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We assert that the physics underlying the extraordinary light transmissefiaction) in nanostructured
materials can be understood from rather general principles based on the formal scattering theory developed in
guantum mechanics. The Maxwell equations in pas&ligersive and absorptivénear media are written in
the form of the Schrédinger equation to which the quantum mechanical resonant scattering (theory
Lippmann-Schwinger formalisjis applied. It is demonstrated that the existence of long-lived quasistationary
eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmis-
sion properties observed in various nanostructured materials. Such states correspond to quasistationary elec-
tromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example
of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a
direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of reso-
nancegor trapped modegdor extraordinary light transmission.
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[. INTRODUCTION range, the radiation should last much longer than the dura-
tion of the initial pulse. This implies that the corresponding
Supported by technological progress, studies of the interelectromagnetic modes have to be trapped by the nanostruc-
action of electromagnetic radiation with nanostructured matured material during a sufficiently long time. Such modes
terials have become an area of intense research driven Ryte known in scattering theory as scattering resonagices.
potential applications in optics and photonicéin particu- Here we propose a general point of view on the physics
lar, it has been found that metal®and dielectri¢’2*grating  underlying the extraordinary light transmission in nanostruc-
structures possess extraordinary transmissfeflection  tured materials. By reformulating the Maxwell equations in
properties within narrow intervals of wavelengths close tothe form of the Schrédinger equation and by using quantum
the grating period. While for dielectric gratings a commonscattering theory, we show that this phenomenon is a direct
point of view on this phenomenon, as occurring due to theconsequence of the existence of trapped electromagnetic
existence of trapped modes or guided wave resondfices, modes possessing large lifetimes. Based on this general prin-
seems to be established, there is still an ongoing discussiagiple, various structures can be custom designed that would
on the origin of a nearly 100% light transmission within transmit or reflect light within a designated narrow wave-
narrow wavelength rang® observed in slit and hole arrays length rangés). As an example to illustrate our approach,
made in metal films. Although similar results are obtainedtransmission properties of a metal-dielectric grating structure
with different theoretical approaches, in which the Maxwell are studied for TE-polarized liglithe electric field is parallel
equations are numerically solved, an explanation of the unto the slit§ impinging normally on the grating. A direct on-
derlying physics, as due to excitations of coupled surfacehe-grid solution of the time-dependent Maxwell equations
plasmons and/or cavity mode§competes with the dynami- demonstrates the significance of resonantes trapped
cal diffraction theory point of vieW:'*Remarkably, all avail- modes for the enhanced light transmission. Interestingly
able studies of metal grating structures have been carried oghough, such a system has never been studied before, prob-
with the TM-polarized lightthe magnetic field is parallel to ably because of the absence of the coupling of electromag-
the slits where surface plasmons can indeed be excited. netic modes to plasmons, often thought to be the main
Transmission and reflection properties of grating strucmechanism of the extraordinary light transmission. It should
tures are typically studied by stationary methods in the frehe understood that our choice of the geometry does not im-
quency domain. Nevertheless, the dynamics of light scattefply an attempt to favor either the plasmon- or cavity-mode
ing on gratings can partly be guessed from stationary resultgoint of view in, generally, strongly coupled systems.
Indeed, consider a femtosecofimoadbangpulse impinging
on a grating structure such that the spectral range of the pulse Il. METAL-DIELECTRIC GRATING
is much larger than the grating transmission winé®w
From the uncertainty principle it follows that, in order for ~ We begin with an example of a grating structure sketched
transmission of light to occur only within a narrow frequency in Fig. 1 to illustrate our basic idea. The grating structure has
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where ¢ is the dielectric constant, ami,m=1,2,....Note
that, sincea<h for the grating geometry, the first term on
the right-hand-sidéRHS) of Eq. (1) is the most relevant for
the threshold to excite quasistationary statessanding
waves. In what follows we are interested in the zero-
diffraction mode for wavelengths= D, so that the reflected
and transmitted beams propagate along zhexis. In this

case the threshold for trapped modes to exist is determined
by the lowest moden=m=1, leading to the condition

1| (D4\* (Dg\?
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Dielectric, € Taking into account the grating parameters, condit®rcan

be satisfied only i =9.7 for the range o& andh specified
above. Thus, if there is no dielectric fillilg =1), the grating
structure would totally reflect the TE radiation wikr= Dy,
which is indeed supported by our numerical simulations.

