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We discuss the low-temperature behavior of the electronic self-energy in the vicinity of a ferromagnetic
instability in two dimensions within the two-particle self-consistent approximation, functional renormalization
group, and Ward-identity approaches. Although the long-range magnetic order is ab3enDathe self-
energy has a non-Fermi-liquid form at low enerdieps< Ay near the Fermi level, wheik, is the ground-state
spin splitting. The spectral function at temperatufesAg has a two-peak structure with finite spectral weight
at the Fermi level. The simultaneous inclusion of self-energy and vertex corrections shows that the above
results remain qualitatively unchanged down to very low temperafiseA,. It is argued that this form of the
spectral functions implies the quasisplitting of the Fermi surface in the paramagnetic phase in the presence of
strong ferromagnetic fluctuations.
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I. INTRODUCTION known about the evolution of the quasiparticle properties in
the paramagnetic phase near the ferromagri€fi¢) insta-
Non-Fermi-liquid behavior of correlated low-dimensional bility. The paramagnon theot° focused mostly on the
electron systems has attracted much attention during the ladescription of the magnetic properties, ignoring the renor-
decade. This behavior is usually connected with the violatiormalization of the one-particle Green function. Nevertheless,
of the quasiparticlelqp) concept in some energy window already Doniach and Engelsbé&tghowed that in three di-
around the Fermi level. A prominent example is themensions the gp weight vanishes logarithmically on ap-
pseudogap phenomenon observed in underdoped Thigh-proaching a FM zero-temperature quantum phase transition
compoundé. Cuprate superconductors are, however, not théQPT). For two-dimensional2D) systems, are?® energy
only materials example which show a strong suppression aflependence of the self-energy at the quantum critical point
the low-energy spectral weight due to correlation effects. AQCP can be inferred from similar calculations in the con-
qualitatively similar behavior on parts of the Fermi surfacestext of gauge field theoried,the phase separation probléf,
was also observed recently in the unconventional supercorand the Pomeranchuk instabiltyThe latter two instabilities
ductor SsRuQ, in an intermediate-temperature raAgend  arise also in the zero-momentum transfer particle-hole chan-
the layered manganite compound, L&r,_ Mn,0,.2 nel and therefore are expected to have properties which are
One possible viewpoint for the origin of the pseudogapsimilar to those in the vicinity of the ferromagnetic QPT, at
in high-T. compounds is to relate it to precursors of least in lowest order perturbation theory with respect to the
antiferromagnetismi=® The fluctuation exchangé=LEX),”®  fermion-bosor(charge or spin modgsoupling. Thes? fre-
two-particle self-consistent(TPSQ,® dynamical cluster quency dependence of the self-energy implies the vanishing
approximation® and most recently the functional of the gp weight at the Fermi level and therefore invalidates
renormalization-group(fRG) techniqué'!? have demon- the gp concept. This may raise doubts about the validity of
strated a strong anisotropy of spectral properties around thiéde applied scheme, since the abovementioned calculations
Fermi surface(FS in the two-dimensional2D) Hubbard did not consider both self-energgnd vertex corrections.
model with a possible violation of the gp concept on parts ofHowever, the calculations by Altshulet al?* within the
the FS. The large incoherent contributions to the electronigauge field theory context showed that &7 dependence
spectrum of low-dimensional metallic antiferromagnetg.,  of the self-energy remains valid also in higher orders of per-
an anomalously large scattering nateere also discussed in turbation theory.
Ref. 13. These phenomena result in the formation of a The breakdown of the gp concept at the QCP may be even
two-"-9120r three-peak structure of the spectral function in more apparent at finite temperatures. For fermions interact-
the vicinity of the antiferromagneti®AFM) instability. With ~ ing with a gauge field it was shown that for the case of
decreasing temperature, these pseudogap features are @epless(although diffusivé bosonic excitations the imagi-
pected to evolve continuously towards a ground state spexary part of the self-energy in a non-self-consistent calcula-
tral function with an AFM energy gap at the Fermi level.  tion is divergent at the Fermi level @&t>0 as a consequence
While many results have been obtained for the electroniof the diverging static spin susceptibilify(0, 0).%* This di-
properties in the vicinity of an AFM state and some resultsvergence should necessarily have certain consequences for
exist for itinerant ferromagnet$;'® surprisingly much less is the zero-momentum particle-hole instabilities of fermion
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T Re FM instability and to compare non-self-consistent and self-
T consistent techniques. For non-self-consistent calculations,
the TPSC as well as the recently proposed fRG approaches

Qac RC on a patched F$Refs. 29-32 can be used. The latter ap-
QD proaches have the advantage that they do not select certain
Ward identities types of electronic scattering processes, but consider them all

