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We consider an electron-acoustic-phonon coupling mechanism associated with the dependence of crystal
dielectric permittivity on the strainsthe so-called Pekar mechanismd in nanostructures characterized by strong
confining electric fields. The efficiency of Pekar coupling is a function of both the absolute value and the
spatial distribution of the electric field. It is demonstrated that this mechanism exhibits a phonon wave-vector
dependence similar to that of piezoelectricity and must be taken into account for electron transport calculations
in nanostructures with extended field distributions. In particular, we analyze the role of Pekar coupling in
energy relaxation in silicon inversion layers. Comparison with the recent experimental results is provided to
illustrate its potential significance.
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The electron-phonon interaction is one of the fundamental
problems in solid-state physics. For coupling with acoustic
phonons in particular, much attention has been devoted to the
two main mechanisms in semiconductors: the deformation
potential and piezoelectric interaction. In the presence of an
external electric fieldE, however, an additional process ap-
pears associated with the dependence of dielectric permittiv-
ity on the strain. Due to this dependence, an acoustic phonon
can induce an effective ac electric-field component and sub-
sequently an additional coupling with electrons. This mecha-
nism was initially introduced by Pekar1,2 for the problem of
sound amplification by drifting electrons. It was shown later3

that the Pekar mechanism of electron-phonon interaction is
related directly to the electrostriction effect. The induced ac
electric field has a piezolike dependence on the phonon wave
vector q and can roughly be characterized by an effective
piezoconstant,

bef f , «0«2Ep, s1d

wherep is the characteristic photoelasticity constant and«0,
« are the absolute dielectric constant and dielectric permit-
tivity of the unstrained crystal, respectively. In ordinary bulk
crystals withE&104 V/cm, bef f is quite small. As a result,
Pekar initially concentrated on the materials with a very
large « se.g., «,2000 for BaTiO3d and electrostriction ef-
fect. Efficient acoustoelectric coupling for such materials
was observed experimentally in the 1970s.4

As the dimension of the sample structure shrinks, interac-
tion mechanisms that are not allowed in bulk materials can
manifest themselves. For instance, modulation of the quan-
tum well width and effective mass by strain gives rise to the
so-called macroscopic deformation potential.5 Similarly, the
“traditional” mechanisms can exhibit different features. In
this Communication, we demonstrate that the Pekar mecha-
nism is essential for nanostructures with strong confining
electric fields.6,7 The interaction efficiency is dependent on
the magnitude of the field, spatial scale of its localization,
and the phonon wavelength. This suggests that unlike the

deformation potential and piezoelectric mechanisms, the Pe-
kar interaction can be tuned by controlling the electric-field
distribution of the system through, for example, the gate
bias. It is also important to note that although particular
properties of Pekar interaction depend on the symmetry of
the crystal, it is present, in general, in materials of any sym-
metry. This is because mathematically the photoelasticity is
caused by the terms in the crystal free energy which are
quadratic in electric field. This is in contrast with the piezo-
electric interaction, which is due to terms linear in electric
field and is therefore relevant only for crystals without spa-
tial inversion symmetry. Thus, the Pekar interaction is ex-
pected to be particularly important for the structures based
on the nonpiezoelectric materials.

As a specific example, we consider low-temperature
electron energy relaxation inn-type s100d Si inversion
layers. Our calculation shows that due to the Pekar mecha-
nism, the dissipated power in these nonpiezoelectric materi-
als can exhibitT3 dependence. Such dependence would
be present for the case of piezoelectric interaction, while
the the deformation potential interaction providesT5

dependence. This finding provides a clear explanation
for a recent experimental observation of similar dependence8

in Si metal-oxide-semiconductor field-effect transistors
sMOSFETsd. It also suggests that the Pekar interaction can
be responsible for piezolike energy relaxation9–11 and ther-
mopower characteristics12 observed in SiGe quantum wells.

Let us start with a general analysis of the Pekar mecha-
nism for the case of a nonuniform electric-field distribution
in layered stuctures. The variation of dielectric permittivity
under strainuij can be written in the form,13

d«i j = − «i j
2pijlmulm, s2d

where pijlm is the photoelasticity tensorswe could use the
electrostriction tensor instead; however, the use of photoelas-
ticity tensor allows one to extract explicitly the dependence
of electrostriction on«, which follows from the Clausius-
Mossotti model14d. The form of photoelasticity tensor is de-
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termined by the symmetry of the crystal. In the diamond and
zinc-blende structures, there are only three independent non-
zero components of this tensor denoted usually asp11, p12,
andp44.

