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We assert that the physics underlying the extraordinary light transmissionsreflectiond in nanostructured
materials can be understood from rather general principles based on the formal scattering theory developed in
quantum mechanics. The Maxwell equations in passivesdispersive and absorptived linear media are written in
the form of the Schrödinger equation to which the quantum mechanical resonant scattering theorysthe
Lippmann-Schwinger formalismd is applied. It is demonstrated that the existence of long-lived quasistationary
eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmis-
sion properties observed in various nanostructured materials. Such states correspond to quasistationary elec-
tromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example
of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a
direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of reso-
nancessor trapped modesd for extraordinary light transmission.
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I. INTRODUCTION

Supported by technological progress, studies of the inter-
action of electromagnetic radiation with nanostructured ma-
terials have become an area of intense research driven by
potential applications in optics and photonics.1–4 In particu-
lar, it has been found that metal3–16and dielectric17–24grating
structures possess extraordinary transmissionsreflectiond
properties within narrow intervals of wavelengths close to
the grating period. While for dielectric gratings a common
point of view on this phenomenon, as occurring due to the
existence of trapped modes or guided wave resonances,18–24

seems to be established, there is still an ongoing discussion
on the origin of a nearly 100% light transmission within
narrow wavelength rangessd observed in slit and hole arrays
made in metal films. Although similar results are obtained
with different theoretical approaches, in which the Maxwell
equations are numerically solved, an explanation of the un-
derlying physics, as due to excitations of coupled surface
plasmons and/or cavity modes,5,6 competes with the dynami-
cal diffraction theory point of view.9,10 Remarkably, all avail-
able studies of metal grating structures have been carried out
with the TM-polarized lightsthe magnetic field is parallel to
the slitsd where surface plasmons can indeed be excited.

Transmission and reflection properties of grating struc-
tures are typically studied by stationary methods in the fre-
quency domain. Nevertheless, the dynamics of light scatter-
ing on gratings can partly be guessed from stationary results.
Indeed, consider a femtosecondsbroadbandd pulse impinging
on a grating structure such that the spectral range of the pulse
is much larger than the grating transmission windowssd.
From the uncertainty principle it follows that, in order for
transmission of light to occur only within a narrow frequency

range, the radiation should last much longer than the dura-
tion of the initial pulse. This implies that the corresponding
electromagnetic modes have to be trapped by the nanostruc-
tured material during a sufficiently long time. Such modes
are known in scattering theory as scattering resonances.25

Here we propose a general point of view on the physics
underlying the extraordinary light transmission in nanostruc-
tured materials. By reformulating the Maxwell equations in
the form of the Schrödinger equation and by using quantum
scattering theory, we show that this phenomenon is a direct
consequence of the existence of trapped electromagnetic
modes possessing large lifetimes. Based on this general prin-
ciple, various structures can be custom designed that would
transmit or reflect light within a designated narrow wave-
length rangessd. As an example to illustrate our approach,
transmission properties of a metal-dielectric grating structure
are studied for TE-polarized lightsthe electric field is parallel
to the slitsd impinging normally on the grating. A direct on-
the-grid solution of the time-dependent Maxwell equations
demonstrates the significance of resonancessor trapped
modesd for the enhanced light transmission. Interestingly
enough, such a system has never been studied before, prob-
ably because of the absence of the coupling of electromag-
netic modes to plasmons, often thought to be the main
mechanism of the extraordinary light transmission. It should
be understood that our choice of the geometry does not im-
ply an attempt to favor either the plasmon- or cavity-mode
point of view in, generally, strongly coupled systems.

II. METAL-DIELECTRIC GRATING

We begin with an example of a grating structure sketched
in Fig. 1 to illustrate our basic idea. The grating structure has
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translational symmetry along one of the Euclidean axes, cho-
sen to be they axis. The structure is periodic along thex axis
with periodDg, and thez direction is transverse to the struc-
ture. For the sake of comparison with previous works,5 the
parameters are chosen to be: the grating periodDg
=1.75mm, the thicknesssalong thez axisd h=0.8–1.4mm,
and the opening widtha=0.3–0.35mm. In the case of the
TM radiation impinging on the grating with no dielectric
fillings, the extraordinary transmission properties have al-
ready been reported and analyzed.5,7,10,11,13 The question
arises whether enhanced transmission can be obtained for the
TE radiation or, according to our remarks in the previous
section, whether or not trapped modes exist and can be ex-
cited.

