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We discuss the low-temperature behavior of the electronic self-energy in the vicinity of a ferromagnetic
instability in two dimensions within the two-particle self-consistent approximation, functional renormalization
group, and Ward-identity approaches. Although the long-range magnetic order is absent atT.0, the self-
energy has a non-Fermi-liquid form at low energiesuvu&D0 near the Fermi level, whereD0 is the ground-state
spin splitting. The spectral function at temperaturesT&D0 has a two-peak structure with finite spectral weight
at the Fermi level. The simultaneous inclusion of self-energy and vertex corrections shows that the above
results remain qualitatively unchanged down to very low temperaturesT!D0. It is argued that this form of the
spectral functions implies the quasisplitting of the Fermi surface in the paramagnetic phase in the presence of
strong ferromagnetic fluctuations.
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I. INTRODUCTION

Non-Fermi-liquid behavior of correlated low-dimensional
electron systems has attracted much attention during the last
decade. This behavior is usually connected with the violation
of the quasiparticlesqpd concept in some energy window
around the Fermi level. A prominent example is the
pseudogap phenomenon observed in underdoped high-Tc
compounds.1 Cuprate superconductors are, however, not the
only materials example which show a strong suppression of
the low-energy spectral weight due to correlation effects. A
qualitatively similar behavior on parts of the Fermi surfaces
was also observed recently in the unconventional supercon-
ductor Sr2RuO4 in an intermediate-temperature range2 and
the layered manganite compound La1+xSr2−xMn2O7.

3

One possible viewpoint for the origin of the pseudogap
in high-Tc compounds is to relate it to precursors of
antiferromagnetism.4–6 The fluctuation exchangesFLEXd,7,8

two-particle self-consistentsTPSCd,9 dynamical cluster
approximation,10 and most recently the functional
renormalization-groupsfRGd technique11,12 have demon-
strated a strong anisotropy of spectral properties around the
Fermi surfacesFSd in the two-dimensionals2Dd Hubbard
model with a possible violation of the qp concept on parts of
the FS. The large incoherent contributions to the electronic
spectrum of low-dimensional metallic antiferromagnetsse.g.,
an anomalously large scattering rated were also discussed in
Ref. 13. These phenomena result in the formation of a
two-7–9,12or three-peak11 structure of the spectral function in
the vicinity of the antiferromagneticsAFMd instability. With
decreasing temperature, these pseudogap features are ex-
pected to evolve continuously towards a ground state spec-
tral function with an AFM energy gap at the Fermi level.

While many results have been obtained for the electronic
properties in the vicinity of an AFM state and some results
exist for itinerant ferromagnets,14,15surprisingly much less is

known about the evolution of the quasiparticle properties in
the paramagnetic phase near the ferromagneticsFMd insta-
bility. The paramagnon theory16–19 focused mostly on the
description of the magnetic properties, ignoring the renor-
malization of the one-particle Green function. Nevertheless,
already Doniach and Engelsberg20 showed that in three di-
mensions the qp weight vanishes logarithmically on ap-
proaching a FM zero-temperature quantum phase transition
sQPTd. For two-dimensionals2Dd systems, an«2/3 energy
dependence of the self-energy at the quantum critical point
sQCPd can be inferred from similar calculations in the con-
text of gauge field theories,21 the phase separation problem,22

and the Pomeranchuk instability.23 The latter two instabilities
arise also in the zero-momentum transfer particle-hole chan-
nel and therefore are expected to have properties which are
similar to those in the vicinity of the ferromagnetic QPT, at
least in lowest order perturbation theory with respect to the
fermion-bosonscharge or spin modesd coupling. The«2/3 fre-
quency dependence of the self-energy implies the vanishing
of the qp weight at the Fermi level and therefore invalidates
the qp concept. This may raise doubts about the validity of
the applied scheme, since the abovementioned calculations
did not consider both self-energyand vertex corrections.
However, the calculations by Altshuleret al.24 within the
gauge field theory context showed that the«2/3 dependence
of the self-energy remains valid also in higher orders of per-
turbation theory.

The breakdown of the qp concept at the QCP may be even
more apparent at finite temperatures. For fermions interact-
ing with a gauge field it was shown that for the case of
gaplesssalthough diffusived bosonic excitations the imagi-
nary part of the self-energy in a non-self-consistent calcula-
tion is divergent at the Fermi level atT.0 as a consequence
of the diverging static spin susceptibilityxs0,0d.21 This di-
vergence should necessarily have certain consequences for
the zero-momentum particle-hole instabilities of fermion
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systems with short-range interactions. Although the magnetic
correlation lengthj of 2D systems with short-range interac-
tion is finite at finiteT and xs0,0d~j2, three temperature
regimes should be distinguished25 ssee Fig. 1d: sid the quan-
tum disordered regime with a disordered ground state and
almost temperature-independent correlation length,sii d the
quantum criticalsQCd regime with j,1/Ta, and siii d the
renormalized-classicalsRCd regime above an ordered ground
state with an exponentially large correlation length at lowT.
The divergence of the imaginary part of the self-energy for
j→` may lead to especially strong effects in the RC regime,
where the inverse correlation length is almost negligibly
small at lowT. Indeed, for the AFM instability this diver-
gence results in the formation of a pseudogap structure in the
spectral function.9 Although similar properties in the vicinity
of a FM instability were discussed quite recently,26,27 the
behavior in this case is far less from clear, since the suppres-
sion of the spectral weight at the Fermi level itself weakens
the tendency to ferromagnetic order, which therefore implies
the necessity to account for self-energy and vertex correc-
tions self-consistently.

