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We have carried out classical molecular dynamics simulations to study the configurational and energetic
properties of the Si self-interstitial. We have shown that the Si self-interstitial can appear in four different
configurations, characterized by different energetics. Along with the already known tetrahedral, dumbbell, and
extended configurations, we have found a highly asymmetric configuration not previously reported in the
literature. Using a data analysis technique based on time averages, we have extracted the formation enthalpies
and the probability of finding the interstitial in a given configuration, both depending on temperature. By the
use of thermodynamic integration techniques we have determined the Gibbs free energy and entropy of
formation, and the relative concentration of each interstitial configuration as a function of temperature. We
have demonstrated that the change of interstitial configuration is correlated with the diffusion process, and we
have identified two different mechanisms for interstitial-mediated self-diffusion. In spite of the microscopic
complexity of the interstitial-mediated diffusion process, our results predict a pure Arrhenius behavior with an
activation energy of 4.60 eV in the temperature interval 900–1685 K, in good agreement with experiments.
This energy is decomposed in an effective interstitial formation enthalpy of 3.83 eV and a migration barrier of
0.77 eV, which macroscopically represent the averaged behavior of the different interstitial configurations.
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I. INTRODUCTION

Native point defects in Si, vacancies and self-interstitials,
have been an important field of both theoretical and experi-
mental research for several decades. The interest in its study
continues today due to their role in a large variety of phe-
nomena, especially in those related to the fabrication of mi-
croelectronic devices. Native Si defects affect the micro-
structure evolution of the material during several of the IC
manufacturing steps, and thus can alter the final performance
of the device.1 Understanding their behavior and properties is
important in order to develop predictive atomistic simulators
for the design of new IC generations by saving the realiza-
tion of expensive and time-consuming test lots.2

The study of the Si self-interstitial properties is of particu-
lar importance. Self-interstitials have been implicated as the
origin of rodlike defects observed in Czochralski single-
crystal growth, which can ultimately produce the degradation
of the manufactured ultralarge-scale integrated silicon
devices.3 On the other hand, during the implantation step a
large concentration of interstitials is introduced in the lattice.
Upon subsequent annealing at elevated temperatures these
interstitials interact with dopants, such as B, and cause the
so-calledtransient-enhanced diffusion, which alters the junc-
tion depth.4 This effect is becoming more and more critical
as the size of devices shrinks on every new IC generation.
Besides, Si self-interstitials have also been given a role in the
understanding of amorphous phase formation.5,6

In spite of the great number of studies devoted to it, the
interstitial contribution to Si self-diffusion is far from being
fully understood. Experiments have established that Si self-
diffusion obeys an Arrhenius behavior over a wide range of
temperatures with an activation energy of 4.5–4.8 eV.7–10

The self-diffusivity DSD is written as the sum of contribu-

tions from independent diffusive mechanisms or defects,
DSD=oiDiCi, whereDi andCi are the diffusivity and concen-
tration, respectively, of the relevant defect. Only two diffu-
sive mechanisms are routinely considered in Si: the vacancy-
mediated and the self-interstitial-mediated diffusion
mechanisms. A third one, the concerted exchange of
Pandey,11 is based on the defect known asIV pair or simply
bond defect, which consist of a local distortion of the Si
lattice with no excess of deficit of atoms.12,13 It is a low
formation energy defect that maintains fourfold coordination.
Even though it has been given a fundamental role in the Si
amorphization process,14,15 its contribution to diffusion is
usually disregarded9 since it has been theoretically demon-
strated to be negligible in comparison to the other two
mechanisms.16 Even though the Si self-diffusion process is
well characterized experimentally, the individual contribu-
tions to it from vacancies and self-interstitials are still an
open question, as well as the determination ofDi and Ci.
Usually additional hypotheses have to be introduced since
direct experimental detection of Si self-interstitials has
proved to be difficult.1

In order to complement these experiments, theoretical
studies have been carried out to determine the configuration
and energetics of the Si self-interstitial, as well as its
diffusive behavior. These include first principles,13,16–21,23

tight binding sTBd,12,24–29 and classical potential calcula-
tions.5,6,30–38However, even when using the same calculation
techniques, different authors come to different conclusions
regarding the Si self-interstitial properties. The discrepancies
are mainly related to the determination of the lowest forma-
tion energy configuration and to the microscopic description
of the interstitial-mediated self-diffusion mechanism.

Most of the first-principle studies of the Si self-interstitial
properties are based on static minimization techniques,
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mainly because of the limitation on the simulation times
s,30 psd that can be treated. Statical minimization tech-
niques have been shown to give useful information, above all
those related to defect formation energies. However, with its
use the system could get trapped in a local potential mini-
mum instead of finding the global one. Sometimes, defect
configurations obtained by statical methods have been shown
to be unstable.21 Symmetry is often enforced when searching
possible configurations and migration paths, and that can oc-
casionally lead to wrong conclusions.14,21 These limitations,
which could explain the discrepancies among results of dif-
ferent authors, would be avoided by using fully dynamical
simulations. However, that is not possible within the first-
principle framework due to the excessive computational
workload, except for temperatures close to the Si melting
point.16 Unfortunately, to be able to do fully dynamical simu-
lations it is necessary to resort to empirical approaches, at the
expense of losing the “parameter-free” character of the first-
principle methods. In fact, to get reliable statistics on the
different interstitial configurationssseveral thousands of
samplesd and to accurately describe the diffusion process
sseveral hundreds of diffusion hopsd at intermediate tempera-
turessaround 1000 Kd, even the TB technique could be com-
putationally prohibitive. Classical potentials allow us to af-
ford such kinds of long dynamical simulations, but the
electronic description of the system is lost and some care has
to be taken in order to extrapolate results to situations not
explicitly included in the potential parameter-fitting process.
In the literature, the vast majority of classical studies on the
Si self-interstitial have been carried out using the Stillinger-
Weber sSWd potential,39 and consequently their properties
within the SW description are rather well established. This is
not the case for the Tersoff potential.40