To obtain a rough estimate of the wavelengths of possible
trapped sor quasistationaryd electromagnetic modes in the
system, consider first the case of a perfect metal grating. For
a moment, we also neglect the effects due to a finite thick-
ness of the grated metal slab in thez direction. In other
words, we neglect the coupling between trapped modes and
radiation modes outside the grating. Then thex component
of the wave vector is quantized as a consequence of the zero
boundary conditions at the metal-dielectric interface. A quan-
tization of thez component of the wave vector can be under-
stood as Fabry-Perot modes in a dielectric slab inside the
metallic waveguide—i.e., the modes for which the dielectric
slab is 100% transparent. Admissiblesquantizedd values of
the wave vector inside the grating define wavelengthslnm of
trapped electromagnetic modes that can be excited by the
incident radiation

«S 2

lnm
D2

= Sn

a
D2

+ Sm

h
D2

, s1d

where « is the dielectric constant, andn,m=1,2, . . ..Note
that, sincea,h for the grating geometry, the first term on
the right-hand-sidesRHSd of Eq. s1d is the most relevant for
the threshold to excite quasistationary statessstanding
wavesd. In what follows we are interested in the zero-
diffraction mode for wavelengthslùDg so that the reflected
and transmitted beams propagate along thez axis. In this
case the threshold for trapped modes to exist is determined
by the lowest mode,n=m=1, leading to the condition
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Taking into account the grating parameters, conditions2d can
be satisfied only if«ù9.7 for the range ofa andh specified
above. Thus, if there is no dielectric fillings«=1d, the grating
structure would totally reflect the TE radiation withlùDg,
which is indeed supported by our numerical simulations.
This is in contrast to the TM radiation case where 100%
transmission can be reached for the very same grating with
no dielectric fillings and made of the perfect conductor.5

In our numerical study, we consider the grating with
openings filled with a nondispersive dielectric with«=11.9
sthis corresponds to Si within the wavelength range under
considerationd. The metal is described by the Drude model:

«Msvd = 1 −
vp

2

v2 + ivg
. s3d

For the sake of comparison with previous works the plasma
frequency and the attenuation are taken asvp=9 eV andg
=0.1 eV sRef. 5d. Transmission and reflection properties of
the grating structure are calculated by means of the wave
packet propagation method. The method is based on the rep-
resentation of the Maxwell equations in the form of the
Schrödinger equation for which the initial value problem is
numerically solved by a time-stepping algorithm. A detailed
description can be found elsewhere.23,24

For the specific case considered here, the Hamiltonian
formalism is as follows. LetD=E+P whereD, E, andP are
the electric induction, the electric field, and the medium po-
larization vector, respectively. In the Drude model the me-
dium polarization vector satisfies the second-order differen-
tial equation

P̈ + gṖ = vp
2E, s4d

where derivatives with respect to timet are denoted by over-
dots. Equations4d must be solved with zero initial condi-

tions, P=Ṗ=0 at t=0. Define an auxiliary fieldQ by Ṗ
=vpQ. The Maxwell’s equations are cast in the Schrödinger
form:

iĊ = HC, s5d

where the wave functionC and the HamiltonianH are

FIG. 1. Schematic representation of the studied system. The
radiation is incident along the normal to the slabsthe z axisd, con-
sisting of a grating structure with alternating regions of metal and
dielectric along thex direction. The dark grey and shaded regions
correspond, respectively, to the metal and dielectric parts of the
structure. The system is translationally invariant along they
direction.
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C = 1Î«E
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2, H = 1 0 ic«−1/2 = 3 − ivp

− ic = 3 «−1/2 0 0

ivp 0 − ig
2 .

s6d

The norm of the wave function,iCi2=e drC†C, is propor-
tional to the total electromagnetic energy of the wave
packet.23,26 When the attenuation is not present,g=0, the
Hamiltonian is Hermitian and the normsenergyd is con-
served. The quantities« and vp are position dependent so
that «=1 everywhere outside the dielectric inclusions and
vp=0 everywhere outside the metal part of the grating.