The recently found nonanalytic contributions to the spin
susceptibility in second-order perturbation theory with re-
spect to the electron-electron interaction28 have led to infer
the possible absence of a second-order FM QPT, which is
either replaced by a first-order transition to ferromagnetic
phase or a second-order QPT into an incommensurate phase
with a finite ordering wave vectorQ, which then continu-
ously decreases towardsQ=0 on moving away from the
QPT into the ordered state. However, these corrections are
not expected, at least in the weak-coupling regime, to re-
move the renormalized classical temperature regime entirely.
Indeed, the corresponding characteristic temperature scale
TX,sU /4ptd2t, below which these corrections become
important,28 is quadratic in the interaction and therefore
small in the weak-coupling regime in comparison with both
the bandwidth and the crossover temperatureT* ,U into the
renormalized classical regime not too close to the QPT

It therefore appears demanding to investigate the finite-
temperature behavior of the self-energy in the vicinity of the

FM instability and to compare non-self-consistent and self-
consistent techniques. For non-self-consistent calculations,
the TPSC as well as the recently proposed fRG approaches
on a patched FSsRefs. 29–32d can be used. The latter ap-
proaches have the advantage that they do not select certain
types of electronic scattering processes, but consider them all
on equal footing. The self-consistent treatment of self-energy
and vertex corrections isper sea rather difficult task. Most
consistently this can be done in a parquet-type analysis33 ssee
also Refs. 34 and 35d, which is, however, necessarily rather
involved for numerical studies in dimensionsd.1. In the
fRG technique the back influence of the self-energy on one-
and two-particle properties requires to work at two-loop or-
der, which is currently inachievable. To obtain qualitative
results deep inside the RC regime, the application of Ward
identities offers an alternative. This strategy was chosen pre-
viously by Edwards and Hertz14 to calculate the spin-
resolved self-energy in the ordered FM phase. As we will
show in this paper, an analogous approach can be similarly
applied for magnetically disordered systems in the
renormalized-classical regime.

In the present paper we use the TPSC, fRG, and Ward
identity approaches to get insight from three different points
of view into the behavior of the self-energy in 2D systems at
finite temperatures on approaching the FM phase. First, in
Sec. II we consider the main features of the self-energy ob-
tained within the TPSC approximation and compare them
with the results of the fRG approach, which is used to study
in detail the frequency dependence of the self-energy at van
Hove svHd band fillings. In Sec. III we make use of Ward
identities for a qualitative insight into the role of self-energy
and vertex corrections at low temperatures.

II. THE SELF-ENERGY IN NON-SELF-CONSISTENT
APPROACHES

Specifically we consider the Hubbard model forNe elec-
trons on a square lattice

H = − o
i j s

tijcis
† cjs + Uo

i

ni↑ni↓ − sm − 4t8dNe, s1d

where the hopping amplitude istij = t for nearest-neighbor
sites i and j and tij =−t8 for next-nearest-neighbor sites
st ,t8.0d; for further convenience we have shifted the
chemical potentialm by 4t8; the corresponding electronic
dispersion is

«k = − 2tscoskx + coskyd + 4t8scoskx cosky + 1d − m.

s2d

Furthermore we compare some of our results for the Hub-
bard model with those for the ferromagnetics-d model36,37

H = − o
i j s

tijcis
† cjs − Io

i

Si · sss8cis
† cis8

−
1

2o
i j

JijSi ·Sj − sm − 4t8dNe s3d

in the weak-coupling regime 0, I !8t, where Si are

FIG. 1. Schematic picture for the three different temperature
regimes near QPT, as proposed in Ref. 25:s1d the renormalized
classicalsRCd regime above the ordered ground statesindicated by
the bold line,T* is the corresponding crossover temperature scale
discussed in the textd, s2d the quantum disorderedsQDd regime
above a disordered ground state, ands3d the quantum criticalsQCd
regime. The arrow shows the direction, in which the evolution of
the spectral properties is traced in this paper; “fRG” and “Ward
identities” in the figure mark the intermediatesT*T* d and low-
temperaturesT!T* d regimes, where the corresponding approaches
are applied. The two-particle self-consistent approach is applied in
both regimes.
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localized-spin operators andsss8 are Pauli matrices;Jij =J
.0 is the direct nearest-neighbor ferromagnetic spin ex-
change coupling.

A. TPSC approximation

The TPSC approximation9 for the Hubbard models1d
considers the dynamical spin susceptibility

xsq,vd =
x0sq,vd

1 − Uspx0sq,vd
s4d

which has the same structure as the spin susceptibility in the
random-phase approximationsRPAd, but contains an effec-
tive interactionUsp instead of the bareU. The bare suscep-
tibility x0sq , ivnd is given by

x0sq,ivnd =
1

N
o
k

fk − fk+q

ivn − «k + «k+q
, s5d

where fk = fs«kd is the Fermi function andvn=2pnT. The
effective interactionUsp is determined by the sum rule9

T

N
o

q,ivn

xsq,ivnd = n/2 − n2Usp/s4Ud s6d

with n=Ne/N being the band filling andkB is set to unity.
The renormalization of the interactionUsp/U,1 avoids the
artificial divergence of the susceptibility at finite temperature
where the denominator of Eq.s4d calculated with the bare
interactionU vanishes. The temperature andt8 dependence
of Usp was extensively discussed in Refs. 9 and 26;Usp de-
creases with increasingt8 and decreasing temperature.

Above the ordered ground state the inverse correlation
length in TPSC

j−1 ~ f1 − Uspx0sQ,0dg1/2 s7d

monotonically decreases with temperature and becomes ex-
ponentially small, j−1=C exps−T* / Td, below a certain

crossover temperatureT* =4pAUspS̄0
2/ s3x̄0d, where x̄0

=x0sQ ,0d, A= u¹2x0sq ,0duq=Q, C is a constant, and

S̄0
2 = 3n/4 − 3n2/s8Ux̄0d −

3

2F T

N
o

q,ivn

x0sq,ivnd
1 − x0sq,ivnd/x̄0

G
T=0

s8d

is the square of the ground-statessublatticed magnetization
per site,Q is the magnetic ordering wave vector, determined
by the maximum ofx0sQ ,0d. In the following we suppose
Q=0, which corresponds to a ferromagnetic instability and
is in particular the case for van HovesvHd band fillings
sm=0d of the t-t8 Hubbard model, Eq.s1d, with 0.3t& t8
,0.5t.26,32,38Note that here we ignore the possibility of trip-
let pairing, which may also arise in the vicinity of the FM
instability.32