In this paper we present a thorough study of the Si self-
interstitial configurational and energetic properties using mo-
lecular dynamicssMDd calculations within the Tersoff de-
scription. The MD technique is briefly introduced in Sec. II,
as well as the motivations behind the use of the Tersoff po-
tential and the particular conditions of our calculations. In
order to analyze the simulation data, we used a technique
based on time averages of atom coordinates along the simu-
lation, which is presented in Sec. III and compared with
other analysis methods routinely used. In Sec. IV the main
results of our work are presented, with special emphasis on
the comparison with results obtained by other authors using
different techniques, both theoretical and experimental. Fi-
nally, in Sec. V some conclusions are drawn.

II. MOLECULAR DYNAMICS SIMULATIONS

The MD simulation technique consists of the numerical
resolution of the equations of motion for a system ofN
atoms.41 These equations are discretized in time and solved
in a computer by using a suitable integration algorithm. The
outcome of the MD simulation in each time stepDt is the set
of positionsrWN and momentapWN for all atoms. The phase-
space trajectory of the system can be represented by the set
of numbers:

hfrWNskDtd,pWNskDtdg, k = 1, . . . ,Mj, s1d

where M is the total number of discrete points needed to
cover a given simulation timet st=MDtd. From the com-
puted trajectory it is possible to extract the average of a
system propertyA by

kAl =
1

M
o
k=1

M

AfrWNskDtd,pWNskDtdg, s2d

provided the relation betweenA andrWN andpWN is known and
the total simulation timet is long enough.

In the MD technique the interactions among the atoms
determine the system dynamics. Consequently, it is impor-
tant to use interatomic potentials that represent as close as
possible the interactions in the real material. In our study,
even though no large systems are necessary, we have to
simulate very long times, at least for the lower temperatures.
We resorted to the use of an empirical interatomic potential,
much less computationally intensive than first-principles or
TB methods. Among the several potentials for Si that can be
found in the literaturessee Ref. 42 for a comparative studyd,
we have chosen to use the one developed by Tersoff within
its third parametrizationsT3d.40 It takes into account many-
body interactions through the use of an effective coordina-
tion term that depends on the bond lengths and their relative
orientations. The potential parameters were fitted to a data-
base consisting of cohesive energies of real and hypothetical
sobtained byab initio methodsd bulk polytypes of Si, along
with the bulk modulus and bond length in the diamond struc-
ture. In addition, the potential was required to reproduce all
three elastic constants of Si to within about 20%. Even
though no point defect data were included in the fitting pro-
cess, the fact that data regarding structures not having four-
fold coordination were used in the fitting suggests that the T3
potential could be more suitable than others at describing
point defects, since the involved atoms are also not fourfold
coordinated. In fact, Tersoff compared the point defect ener-
gies predicted by T3 with first-principle calculations showing
that values were consistent within 1–2 eV,40 which was only
a factor of 2 worse than the consistency among theab initio
results of different groups.

A limitation attributed to the T3 potential is that it predicts
a melting point temperature for Si of around 2400 K,14 well
above the value found in the experiments, 1685 K.43 This is
not an important drawback since it is possible to make a
rescaling between real and T3 temperatures. Porteret al. re-
lated the simulation temperatureTT3 with a scaled real tem-
peratureTreal by requiring that the internal energy of the
classical simulation system atTT3 be equal to that of a cor-
responding quantum system atTreal.

44 They defined a tem-
perature scaling expression based on a fifth-order polynomial
that relatedTT3 with Treal. Unfortunately, their scaling law
only comprised the temperature range up toTreal=700 K.
Since our simulations have been carried at higher tempera-
tures, we have extrapolated their scaling law with a second-
order polynomial. We have fitted the polynomial parameters
by assuring continuity of the scaling law and its first deriva-
tive atTreal=700 K, and making the real melting temperature
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of 1685 K coincident with the T3 melting temperature of
2400 K. The resulting scaling law is given by

TT3 = 6.953 10−4Treal
2 + 2.663 10−2Treal + 3.793 102,

s3d

where bothTT3 andTreal are in K. In the following tempera-
tureT will be taken to meanTreal, as given by Eq.s3d, unless
otherwise noted.

In spite of being one of the most used Si empirical poten-
tials in MD calculations, there are few studies on the Si
self-interstitial properties within the T3 description. Ungaret
al. used the T3 potential to study free energies, structures and
diffusion of point defects in Si,33 in order to complete a
previous study carried out by Balamane and co-workers.42

However, instead of carrying out dynamic simulations, they
used the Monte CarlosMCd framework, and in the case of
the self-interstitial they only considered one possible con-
figuration. Nevertheless, they found that the T3 potential
gives a fairly good description of the point defect formation
and migration energies. On the other hand, in a recent work
Nishihira and Motooka observed the generation and move-
ment of interstitial defects from a planar crystal-amorphous
interface.38 They used MD simulations with the T3 potential.
However, their interest was mostly focused on the study of
the recrystallization process.