It follows from Eq.s5d thatCst+Dtd=exps−iDtHdCstd. In
our simulations, the action of the infinitesimal evolution op-
erator exps−iDtHd on the wave functionC is carried out by
the algorithm described in Ref. 23. The initial wave packet is
Gaussian and propagates along thez axis perpendicular to
the grating. Its spectrum is broad enough to cover the fre-
quency range of interest. A change of variables is used to
enhance the sampling efficiency in the vicinity of medium
interfaces so that the boundary conditions are accurately re-
produced by the Fourier-grid pseudospectral method.27,28 A
typical size of the mesh corresponds to −15Dgøzø15Dg
and −0.5Dgøxø0.5Dg with 512 and 128 knots, respec-
tively. The frequency resolved transmission and reflection
coefficients are obtained via the time-to-frequency Fourier
transform of the signal at some distance in front and behind
the grating.29 An absorbing layer is introduced at the grid
boundaries in order to suppress artificial reflections of the
wave packet.30

III. RESULTS AND DISCUSSION

In Fig. 2sad we show an interpolated image of the time
evolution of the electric fieldEy along thez axis passing
through the center of the gratingssee Fig. 1d. The grating
structure is characterized by«=11.9, Dg=1.75mm, a
=0.35mm, andh=1.4 mm. The red and blue colors corre-
spond to positive and negative values of the field, respec-
tively. The horizontal axis represents thez coordinate ex-
pressed in units of the grating period,Dg. The grating
extends fromz=0 to z=h/Dg. The vertical axis represents
the propagation time measured in femtoseconds. The initial
pulse impinging on the grating has a duration of approxi-
mately 25 fs. The instant when the pulse hits the grating
followed by the main reflected signal is clearly visible in the
figure. One also observes that a fraction of the electromag-
netic energy is stored in the grating structure and leads to a
long-lasting radiation on both the transmission and reflection
sides. This lasing effect extends to a picosecond time range;
i.e., it is much longer than the duration of the initial pulse. It
can be explained as due to the existence of trapped electro-
magnetic modes or resonances. It is the radiation of decaying
trapped modes that comes with a phase opposite to the cor-
responding harmonic in the initially reflected pulse to the left
from the grating structure and leads finally to the reduced
reflection. The same lasing effect to the right from the grat-
ing structure is responsible for high transmission at the same

frequencyssee further discussion and results in Fig. 3d.
Figure 2sbd shows the dynamics of the electric fieldEy in

the same setting, but the attenuationg is set to zero. In this
case, the trapped modes do not dissipate their energy into the
metal. As a result, they live longer, which is clearly seen
from comparison of the color intensity of the vertical strip in
the middle of Figs. 2sad and 2sbd swhich represents the elec-
tric field of the trapped modesd.

The calculated transmission coefficient is presented in
Fig. 3 as a function of the wavelength expressed in units of
the grating period,Dg. Each of the resonances observed in
Fig. 3 is associated with the corresponding trapped mode.
The rough estimate given in Eq.s1d of their energiessfre-

FIG. 2. sColor onlined sad Interpolated image of the time evolu-
tion of the electric fieldEy along thez axis passing through the
center of a dielectric region of the gratingssee Fig. 1d. The grating
structure is characterized by«=11.9, Dg=1.75mm, a=0.35mm,
andh=1.4 mm. The red and blue colors correspond, respectively, to
positive and negative values of the field with the color intensity
related to the field magnitude. The horizontal axis represents thez
coordinate expressed in units of the grating period,Dg. The grating
extends fromz=0 to z=h/Dg. The vertical axis represents the
propagation time measured in femto-seconds. The metal is de-
scribed by the dielectric function of Eq.s3d. sbd The same assad, but
with no damping inside the metalsg=0d.