"n on equal footing. The self-consistent treatment of self-energy
and vertex corrections iger sea rather difficult task. Most
FIG. 1. Schematic picture for the three different temperatureconsistently this can be done in a parquet-type andf/sise
regimes near QPT, as proposed in Ref. £B:the renormalized also Refs. 34 and 35which is, however, necessarily rather
classical(RC) regime above the ordered ground statelicated by  involved for numerical studies in dimensiods>1. In the
the bold line,T* is the corresponding crossover temperature scaléfRG technique the back influence of the self-energy on one-
discussed in the text(2) the quantum disorderetQD) regime  and two-particle properties requires to work at two-loop or-
above a disordered ground state, 4Bthe quantum criticalQC)  der, which is currently inachievable. To obtain qualitative
regime. The arrow s_hOV\_/s the dire_ctior_1, in which the evolution of .agts deep inside the RC regime, the application of Ward
the spectral properties is traced in this paper; "fRG” and "Wardjgengities offers an alternative. This strategy was chosen pre-
identities” in the figure mark the intermediat@=T*) and low- viously by Edwards and Hef to calculate the spin-
temperatur¢T<T*) regimes, where the corresponding approachegoqqyyed self-energy in the ordered FM phase. As we wil
are appllled. The two-particle self-consistent approach is applied Ry ow in this paper, an analogous approach can be similarly
both regimes. . . . ;
applied for magnetically disordered systems in the
systems with short-range interactions. Although the magnetieenormalized-classical regime.
correlation lengthé of 2D systems with short-range interac-  In the present paper we use the TPSC, fRG, and Ward
tion is finite at finite T and y(0,0) = &, three temperature identity approaches to get insight from three different points
regimes should be distinguisif@dsee Fig. 1 (i) the quan-  of view into the behavior of the self-energy in 2D systems at
tum disordered regime with a disordered ground state anfinite temperatures on approaching the FM phase. First, in
almost temperature-independent correlation lengih,the  Sec. Il we consider the main features of the self-energy ob-
quantum critical(QC) regime with é~1/T¢, and (iii) the  tained within the TPSC approximation and compare them
renormalized-classic&RC) regime above an ordered ground with the results of the fRG approach, which is used to study
state with an exponentially large correlation length at lBw  in detail the frequency dependence of the self-energy at van
The divergence of the imaginary part of the self-energy forjove (vH) band fillings. In Sec. Ill we make use of Ward
§— o may lead to especially strong effects in the RC regime,gentities for a qualitative insight into the role of self-energy

where the inverse correlation length is almost negligibly;nq vertex corrections at low temperatures.
small at lowT. Indeed, for the AFM instability this diver-

gence results in the formation of a pseudogap structure in the

spectral functiorf.Although similar properties in the vicinity Il. THE SELF-ENERGY IN NON-SELF-CONSISTENT

of a FM instability were discussed quite recerfly’ the APPROACHES

behavior in this case is far less from clear, since the suppres- -~ )

sion of the spectral weight at the Fermi level itself weakens Specifically we consider the Hubbard model fér elec-

the tendency to ferromagnetic order, which therefore impliegrons on a square lattice

the necessity to account for self-energy and vertex correc- + ,

tions self-consistently. H== 2 ticlco t U mgny = (w= 4N, (1)
The recently found nonanalytic contributions to the spin e !

Susceptlblllty in Second-order_perturba’[ion theory Wlth re-where the hopp|ng amp”tude '.ﬁ:t for nearest_neighbor
spect to the electron-electron interact®have led to infer  sjtesi and j and t;=-t' for next-nearest-neighbor sites

the pOSSible absence of a second-order FM QPT, which |&,t’>0); for further convenience we have shifted the

either replaced by a first-order transition to ferromagneticchemical potentialx by 4t"; the corresponding electronic
phase or a second-order QPT into an incommensurate phag@persion is

with a finite ordering wave vecto®, which then continu-

ously decreases toward3=0 on moving away from the gy = — 2t(cosk, + cosk,) + 4t’ (cosk, cosk, + 1) — .

QPT into the ordered state. However, these corrections are 2)

not expected, at least in the weak-coupling regime, to re-

move the renormalized classical temperature regime entirely;urthermore we compare some of our results for the Hub-

Indeed, the corresponding characteristic temperature sca@rd model with those for the ferromagnesid modef®3’

Ty~ (U/4mt)%, below which these corrections become = Stde IS t

important?8 is quadratic in the interaction and therefore H== 2 1;CioCio = 1.2 S+ 045/ CioCi

small in the weak-coupling regime in comparison with both 1 '

the bandwidth and the crossover temperaiure- U into the 1 ,

renormalized classical regime not too close to the QPT - E%" JjSi - S~ (k= 4t)Ne 3
It therefore appears demanding to investigate the finite-

temperature behavior of the self-energy in the vicinity of thein the weak-coupling regime Q1<8t, where S are
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localized-spin operators anat,,. are Pauli matrices];=J ) UU.T _ _
>0 is the direct nearest-neighbor ferromagnetic spin ex- 2(k,ien) = 2,3 E [3x(a.iwn) = xo(Q,iwy)]
change coupling. dlen
1
L X 9)
A. TPSC approximation lentlwn ~ &g
The TPSC approximatidnfor the Hubbard modell)  on the imaginary frequency axis,=(2n+1)#T are fermi-
considers the dynamical spin susceptibility onic Matsubara frequencipand
XO(qvw) int) = %P
x(q,0) = — @  Ekerion=— > | def3 1M x(q,0) - IM x4(q, )]
1- UstO(Qv ) q
which has the same structure as the spin susceptibility in the XM (10)
random-phase approximatiqfRPA), but contains an effec- e+ w=gyiq +i0

tive interactionUg, instead of the bar&). The bare suscep-

o ) sp on the real axis, wherblz(w) is the Bose distribution func-
tibility xo(q,iw,) is given by

tion. The factor 3 in the first term in the square brackets of
Eqgs.(9) and(10) arises from the summation over thr@eo

YolO,iwy) = 12 M_ (5) transverse and one Iongitudihaﬂpin channels, the second
N7 Top =& + exaq term in the square brackets is substracted to avoid double
counting of the second-order diagram.
where f =f(g,) is the Fermi function andv,=27nT. The The same expressiornt8) and (10) with the replacement
effective interactiorlJg, is determined by the sum rdle UUSpHI2 hold for thes-d model(3) in second order pertur-

bation theory with respect to the electron-spin interaction

T ) ) see, e.g., Ref. 15. The magnetic correlations in this case
N > x(g,iwy) =n/2 =n’Ug(4U) (6)  originate mainly from the exchange interaction between the
dlen localized spins, and the magnetic susceptibility has the same

form as for the Heisenberg model with nearest neighbor ex-
The renormalization of the interactidy,/U <1 avoids the change interactiod. The inverse magnetic correlation length