The self-energy is given by

Ssk,i«nd =
UUspT

2N
o

q,ivn

f3xsq,ivnd − x0sq,ivndg

3
1

i«n + ivn − «k+q
s9d

on the imaginary frequency axisf«n=s2n+1dpT are fermi-
onic Matsubara frequenciesg and

Ssk,« + i0+d =
UUsp

2N
o
q
E dvf3 Im xsq,vd − Im x0sq,vdg

3
NBsvd + fs«k+qd

« + v − «k+q + i0+ s10d

on the real axis, whereNBsvd is the Bose distribution func-
tion. The factor 3 in the first term in the square brackets of
Eqs.s9d ands10d arises from the summation over threestwo
transverse and one longitudinald spin channels, the second
term in the square brackets is substracted to avoid double
counting of the second-order diagram.

The same expressionss9d and s10d with the replacement
UUsp→ I2 hold for thes-d models3d in second order pertur-
bation theory with respect to the electron-spin interactionI,
see, e.g., Ref. 15. The magnetic correlations in this case
originate mainly from the exchange interaction between the
localized spins, and the magnetic susceptibility has the same
form as for the Heisenberg model with nearest neighbor ex-
change interactionJ. The inverse magnetic correlation length
at low T is again exponentially small,39 j−1=C exps−JS2/Td;
the corresponding crossover temperature into the RC regime
is T* ,JS2.

To calculate the self-energy at small« and k near the
Fermi surface, we expand the bare susceptibilityx0 at small
q and v For the Hubbard model atmÞ0 the resulting spin
susceptibility on the real frequency axis is given byssee,
e.g., Ref. 18d

xsq,vd =
x0

Asq2 + j−2d + iBv/q
, s11d

where the correlation lengthj in TPSC is given by Eq.s7d, A
and B are constants which are proportional toUsp with a
coefficient which depends on the bare spectrum«k ssee Ref.
18 for explicit expressionsd. For the van Hove singularity
svHsd casesm=0d we obtain

xsq,vd =
x0

Asq2 + j−2d + iGsq±,vd
, s12d

wherescf. theT= t8=0 result of Ref. 40d

Gsq±,vd =
Usp

2pt sin2 2w

v

maxfv,sTtuq+q−ud1/2,tuq+q−ug
s13d

is the damping of the spin excitations,q±
=qx sinw±qy cosw, and cos 2w=2t8 / t.

The form of the dynamic magnetic susceptibility of the
s-d model in the paramagnetic phase, which is mostly deter-
mined by the local moment subsystem, is more complicated.
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However, we will see below that already the static part of the
susceptibility dominates the spectral properties at lowT
&T*. In the static limit the susceptibility in the RC regime is
expected to coincide with that determined for the AFM case
within a 1/M expansion in theOsMd Heisenberg model41

and has the same form as Eq.s11d with v=0.
To analyze spectral properties, we first consider the in-

verse qp lifetime

1

tskFd
= − Im SskF, i0+d

= −
pUUsp

2N
o
q

3 Im xsq,«kF+qd − Im x0sq,«kF+qd

sinhs«kF+q/Td

s14d

and the derivative of the real part of the self-energy at the
Fermi level

U ] ReSskF,«d
]«

U
«=0

= −
UUsp

2N
PE dvo

q
f3 Im xsq,vd

− Im x0sq,vdg
NBsvd + fs«kF+qd

sv − «kF+qd2 .

s15d

The results for the leading terms atT! t together with the
results of second-order perturbation theorysSOPTd fwhich is
obtained by the replacementx→x0 in Eq. s14dg are collected
in Table I, where we omit overall temperature-independent
prefactors which are proportional toU2/ t2.

Apparently, the imaginary part of the self-energy at the
Fermi level is anomalously enhanced by the correlation ef-
fects forj@1 and even tends to diverge deep inside the RC
regimeT!T*, wherej→`. Simultaneously,u] ReS /]«u«=0
becomes positive and large. At energiesuvu* tj−1 stj−2 in the
vHs cased the real part of the self-energy behaves asD0

2/v,

whereD0=sUUspd1/2S̄0,T*. It is worthwhile to note that the
abovementioned divergencies arise from the purely static
contributions with zero bosonic Matsubara frequency and
were previously discussed in detail for the AFM case in Refs.

6 and 9, whereS̄0 is the ground-state sublattice magnetiza-
tion.

These low-energy features lead to a suppression of spec-
tral weight in Ask ,vd=−s1/pdIm S / fsv−«k +ReSd2

+sIm Sd2g at uvu&D0 ssee also Ref. 26d and to the formation
of a two-peak structure of the spectral function with the

peaks located nearv. ±D0. While for the AFM case the
fulfillment of the nesting condition«kF+Q=−«kF

=0 swhich
for t8Þ0 is satisfied only at the hot spotsd is required, in the
FM case the two-peak structure occurs all around the FS.
The difference between the FM and AFM instabilities at
those points where«kF+Q=0 is evident only in the subleading
terms ,Ta, where the exponenta depends on the
dynamical exponentz fe.g., t−1skFd,Tj+ tOsT/ td1−1/z and
fu] ReS /]«u«=0,sT/ tdj2+OsT/ td1−2/z for the linear electronic
dispersion near the Fermi levelg, z=2 for the AFM andz
=3 for the FM case. Note that unlike Refs. 9 and 26 we did
not suppose thatT!T* in deriving the results of Table I, and
in fact these results are valid for both RC and QC regimes.