ROLE OF ELECTROMAGNETIC TRAPPED MODES IN… PHYSICAL REVIEW B 71, 075408s2005d

075408-3



quenciesd can be improved by taking into account the pen-
etration of the field into the metal whose dielectric properties
are described by Eq.s3d. This yields

vm =ÎV2 + Spcm

hÎ«
D2

, m= 1,2, . . . , s7d

where V is the frequency of the lowest eigenmode in the
stationary equation

]2Esxd
]x2 +

V2

c2 «Msx,VdEsxd = 0. s8d

Equations8d is solved numerically under the condition that
Esxd must decay exponentially outside the interval 0,x,a
si.e., in the metald. For a=0.35mm and h=1.4 mm, this
gives the following resonant wavelengthssexpressed in the
units of grating periodd: l1=1.493, l2=1.352, l3=1.185,
l4=1.031, andl5=0.899. The improved estimate of the
resonant wavelengths agrees closely with the results obtained
from numerical simulations for the exact problem only for
the largest resonant wavelengthsl1=1.493d. The wave-
lengths corresponding to the maximum of the transmission
coefficient for higher modes are redshifted as compared to
the estimated values. A similar result was reported by
Takakura,7 but for the TM incident wave polarization. The
redshift can be explained by spreading of the trapped modes
into the vacuum due to a finite thickness of the gratingssee
also Fig. 4 and its discussion belowd, while the Fabry-Perrot
modes of the electromagnetic field, used in our rough esti-
mate, satisfy the zero-boundary condition at the dielectric-
vacuum interface. Clearly, an increase of the spatial volume
occupied by a standing wave implies increasing its wave-
length and, hence, lowering its frequency.

Because of dissipative losses of energy in the Drude
metal, the transmittance does not reach 100% and is, in fact
relatively small. While for a lossless medium the sum of the
reflection and transmission coefficients must be 1 as follows
from electromagnetic energy conservation, this is not the
case when attenuation is presentsblue curve in Fig. 3d. The
maximal loss of energy corresponds to resonant wavelengths.
This can be easily understood because the trapped modes
remain in contact with the metal much longer than the main
pulse fcf. Figs. 2sad and 2sbdg and, therefore, can dissipate
more energy through exciting surface electrical currents in
the metal. We further illustrate this point by computing the
transmission coefficient in the same system but without at-
tenuationsg=0d. The result is shown by the dashed black
curve, which reaches 1 at resonant wavelengths. Observe the
deviation of the transmission coefficient from 1 for the nar-
rowest resonance atl,1.5Dg even in the absence of absorp-
tion. This resonance possesses an extremely long lifetime, so
much so that we had to stop the calculation before it had
decayed completely; that is, the total energy trapped into this
mode was not completely radiated out and, hence, was not
fully accounted for. For the resonance atl,Dg the transmis-
sion coefficient does not reach 1 because we study only the
zero-diffraction-order scattering channel.

FIG. 3. sColor onlined Zero-order transmission coefficient as a
function of the wavelength of the incident radiation measured in
units of the period,Dg. The calculation is carried out for the grating
structure characterized by«=11.9,Dg=1.75mm, a=0.35mm, and
h=1.4 mm. The solid red and dashed black curves correspond to
calculations done withsg=0.1 eVd and withoutsg=0d damping in
the metal, respectively. The sum of the reflection and transmission
coefficients forg=0.1 eV is shown as the blue curve. Its deviation
from 1 represents the loss of electromagnetic energy because of the
absorption in the metal.