) . . 1 ~ )
artificial divergence of the susceptibility at finite temperatureat low T is again exponentially smadf, ¢ _C. eXp(-JS/T); :
where the denominator of E@4) calculated with the bare _the Eorregzpondmg crossover temperature into the RC regime
interactionU vanishes. The temperature atiddependence Is T* ~JS.

of Us, was extensively discussed in Refs. 9 and @§; de- To' calculate the self-energy at smallanq k hear the
creases with increasing and decreasing temperature. Fermi surface, we expand the bare susceptibjiyat small

Above the ordered ground state the inverse correlatiof] andw_F_o_r the Hubbard model a1+ 0 Fhe. res_ultlng Spin
length in TPSC susceptibility on the real frequency axis is given (®ge,

e.g., Ref. 18
£l [1-Ugxo(Q,0]2 (7) Xo

X(q,w)=A( 2+ 62 +Balq’
monotonically decreases with temperature and becomes ex- g7+ &5 +iBwlg
ponentially small, £'=Cexp(-T*/T), below a certain where the correlation lengthin TPSC is given by Eq7), A
crossover temperatureT* =4mAUSY/ (3xo), Where xo and B are constants which are proportional t, with a

=v4(Q,0), A= V2X0(q,0)|q:Q, C is a constant, and coefficient vyhich depequ on the bare spectmnﬁsee Ref.
18 for explicit expressions For the van Hove singularity

(VHs) case(u=0) we obtain

with n=N./N being the band filling andg is set to unity.

(11

Q=34 - 3EUR) - | LS Xol@ied

2| Ngio 1= xo(diwn)xo |- Xo
q,iw, 0 n 0 {1=0 _
x(d,w) = . : (12
(8) AP+ E2) +iT(Q, )
where(cf. the T=t'=0 result of Ref. 4

is the square of the ground-staf&ublattice magnetization ( p
per site,Q is the magnetic ordering wave vector, determined I( ) = Ugp ®
by the maximum ofxo(Q,0). In the following we suppose e @)= 5t sin? 20 ma o, (T1 0 V2 0 |
Q=0, which corresponds to a ferromagnetic instability and (13)

is in particular the case for van HoweH) band fillings

(u=0) of the t-t" Hubbard model, Eq(1), with 0.3=<t' is the damping of the spin excitations,q,

<0.5.263238Note that here we ignore the possibility of trip- =q, sin g0, cose, and cos =2t'/t.

let pairing, which may also arise in the vicinity of the FM  The form of the dynamic magnetic susceptibility of the

instability 32 s-d model in the paramagnetic phase, which is mostly deter-
The self-energy is given by mined by the local moment subsystem, is more complicated.
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TABLE |. Inverse quasiparticle lifetime™(kg) and[d ReZ(kg, &)/ del,-¢ in second-order perturbation theof$OPT) and the two-

particle self-consistent approximati¢iPSQ near the FM instability

for different bare electronic spectra.

T_l(k[:) [(9 ReE(kF,s)/ﬁs]S:o
Spectrum SOPT TPSC SOPT TPSC
Linear (i # 0) (T?/t)In(1/T) TE+O[(T/1)23] const< 0 (TIH)E+O[(T/t)1/3)
vHs (2=0) k=kyy TIn(1/T) TE+tO[(T/1)%3] In(1/T) (TIHE+O[(T/1)13)
=Nk # ke (T2/1)In(1/T) TE+O[(T/H)9] const< 0 (TIH)E+O[(T/H)2]

However, we will see below that already the static part of thepeaks located nean=+A,. While for the AFM case the

susceptibility dominates the spectral properties at [dw
=T*. In the static limit the susceptibility in the RC regime is

fulfillment of the nesting conditiorey_,q=-2¢_=0 (which
for t’ # 0 is satisfied only at the hot spots required, in the

eXpeCted to coincide with that determined for the AFM Casq:M case the two_peak structure occurs all around the FS.

within a 1/M expansion in theD(M) Heisenberg modé}
and has the same form as E@1) with »=0.

To analyze spectral properties, we first consider the in
verse gp lifetime

1
=-1ImX(Kg,i0")
(k) ]
__ 7-rUUsz 31m x(d, &k +q) = IM Xxo(d, & +q)
2N 55 siankF+q/T)

(14)

The difference between the FM and AFM instabilities at
those points wherey_.q=0 is evident only in the subleading
terms ~T¢, where the exponenta depends on the
dynamical exponent [e.qg., 7 X(kg) ~ Té+tO(T/t)1"1# and

[0 Re3/ de| o~ (T/t)&+O(T/1)*?% for the linear electronic
dispersion near the Fermi leyekz=2 for the AFM andz

=3 for the FM case. Note that unlike Refs. 9 and 26 we did
not suppose that < T* in deriving the results of Table I, and
in fact these results are valid for both RC and QC regimes.

The above discussed features of the self-energy keep their

form away from the FS with the replacement- & —gy.q.

and the derivative of the real part of the self-energy at thelhis holds for allle,.q| <t for a linear electronic dispersion

Fermi level
IReS(kee)| | UUy J do3 (3 Im x(@,0)
de e=0 ZN a

Ng(w) + f(&_+q)

-m a0 5
Ftd

(15

The results for the leading terms @t together with the
results of second-order perturbation the@@PT) [which is
obtained by the replacemept— x, in Eq.(14)] are collected

in Table I, where we omit overall temperature-independen
prefactors which are proportional td?/t.