To study the variation of the Si self-interstitial properties
with temperature we carried out MD simulations for several
temperature values between 900 K and 1685 K. We have
used a system consisting of 576 Si atoms, large enough to get
reliable values of the formation energies, and more than
double the system size of previous MC simulations.33 The
dimensions of the computational cell were 4a33Î2a
33Î2a, a being the Si basic unit cell lengths5.43 Åd. The
MD cell, of approximately the shape of a cube, was bounded
by two s100d planes in theX direction and by fours110d
planes inY andZ directions. To minimize finite size effects
we used periodic boundary conditions along the three axes.
We solved the classical equations of motion using the fourth-
order Gear predictor-corrector algorithm45 with a variable
time step, which is chosen as an inverse function of the
maximum kinetic energyEKmax present in the system:

Dt = K/ÎEKmax, s4d

whereK is a proportionality constant chosen in such a way
that the most energetic particle in the system takes 100 time
steps to cover the distance between two consecutive atom
planes in thek100l direction. This condition assures total
energy conservation.

Initially the atoms are set to occupy perfect lattice posi-
tions. An extra atom is then introduced in a hexagonal inter-
stitial position, just to keep it as far as possible from its first
neighbors in the perfect latticesif the extra atom is set close
to any host atom, an artificially high repulsive energy may be
introduced in the celld. Atom positions are then rescaled to
account for thermal expansion in order to keep external pres-
sure close to zerosconveniently then energies are assimilated
to enthalpiesd. Initial velocities are chosen from a Maxwell-
Boltzmann distribution corresponding to each temperature to

be simulated. Due to the exchange between kinetic and po-
tential energies, it is necessary to rescale atom velocities sev-
eral times during an initial run to finally equilibrate the sys-
tem at the desired temperature. Then the system is allowed to
freely evolve in theNVE ensemble until the total simulation
time is reached. This time should be long enough to ensure
that a meaningful part of the phase space has been sampled
in order to apply Eq.s2d. Due to the slower dynamics in the
lower temperature range, this total simulation time can be as
high as one-tenth of a microsecond.

III. ANALYSIS OF THE SIMULATION DATA

We are interested in the study of the time evolution of the
configurational and energetic properties of the Si self-
interstitial at different temperatures. Even though MD is a
powerful tool to study defect dynamics at an atomistic level,
some problems arise when analyzing data directly extracted
from the simulations. Usually thermal agitation precludes the
direct analysis of configurations and energetics, above all at
high temperatures. To get a clean configuration from a MD
run, several techniques are routinely used, such as thecool-
ing down to0 K or the steepest-descent/conjugate-gradient
minimization methods.5,27,34 In cooling down to 0 K the ki-
netic energy of the system is slowly drained via velocity
rescaling until the total temperature has dropped close to
0 K. In the minimization methods atoms are moved along
the direction of the maximum variation of the interatomic
potential function. In both cases particles are gradually dis-
placed to their closest local potential minimum, thus elimi-
nating thermal vibrations. Then it is possible to extract clean
configurations and formation energies for the defect. How-
ever, these techniques are relatively computer demanding,
and thus they cannot be applied to every configuration ob-
tained from the MD simulation. Besides, there is no certainty
of reaching the global potential minimum instead of a local
minimum.

On the other hand, to get the diffusion path and the tran-
sition state between two different configurations it is neces-
sary to use relatively complex techniques such as thenudged
elastic band method,46 thediscretized path optimization,47 or
the eigenvector-following approach.27 Reaction paths de-
scribe the lowest-energy path connecting two defect configu-
rations. The highest-energy point on this path, orsaddle
point, determines the energy barrier for the transition be-
tween those two configurations. However, the cited methods
usually require knowledge of both the initial and final con-
figurationsa priori, as well as a guess of the overall reaction
path.36,48

To analyze the data from the MD simulations we have
used a very simple method that overcomes the mentioned
drawbacks. It is based on the time average of the atom coor-
dinates, and it has been successfully used to study recrystal-
lization processes in Si.49,50 Figure 1 serves to illustrate the
effectiveness of the scheme. Solid lines represent the projec-
tion in the XY plane of the trajectories followed by seven
atomssthe Si self-interstitial and its six closest neighborsd
during 1000 steps in a MD simulation carried out at 1600 K.
As can be seen, each atom vibrates around the corresponding
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local potential energy minimum. It is clear how these vibra-
tions preclude the direct determination of the configurational
and energetic properties of the Si self-interstitial, above all at
high temperatures such as 1600 K. The result of the time
average during 1000 simulation steps, and the atom coordi-
nates obtained by cooling down to 0 K using atom velocity
rescaling every 1000 steps for a total MD simulation run of
106 steps, are also represented in the figure. As it can be
seen, time averaging gives a very good approximation to the
positions obtained by cooling down to 0 K, but at a much
lesser computational cost. Besides, this technique can be ap-
plied on the fly, i.e., during the actual MD simulation. Con-
sequently, it allows us to extract the evolution in time of the
Si self-interstitial configuration and energetics. Saddle points
appear in a natural way as intermediate configurations during
Si self-interstitial diffusion, as we shall see in the next sec-
tion.

For each simulated temperature, we have carried out time
averages for 1000 steps. The temperature is proportional to
the total kinetic energy of the system.41 Considering Eq.s4d,
it is clear that the time step will be shorter for higher tem-
peratures. Consequently, 1000 simulation steps are equiva-
lent in terms of system dynamics for any temperature, since
the enhanced particle mobility at high temperatures is com-
pensated by shorter time steps. Each averaged configuration
is compared to the perfect lattice at each temperature. When
an atom is closer than 0.7 Å to a lattice site, the atom is
associated with that site; otherwise it is labeled asdisplaced.
In the same way, lattice sites with no associated atom are
labeled asempty. This method allows a first classification of
the Si self-interstitial configurations. When different configu-
rations share the same number of displaced atoms and empty
sites, the classification can be easily done taking into account

geometrical considerationssdistances between displaced at-
oms or between displaced atoms and empty sitesd.