This is in contrast to the TM radiation case where 100%
transmission can be reached for the very same grating with

Metal, ey

FIG. 1. Schematic representation of the studied system. The ' yieectric fillings and made of the perfect conduétor.
radiation is incident along the normal to the sldhe z axis), con-

L ) : . : In our numerical study, we consider the grating with
sisting of a grating structure with alternating regions of metal and . filled with di Ve dielectri 119
dielectric along thex direction. The dark grey and shaded regions openings filled with a nondispersive dielectric w )

correspond, respectively, to the metal and dielectric parts of théthIS _corre_sponds to Si V,V'th'n th_e wavelength range und.er
structure. The system is translationally invariant along the Cconsideration The metal is described by the Drude model:

direction. 2

_ wE
translational symmetry along one of the Euclidean axes, cho- em(@) =1~ W +iwy' 3)
sen to be the axis. The structure is periodic along thexis
with period Dy and thez direction is transverse to the struc- For the sake of comparison with previous works the plasma
ture. For the sake of comparison with previous wdrkBe  frequency and the attenuation are takenwsgs9 eV andy
parameters are chosen to be: the grating perdd =01 eV (Ref. 5. Transmission and reflection properties of
=1.75um, the thicknesgalong thez axis) h=0.8—-1.4um,  the grating structure are calculated by means of the wave
and the opening widtla=0.3-0.35um. In the case of the 4cket propagation method. The method is based on the rep-
TM radiation impinging on the grating with no dielectric reqentation of the Maxwell equations in the form of the
fillings, the extraordinary transmission properties have aI'Schrijdinger equation for which the initial value problem is

0,11,13 i
ready been reported and analy?€d: The question .\, erically solved by a time-stepping algorithm. A detailed
arises whether enhanced transmission can be obtained for tﬁgscription can be found elsewh@?é?

TE r_adiation or, according to our remarks_ in the previous For the specific case considered here, the Hamiltonian
section, whether or not trapped modes exist and can be e>f<— . ’
ormalism is as follows. LeD=E+P whereD, E, andP are

cited. L ) C .
To obtain a rough estimate of the wavelengths of possibl he electric induction, the electric field, and the medium po-

trapped (or quasistationajy electromagnetic modes in the larization vector, respectively. In the Drude model the me-
system, consider first the case of a perfect metal grating. F§HUM polarization vector satisfies the second-order differen-
a moment, we also neglect the effects due to a finite thicklial equation

ness of the grated metal slab in tkedirection. In other . .

words, we neglect the coupling between trapped modes and P+yP=wlE, (4)
radiation modes outside the grating. Then stheomponent o . ]

of the wave vector is quantized as a consequence of the zek¥§rere derivatives with respect to timare denoted by over-
boundary conditions at the metal-dielectric interface. A quandots. Equation(4) must be solved with zero initial condi-
tization of thez component of the wave vector can be under-tions, P=P=0 at t=0. Define an auxiliary fieldQ by P
stood as Fabry-Perot modes in a dielectric slab inside the w,Q. The Maxwell's equations are cast in the Schrédinger
metallic waveguide—i.e., the modes for which the dielectricform:

slab is 100% transparent. Admissikguantized values of

the wave vector inside the grating define wavelenathsof iW=HV, (5)
trapped electromagnetic modes that can be excited by the
incident radiation where the wave functio and the HamiltoniatH are
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The norm of the wave functiofW|[*=J dr¥™, is propor- 100 |
tional to the total electromagnetic energy of the wave
packet?®26 When the attenuation is not presents0, the
Hamiltonian is Hermitian and the norrtenergy is con-
served. The quantities and w, are position dependent so
that e=1 everywhere outside the dielectric inclusions and
w,=0 everywhere outside the metal part of the grating.
It follows from Eq.(5) that W (t+At)=exp(-iAtH)W(t). In
our simulations, the action of the infinitesimal evolution op- ' ' ' '
erator exp—iAtH) on the wave functionl’ is carried out by s 6 4 20 2 4 6
. . . o . (a) distance Z (units of D)
the algorithm described in Ref. 23. The initial wave packet is
Gaussian and propagates along thaxis perpendicular to
the grating. Its spectrum is broad enough to cover the fre-
quency range of interest. A change of variables is used to
enhance the sampling efficiency in the vicinity of medium
interfaces so that the boundary conditions are accurately re-
produced by the Fourier-grid pseudospectral metic8A
typical size of the mesh corresponds to B}5z<15D,
and -0.Dy=x=<0.8Dy with 512 and 128 knots, respec-
tively. The frequency resolved transmission and reflection
coefficients are obtained via the time-to-frequency Fourier
transform of the signal at some distance in front and behind
the grating?® An absorbing layer is introduced at the grid
boundaries in order to suppress artificial reflections of the
wave packeg?
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ll. RESULTS AND DISCUSSION (b) distance Z (units of D)