Apparently, the imaginary part of the self-energy at the
Fermi level is anomalously enhanced by the correlation ef

c

fects foré>1 and even tends to diverge deep inside the R
regimeT < T*, where £— . Simultaneously, d ReX/de|,-o
becomes positive and large. At enerdies=t&? (t£2in the
VHs casg the real part of the self-energy behavesAz%séw,

whereAO:(UUsp)1’2§)~T*. It is worthwhile to note that the
abovementioned divergencies arise from the purely stati

and for t&2<|ey.o| <t for vH band fillings. At vH band
fillings and |ey.o| =t& 2 additional divergent terms in the
real part of the self-energy arise at the vH poitg,
=(0,m) and (7,0) with ReX(kyy,0) ~tk,k & [k.=(k,
—-m)sinptk, cose for kyy=(7,0) and similarly for the
other vH point, which flatten the bare electronic dispersion
at the momenta nedk,,, similar to the zero temperature
case®? This flattening, however, is not important in the RC
regime since the corresponding momentum region is rather
narrow and In at the Fermi level is finite at finit& (and
even diverges af— ©).

The dependence af-ey.q for t& < ey, <t is the ori-
bin for an important difference between the spectral func-
tions near the FM and AFM instabilitievay from the FS.
In the FM case the spectral functions depencker, only,
implying that ate, = + A, (the condition which determines
the FSs of spin-up and spin down electrons in the FM phase
one of the peaks of the above discussed two-peak structure is
located at the Fermi level, making the electronic excitations
at the points of the Brillouin zone with, = + A, coherent.
This indicates the existence of two “preformed” Fermi sur-
faces already in the paramagnetRM) phase at low tem-

contributions with zero bosonic Matsubara frequency anteratyresT<T*. The corresponding electronic excitations,
were previously discussed in detail for the AFM case in Refspowever do not have any prefered spin direction and the

6 and 9, where5, is the ground-state sublattice magnetiza-
tion.

These low-energy features lead to a suppression of spe
tral  weight in AK,w)=—(1/m)Im3/[(w-g,+Re3)?
+(ImX)?] at|w| = A, (see also Ref. 26and to the formation
of a two-peak structure of the spectral function with the

spin symmetry remains necessarily unbrokefiat0. As we
show in Sec. lll, self-consistent approaches show the same
endency of the spectral weight suppression at the PM Fermi
surface, and the redistribution of spectral weight towards the
energiesw =+ A, supports therefore the picture described
above in the non-self-consistent TPSC analysis.
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B. fRG analysis at van Hove band fillings d3t

— =(G;=Gy)o[V7o(Gro S+ S-0Gq) o V-], (20
The two-particle self-consistent approximation may be in- dT (Gr=Gr)olVre(GroSrt SreGroVil, (20

sufficient close to van Hove band fillings since it considers

only the contribution of particle-hole excitations and thewhereTf is the final temperature where the self-energy is
other electronic scattering channels are accounted for only by aluated. Although Eq20) contains the Matsubara sums of
the “average” renormalized interactiahy, Moreover, atvan  the Green functions at different temperatures, these sums can
Hove band fillings the effective interactiods; artificially  pe calculated by the same procedure as for equal-temperature
tends to zero with decreasing temperatisee, e.g., Ref.)9  Green functions.

To analyze in more detail the frequency dependence of the 1o solve Egs.(17) and (20) numerically we divide the
self-energy in the vicinity of van Hove band fillings, we momentum space into 32 patches with the same patching
apply the fRG approach for one particle-ireducil®)  scheme as in Refs. 31 and 32. To calculate the self-energy on
functions™ with a temperature cutoff: This approach con-  the real frequency axis we use analytical continuation by
siders the evolution of the generating functional with de-pgqé approximant. Similar to Ref. 11 we use the advan-
creasing temperature in the v!(le/ak-cogpllr}g regime. The flowage of Eq(19) that for frequency-independent vertices, after
of the self-energyS(k,iw)=T ¥’ (k,iw) in the 1Pl fRG  gnalytical summation over internal frequencies, the self-

scheme is given by energy can be calculated at arbitrary frequencies on the
imaginary axis, and therefore we choose a mesh on the fre-
dXr quency axis, which becomes denser closeute 0.1
dT =VroSn, (16) We consider the results at the vH band fillig=0) for

t'=0.4% andU=4t where ferromagnetism is expected in the
whereo is a short notation for the summation over momen-ground staté?3®We choose this relatively large value of
tum, frequency, and spin variables according to standard didecause the crossover temperatare$or the FM instability
grammatic rules, see, e.g., Ref. 43. The renormalization ofre smaller then for the AFM cas&* <0.1t for the param-
the electron-electron interaction vertek at one-loop order €ters we usg and for lower values of) and correspondingly

is given by lower temperatures the analytical continuation becomes in-

creasingly difficult, since the size of the anomalous fre-

dvy quency region in the vicinity of the Fermi level decreases
Eszo(GToSﬁSroGT)oVT. (17)  with T*. The SOPT self-energwhich is obtained by the

replacementv— U in Eq. (19)] calculated at temperatures
T=0.1, 0.3 and 0.5 for kg=(2.83,0.07, which is the center
of the first patch, closest to tHer,0) point, is shown in Fig.
172 1 2. The SOPT self-energy at other points on the FS looks
Gr(k,iv,) = - . Si(k,ivy) = - : _ similar. As in the AFM cask at high temperature$=0.3
v, = e 2TV (i, = &y)? the self-energy has a sharp dip at the Fermi level due to vH
(18)  singularity effects. INES°"V(k,0) decreases with decreas-
ing temperature and IB(kg,0)=0 at T=0. This, however,