IV. RESULTS AND DISCUSSION

A. Si self-interstitial configurations and energetics

Once each set of averaged atomic positions obtained
along the simulation is classified in terms of displaced atoms
and empty sites, we have made an statistical study of the
morphology and energetics of each interstitial configuration.
We have identified four basic configurations, which are
shown in Fig. 2. In the first one, there are no empty lattice
sites but one displaced atom which occupies a tetrahedral
interstitial site. This is the so-calledtetrahedral interstitial,
usually represented by T. Figure 2sbd shows thedumbbell
interstitial sDd, where two displaced atoms oriented along
the k110l direction share a common lattice site. T and D
interstitials are the most studied Si self-interstitial configura-
tions.12,30,32,33,51In Fig. 2scd appears theextended interstitial
sEd, which consists of four displaced atoms and three empty
lattice sites that lie on as110d plane. The name “extended”
refers to the fact that in this configuration the interstitial is
highly delocalized. It has been observed to appear during
recrystallization from a planar crystal-amorphous interface in
MD simulations.38 Figure 2sdd shows an interstitial configu-
ration that, to our knowledge, has not yet been reported in
the literature. It consists of three displaced atoms and two
empty lattice sites. As we shall see, it appears as the saddle

FIG. 1. XY projection of the trajectories followed by a Si self-
interstitial and its neighbors during 1000 simulation steps at
1600 K. Open circles represent the potential energy minima, as ob-
tained by cooling down to 0 K. Crosses arethe positions obtained
by time averaging the atom coordinates during the 1000 steps.

FIG. 2. XY, XZ, and YZ projections of the different Si self-
interstitial configurations found in our simulations. Gray scale rep-
resents potential energies, where darker tones correspond to higher
values.
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point between the D and E configurations. Consequently, we
will refer to it asDE interstitial. It is worth noting that while
the T, D, and E interstitials are high-symmetry configura-
tions, that is not the case of the DE interstitial. A highly
asymmetric configuration for the Si self-interstitial was also
identified in first-principle calculations,21 the so-calledcaged
interstitial, though with a different geometry. This caged in-
terstitial has been found to be metastable.13,22

All these configurations for the Si self-interstitial repre-
sent local minima in the potential energy curve, as we have
verified by cooling down to 0 K. We have observed that in
the case of the T, D, and DE interstitials, small variations in
the positions of the atoms around the defect drive to slightly
different associated potential energies. Moreover, we have
observed that the D and DE configurations represent very
shallow potential minima, since slight thermal agitation leads
to their transformation to the T and E interstitials. Other in-
terstitial configurations, such as the hexagonal and bond-
centered, although also representing local minima in the T3
potential energy curve,30,33 have not been observed in our
dynamic simulations. Symbols in Fig. 3 represent the relative
probability of finding the interstitial in a given configuration
i as a function of temperature, as obtained in our simulations.
These values can be assimilated to the relative concentration
of each interstitial species,ci. As it can be seen, relative
concentrations of the T and E interstitials decrease with tem-
perature, while for the D and DE interstitials the concentra-
tions increase. As it can be deduced from Fig. 3, the most
frequent configuration is the T interstitial at all simulated
temperatures.

Formation enthalpiesHi for each interstitial typei are
calculated by the evaluation of the potential energy of the
system containing a given configuration and subtracting that
of a perfect crystal with the same number of atoms.33,34 The
potential energy corresponding to a perfect crystal lattice at
each temperature is extracted by carrying out the same type
of time average done for the system with the extra atom. As
we have mentioned in the preceding paragraph, small varia-
tions in the positions of the atoms involved in the defect
produce slightly different values of the potential energy per
atom. As an example, we show in Fig. 4 the distribution of

the formation enthalpies corresponding to each interstitial
configuration as obtained along the MD simulation at 930 K.
While the distribution for the E interstitial is relatively nar-
row, distributions for the T, D, and DE configurations are
wider with an energy spreading of around 1 eV. The peak
values corresponding to each distribution were taken as the
formation enthalpies for each configuration at 930 K. The
formation enthalpies obtained using this criterion at every
simulated temperature are represented in Fig. 5. As can be
seen, formation enthalpies decrease with temperature, except
for the case of the T interstitial where it increases. This trend
for the T configuration was also observed by Ungaret al.
within the MC simulation technique framework.33 The abso-
lute values they obtained for the formation enthalpy are in
good agreement with our results, specially in the low-
temperature end. For higher temperatures there is some dis-
crepancy but within their error bars. Lines in Fig. 5 represent
best linear fits to the data. It is noteworthy that when ex-

FIG. 3. Relative concentrations of each interstitial configuration
as a function of temperature. Symbols are obtained directly from
our simulations. Lines represent theoretical fits as obtained from
Eqs.s6d and s8d sexplanation in textd. FIG. 4. Formation enthalpy distributions for each interstitial

configuration as obtained from simulations at 930 K.

FIG. 5. Formation enthalpies obtained in our simulations for
each interstitial configuration as a function of temperature. Values
correspond to the peaks in the formation enthalpy distributions for
each configuration and temperature. Closed circles represent the
MC results for the T interstitial from Ref. 33. Solid lines are best
linear fits.
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trapolating these lines toT=0 K, the formation enthalpy val-
ues coincide exactly with the ones obtained by Balamane and
co-workers also using MC techniques with the T3 potential
for the interstitials Ts3.45 eVd and D s4.70 eVd.42 A good
agreement is also found between our extrapolation to 0 K for
the E interstitials3.94 eVd and the formation energy calcu-
lated by Nishihira and Motooka for the same configuration
s3.85 eVd.38 This shows the consistency of our results, and
supports the idea of a linear behavior of the enthalpies onT
from T=0 K up to the melting point. These formation en-
thalpy values at 0 K, and the ones obtained by other authors
using different calculation techniques, are represented in
Table I. Energy values for the hexagonal and bond-centered
configurations, although not obtained in our simulations, are
also shown for the shake of completeness.