The above discussed features of the self-energy keep their
form away from the FS with the replacement«→«−«k+Q.
This holds for allu«k+Qu! t for a linear electronic dispersion
and for tj−2! u«k+Qu! t for vH band fillings. At vH band
fillings and u«k+Qu& tj−2 additional divergent terms in the
real part of the self-energy arise at the vH pointskvH

=s0,pd and sp ,0d with ReSskvH,0d, tk+k−j4 fk±=skx

−pdsinw±ky cosw for kvH=sp ,0d and similarly for the
other vH pointg, which flatten the bare electronic dispersion
at the momenta nearkvH, similar to the zero temperature
case.42 This flattening, however, is not important in the RC
regime since the corresponding momentum region is rather
narrow and ImS at the Fermi level is finite at finiteT sand
even diverges atj→`d.

The dependence on«−«k+Q for tj−2! u«k+Qu! t is the ori-
gin for an important difference between the spectral func-
tions near the FM and AFM instabilitiesaway from the FS.
In the FM case the spectral functions depend on«−«k only,
implying that at«k . ±D0 sthe condition which determines
the FSs of spin-up and spin down electrons in the FM phased
one of the peaks of the above discussed two-peak structure is
located at the Fermi level, making the electronic excitations
at the points of the Brillouin zone with«k . ±D0 coherent.
This indicates the existence of two “preformed” Fermi sur-
faces already in the paramagneticsPMd phase at low tem-
peraturesT&T*. The corresponding electronic excitations,
however, do not have any prefered spin direction and the
spin symmetry remains necessarily unbroken atT.0. As we
show in Sec. III, self-consistent approaches show the same
tendency of the spectral weight suppression at the PM Fermi
surface, and the redistribution of spectral weight towards the
energiesv. ±D0 supports therefore the picture described
above in the non-self-consistent TPSC analysis.

TABLE I. Inverse quasiparticle lifetimet−1skFd and f] ReSskF ,«d /]«g«=0 in second-order perturbation theorysSOPTd and the two-
particle self-consistent approximationsTPSCd near the FM instability for different bare electronic spectra.

t−1skFd f] ReSskF ,«d /]«g«=0

Spectrum SOPT TPSC SOPT TPSC

Linear smÞ0d sT2/ tdlns1/Td Tj+ tOfsT/ td2/3g const,0 sT/ tdj2+OfsT/ td1/3g

vHs sm=0dh k =kvH

k ÞkvH
j T lns1/Td Tj2+ tOfsT/ td2/3g lns1/Td sT/ tdj4+OfsT/ td1/3g

sT2/ tdlns1/Td Tj+ tOfsT/ td5/6g const,0 sT/ tdj2+OfsT/ td2/3g
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B. fRG analysis at van Hove band fillings

The two-particle self-consistent approximation may be in-
sufficient close to van Hove band fillings since it considers
only the contribution of particle-hole excitations and the
other electronic scattering channels are accounted for only by
the “average” renormalized interactionUsp. Moreover, at van
Hove band fillings the effective interactionUsp artificially
tends to zero with decreasing temperaturessee, e.g., Ref. 9d.
To analyze in more detail the frequency dependence of the
self-energy in the vicinity of van Hove band fillings, we
apply the fRG approach for one particle-irreducibles1PId
functions31 with a temperature cutoff.32 This approach con-
siders the evolution of the generating functional with de-
creasing temperature in the weak-coupling regime. The flow
of the self-energySTsk , ivd=T−1/2Ssk , ivd in the 1PI fRG
scheme is given by

dST

dT
= VT + ST, s16d

where+ is a short notation for the summation over momen-
tum, frequency, and spin variables according to standard dia-
grammatic rules, see, e.g., Ref. 43. The renormalization of
the electron-electron interaction vertexVT at one-loop order
is given by

dVT

dT
= VT + sGT + ST + ST + GTd + VT. s17d

The propagatorsGT andST are defined by

GTsk,innd =
T1/2

inn − «k
, STsk,innd = −

1

2T1/2

inn + «k

sinn − «kd2 .

s18d

The factorsT1/2 arise due to the rescaling of the fermion
fields on removing the temperature dependence from the in-
teraction term of the action.32 Equationss16d and s17d have
to be solved with the initial conditionsVT0

=U and ST0
=0

whereT0@ t. In the non-self-consistent treatment in this sec-
tion we have neglected the self-energy in the denominators
of the Green functionss18d. The self-consistent RG analysis
is rather involved and requires the inclusion of two-loop cor-
rections which remain a challenging task for fRG techniques.

Since the frequency dependence of the vertices is ne-
glected in the calculations, it is convenient to reinsert, fol-
lowing Ref. 43, the vertex from Eq.s17d into Eq. s16d to
obtain

dST

dT
= ST + E

T

T0

dT8fVT8 + sGT8 + ST8 + ST8 + GT8d + VT8g.

s19d

To avoid the integration over temperature in the right-hand
side of Eq.s19d we integrate by parts to obtainscf. Ref. 43
for the momentum-cutoff schemed

dST

dT
= sGT − GTf

d + fVT + sGT + ST + ST + GTd + VTg, s20d

where Tf is the final temperature where the self-energy is
evaluated. Although Eq.s20d contains the Matsubara sums of
the Green functions at different temperatures, these sums can
be calculated by the same procedure as for equal-temperature
Green functions.

