ay=184 A (Ref.

The resonant states of the Coulomb particle in the narrow2) and d=40-50 A. Thus we believe that our analytical
QW are analogous to those in bulk material in the presencghethod can be applied to the resonant impurity states in the
of a strong magnetic fielB,*>%3 providing the effective two-  narrow QWs of realistic width and finite depth.
dimensional confinement in the plane perpendicular to the Along the barriers of finite height the image charges
magnetic field B bounded by the magnetic lengths  caused by the difference between the dielectric constants of
=(h/eB)*. The resonance comes from the coupling of thethe well and barrier materials influence the impurity and ex-
one-dimensional quasi-Rydberg and extended Coulombiton states. The effect of the dielectric-constant mismatch
states each associated with the different equidistant Landaths been comprehensively studied by Fraizeokl. in Ref.
subbands. The investigations of these diamagnetic resonamn8 in which the binding energy of the impurity in the
states based on the theory of Féingere undertaken in Refs. GaAs/Ga_Al,As QW was calculated as a function of the
34-36 whereas the multi-subband approximation was emyidth of the QW and the impurity position for the Al com-
ployed in Refs. 37 and 38. Our results derived for the resopositionx=0.3, 0.4. For the relative correction to the binding
nant states in the QW are in complete qualitative agreemerénergy of the on-center impurity the restlE,/E,~ 0.2
with those corresponding to the diamagnetic resonant stategas found. On extrapolating the data obtained in Ref. 13 to
in bulk material. The binding energy increases and the resahe concentratiorx=0.2 taken by Yehand widthd=30 A
nant shift and width both decrease with increase of the conwe find the results\E,/E,~=5.7% andAE,/E,=6.4% for
finement i.e. with the decrease of the widtlof the QW and  the impurity positioned at the midpoint of the Q0 and
the increase of the magnetic fiekl shifted towards the edge of the QW by a distaibeed/4,

In the case of the anisotropic energy bands with the effecrespectively. Note that the correction to the binding energy
tive massesn, | ;(j=e,h) corresponding to the motion paral- associated with the dielectric-constant mismatch remains less
lel and perpendicular to the QWaxis, respectively, the im- than that provided by the finite depth of the QW. The pre-
purity and exciton states depend on the ratig/my; thatin  sented method can be extended to the case of an external
principle requires a numerical study. A variational approactelectric field directed perpendicular to the heteroplanes. The
has shown that in bulk material and for wide QWHE  matrix elementsy; are calculated then with respect to the
> a,) for the ratiom=4.63m, the donor binding energy is wave functions of the electraiole) in the QW subjected to
one and a half times the corresponding valuenfigi=m, .3°  the electric field= f\(F,2) (Ref 43 instead offy(2) (4) used
In a narrow QW(d< ag) the in-plane motion is governed by in this paper. For the QW of intermediate width comparable
the Coulomb potential and the effective mass; while the  to the impurity or exciton Bohr radius the two- or three-
massmy; determines the states. This allows to obtain the subband approximations become inappropriate. Nevertheless
final results for the impurity binding energy, the exciton peakthe resonant states can be found in the multisubband approxi-
position and for the resonant shifts and widths of the impu-mation. Only at the final stage of the determinantal proce-
rity and exciton states by the following replacements. In Eqdure some minor numerical study is necessary. We expect
(7) mg is replaced bymy, in Egs.(29—31) and(33)—<(38) R that in the multisubband approximation the seri{@s and
by R(m, /m,) andag by ag(ms/m, o), in Eq.(44) u by w;,,  (41) are rapidly convergent as happens with the series de-
and in Egs.(54)—(56) R by Ry /u and a, by scribing the diamagnetic resonant stafesiowever these
Aol ) where ,uﬁ:,uﬁ;,uﬁ,h. For a more realistic states demonstrate that the multi-subband approxinition
model of the QW of finite depth having thedependent does not lead to significant qualitative changes relative to the
effective masseme(2) the wave functiongy(z) (4) should  two-subband modéf.
be replaced by those relevant to the mentioned propéfties.
In particular as it follows from Ref. 41 for the QW of finite
depthV under the conditiord>r, ro=(A%/2uV)*? the cri-
terion of the narrow QW?9) should be replaced by the new  We have developed an analytical approach to the problem
oned<ay—2r, both for the groundN=1 and for the excited of the resonant states of an impurity electron and exciton in
N>1 size-quantised subbands. In Ref. 3 the parameters f@ narrow QW. The resonant character is caused by the inter-
the GaAs QW were taken to Bé=188 meV,r,=17.5A,  subband coupling of the states treated as strictly discrete and
a,=98 A. Clearly the QW of widtld=30 A is not the best extended in the single-subband approximation. The three-

VIl. CONCLUSIONS
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and two-subband approximations are sufficient to obtain thevells we expect the resonant impurity and exciton states to
complex energies of the impurity electron and the coefficienbe observable experimentally. The presented results can eas-
of the exciton absorption in explicit form. The wider the QW ily be extended to the case of an external electric field di-
is the larger are the widths both of the impurity energy levelsrected perpendicular to the heteroplanes. In principle our ap-
and the exciton peaks and the less are the impurity and eyroach is appropriate for QWs of finite depth and moderate
citon binding energies. As the impurity center shifts from thewidth comparable to the impurity or exciton Bohr radius.
midpoint of the QW, the binding energy of the impurity elec-

tron decreases and the width of the energy level increases.
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