From our results it is clear that the lowest formation en-
thalpy configuration depends on temperature: T below
1000 K and E above. In the case of the SW potential, there
are discrepancies: some authors affirm that the lowest forma-
tion enthalpy configuration is the T interstitial with
4.95 eV,30 other authors conclude that it is the D configura-

tion with 3.5–3.7 eV,34,35 and others the E configuration
with 3.6–3.9 eV.5,32,36,37This situation is not different within
the first-principle framework: most authors coincide that the
lowest-energy configuration is the D interstitial, with
2.2–3.4 eV,16,20,21,23while Needs22 and Goedeckeret al.13

state that D and hexagonal configurations are degenerate,
both having a formation energy of 3.31 eV. However, it is
worth noting that, to our knowledge, noab initio calculations
have been carried out on the E configuration, although the-
existence of a delocalized interstitial has been hypothesized
within this framework17 and, in fact, the caged
configuration21 has been described as “extended.”51 In the
case of TB simulations, Tang and co-workers12 found that the
lowest-formation-energy configuration is the D interstitial
with 3.8 eV. That was the same conclusion for Munro and
Wales, but with a higher value for the formation energy,
5.55 eV.27 In the previous studies of Wanget al.24 and Song
et al.25 the D configuration was not considered, only the T
and hexagonal configurations, having both higher calculated
formation energies than those obtained by Tanget al. On the
other hand, Lenosky and co-workers obtained a lower forma-
tion energy for the T interstitial, 3.75 eV, even though in

TABLE I. Formation enthalpiessin eVd for several Si self-interstitial configurations as found in the literature. These values have been
obtained using different calculation methods, such as relaxation techniques, MD, or MC. The last column shows our results, obtained by
extrapolating to 0 K the linear fits of Fig. 5.

Configuration First principles Tight binding Stillinger-Weber Tersoff 3 This work

T 5.40 sRef. 51da 3.75 sRef. 26d 4.84 sRef. 32d 3.42 sRef. 33d 3.45

4.3 sRef. 25d 4.95 sRef. 30d 3.45 sRef. 42d
4.39 sRef. 12d 5.25 sRef. 42d 3.8 sRef. 40d
4.41 sRef. 24d 5.28 sRef. 36d
8.10 sRef. 27d

D 2.16 sRef. 21d 3.80 sRef. 12d 3.5 sRef. 35d 4.39 sRef. 33d 4.70

3.2 sRef. 20d 5.55 sRef. 27d 3.65 sRef. 34d 4.70 sRef. 42d
3.3 sRef. 16d 3.9 sRef. 37d 4.7 sRef. 40d

3.31 sRefs. 13 and 22d 4.68 sRef. 36d
3.40 sRef. 23d 5.26 sRef. 30d
4.96 sRef. 51da 5.38 sRef. 32d

5.62 sRef. 42d
DE 5.08

E 2.29sRef. 21db 8.10 sRef. 27db 3.66 sRef. 32db 3.85 sRef. 38d 3.94

5.17 sRef. 51da,b 3.7 sRef. 37d
3.76 sRef. 5d
3.91 sRef. 36d

Hexagonal 3.31sRefs. 13 and 22d 3.81 sRef. 26d 6.54 sRef. 30d 4.58 sRef. 33d
3.45 sRef. 23d 4.93 sRef. 12d 6.58 sRef. 32d 4.61 sRef. 42d
4.82 sRef. 51da 5.93 sRef. 24d 6.95 sRef. 42d 4.7 sRef. 40d

6.96 sRef. 36d
Bond centered 5.61sRef. 30d 4.12 sRef. 33d

5.67 sRef. 32d 5.86 sRef. 42d
5.99 sRef. 42d 5.9 sRef. 40d
6.00 sRef. 36d

aValues from Ref. 51 were obtained by fixed-node diffusion quantum Monte Carlo methods.
bThe enthalpy values corresponding to interstitial configurations described in Refs. 21, 51, 27, and 32 are shown in line E since in the
literature are usually considered as “extended,” though they are morphologically different from the described E interstitial.
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their study the D configuration was not considered either.26

After this brief exposition, one realizes that there is no clear
agreement in the literature about which interstitial configu-
ration has the lowest formation enthalpy at 0 K. As we shall
see, the macroscopic description does not correspond to the
lowest-formation-enthalpy configuration, but to an effective
behavior that is affected by all of them.

From the formation enthalpy and the relative concentra-
tions other thermodynamical magnitudes can be extracted.
The Gibbs free energy of formation for each configurationi
can be obtained by thermodynamic integration:

Gi/T − G0
i /T0 =E

T0

T

−
Histd

t2 dt, s5d

whereG0
i is a reference free energy value at a given tempera-

ture T0. By assuming a linear dependence ofHi on T, Hi

=aiT+bi, the integration leads to

Gi = − aiT ln T + SaiT0 ln T0 + G0
i − bi

T0
DT + bi . s6d

Using the reference valueG0
T for the T interstitial obtained by

Ungaret al. s3.429 eV atTT3=500 Kd,33 the Gibbs free en-
ergy of formation for the T interstitial,GT, can be easily
obtained from Eq.s6d. OnceGT is known, the absolute con-
centration of this interstitial can be calculated from

CT = C0 exps− GT/kBTd, s7d

whereC0=531022 cm−3, the atomic density of Si. Since we
have extracted from our simulations the relative concentra-
tions ci for each interstitial configuration, we can calculate
the Gibbs free energy of formation for the D, E, and DE
interstitials by applying

Gi = GT − kBT lnsci/cTd. s8d

Gi also has to fulfill Eq.s6d, G0
i being the only unknown

parameter. This parameter for interstitial configurations D, E,
and DE can be determined by fitting to the relative concen-
trations obtained in our simulations. The results of these fit-
tings are represented by solid lines in Fig. 3. As it can be
seen, good agreement is found between our simulation re-
sults and the fits, except for the case of configurations T and
E in the low-temperature end. This might be due to the fact
that, as we shall see, at these low temperatures the jump
frequency from configuration T to E is reduced and conse-
quently longer simulation times would be needed in order to
further improve the statistics. The obtained Gibbs free ener-
gies are represented in Fig. 6 as a function of temperature.