To solve Eqs.s17d and s20d numerically we divide the
momentum space into 32 patches with the same patching
scheme as in Refs. 31 and 32. To calculate the self-energy on
the real frequency axis we use analytical continuation by
Padé approximants.44 Similar to Ref. 11 we use the advan-
tage of Eq.s19d that for frequency-independent vertices, after
analytical summation over internal frequencies, the self-
energy can be calculated at arbitrary frequencies on the
imaginary axis, and therefore we choose a mesh on the fre-
quency axis, which becomes denser close toiv=0.11

We consider the results at the vH band fillingsm=0d for
t8=0.45t andU=4t where ferromagnetism is expected in the
ground state.32,38 We choose this relatively large value ofU
because the crossover temperaturesT* for the FM instability
are smaller then for the AFM casesT* &0.1t for the param-
eters we used, and for lower values ofU and correspondingly
lower temperatures the analytical continuation becomes in-
creasingly difficult, since the size of the anomalous fre-
quency region in the vicinity of the Fermi level decreases
with T*. The SOPT self-energyfwhich is obtained by the
replacementV→U in Eq. s19dg calculated at temperatures
T=0.1t, 0.3t and 0.5t for kF=s2.83,0.07d, which is the center
of the first patch, closest to thesp ,0d point, is shown in Fig.
2. The SOPT self-energy at other points on the FS looks
similar. As in the AFM case11 at high temperaturesT*0.3t
the self-energy has a sharp dip at the Fermi level due to vH
singularity effects. ImSsSOPTdskF ,0d decreases with decreas-
ing temperature and ImSskF ,0d=0 at T=0. This, however,
does not imply the validity of the qp picture everywhere on
the Fermi surface since ImSskF ,«d~« lns1/«d for the vH
pointskF=sp ,0d ands0,pd at T=0,40 although the “normal”
2D behavior ImSskF ,«d~«2 lns1/«d sRef. 45d is restored for
other points of the Fermi surface.

The self-energy obtained within the fRG technique for the
temperaturesT=0.1t andT=0.3t is shown in Figs. 3–5. The
results for T=0.5t snot shownd are similar to those atT
=0.3t and both are close to the results of the SOPT, Fig. 2.
But in contrast to SOPT, with decreasing temperature toT
=0.1t a new sharp feature appears in a narrow region near
the Fermi levelsFig. 4d. Note that the maximum effective
interaction Vmax;maxhVsk1,k2;k3,k4dj=20t for this tem-
perature. Similarly to the TPSC approach of Sec. II A, the
imaginary part of the self-energy has a minimum at the
Fermi level instead of a maximum as expected for a Fermi
liquid. Simultaneously, ReSskF ,vd has a positive slope near
v=0. These pronounced anomalies in the fRG self-energy
increase in size with decreasingT and lead to a suppression
of spectral weight at the Fermi energy. The spectral function
fFig. 4sddg has an asymmetric two-peak structure. A qualita-
tively similar picture is observed in the fourth FS patch, clos-
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est to the Brillouin zone diagonal withkF=s1.06,0.75d sFig.
5d where at low temperatures the fRG result also leads to a
two-peak structure of the spectral function, where, however,
the v.0 peak is larger thanv,0 one.

The magnitude of ReSskF ,0d.−0.4t in the first, closest
to sp ,0d patch of the FS is almost the same in both the SOPT
and fRG approaches, and is much larger than the correspond-
ing value found in the vicinity of the AFM instability.11 At
the same time, in the fourth patch of the FS, the fRG ap-
proach gives slightly positive ReSskF ,0d, while ReSskF ,0d
in SOPT approach remains almost patch independent. There-
fore, the fRG approach, in contrast to SOPT, leads to a sig-
nificant deformation of the FS near the FM instability at vH
band fillings, which reflects a band narrowing tendency; in
essence, the effectivesrenormalizedd value of the next-
nearest-neighbor hoppingt8 increases towards its value in
the flat-band caset8 / t=1/2 ssee, e.g., the discussion in Ref.
38d. This is similar to the earlier discussed flattening of the
dispersion close tosp ,0d and s0,pd points at vH band
fillings,42 except that in the present case the flattening affects
larger parts of the Brillouin zone along the zone axes. The

sizable value ofuReSu at the Fermi surface leads to an asym-
metric shape of the spectral functions in the vicinity of the
Fermi energy, in contrast to the analytical approach of Sec.
II A, where this FS shift was not taken into account.

III. THE SELF-CONSISTENT APPROACH AT T™T*

To get qualitative insight into the role of self-consistency
effects belowT*, we consider the general form of the spin
susceptibilities

x+−sq,ivnd = −
2T

N
o
k,inn

G↑↓
+ sk,k + q; inn,inn + ivndG↑sk,innd

3G↓sk + q,ivn + innd,

FIG. 2. The realsad and imaginarysbd parts of the self-energy in
second-order perturbation theorysSOPTd at t8 / t=0.45, U=4t, m
=0 svH band fillingd, and different temperatures. Arrows mark the
energy of the lower and upper edges of the noninteracting band
s«min=−4+8t8 and«max=4+8t8, respectivelyd, the cross marks the
energy, opposite to the upper edge of the band −«max. The insets
show the behavior of ReS and ImS at low energies forT=0.1t.

FIG. 3. The functional renormalization group results for the
self-energysad–scd and the spectral functionsdd in the first Fermi
surface patch, closest to thesp ,0d point at t8 / t=0.45,U=4t, m=0,
andT=0.3t.

FIG. 4. Same as Fig. 3 forT=0.1t.

KATANIN, KAMPF, AND IRKHIN PHYSICAL REVIEW B 71, 085105s2005d

085105-6



xzzsq,ivnd = −
T

N
o
k,inn

G↑↑
z sk,k + q; inn,inn + ivnd

3G↑sk,inndG↑sk + q,ivn + innd, s21d

where

Gss8
a sk,k8,inn,inn8d = Gs

−1sk,inndGs8
−1sk8,inn8d

3 E
0

1/TE
0

1/T

eisnnt+nn8t8d

3kTfSk − k8
a s0dcks

† stdck8,s8st8dgldtdt8

s22d

are the three-point spin vertex functions andSq
astd

=s1/Ndokcka
† stdsab

a ck+q,bstd. We retain the spin indices in
this section to perform calculations in the presence of a small
static external Zeeman fieldh which is set to zero at the end.
To arrive at the RPA-like form of the susceptibilities, we
follow Ref. 14 and introduce the irreducible verticesgss8

a

gss8
a sk,k8,inn,inn8d =

Gss8
a sk,k8,inn,inn8d

1 + Uxaask − k8,inn − inn8d
s23d

sa=z for a=z anda=− for a=+d to obtain

xabsq,ivnd =
fabsq,ivnd

1 − Ufabsq,ivnd
, s24d

wherea,b= + ,−,z, and the functionfab has the same struc-
ture asxab in Eq. s21d with the replacementG→g. Note that

g↑↓
+ = g↓↑

− = g↑↑
z = g↓↓

z ;x+− = 2xzz

sand similar forGd at h=0.
The expression for the self-energy, including the Hartree

term, reads

Sssk,innd = −
TU

N
o

k8,ivn8

Gssk8,inn8d +
TU2

N
o

q,ivn

fgs,s
z sk,k

+ q; inn,inn + ivndGssk + q,ivn + inndxzzsq,ivnd

+ gs,−s
+ sk,k + q; inn,inn + ivndG−ssk + q,ivn

+ inndx+−sq,ivndg. s25d

We neglected the contribution of charge excitations here,
which are not singular near the magnetic phase transition.