The factorsTY? arise due to the rescaling of the fermion does not imply the validity of the gp picture everywhere on
fields on removing the temperature dependence from the irthe Fermi surface since I&(kg,e) e In(1/e) for the vH
teraction term of the actio¥. Equations(16) and (17) have  pointskg=(m,0) and(0,) at T=0,% although the “normal”
to be solved with the initial conditioan0=U and ETO=O 2D behavior I (kg, ) < &?In(1/e) (Ref. 45 is restored for
whereTy>t. In the non-self-consistent treatment in this sec-other points of the Fermi surface.
tion we have neglected the self-energy in the denominators The self-energy obtained within the fRG technique for the
of the Green function§l8). The self-consistent RG analysis temperature3=0.1t andT=0.3 is shown in Figs. 3-5. The
is rather involved and requires the inclusion of two-loop cor-results for T=0.5 (not shown are similar to those af
rections which remain a challenging task for fRG techniques=0.3 and both are close to the results of the SOPT, Fig. 2.
Since the frequency dependence of the vertices is néBut in contrast to SOPT, with decreasing temperaturd to
glected in the calculations, it is convenient to reinsert, fol-=0.1t a new sharp feature appears in a narrow region near
lowing Ref. 43, the vertex from Eq17) into Eq. (16) to  the Fermi level(Fig. 4). Note that the maximum effective
obtain interaction Vo, =maxV(kq,ksy; ks, k,)} =20 for this tem-
perature. Similarly to the TPSC approach of Sec. Il A, the
ds, To imaginary part of the self-energy has a minimum at the
ar =Sr°f dT'[Vy e (G o Sy + Spr o Grr) o V] Fermi level instead of a maximum as expected for a Fermi
T liquid. Simultaneously, R& (kg, w) has a positive slope near
q Yy F p p
(19 0=0. These pronounced anomalies in the fRG self-energy
increase in size with decreasifigand lead to a suppression
To avoid the integration over temperature in the right-handf spectral weight at the Fermi energy. The spectral function
side of Eqg.(19) we integrate by parts to obtaiief. Ref. 43  [Fig. 4(d)] has an asymmetric two-peak structure. A qualita-
for the momentum-cutoff scherne tively similar picture is observed in the fourth FS patch, clos-

The propagator&t and Sy are defined by

v, + e
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FIG. 2. The reala) and imaginaryb) parts of the self-energy in
second-order perturbation theof@OPT at t'/t=0.45, U=4t, u
=0 (vH band filling), and different temperatures. Arrows mark the
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w/t

-0.8

o/t

FIG. 3. The functional renormalization group results for the
self-energy(a)—(c) and the spectral functiofd) in the first Fermi
surface patch, closest to tlig,0) point att’/t=0.45,U=4t, ©=0,
andT=0.3.

sizable value ofRe3| at the Fermi surface leads to an asym-
metric shape of the spectral functions in the vicinity of the
Fermi energy, in contrast to the analytical approach of Sec.
Il A, where this FS shift was not taken into account.

lll. THE SELF-CONSISTENT APPROACH AT T<T*

energy of the lower and upper edges of the noninteracting ban&usceptibilities

(emin=—4+8&" and e=4+8’, respectively, the cross marks the
energy, opposite to the upper edge of the bangx The insets
show the behavior of Reand In% at low energies foif =0.1t.

est to the Brillouin zone diagonal witke=(1.06,0.75 (Fig.
5) where at low temperatures the fRG result also leads to a
two-peak structure of the spectral function, where, however,
the >0 peak is larger tham <0 one.

The magnitude of R&(kg,0)=-0.4t in the first, closest
to (7r,0) patch of the FS is almost the same in both the SOPT
and fRG approaches, and is much larger than the correspond-
ing value found in the vicinity of the AFM instabilit}: At
the same time, in the fourth patch of the FS, the fRG ap-
proach gives slightly positive R&(kg, 0), while ReX(kg,0)
in SOPT approach remains almost patch independent. There-
fore, the fRG approach, in contrast to SOPT, leads to a sig-
nificant deformation of the FS near the FM instability at vH
band fillings, which reflects a band narrowing tendency; in
essence, the effectivérenormalized value of the next-
nearest-neighbor hopping increases towards its value in
the flat-band casg/t=1/2 (see, e.g., the discussion in Ref.
38). This is similar to the earlier discussed flattening of the
dispersion close td,0) and (0,7) points at vH band
fillings,*? except that in the present case the flattening affects
larger parts of the Brillouin zone along the zone axes. The
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K,iv,

To get qualitative insight into the role of self-consistency
effects belowT*, we consider the general form of the spin

. 2T . . . .
X (@ion) =5 2 I (KK +gsivn,ivg +i0) Gy (K, ivy)

XG(k+0q,iw,+ivy),

'
1N
n

w/t

V] 2 4

t Ak,@)

o/t

FIG. 4. Same as Fig. 3 for=0.1t.
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FIG. 5. Same as Fig. 3 for=0.1t in the fourth Fermi surface
patch closest to the Brillouin zone diagonal.

XA4Q,iwp) = - = E I T(kak"'q;ivnaivn"'iwn)
K,ivy
XG(K,ivy)Gi(k +q,iw, +ivy), (21
where
r.. 2 (k,k’, iv,iv) =G k iv)G, (k’ ivy)

T ruT
f f VnT+V )

X(TLS; - (006 (DS o () ]y rd
(22)

are the three-point spin vertex functions ar@(r)
—(1/N)Ekcka(r)(r 5Cke+a, g(7). We retain the spin indices in

this section to perform calculations in the presence of a small

static external Zeeman fieldwhich is set to zero at the end.
To arrive at the RPA-like form of the susceptibilities, we
follow Ref. 14 and introduce the irreducible verticg

T2 (kK ivpiv)
1+Ux?(k =K', ivy—iv))

(KK v iv)) = (23

(7'0'

(a=z for a=z anda=- for a=+) to obtain

ET(k’I Vn) - El(k’l Vn)

PHYSICAL REVIEW B 71, 085105(2005

$*(d,iwy)

1-Ugaian)’ 29

Xab(qaiwn) =

wherea,b=+,-,z, and the function?® has the same struc-
ture asy® in Eq. (21) with the replacemerf — y. Note that

=Y = =T =2
(and similar forI") at h=0.