The entropies of formation for each configuration can be
estimated from the Gibbs free energies and enthalpies:

Si = sHi − Gid/T, s9d

which are also represented in Fig. 6. As it can be seen, T and
E are low-formation-entropy configurationsfs4−6dkBg, while
D and DE are high-formation-entropy configurationsfs10
−13dkBg, which is compatible with their increased concentra-
tion at higher temperatures. These values compare very well
with those estimated using ab initio techniques
fs6−10dkBg,16,18 TB calculationss11.2kBd,12,28 and the SW

potential in both MC and MD simulationsfs5−8dkBg.32,35

From the Gibbs free energies we have calculated the ab-
solute concentration of each interstitial configuration the
same way we did for the T interstitial by applying Eq.s7d.
These concentrations are plotted in Fig. 7 as a function of
temperature. The summation of all of them gives the total
interstitial concentrationC predicted by the T3 potential,
which is also shown in Fig. 7. Results from other authors
using different simulation techniques are also shown. As it
can be seen, T3 gives a lower total Si self-interstitial concen-
tration than that predicted by more fundamental methods.

FIG. 6. Gibbs free energies and entropies of formation for each
interstitial configuration as a function of temperature.

FIG. 7. Absolute concentrations for each interstitial configura-
tion as a function of temperature. The thick solid line represents the
total interstitial concentration. The dashed line representsab initio
results from Ref. 23, the dashed-dotted line TB results from Ref. 12,
and the dotted line MD results using the SW potential from Ref. 35,
where only configuration D was considered.
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The total Si self-interstitial concentration is fitted very well
to an Arrhenius dependence, given by

C = 8.313 1025 expS−
3.83 eV

kBT
Dcm−3. s10d

It is interesting to note that, in spite of the contribution of
different interstitial configurations, and the variation of their
corresponding formation enthalpies and entropies with tem-
perature, the total Si self-interstitial concentration can still be
described by a pure Arrhenius behavior with a single activa-
tion energy. Since the prefactor is 1662 times higher than the
normalizedC0, Eq. s10d can be rewritten withC0 as the
prefactor by introducing a linear dependence withT in the
exponential:

C = 5 3 1022 expS−
3.83 − 7.42kBT

kBT
Dcm−3. s11d

The expression inside the exponential can be assigned to an
effectiveSi self-interstitial Gibbs free energy,G. The fact
that G is linear with T implies that the effective entropy,S
= u−]G/]TuP, is constant, and so is the effective enthalpyH.

Then, 3.83 eV corresponds toH, and 7.42kB to S. These
values are intermediate to those obtained for the different
interstitial configurations. In the light of this analysis, it is
remarkable that macroscopic behavior can be described in
terms of a unique effective interstitial configuration with
constant formation enthalpy and entropy. These effective val-
ues would be related to experimental measurable magni-
tudes, but do not correspond to any of the theoretically de-
termined individual interstitial configurations.

B. Si self-interstitial diffusivity

We have observed that the change in time of the Si self-
interstitial configuration is correlated with the interstitial dif-
fusion process. We have identified two different diffusion
mechanisms, which are both sketched in Fig. 8, along with
the corresponding energy diagrams. In the first one, the in-
terstitial moves between two neighboring tetrahedral sites,
the D configuration being the saddle point in the transition.
In the second mechanism, the interstitial configuration
changes between T and E going through two saddle points,
which are the D and the DE configurations. In this second

FIG. 8. The two interstitial diffusion mechanisms identified in our simulations. In the first one the D configuration is the saddle point
between two neighboring tetrahedral sites. In the second mechanism the configuration changes from T to E going through two saddle points,
which are the D and DE interstitials. Energy diagrams for each diffusion mechanism are also shown.
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mechanism, when going froms1d to s3d there is no net dif-
fusion, just an orbital atomic motion where atomsA, B, C,
and D exchange their positions. The first diffusion mecha-
nism has also been observed in TB calculations,12 but with
configuration T being the saddle point in the transition in-
stead of configuration D. This is also the case in some of the
MD simulations using the SW potential.34,35 However, in
other MD studies also using the SW potential the diffusion is
described by a jump-rotation mechanism involving primarily
the D configuration.36 Maroudas and Brown, using MC tech-
niques with the SW potential, have proposed that interstitial
self-diffusion happens between two nearest-neighbor tetrahe-
dral sites going through the intermediate hexagonal site.31 In
first-principle calculations the D configuration has been also
given a fundamental role in the interstitial-mediated diffu-
sion mechanism, but through a different migration path in-
volving the caged configuration21 or the hexagonal
configuration.22 On the other hand, the transition between D
and E configurations has also been observed in MD simula-
tions using the SWsRefs. 36 and 37d and T3sRef. 38d po-
tentials, but in this last case with a rather complex transition
path involving six intermediate configurations.