We note that a similar expression for the self-energy can
be obtained for the ferromagnetics-d model s3d but in this
case the susceptibilitiesxzzsq , ivnd andx+−sq , ivnd are deter-
mined by the localized-moment subsystem. This difference,
however, will not be important in the following sequence of
arguments and the results of this section are applicable for
this model as well.

As discussed in Sec. II A, the main contribution to Eq.
s22d comes from the bosonic Matsubara frequencyivn=0.
The vertexGs,s8

a sk ,k +q ; inn, innd in the limit q→0 fwhich
we denote in the following asGs,s8

a sk ,k ; inn, innd and simi-
larly for gg is found from a Ward identity. The standard Ward
identity ssee, e.g., Ref. 46d

limv→0 Gss8
a sk,k ; inn,inn + ivd

= sss8
a f1 − ]Ssk,inn + ivd/]sivdgv=0 s26d

is not appropriate for that purpose since it considers the op-
posite order of limits for the vertex limv→0 limq→0 G as re-
quired for the calculations in the RC regime. Instead, we use
the identity of Ref. 14 to obtain forh→0

G+sk,k ; inn,innd = Gzsk,k ; inn,innd = 1 +US↑sk,innd − S↓sk,innd
h

U
h=0

. 1 −
TU

N
o

q,ivn

G2sk8,inn8dGsk8,k8; inn8,inn8d

+
TU2

N
o

q,ivn

Hgsk,k + q; inn,inn + ivndGsk + q,k + q; inn + ivn,inn + ivndG2sk + q,ivn + inndfxzzsq,ivnd

− x+−sq,ivndg + F d

dh
gzsk,k + q; inn,inn + ivndG

h=0
Gsk + q,ivn + inndxzzsq,ivndJ , s27d

FIG. 5. Same as Fig. 3 forT=0.1t in the fourth Fermi surface
patch closest to the Brillouin zone diagonal.
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where we have denotedG=G+, g=g+, and we have omitted
spin indices. Note that in the third and fourth line of Eq.s27d
we have neglectedh-derivatives ofg+, x+−, and xzz. These
derivatives lead to nonsingular contributions, at least for the
linear dispersion case, which we mostly consider in the fol-
lowing. Using the relations23d betweenG and g and the
relation s21d betweenG and x we obtain from Eq.s27d the
following integral equation for the vertex functiong:

gsk,k ; inn,innd . 1 +
TU2

N
o

q,ivn

Hgsk,k + q; inn,inn + ivnd

3gsk + q,k + q; inn + ivn,inn + ivnd

3 G2sk + q,ivn + inndfxzzsq,ivnd

− x+−sq,ivndg +
xzzsq,ivnd

1 + Uxsq,ivndF d

dh
gzsk,k

+ q; inn,inn + ivndG
h=0

Gsk + q,ivn + inndJ .

s28d

In principle, Eq.s28d is the first equation in an infinite hier-
archy, since the calculation ofdgz/dh involvesd2gz/dh2, etc.
To close the system of equations in an approximate way, we
proceed similarly to the 1/M expansion within theOsMd
generalization of the Heisenberg model for localized-
moment systems.41,47 Namely, we suppose that there areM
−1 transverse spin modes and one longitudinal mode. Then
the correction due todgz/dh in Eq. s28d is already of order
1/M, and therefore only terms to leading order in 1/M, aris-
ing from the transverse spin fluctuations can be retained
when calculating the derivative. To calculate
dgzsk ,k ; inn, innd /dh we differentiate the equation for the
self-energys25d twice with respect to the field. Note that the
terms containingd2g± /dh2 should be retained in this calcu-
lation, since they are not small in 1/M and do not vanish in
the q→0 limit contrary todg± /dh. After lengthy algebraic
manipulations we finally obtain

F d

dh
gzsk,k ; inn,inndG

h=0
= 2f1 + Uxs0,0dg

3
T

N
o

q,ivn

g3sk,k + q; inn,inn + ivnd

3G3sk + q,ivn + inndx+−sq,ivnd

+ Os1/Md. s29d

Generally, the susceptibilitiess24d which enter Eqs.s25d
and s27d can be represented in a form similar to Eq.s11d or
s12d at v=0,

x+−sq,0d = 2xzzsq,0d .
R

q2 + j−2 + regular terms, s30d

whereR is a constant. As in localized-moment systems with
strong short-range order,48 the following identity:

kS0 ·Srl .
T

N
o
q
Fxzzsq,0d +

M − 1

2
x+−sq,0dGeiq·r

= S̄0
2 exps− r/jd, s31d

which incorporates the correct long distance asymptotics of
the real-space correlation functions atT!T*, is useful to

relateR and S̄0. As a result, we obtain

S̄0
2 =

M

4p
TR ln j. s32d

Since the dominant contribution to momentum sums in
Eqs. s25d and s27d arises from the long wavelength region
q&j−1, we replace

gs,s8
a sk,k + q; inn,innd → gs,s8

a sk,k ; inn,innd,

d

dh
gzsk,k + q; inn,inn + ivnd → d

dh
gzsk,k ; inn,innd.