The expression for the self-energy, including the Hartree
term, reads

, TU o, TU?
Solkivg) === 2 Gy ivy) + = 2 [7],,(k .k
k' v, Giiwn
+ 0 ivy, i vy +10)Gy(K + q,iwn +iv) x40, 1 wp)
+y:;'_(r(k,k+q;ivn,ivn+iwn)G_0(k+q,iwn

+ivp) X" (a1 wp)]. (25
We neglected the contribution of charge excitations here,
which are not singular near the magnetic phase transition.

We note that a similar expression for the self-energy can
be obtained for the ferromagneted model (3) but in this
case the susceptibilitieg4q,iw,) andx™ (q,iw,) are deter-
mined by the localized-moment subsystem. This difference,
however, will not be important in the following sequence of
arguments and the results of this section are applicable for
this model as well.

As discussed in Sec. Il A, the main contribution to Eg.
(22) comes from the bosonic Matsubara frequemney=0.
The vertexl“i'o,(k,k+q;ivn,i1/n) in the limit g— 0 [which
we denote in the following aE‘;’U,(k,k;ivn,iun) and simi-
larly for y] is found from a Ward identity. The standard Ward
identity (see, e.g., Ref. 46

Iimw%OFa (KK ivmivy + i)

& (1 =3(K,ivy+iw)ld(io)],=o (26)

(J'(f

is not appropriate for that purpose since it considers the op-
posite order of limits for the vertex lign,qlimg_oI" as re-
quired for the calculations in the RC regime. Instead, we use
the identity of Ref. 14 to obtain fdn— 0

TV

Ik k;ivyiv,) =T4k,K;ivivy) =1+

h
TU?
+N2

q,lwp

-x7(0,iw) ]+ {dihyz(k,k +q;ivy,ivy+ iwn)}

> GAKiv)(k' K ;iv),iv))

q.io,

=~1-
h=0

N

{'y(k:k + 0 ivp,iv,+ |wn)r(k +o,k+q;ivy +iwp,iv,+ iwn)Gz(k +0, i+ iVn)[XZZ(qliwn)

G(k+q,iwn+ivn)xzz(q,iwn)}, (27)

h=0
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where we have denotdd=I"*, y=v*, and we have omitted T M-1 )

spin indices. Note that in the third and fourth line of E2j7) (S-S = NE x“4q,0) + x"(q,0) |97

we have neglecteti-derivatives ofy*, ¥*~, and x*2 These 4

derivatives lead to nonsingular contributions, at least for the :gexp(— (e, (31)

linear dispersion case, which we mostly consider in the fol-
lowing. Using the relation23) betweenI’ and y and the which incorporates the correct long distance asymptotics of
relation (21) betweenl” and y we obtain from Eq(27) the the real-space correlation functions Bt T*, is useful to

following integral equation for the vertex functiop relateR andgo_ As a result, we obtain
TU? @M
y(k,k;ivn,ivn)=1+wz {‘y(k,k+q;ivn,ivn+iwn) %—ETRlng- (32
Qion

Since the dominant contribution to momentum sums in

Xyk+q,k+q;ivgtio,iv,+i . )
K Gk e+ Qv i T +ion) Egs. (25) and (27) arises from the long wavelength region

X G*(K + 0, iwy + ivg) XA iwp) q=¢?L, we replace
-
—x*‘(q,iwn)]+%[%ﬂk,k Vo o (K K+ v, — 9 (KK i, ivy),
X\{,lwn
d d
_'yz(k:k + q;iVnyiVn"' iwn) - _')/Z(kak;iynii”n)-
+qivnivnFio) | GK+q,iw,+ivy) (. dh dh
h=0 (33)

28

(28 Equationg25), (27), and(29) together with the replacements
In principle, Eq.(28) is the first equation in an infinite hier- (33) form a closed system foy andX. The remaining inte-
archy, since the calculation df?/dh involvesd?y*/dr?, etc. grals overq are easny calculate_d analytlcally analogous to
To close the system of equations in an approximate way, wihe _non-s_;elf-con5|stent cal_culatlon in Sec. Il A. After the
proceed similarly to the M expansion within theD(M) continuation to the real axis we obtain the_ follow_lng alge-
generalization of the Heisenberg model for Iocalized-bra'c quanons for the self-energy and the irreducible vertex
moment system$:4” Namely, we suppose that there ave 7 for t& <[w—g| <t:
-1 transverse spin modes and one longitudinal mode. Then AZy(k,K: 0, o)
the correction due toly?*/dh in Eq. (28) is already of order Sk, ) = —2—
1/M, and therefore only terms to leading order irVl, /aris- o= = 2K, w)
ing from the transverse spin fluctuations can be retained
when calculating the derivative. To  calculate M-2 A%yz(k,k;w,w)