FIG. 4. sColor onlined Electric field of the trapped modes inside
the grating as function ofx andz coordinates. The results are pre-
sented for the grating with parameters«=11.9, Dg=1.75mm, a
=0.35mm, andh=1.4 mm. Each colored strip represents the elec-
tric field of the trapped mode associated with corresponding
maxima of the transmission coefficientssee Fig. 3d. The datasfrom
top to bottomd starts with the largest wavelength resonance atl
<1.5Dg and ends with the resonance atl<1Dg. The red and blue
colors correspond, respectively, to positive and negative values of
the field. The data has been normalized to 1 at maximum so that
color scale covers the rangef−1, +1g. The x range for each strip
salong the vertical axisd corresponds to −0.26mmøxø0.26mm
and the range forz shorizontal axisd is specified in the figure in units
of Dg.
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Wave functions sfield configurationsd of the trapped
modes can be extracted from the time-dependent wave
packet by the time-to-frequency Fourier transform:

Csvd =E
0

`

Cstdeivtdt. s9d

The wave function of a particular trapped mode is obtained
by settingv to the frequency at which the transmission co-
efficient attains the corresponding maximum. In order to im-
prove the contrast, the wave functions have been extracted
for the case with no attenuation. The results are presented in
Fig. 4 for the grating with parameters«=11.9, Dg
=1.75mm, a=0.35mm, andh=1.4 mm. There are five col-
ored strips in Fig. 4. Each colored strip represents the electric
field of the trapped mode associated with corresponding
maxima of the transmission coefficientssee Fig. 3d. The data
sfrom the top to the bottomd start with the largest wavelength
resonance atl<1.5Dg and end with the resonance atl
<1Dg. The red and blue colors represent, respectively, nega-
tive and positive values of the electric field amplitude. Each
colored strip covers the coordinate range: −0.26mmøx
ø0.26mm salong the vertical axisd and the range forz shori-
zontal axisd is specified in the figure in units ofDg. The fields
localized inside the grating and fields radiated into the
vacuumsthe lasing effectd are clearly visible in the figure.
The trapped modes localized inside the dielectric part of the
grating exhibit a nearly Fabry-Perot pattern with respect to
the quantization in thez direction. Observe a slight spreading
of the field into the vacuum regions,z,0 andz.h, which
explains the redshift of the resonant wavelengths as com-
pared to the pure Fabry-Perot prediction given by Eq.s7d.

The structure of the field in the present case is such that
one can regard the grating openings as an ensemble of inde-
pendent emitters. They are coherently excited by the incident
pulse, and their coherent emission builds up the radiation
field associated with the resonantly enhanced transmission
sreflectiond properties of the grating. This is in contrast with
the previously reported TM results, where the excitation of
plasmons leads to the coupling between effective emitters
associated with the grating openings. This point is further
illustrated in Fig. 5, where we show the transmission coeffi-
cient calculated for the grating structure with parameters«
=11.9, a=0.3 mm, h=0.8 mm, and different periodsDg
=D0;1.75mm, Dg=D0/1.5, andDg=D0/4. The change of
the grating period does not affect positions of the peaks in
the transmission coefficient, pointing at the independence of
the trapped field associated with different openings. On the
contrary, for the TM-polarized light, the resonant wave-
lengths are “pinned” to the grating period5,6,11—this fact be-
ing a reason for the ongoing discussion on the role of surface
plasmons in the TM radiation transmission. The overall in-
crease of the transmission coefficient when the grating pe-
riod is reduced is due to the increase of the density of emit-
ters sopeningsd, while the time scale of the lasing effect
remains the same because it is set by the attenuation of the
metal and by the coupling of each individual grating region
to the vacuum. In agreement with Eq.s1d, a direct compari-
son of the result forDg=D0 with the results presented in Fig.

3 shows that the reduction ofh, and primarily ofa, leads to
the blueshift of the whole resonance series. A similar depen-
dence of the resonance wavelengths on the grating thickness
h has been reported as well for the TM polarization.5,6 How-
ever, some caution is needed when comparing the TE and
TM results in view of their different boundary conditions.