Given the mechanisms and energetics shown in Fig. 8,
and taking into account that configurations D and DE are
very shallow potential energy minima, the energy barriers for
diffusion can be assimilated in a first approximation to the
formation enthalpy differences between the interstitial con-
figurations: E1,HD−HT, E2a,HDE−HT, and E2b,HDE

−HE. Since these energies vary linearly with temperature, as
shown in Fig. 5, so their differences do too. These differ-
ences are represented in Fig. 9 as a function of temperature.
As can be seen,E1 is lower thanE2a for all the temperature
interval considered in our study, which gives an indication
that the interstitial diffusion process is dominated by the first
proposed mechanism. Occasionally, when theE2a barrier is
overcome the system gets to configuration E. The time it
stays there should be rather long since the barrierE2b sfrom
E to DEd that has to be overcome to get back to the T con-
figuration is high.

To quantify the interstitial diffusion process we have cal-
culated the summation of the squared displacementssSDd
over all atoms in the simulation cell:

SD =o
i

frWistd − rWis0dg2 s12d

In Fig. 10 we show the evolution in time of both the inter-
stitial configuration and SD during the first 9 ns of the simu-
lation carried out at 930 K. Some useful information can be
extracted from the inspection of that figure, which confirms
the indications given in the preceding paragraph and deduced
from the energy diagrams. First, SD remains constant while
the interstitial configuration is T or E. Second, when the
interstitial gets to configuration E, the time it stays there is
significantly much larger than when staying in the T configu-
ration. Third, the increase in SD occurs mainly when the
interstitial switches its configuration between T and D
smechanism oned.

The Einstein formula relates the diffusion coefficientd
with SD:

d = lim
t→`

1

6toi

frWistd − rWis0dg2 = lim
t→`

SDstd
6t

. s13d

By applying the formula,d can be extracted from the slope
of the SDstd curve for each simulated temperature. Even
though thermal agitation has been eliminated by the time
average of the atom positions, simulation times have to be

FIG. 9. Energy barrier estimations for the two interstitial diffu-
sion mechanisms shown in Fig. 8 as a function of temperature.
Solid lines are best linear fits.

FIG. 10. Time evolution of the interstitial configurationsupperd
and the total squared atomic displacements SDslowerd during the
first 9 ns of the MD simulation at 930 K. There is a clear correla-
tion between the change in the interstitial configuration and the
diffusion process. The dashed line represents the slope in SD asso-
ciated with interstitial diffusion through mechanism one.
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long enough to saturate orbital motion like that previously
mentioned, and to compensate for the enhanced stability of
the E configuration, above all at low temperatures. For in-
stance, to get a reliable slope in SDstd for the lowest simu-
lated temperatures930 Kd we had to run the simulation for
1.63108 time stepssequivalent to a simulated time of one
tenth of a microsecondd, rather long for the MD standard.

In Fig. 11 we have plotted the interstitial diffusion coef-
ficients we have extracted from our simulations. The fit of
our results to an Arrhenius plot gives a prefactor of 3.04
310−2 cm2/s and an activation energy of 0.77 eV. In the
literature, apart from a few exceptions,22,31 activation ener-
gies for interstitial-mediated diffusion have been determined
to be between 0.65 and 1.37 eV.12,29,34–37For the sake of
comparison, we have chosen to represent in Fig. 11 results
from other authors obtained using the SW potential35 and TB
techniques,12 some of the more representative from the lit-
erature. As it can be seen, our simulations predict a higher
mobility for the Si self-interstitial than the SW and TB cal-
culations. The bigger discrepancy with respect to the activa-
tion energy is with the TB results from Tanget al. However,
very recent calculations also using TB techniques determine
an activation energy for Si self-interstitial diffusion of
0.8 eV,29 much closer to our results.

From the preceding analysis it seems that interstitial-
mediated diffusion is dominated by the first mechanism. The
relative contribution to diffusion of the different mechanisms
can be calculated by applying the following expression,

d = o
i

cidi s14d

which relates the interstitial diffusion coefficientd with the
diffusivity di associated with each different mechanism and
the relative concentrationci of the main diffusing species.

The diffusion coefficient associated with the first proposed
mechanism,d1, can be calculated at each temperature from
the slope of SDstd in the time intervals where only the first
mechanism is operative, which are easily identified as can be
seen in Fig. 10. By fitting the extractedd1 values to an
Arrhenius plot we have determined that this mechanism con-
tributes as

d1 = 2.163 10−1 expS−
0.92 eV

kBT
Dcm2/s. s15d

In Fig. 11 we have represented the productcTd1, wherecT is
the relative concentration of configuration Tsplotted in Fig.
3d, the main diffusing species of mechanism one. As it can be
seen, the productcTd1 coincides with the diffusion coeffi-
cient obtained from the MD simulations. This is the confir-
mation that effectively, interstitial diffusion is dominated by
the first proposed mechanism, the second mechanism only
acting as a delayer of the diffusion process. When the system
gets to configuration E diffusion stops for a while, as it was
shown in Fig. 10. The time the system stays in configuration
E is rather long, or equivalently its relative concentration is
high. Consequently, the relative concentration of the diffu-
sive configuration T is reduced. This result also shows that
even though diffusion is determined by mechanism one, the
activation energy for diffusion does not coincide with
0.92 eV, due to the contribution of the relative concentration
of configuration T, which decreases with temperaturesnega-
tive activation energyd. This finding indicates that if diffusion
can take place through several mechanisms, the energy bar-
rier associated with the saddle point of the dominant one is
not necessarily the activation energy of the diffusion process.
Differences also occur with the prefactor of the effective
diffusion coefficient, which is about one order of magnitude
lower than that ofd1. Generally, prefactors larger than those
corresponding to the vibrational frequency of the Si crystal
are associated with entropy contributions.52 This study pro-
vides a physical explanation for smaller effective prefactors
when the relative concentration of the diffusive species is
much less than unity. If configurations involved in mecha-
nisms of negligible diffusivity are fairly stable, their relative
concentration could be high enoughstherefore the relative
concentration of the diffusing species would be lowd to sig-
nificantly reduce the effective diffusion coefficient.