dy*(k,k;iv,,iv,)/dh we differentiate the equation for the rkkio,0)=1- M [0-¢ - 3K, o)
self-energy(25) twice with respect to the field. Note that the .
terms containingl?y*/dh? should be retained in this calcu- . 2 AGY (K K; 0, 0) (34)
lation, since they are not small in i/ and do not vanish in M[w-g -3k, w)]*’
the g— 0 limit contrary tody*/dh. After lengthy algebraic ) ) .
manipulations we finally obtain where we have introduced the ground state spin splitting
Ap=US,. Similar to the TPSC approach of Sec. Il A, the
d o resulting self-energy and the vertex depend lononly
lez(k,k;lvn,lvn) =2[1+Ux(0,0)] throughw=w-¢, and are given by
h=0
f 2 2
T 5 o ] M(A(2)+52— Vo — alA(z)\,w - apAp)
_ . 2 k, = — ,
X Nq%ny(k,k+q,lvn,lvn+lwn) (k) 22+ Mo
XG3(Kk +q,io,+ivy)x 7 (Q,iw,) M
. S S 1P 2= _ 4
+O(1/M). (9 rkkiew) = ez 2w T (M)A~ MAg
Generally, the susceptibilitie®4) which enter Eqs(25) 2 _ o2 2= _ >

and(27) can be represented in a form similar to El) or +(MAg - 20\ o” - mAgVe” — azAgl,
(12) at w=0, (35

where a; ,=1+4(12\1+M/2)/M; the branch INz=0 of
¥'7(0,0) = 2Y*4q,0) = % + regular terms, (30) the square roots is chosen to guarantee the correct analytical
q-+ properties forz, and y. On the other hand, in the absence of
the vertex renormalization, i.e., fakk ,k ;iv,,iv,) =1, which
whereR is a constant. As in localized-moment systems withis the analog of the FLEX approximatithin our approach,
strong short-range ordét the following identity: we obtain for the self-energy thd-independent result
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04 corrections in 1M are expected to be small and do not lead
ozl to qualitative changes.
3 _ The one-peak structure of the spectral functions in the
;2,’ oF s solution without vertex renormalization is similar to that in

the FLEX approximation in the AFM case, which predicts
only a slight variation of the quasiparticle weight around the
Fermi surfac€.As discussed in Ref. 9, this result is a draw-
04 back of the absence of vertex corrections, and the necessity
to account for frequency-dependent vertex renormalization
togetherwith the self-energy corrections is crucial in this

) { 2009 ] case. As we have shown in this section, a similar conclusion
I : ' is reached in the FM case; the corresponding nontrivial fre-
quency dependence of the vertex is shown in F{d).6

\ 0F 0
004r ' 20l 0. Therefore, the solutiofB5) which accounts for both self-
] b ] — ] energy and vertex corrections leads to the results which are
' ' 4 0 0
(o]

02

|

-ImZ(w)
Re y(w)
= () wyl

o

qualitatively similar to those obtained in non-self-consistent
approaches of Sec. Il. The same arguments can be applied to
the s-d model, which is therefore expected to lead to the
FIG. 6. The real and imaginary parts of the self-endi@y (b), similar results afl < T*.
the spectral functioiic), and the vertex functiory (d) at T<T* in
the fully self-consistent Ward identity approa@olid lineg and the
FLEX-like approach, which is self-consistent with respect to the
self-energy only(dashed linesas a function ofw=w-egy at Aq We have investigated the self-energy in two dimensions in
=0.1. the vicinity of a FM instability within the TPSC, the one-
loop fRG analysis, and by applying Ward identities. In all
approaches the self-energy has a non-Fermi-liquid form in
1. — narrow window |w| <A, around the Fermi level, and the
2k, 0) = E(w —Vo=2AgVw+2A). (36)  spectral functions have a two-peak structure at low tempera-
tures. The spectral weight at the Fermi energy is strongly
To zeroth order in 1¥ (i.e., atM =) we obtain from Eq. suppressed atf <T* in both, non-self-consistent and self-

0.4 0 04 O 4
(0]

IV. SUMMARY AND CONCLUSION

(35) consistent solutions, because the self-energy and the vertex
2 2 corrections partially cancel each other. The form of the spec-
A3 A2 : o
S(kw) == 1k Kow=1-=, (37) tral functions we have obtained in the paramagné&®it)
@ state with strong short-range magnetic order is qualitatively

imilar to the mean-field result for the spectral functions in
the FM ordered state, if the electron spin quantization axis is
hosenperpendicularto the direction of the magnetization.
ndeed, performing the simplest Stoner-like decoupling of
plot in Fig. 6 the result€35) and(36) for M =3 together with the interaction in the Hubbard model with the order param-

_ T g - i
the corresponding spectral functions. Similarly to the non-eter A=(U/2)(c;Ci +¢ Ci), which corresponds to a spin
self-consistent solutio87) the real part of the self-energy in alignment along the axis, we readily obtain

i.e., the self-energy and the vertex corrections exactly canc
each other aM=c and the self-energy and the vertex are
given by their second-order, non-self-consistent results. T
demonstrate how this result changes at finite valued ofve

the self-consistent solutiof85) is divergent aiw=0. This is 1 1 1

in contrast to the solutiof86), which is self-consistent with <(clo|ckg)>w = —( — + - +),
respect to the self-energy only, and leads to a finite positive 2\o=g=A+i0" w-g+A+I0
slope of the real part of the self-energy at the Fermi level (39

JReS [/ dw=1/2. Theimaginary part of the self-energy has its .
. . where(])),, denotes the Fourier transform of the retarded
largest absolute value at the Fermi energy and monommca"éreen<f<l|1>r:ction. With the inclusion of a small dampingin

decrez_;\ses withe| for the SOIUUO”(SG)’ Wh".e It has MO’ " the denominators the Green function E8P) leads indeed to
complicated energy dependence with-&unction singularity . e o g .
a spectral function, which is qualitatively similar to, e.g., Fig.