13 Moreover,«i j =di j«.
The electrostriction effect in a static external fieldE leads

to appearance of an effective fieldẼ=−¹ f̃. The equation for
potentialf̃ can be derived from the equation for the electric
displacementD,

¹ ·D = 0, Di = s«i j + d«i jdEj
sSd, s3d

where EsSd=E+Ẽ is the total electric field in the crystal.
Assuming that the strain is small, we obtain

¹2f̃ =
1

«

]

]xi
sd«ikEkd. s4d

In the simplest situation, the external electric field isE
=f0,0,Eszdg, which corresponds to the confining field in a
quantum well. We also assume an elastically uniform me-
dium with the functional dependence ofuij ,d«i j ,expfis
−vt+qzz+qi%dg and f̃=f̃szdexpfis−vt+qi%dg, where
qi=sqx,qyd and%=sx,yd is the coordinate vector in the quan-
tum well plane. Under these conditions, Eq.s4d simplifies as

d2f̃

dz2 − qi
2f̃ = Gszd, Gszd ; SiEszdqid«iz + d«zz

dEszd
dz

D1

«
,

s5d

resulting in

f̃ = −
1

2qi

eqizE
z

+`

Gsz8de−qiz8dz8 −
1

2qi

e−qizE
−`

z

Gsz8deqiz8dz8.

s6d

It is important to note two significant features off̃. First, f̃
is not a plane wave as a function ofz, which is a direct result
of the assumed nonuniform character of the electric field.
Second, f̃ strongly depends on the spatial domain of
electric-field localization,d. For qzd@1 andqid@1, the es-
timate of Eq.s1d applies. Forqzd!1 andqid!1, however,
the induced potential is suppressed substantially with a factor
qd, which one can reveal considering the functional form of
G on qz andqi.

Let us consider a specific example, namely, the process of
energy relaxation inn-type s100d Si inversion layers at low
temperatures. The built-in confining electric fields in such
structures can be as high as a MV/cm. In this case, the role of
Pekar mechanism is particularly important since silicon itself
is not a piezoelectric material and the Pekar contribution is
expected to be dominant at low temperatures, where the de-
formation potential interaction is less effective. Of course,
the Pekar mechanism also provides a contribution to the mo-
mentum relaxation rate that determines the mobility. How-
ever, at low temperatures the momentum relaxes mainly due
to the elastic scattering by various imperfections, and the
contribution of phonons is hardly measurable. Thus, we con-
centrate on energy relaxation.

The electron potential well near the Si/SiO2 interface and
the electric field associated with the inversion layer are
shown schematically in Fig. 1. The strong static electric field
E=−dfszd /dz associated with the inversion layer confines
the electrons in a thin silicon layer near the interface. The
electrostatic potentialfszd, quantized electron levels, and
wave functionscsrd=xszdexpsik%d are determined from the
self-consistent solution of Poisson and Schrödinger
equations.6 In the following, we assume that only the ground
electron subband is populated at low temperatures.

The induced potential is determined by Eq.s5d. The
boundary conditions at the Si/SiO2 interfacesz=0d under a
small strain are

f̃ssd = f̃sinsd, «ssdẼz
ssd + d«zz

ssdEssd = «sinsdẼz
sinsd + d«zz

sinsdEsinsd,

s7d

whereẼz=−df̃ /dz. For the considered geometry, the follow-
ing photoelasticity terms are relevant:

d«xz= − 2«2p44uxz,

d«yz= − 2«2p44uyz,

d«zz= − «2fp11uzz+ p12suyy + uxxdg, s8d

wherex,y,z are the symmetry axis of the crystal. For sim-
plicity, we disregard the mismatch of elastic and photoelas-
ticity constants in Si and SiO2 layers. We also assume that
the actual phonon wavelength exceeds the thickness of the
depletion layer in siliconssee Fig. 1d and yet is much less
than the thickness of the SiO2 layer. The former assumption

FIG. 1. sad Schematic illustration of the potential well in an
n-type Si inversion layer. The thickness of the depletion layer is
denoted byddepl. sbd z dependence of the confining electric field in
the inversion layer.

GLAVIN et al. PHYSICAL REVIEW B 71, 081305sRd s2005d

RAPID COMMUNICATIONS

081305-2



can be justified at low enough temperatures, where the con-
tribution of the Pekar mechanism exceeds that of the defor-
mation potential. In the case when the latter condition is
violated, the induced potential becomes weak in accordance
with the general analysis given above. In fact, this restricts
the parameters of actual structures where the Pekar mecha-
nism is important.

Under these assumptions,edzx2szdf̃szd< f̃s0d, and

f̃s0d = −
«ssd«sinsd

«ssd + «sinsd
Es

qi + iqz

3Fsp44qi + iqzp11duz + Sp44
qz

qi

+ ip12DsusqidG .

s9d

Here, Es and us are the electric field and the phonon dis-
placement at the silicon side of the interface, respectively.