s33d

Equationss25d, s27d, ands29d together with the replacements
s33d form a closed system forg andS. The remaining inte-
grals overq are easily calculated analytically analogous to
the non-self-consistent calculation in Sec. II A. After the
continuation to the real axis we obtain the following alge-
braic equations for the self-energy and the irreducible vertex
g for tj−1! uv−«ku! t:

Ssk,vd =
D0

2gsk,k ;v,vd
v − «k − Ssk,vd

,

gsk,k ;v,vd = 1 −
M − 2

M

D0
2g2sk,k ;v,vd

fv − «k − Ssk,vdg2

+
2

M

D0
4g3sk,k ;v,vd

fv − «k − Ssk,vdg4 , s34d

where we have introduced the ground state spin splitting

D0=US̄0. Similar to the TPSC approach of Sec. II A, the
resulting self-energy and the vertex depend onk only
throughv̄=v−«k and are given by

Ssk,vd =
MsD0

2 + v̄2 − Îv̄2 − a1D0
2Îv̄2 − a2D0

2d
2s2 + Mdv̄

,

gsk,k ;v,vd =
M

2s2 + Md2D0
2v̄2f2v̄4 + s6 + MdD0

2v̄2 − MD0
4

+ sMD0
2 − 2v̄2dÎv̄2 − a1D0

2Îv̄2 − a2D0
2g,

s35d

where a1,2=1+4s1±Î1+M /2d /M; the branch ImÎzù0 of
the square roots is chosen to guarantee the correct analytical
properties forS andg. On the other hand, in the absence of
the vertex renormalization, i.e., forgsk ,k ; inn, innd=1, which
is the analog of the FLEX approximation49 in our approach,
we obtain for the self-energy theM-independent result
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Ssk,vd =
1

2
sv̄ − Îv̄ − 2D0

Îv̄ + 2D0d. s36d

To zeroth order in 1/M si.e., atM =`d we obtain from Eq.
s35d

Ssk,vd =
D0

2

v̄
,gsk,k ;v,vd = 1 −

D0
2

v̄2 , s37d

i.e., the self-energy and the vertex corrections exactly cancel
each other atM =` and the self-energy and the vertex are
given by their second-order, non-self-consistent results. To
demonstrate how this result changes at finite values ofM, we
plot in Fig. 6 the resultss35d ands36d for M =3 together with
the corresponding spectral functions. Similarly to the non-
self-consistent solutions37d the real part of the self-energy in
the self-consistent solutions35d is divergent atv=0. This is
in contrast to the solutions36d, which is self-consistent with
respect to the self-energy only, and leads to a finite positive
slope of the real part of the self-energy at the Fermi level
]ReS /]v=1/2. Theimaginary part of the self-energy has its
largest absolute value at the Fermi energy and monotonically
decreases withuvu for the solutions36d, while it has more
complicated energy dependence with ad-function singularity
at v=0 according to the self-consistent results35d. As a con-
sequence, the solutions36d, which is self-consistent with re-
spect to the self-energy only, displays a one-peak structure of
the spectral function, while Eq.s35d leads to a two-peak
structure of the spectral functionfFig. 6scdg, which is similar
to theM =` results37d. We note that the gap in the spectral
function at the Fermi energy in the self-consistent solution is
most likely an artifact of the first order in 1/M result. At the
same time the similarities between the results in zeroth and
first order in 1/M allow to conclude that the higher order

corrections in 1/M are expected to be small and do not lead
to qualitative changes.

The one-peak structure of the spectral functions in the
solution without vertex renormalization is similar to that in
the FLEX approximation in the AFM case, which predicts
only a slight variation of the quasiparticle weight around the
Fermi surface.7 As discussed in Ref. 9, this result is a draw-
back of the absence of vertex corrections, and the necessity
to account for frequency-dependent vertex renormalization
togetherwith the self-energy corrections is crucial in this
case. As we have shown in this section, a similar conclusion
is reached in the FM case; the corresponding nontrivial fre-
quency dependence of the vertex is shown in Fig. 6sdd.

Therefore, the solutions35d which accounts for both self-
energy and vertex corrections leads to the results which are
qualitatively similar to those obtained in non-self-consistent
approaches of Sec. II. The same arguments can be applied to
the s-d model, which is therefore expected to lead to the
similar results atT!T*.

IV. SUMMARY AND CONCLUSION

We have investigated the self-energy in two dimensions in
the vicinity of a FM instability within the TPSC, the one-
loop fRG analysis, and by applying Ward identities. In all
approaches the self-energy has a non-Fermi-liquid form in
narrow window uvu&D0 around the Fermi level, and the
spectral functions have a two-peak structure at low tempera-
tures. The spectral weight at the Fermi energy is strongly
suppressed atT&T* in both, non-self-consistent and self-
consistent solutions, because the self-energy and the vertex
corrections partially cancel each other. The form of the spec-
tral functions we have obtained in the paramagneticsPMd
state with strong short-range magnetic order is qualitatively
similar to the mean-field result for the spectral functions in
the FM ordered state, if the electron spin quantization axis is
chosenperpendicularto the direction of the magnetization.
Indeed, performing the simplest Stoner-like decoupling of
the interaction in the Hubbard model with the order param-
eter D=sU /2dkci↑

† ci↓+ci↓
† ci↑l, which corresponds to a spin

alignment along thex axis, we readily obtain

kkcks
† ucksllv =

1

2
S 1

v − «k − D + i0+ +
1

v − «k + D + i0+D ,

s38d

where kkullv denotes the Fourier transform of the retarded
Green function. With the inclusion of a small dampingig in
the denominators the Green function Eq.s38d leads indeed to
a spectral function, which is qualitatively similar to, e.g., Fig.
6scd. At the same time, the mean-field Green functions for
the spin projectionalong sparallel or antiparalleld the mag-
netization axis are given by