IV. SIGNIFICANCE OF TRAPPED MODES
IN RESONANT SCATTERING

The example of the grating structure considered above
suggests that knowledge of long-lived trapped modes is cru-
cial for a custom design of nanostructured materials with
enhanced transmissionsreflectiond properties in designated
narrow intervals of wavelengths. Here we offer a rather gen-
eral approach which establishes a direct relation between
transmissionsreflectiond properties of nanostructured materi-
als and the existence of trapped modes. We assert that once
the Maxwell equations have been reformulated in
Schrödinger form, the significance of trapped modes for the
light transmission can immediately be understood from the
basic principles of quantum resonant scattering theory.35

Recall that the approach relies on a representation of the
total wave function of the system as a sum of nonresonant
and resonant contributions.31,32 Consider the case without
losses so that the corresponding Hamiltonian is Hermitian.
Let H be the total Hamiltonian of a nanostructured material,
supporting resonancessd, and H0 be a Hamiltonian respon-
sible for a nonresonant scattering. In the present caseH and
H0 are Hamiltonians of the metal grating with and without
dielectric insertions, respectively. For the TM polarization
the natural choice will be to setH0 to be a Hamiltonian of the
simple metal slab with no gratings. The Lippmann-
Schwinger formalism33,34is applied to describe the scattering
of a plane wave on a scatterer that has resonant excitations.
Now we will show that the existence of long-lived quasista-

FIG. 5. sColor onlined Zero-order transmission coefficient as a
function of the wavelength of the incident radiation measured in
units of the periodD0;1.75mm. The computed data are given for
a grating structure characterized by«=11.9, a=0.3 mm, h
=0.8 mm, and different periodsDg. The red curve shows the trans-
mission coefficient forDg=D0;1.75mm, the blue curve forDg

=D0/1.5, and the black curve forDg=D0/4.
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tionary states in the symmetricsz→−z transformationd grat-
ing with dielectric insertions implies that there exists a fre-
quency at which the grating becomes transparent. Ifv is the
frequency of the incoming wave, then a solution of the
Schrödinger equationsH−vdC=0 can be written in the form

C = C0 + G+svd sH − H0dC0 ; C0 + C+, s10d

whereG+svd=fv−H+ ihg−1, h→0+ is the Green function,
C0 is a solution ofsH0−vdC0=0, andC+ satisfies radiation
soutgoing waved boundary conditions and describes the scat-
tered wave due to dielectric insertions. If the incoming wave
is polarized along the grating, then the wave functionsC0
and C+ contain only one component of the electric field
which is denotedE0 andE+, respectively. Let the frequency
v be in the range in which the structure described byH0
Hamiltonian is a total reflector; then,

E0 → A0e
ikz + A0

*e−ikz, z→ − `, s11d

and E0 vanishes asz→` assuming that the grating is cen-
tered atz=0. For the TM polarization, the magnetic field
should be considered along similar lines.

Quasistationary states, or resonances, that exist in the
grating with dielectric insertions correspond to eigenvectors
of H with outgoing wave boundary conditions and, therefore,
they are associated with poles of the Green functionG+svd.
Note that due to the complex boundary conditionsH would
have complex eigenvaluesv0− iG /2 with negative imaginary
parts sG.0d which specify resonance widths. Thus, in the
vicinity of a pole, the frequency dependence of the Green
function can be approximated by

G+svd ,
1

v − v0 + iG/2
. s12d

Let v be near a resonant frequencyswithin the resonance
widthd, while the resonant frequencyv0 is assumed to re-
main in the range of total reflectivity of the pure metallic
grating. In this case, from the symmetry of the Hamiltonian
H under the parity transformation,z→−z, it follows that

E+ → fsgnszdgpA+e±ikz, z→ ± `, s13d

where the parity factor ofA+ corresponds to either a sym-
metric sp=0d or antisymmetricsp=1d eigenfunction ofH.
The lowest-frequency resonance corresponds to the symmet-
ric solution. The amplitudeA+ has to be found from energy
flux conservation. The incident flux isuA0u2. The outgoing
flux is uA0±A+u2+ uA+u2. Let f0 and f+ be the phases ofA0
and A+, respectively. Then from flux conservation we infer
that uA+u2= uA0u2cos2sf0−f+d. From Eq.s12d it follows that
f+, as a function of the frequencyv, rapidly changes byp
over a small interval containing the resonant frequencysthe
eigenvalue ofHd, while the phasef0 describing the nonreso-
nant scattering is nearly constant, or changes slowly. There-
fore by continuity off+ in the vicinity of the resonant fre-
quency there exists a frequency at whichuA0u2= uA+u2; that is,
the incoming flux coincides with the transmitted flux and the
grating becomes transparent.