Using Eq. s9d, we calculate the electron scattering rates
Wkk8

qz;± for electron transitionk→k8 with absorptions1d or
emissions2d of an acoustic phonon,

Wkk8
qz;± =

pe2sEsd2

Vrvq
S «ssd«sinsd

«ssd + «sinsdD2

ualsudu2dk8,k7qi
dsek

− ek8 7 "vqdHNq + 1

Nq
J , s10d

whereek is the electron energy andNq represents the Planck
population of the phonon modes characterized by the lattice
temperatureT. The indexl of the functionualsudu denotes the
type of the phonon modes. In particular,

uaLAsudu2 = fp11
2 + s4p44

2 − 2p11
2 + 2p11p12dsin2 u + sp11

2 + p12
2

− 2p11p12 − 4p44
2 dsin4 ug, s11d

uaTAsudu2 = fp44
2 ssin2 u − cos2 ud2 + sp11 − p12d2sin2 u cos2 ug,

s12d

whereu is the angle between the phonon wave vectorq and
the z axis, V andr are the normalizing volume and density,
respectively, andvq=sl,tq is the phonon frequency.aTA cor-
responds to the contribution of the transverse phonons with a
vertical polarizationsu lies in the plane formed by thez axis
and qd; the contribution of the phonons with a horizontal
polarizationsu is parallel to the interfaced is zero. The power
Q dissipated by electrons is given as15

Q = gS−1Sk,k8,qz
sek − ek8dfWkk8

sqz;+d + Wkk8
sqz;−dgfTe

skdf1 − fTe
sk8dg,

s13d

whereg is the electron degeneracyfg=4 in as100d inversion
layer taking into account both the spin and valley degen-
eracyg andS is the cross-sectional area for normalization. In
the expression forQ, we assume that the electron-electron
interaction establishes a Fermi distribution for electrons with
an electron temperatureTe.

At a low temperature, the small-anglesBloch-Grünizend
scattering regime is realized. For degenerate electrons after
the standard transformations, we obtain a piezolike tempera-
ture dependence,

Q = CsTe
3 − T3d,

C = sCLA + CTAd
1

p7/2

m2sEsd2

"5ne
1/2

e2

r
zs3dS «ssd«sinsd

«ssd + «sinsdD2

,

CLA =
1

sl
2

p

8
s4p44

2 + 2p11p12 + 3p11
2 + 3p12

2 d,

CTA =
1

st
2

p

8
„4p44

2 + sp11 − p12d2
…, s14d

wherem is the electron effective mass for the in-plane mo-
tion, ne is the electron concentration in the inversion layer,
andz is the Riemann zeta function,zs3d<1.20.

For a numerical estimation, we use the following material
parameters:«Si=12, r=2 g/cm3, «SiO2

=4, sl =93105 cm/s,
st=5.43105 cm/s, andm=0.19m0 ffor the s100d interfaceg.
The values of the photoelasticity tensor arep11=−0.093,
p12=0.026, andp44=−0.05.16 As mentioned previously, the
electron density and electric field at the interface must be
determined by a self-consistent procedure. As a rough esti-
mate, we adoptEs=33105 V/cm and ne=531011 cm−2,
which provideC=10−4 W/K3 m2. This corresponds to the
energy relaxation time of about 1 ms at the electron tempera-
ture of Te,1 K andT,Te.

In a recent experiment on silicon MOSFETs,8 the cubic
piezolike dependence ofQ on Te was observed at low
temperatures, which was followed by aTe

5 dependence for
Te.0.6 K characteristic for the deformation potential
coupling. The authors of Ref. 8 attributed theTe

3 dependence
to the appearance of effective piezoelectric properties
due to the specific structure of the interface. Indeed, the in-
terface reduces the symmetry of the system which can give
rise to nonzero piezoelectricity in the vicinity of interface.
However, this does not provide bulklike piezointeraction.
The piezoelectric potential in this case is determined by the
Poisson equation with the solution similar to Eq.s6d but
with G containingz-dependent piezocoefficient and its de-
rivative. Similar to the case of narrow regions of electric-
field localization for Pekar interaction, for the phonon wave-
length exceeding the thickness of this “piezoelectric” layer,
the piezoelectric potential induced by the phonon is sup-
pressed. Therefore, the observed cubic dependence is more
likely to be due to the Pekar mechanism. Note also that the
value of C obtained above is close to that measured
experimentally.8

In addition to the MOSFETs, the piezolike dependence of
energy loss9–11 and thermopower12 was reported for SiGe
quantum well structures as well. Since the experiments were
conducted in the presence of strong confining electric fields
si.e., in either modulation doped quantum wells or the quan-
tum wells embedded in thep-i-n structuresd, these results
can also be explained by the Pekar interaction.

In summary, we show that the Pekar mechanism of
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electron-phonon interactionsrelated to the electrostriction ef-
fectd can become important in nanostructures due to the pres-
ence of strong confining electric fields and must be consid-
ered along with the deformation potential and piezoelectric
mechanisms. The effectiveness of Pekar coupling depends on
both the absolute value and the spatial distribution of the
electric field. An estimation of power dissipation by this
mechanism in a silicon inversion layer is in good agreement

with a recent experiment. It also suggests that the Pekar in-
teraction may be responsible for the piezolike dependence
observed in the electron transport characteristics in SiGe
quantum well structures.
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