at w=0 according to the self-consistent req@5). As a con- . ) A
sequence, the solutiai@6), which is self-consistent with re- ?rgg).sAitnth?o'S:crEgrSIrgr?, Ehgr;rllli?rgrﬁzlr?ti Garreaﬁlgl]:;gcz]o;s’_ for
spect to the self-energy only, displays a one-peak structure of pin proj 9p P 9

the spectral function, while Eq35) leads to a two-peak hetization axis are given by
structure of the spectral functigfig. 6(c)], which is similar 1 .

to the M = result(37). We note that the gap in the spectral E«CKT Gy [Cy £ C ) =
function at the Fermi energy in the self-consistent solution is

most likely an artifact of the first order in M result. At the and are qualitatively different from the result of E@8).
same time the similarities between the results in zeroth andhe spectral functions in the PM phase are necessarily spin-
first order in 1M allow to conclude that the higher order rotation invariant. Therefore, we expect strong changes of

S EE——— 39
w—g ¥ A+i0" (39
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Alkao) T time, the dynamic domain formation near a FM instability is
expected solely due to FM spin fluctuations which favor the
aggregation of electrons with certain spin orientation in re-

i gions of size~¢.

While the form of the spectral functions in the vicinity of

t the FM phase transition is dramatically different from the
conventional quasiparticle one-peak structure, we do not ex-

T= pect sizable effects in the density of states. Indeed, since the
spectral functions depend at low energy ©ng, only, we

) find for |e| <t

A

/ !

I
A

A 0 a4 o p(s):$EA(k,s):famaxds’po(s')A(s—s’), (40)
k

€min

FIG. 7. Schematic picture for the evolution of the spectral func-
tion near the ferromagnetic phase transition. The spectral function&herepg(e) is the bare density of states ang, maxare the
at T=0 are shown at the paramagnetic Fermi surface. The spectr&nergies of the bottom and the top of the band with respect to
functions at the Fermi surfaces of spin-up and spin-down electronthe Fermi level. Taking into account the two-peak structure
are expected to shift by A with respect to those of the paramag- of A(e) we obtain
netic Fermi surface, as indicated by arrows.

1
ple) = 5[/30(8 = A) +po(e +A)], (41)

the spectral functions at the zero temperature FM phase tran-
sition only for a choice of the spin quantization axis alongi.e., the density of states is also “presplit” at |dwbut is not
the direction of the ground-state magnetizatioh while  strongly suppressed at the Fermi level.
spectral functions for electrons with spin quantization axis Our results may provide the possibility to interpret angle-
perpendicular toM change continuously with decreasing the resolved photoemission spectroscd®RPES data of lay-
temperature to zer¢or to the Curie temperaturé-<t for  ered ferromagnetic materials. For example, the described ef-
guasi-2D systemsNote also that beyond the mean-field ap-fects may be important in the interpretation of the results of
proximation, the Green functions for a spin projection anti-ARPES studies of the layered manganite compound
parallel toM acquire strong incoherent contributions, at leastLa; +,St_,Mn,0;.2 Pseudogap structures are observed in this
for fully polarized ferromagnet¥:1®> The overall qualitative material both, above and beloW.. It was suggested that
picture for the evolution of the spectral properties summathese structures are possibly produced by an accompanying
rizes parts of the results of the present paper in Fig. 7. charge orde?® or by phase separatiéf.The FM fluctua-

The two-peak structure of the spectral functions in thetions, however, might be responsible for part of the pro-
vicinity of a FM instability leads to the formation of new nounced shift(~250 me\j of the spectral weight maxima
coherent quasiparticles at the points of the Brillouin zoneaway from the Fermi energy at the points of the Brillouin
near the spin-up and spin-down Fermi surfaces of the FMone near the FM Fermi surface with above the Curie
ordered ground state. The spin-rotation symmetry remaingemperaturelc.
however, necessarily unbroken da@t>0 and new “pre- The described effects may be also important for the nor-
formed” gp’s do not have any preferable spin direction. Thismal state of some unconventional superconductors, where
“uncertainty” of the spin direction in 2D magnets with strong ferromagnetic fluctuations are expected to be importsee
short-range order was earlier discussed in connection withiGe,, SLRUO,). UG&, has long-range magnetic order in the
NMR technique, which is expected to give two-peak NMR ground state and therefore may also show a quasisplitting of
spectra? even in arbitrary small static magnetic field. For the FS abovd.. Although long range FM order is absent in
quasi-two-dimensional systems the quasisplitting of thestrontium ruthenate JRuO,, FM order is induced by a small
Fermi surface is expected &< T<A with Ay being the  amount of La doping’
ground-state spin splitting. Taking into account the strong self-energy and vertex cor-

Translated to real space, “domains” of siz&€ may form  rections in the vicinity of the FM phase transition, the criteria
containing mostly electrons with a certain spin polarization.for ferromagnetisrf should be reconsidered. This especially
Unlike in localized-moments systems, however, these “do€oncerns quasi-2D systems, where these renormalizations are
mains” have a small electronic density and are therefore exexpected to be the strongest. However, even in 3D systems,
pected to be not a static but rather a dynamic phenomenomhere the finite-temperature divergencies of the self-energy
Such a dynamic formation of droplets with a preferred spinat the Fermi level are only logarithmic i& (instead of a
direction near the FM instability should be distinguishedpower law divergence in 2Dthey can also lead to additional
from the possible phase separation into hole-rich and holerenormalizations of the Stoner criterion in comparison to
poor region3—%4in the vicinity of an AFM instability for the  those considered within the paramagn@pin fluctuation
almost half-filled band. The latter may result as a comprotheory of Refs. 18 and 19.
mise to “adjust” an AFM spin structure to an electron density  So far unresolved is the behavior of the self-energy in the
n<1 and involve charge fluctuations which are coupled toquantum-critical regime, if it exists at all for the FM phase
the spin channel for a nearly half-filled band. At the sametransition due to the presence of nonanalytic contributions.
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