Thus, in the absence of attenuation, the existence of
trapped electromagnetic modessd or resonances necessarily

leads to 100% transmission close to the wavelengths of the
trapped modes in symmetric nanostructured materials which
otherwisesin the absence of such modesd are not transparent.
The same approach can be used to analyze a possible 100%
reflection in dielectric gratings, which otherwisesin the ab-
sence of trapped modesd are nearly transparent in the zero
diffraction order. It also explains possible Fano profiles in the
transmissionsreflectiond coefficient in the cases when non-
resonant scattering described by the HamiltonianH0 leads to
both reflection and transmission.

In a generic case, in order for 100% transmission to be
possible, the parity symmetry of the Hamiltonianssystemd is
not required, but the weaker conditions13d on the asymptotic
behavior ofC+ is indeed necessary. The latter readily fol-
lows from flux conservation. A sufficient condition for 100%
transmission is the absence of scattering channels with dif-
ferent quantum numbers at the resonance frequency—e.g.,
higher-order diffraction and/or coupling to scattering states
with different polarization. All these effects lead to a break-
ing of the flux conservation in a selected scattering channel.
If the coupling to other channels is not significant, an en-
hancedsnot 100%d transmission can still be observed in the
selected channel. It can be quantified by conventional means
of quantum scattering theory applied to the effective electro-
magnetic Hamiltonian of the system in question. In practice,
gratings often have the imperfections which induce a cou-
pling between TE and TM polarization. Thus, in the TE reso-
nant scattering channel 100% transmission will be lost due to
a leaking of the energy flux into higher-order diffraction
and/or TM polarization channels induced by the imperfec-
tions. One should not, however, expect a resonant transmis-
sion in the TM channel facilitated by the imperfections since
the resonantsenhancedd transmission is essentially due to the
constructive interference which, in turn, occurs thanks to the
periodicity of the structure, while imperfections are usually
randomly distributed. In fact, in a lossless grating, a devia-
tion of the transmission coefficient from one at the resonant
frequency can be used as a measure of the grating quality.

Finally, it is worth mentioning that a loss of the electro-
magnetic energy in dispersive materials prevents 100%
transmissionsreflectiond from occurring, again because of
breaking of flux conservation even in a single-scattering
channel available. This is clearly seen from our numerical
results with and without attenuationsFig. 3d. Our formalism
offers a possibility to quantify such effects by studying the
unitarity violation of the scattering matrix caused by the
skew-Hermitian part of the effective Hamiltonianssee, e.g.,
Ref. 36d. Note that in quantum systems a leak of the prob-
ability density into scattering channels weakly coupled to the
one of interest is often modeled by an effective non-
Hermitian Hamiltonian for the mainsselectedd scattering
channelssd only.

V. CONCLUSIONS

We have elucidated the role of trapped modes in the ex-
traordinary light transmission in nanostructured materials by
reformulating the Maxwell equations for passive linear me-
dia in the form of the time dependent Schrödinger equation
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and applying to the latter the basic principles of quantum
resonant scattering theory—in particular, the Lippmann-
Schwinger formalism. Trapped electromagnetic modes in
nanostructured materials play the same role as resonances in
quantum scattering. This offers well-developed quantum me-
chanical techniques to study resonant light transmission and
reflection properties of gratings and other nanostructured ma-
terials. We have illustrated this approach by a detailed nu-
merical study of a metal-dielectric grating. In particular, for
the TE polarization of the normal incident radiation, the grat-
ing, while being a total reflector in the zero diffraction order
when no dielectric fillings are present, has been shown to

become transparent for certainsresonantd wavelengths when
the fillings are present. In accordance with quantum resonant
scattering theory, stationary states have been observed in the
latter case and none in the former.
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