The interstitial self-diffusion coefficientD can be calcu-
lated from the normalized interstitial concentrationc sthe
total interstitial concentrationC shown in Fig. 7 divided by
C0d and the interstitial diffusion coefficientd:

D = cd s16d

Experiments in isotope heterostructures have shown that
self-diffusivity in Si follows an Arrhenius behavior over a
wide temperature range.9 Even though results from self-
diffusion studies are generally not easily separable into the
individual mechanisms, the interstitial contribution to self-
diffusion in Si has been estimated from metal diffusion
experiments8 and by inverse modeling of the Ostwall ripen-
ing process ofh113j defects.10 These experimental findings
are plotted in Fig. 12 along with our own simulation results

FIG. 11. Arrhenius plot of the interstitial diffusion coefficients.
Open circles represent our results obtained by a linear fit to the SD
versus time curves for each temperature. We show as well results
from other authors: the dotted line is from Sinnoet al.who used the
SW potentialsRef. 35d, and the dashed line represents TB data by
Tanget al. sRef. 12d. Next to each line we have indicated the cor-
responding activation energysin eVd. Crosses represent the contri-
bution to diffusion of the first mechanism.
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and the ones obtained by other authors using different simu-
lation techniques. The fitting to an Arrhenius plot gives a
prefactor of 52.89 cm2/s and an activation energy of
4.60 eV. Agreement with experiments is quite good, apart
from minor differences that may be a consequence of ne-
glecting the influence of charged species in the diffusion pro-
cess. Nevertheless, this agreement is better than the one
achieved by the SW potential at all temperatures and, in
relation to TB results, ours are closer to experiments in the
low-temperature end. It is noteworthy that despite the com-
plex microscopic description of the Si self-interstitial, and
the existence of two different diffusion mechanisms whose
associated energy barriers change with temperature, the in-
terstitial self-diffusion coefficient still follows an Arrhenius
behavior for the full simulated temperature range.

V. CONCLUSIONS

We have studied the interstitial contribution to self-
diffusion in Si using classical MD simulation techniques
within the T3 description of the atomic interaction forces. In
order to compare with experiments and simulation results
from other authors, we have introduced a scaling law be-
tween real temperatures and Tersoff 3 temperatures. To ana-
lyze our simulation results we have used a method based on
the time average of the atom coordinates. This allows the
direct extraction of the configuration and energetics of the Si
self-interstitial as a function of time and temperature. Since
our simulations are fully dynamic, no restriction has been
posed on interstitial configurations and diffusion paths. We
have identified four basic interstitial configurations, T, D, E
and DE, and determined their relative concentrations and for-
mation enthalpies. From these results, and by the use of ther-
modynamic integration techniques, we have calculated other
magnitudes such as the Gibbs free energies and entropies of
formation, and the absolute concentration for each configu-

ration as a function of temperature. By monitoring the time
evolution of the Si self-interstitial configuration and its cor-
relation with the mean square displacement, we have identi-
fied two diffusion mechanisms. In the dominant one, the in-
terstitial moves between two tetrahedral sites trough a saddle
point represented by the D configuration. In the second dif-
fusion mechanism, the interstitial configuration changes from
T to E going through two saddle points, which are D and DE
configurations.

General good agreement is found between our results and
the ones obtained by other authors using different simulation
techniques. One of the differences of our results with respect
to TB and classical MD studies using the SW potential is that
the role of T and D configurations appears to be exchanged.
However, since the energy values corresponding to the
lowest-energy and saddle point configurations are approxi-
mately the same, the description of the microstructural evo-
lution of the Si lattice during interstitial self-diffusion is the
same. The other difference with respect to TB and SW re-
sults lies in the individual contributions ofc andd, which are
higher and lower than our results, respectively. However, the
product of the two contributions is comparable in all cases,
and agree very well with experiments. The predicted activa-
tion energy for interstitial-mediated self-diffusion is of
4.60 eV for the full simulated temperature interval. With re-
spect to first-principle results, the discrepancy is bigger.
While the T3 model predicts that the T interstitial is the
lowest in energy, first-principle calculations show that this is
not a stable configuration. On the other hand,ab initio stud-
ies find a stable hexagonal defect that is very low in energy,
while in our dynamic simulations that configuration is found
to be unstable. Consequently, it is important to remark that
the validity of the stable configurations and diffusion mecha-
nisms described in the present study should be considered
just within the T3 model of Si.

In our simulations we have found that the interstitial dif-
fusion process involves a rather complex microscopic de-
scription: the lowest-energy Si self-interstitial configuration
depends on temperature, there are two different interstitial
diffusion mechanisms, and the saddle-point energy of the
dominant one also changes with temperature. However, the
macroscopic behavior can be modeled by a simple descrip-
tion based on a unique interstitial species with an effective
formation enthalpy of 3.83 eV and a migration barrier of
0.77 eV. The exact numbers do not correspond to any of the
individual interstitial configurations or diffusion mecha-
nisms, but they are the result of theaveragedbehavior of all
of them. These findings help to explain why it is not straight-
forward to justify the experimental measurements on inter-
stitial diffusion, related to the macroscopic behavior, resort-
ing to a particular interstitial configuration and diffusion path
theoretically determined.
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FIG. 12. Arrhenius plot of the interstitial self-diffusion coeffi-
cients. The thick solid line represents our results. We show as well
experimental measurements from Ref. 8 and Ref. 10sopen squares
and circles, respectivelyd, TB results from Ref. 28, MD results us-
ing the SW potential from Ref. 35, andab initio results from Ref.
16.
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