1

2
kkck↑

† ± ck↓
† uck↑ ± ck↓llv =

1

v − «k 7 D + i0+ s39d

and are qualitatively different from the result of Eq.s38d.
The spectral functions in the PM phase are necessarily spin-
rotation invariant. Therefore, we expect strong changes of

FIG. 6. The real and imaginary parts of the self-energysad, sbd,
the spectral functionscd, and the vertex functiong sdd at T!T* in
the fully self-consistent Ward identity approachssolid linesd and the
FLEX-like approach, which is self-consistent with respect to the
self-energy onlysdashed linesd as a function ofv̄=v−«k at D0

=0.1.
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the spectral functions at the zero temperature FM phase tran-
sition only for a choice of the spin quantization axis along
the direction of the ground-state magnetizationM , while
spectral functions for electrons with spin quantization axis
perpendicular toM change continuously with decreasing the
temperature to zerosor to the Curie temperatureTC! t for
quasi-2D systemsd. Note also that beyond the mean-field ap-
proximation, the Green functions for a spin projection anti-
parallel toM acquire strong incoherent contributions, at least
for fully polarized ferromagnets.14,15 The overall qualitative
picture for the evolution of the spectral properties summa-
rizes parts of the results of the present paper in Fig. 7.

The two-peak structure of the spectral functions in the
vicinity of a FM instability leads to the formation of new
coherent quasiparticles at the points of the Brillouin zone
near the spin-up and spin-down Fermi surfaces of the FM
ordered ground state. The spin-rotation symmetry remains,
however, necessarily unbroken atT.0 and new “pre-
formed” qp’s do not have any preferable spin direction. This
“uncertainty” of the spin direction in 2D magnets with strong
short-range order was earlier discussed in connection with
NMR technique, which is expected to give two-peak NMR
spectra,50 even in arbitrary small static magnetic field. For
quasi-two-dimensional systems the quasisplitting of the
Fermi surface is expected atTC,T!D0 with D0 being the
ground-state spin splitting.

Translated to real space, “domains” of size,j may form
containing mostly electrons with a certain spin polarization.
Unlike in localized-moments systems, however, these “do-
mains” have a small electronic density and are therefore ex-
pected to be not a static but rather a dynamic phenomenon.
Such a dynamic formation of droplets with a preferred spin
direction near the FM instability should be distinguished
from the possible phase separation into hole-rich and hole-
poor regions51–54in the vicinity of an AFM instability for the
almost half-filled band. The latter may result as a compro-
mise to “adjust” an AFM spin structure to an electron density
n,1 and involve charge fluctuations which are coupled to
the spin channel for a nearly half-filled band. At the same

time, the dynamic domain formation near a FM instability is
expected solely due to FM spin fluctuations which favor the
aggregation of electrons with certain spin orientation in re-
gions of size,j.

While the form of the spectral functions in the vicinity of
the FM phase transition is dramatically different from the
conventional quasiparticle one-peak structure, we do not ex-
pect sizable effects in the density of states. Indeed, since the
spectral functions depend at low energy on«−«k only, we
find for u«u! t

rs«d =
1

N
o
k

Ask,«d . E
«min

«max

d«8r0s«8dAs« − «8d, s40d

wherer0s«d is the bare density of states and«min,max are the
energies of the bottom and the top of the band with respect to
the Fermi level. Taking into account the two-peak structure
of As«d we obtain

rs«d .
1

2
fr0s« − Dd + r0s« + Ddg, s41d

i.e., the density of states is also “presplit” at lowT, but is not
strongly suppressed at the Fermi level.

Our results may provide the possibility to interpret angle-
resolved photoemission spectroscopysARPESd data of lay-
ered ferromagnetic materials. For example, the described ef-
fects may be important in the interpretation of the results of
ARPES studies of the layered manganite compound
La1+xSr2−xMn2O7.

3 Pseudogap structures are observed in this
material both, above and belowTC. It was suggested that
these structures are possibly produced by an accompanying
charge order,55 or by phase separation.56 The FM fluctua-
tions, however, might be responsible for part of the pro-
nounced shifts,250 meVd of the spectral weight maxima
away from the Fermi energy at the points of the Brillouin
zone near the FM Fermi surface withT above the Curie
temperatureTC.

The described effects may be also important for the nor-
mal state of some unconventional superconductors, where
ferromagnetic fluctuations are expected to be importantssee
UGe2, Sr2RuO4d. UGe2 has long-range magnetic order in the
ground state and therefore may also show a quasisplitting of
the FS aboveTC. Although long range FM order is absent in
strontium ruthenate Sr2RuO4, FM order is induced by a small
amount of La doping.57

Taking into account the strong self-energy and vertex cor-
rections in the vicinity of the FM phase transition, the criteria
for ferromagnetism18 should be reconsidered. This especially
concerns quasi-2D systems, where these renormalizations are
expected to be the strongest. However, even in 3D systems,
where the finite-temperature divergencies of the self-energy
at the Fermi level are only logarithmic inj sinstead of a
power law divergence in 2Dd, they can also lead to additional
renormalizations of the Stoner criterion in comparison to
those considered within the paramagnonsspin fluctuationd
theory of Refs. 18 and 19.

So far unresolved is the behavior of the self-energy in the
quantum-critical regime, if it exists at all for the FM phase
transition due to the presence of nonanalytic contributions.

FIG. 7. Schematic picture for the evolution of the spectral func-
tion near the ferromagnetic phase transition. The spectral functions
at T=0 are shown at the paramagnetic Fermi surface. The spectral
functions at the Fermi surfaces of spin-up and spin-down electrons
are expected to shift by ±D with respect to those of the paramag-
netic Fermi surface, as indicated by arrows.
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This behavior depends crucially on the temperature depen-
dence of the correlation length; the«2/3 dependence of the
self-energy atT=0, however, already implies a nontrivial
temperature dependence of the quasiparticle scattering rate at
finite temperatures. The simple ansatz for the magnetic sus-
ceptibility we have used in the Ward identity approach is not
justified in this case, and an alternative approach has yet to
be developed.
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