In Fig. 2(a) we show an interpolated image of the time  FIG. 2. (Color onling (a) Interpolated image of the time evolu-
evolution of the electric fielc, along thez axis passing tion of the electric fieldE, along thez axis passing through the
through the center of the gratingee Fig. 1 The grating center of a dielectric region of the gratitigee Fig. 1 The grating
structure is characterized by=11.9, Dg=1.75um, a structure is characterized by=11.9, Dg=1.75um, a=0.35um,
=0.35uum, andh=1.4 um. The red and blue colors corre- andh=1.4um. The red and blue colors correspond, respectively, to
spond to positive and negative values of the field, respeOoositive and m_agative vglues of the fit_eld with the color intensity
tively. The horizontal axis represents taecoordinate ex- relateq to the field ma_gmtude. The horlz_ontal axis represen_tz the
pressed in units of the grating perio®, The grating coordinate expr_essed IE units of the grayng perlDQ,The grating
extends fromz=0 to z=h/D,. The vertical axis represents SX€nds fromz=0 1o z=h/Dg. The vertical axis represents the
the propagation time measured in femtoseconds. The initid]'oP2dation time measured in femto-seconds. The metal is de-
pulse impinging on the grating has a duration of approxi—sc.IrIbeOI by the dielectric function Of_EqB)' (b) The same ag), but
mately 25 fs. The instant when the pulse hits the gratingwIth no damping inside the meté}=0).
followed by the main reflected signal is clearly visible in the frequency(see further discussion and results in Fig. 3
figure. One also observes that a fraction of the electromag- Figure 2b) shows the dynamics of the electric fiei in
netic energy is stored in the grating structure and leads to the same setting, but the attenuatigis set to zero. In this
long-lasting radiation on both the transmission and reflectiortase, the trapped modes do not dissipate their energy into the
sides. This lasing effect extends to a picosecond time rangenetal. As a result, they live longer, which is clearly seen
i.e., it is much longer than the duration of the initial pulse. It from comparison of the color intensity of the vertical strip in
can be explained as due to the existence of trapped electrthe middle of Figs. @) and Zb) (which represents the elec-
magnetic modes or resonances. It is the radiation of decayingic field of the trapped modgs
trapped modes that comes with a phase opposite to the cor- The calculated transmission coefficient is presented in
responding harmonic in the initially reflected pulse to the leftFig. 3 as a function of the wavelength expressed in units of
from the grating structure and leads finally to the reducedhe grating periodD,. Each of the resonances observed in
reflection. The same lasing effect to the right from the grat+ig. 3 is associated with the corresponding trapped mode.
ing structure is responsible for high transmission at the sam&he rough estimate given in E¢l) of their energiedfre-
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FIG. 3. (Color online Zero-order transmission coefficient as a
function of the wavelength of the incident radiation measured in
units of the periodDy. The calculation is carried out for the grating T T T T T T T T
structure characterized by=11.9,D3=1.75um, a=0.35um, and 02 00 02 04 06 08 1.0 12
h=1.4 um. The solid red and dashed black curves correspond to Z (units of grating period)
calculations done witliy=0.1 e\) and without(y=0) damping in ) o o
the metal, respectively. The sum of the reflection and transmission F!G- 4. (Color onling Electric field of the trapped modes inside
coefficients fory=0.1 eV is shown as the blue curve. Its deviation the grating as function at andz coordinates. The results are pre-

from 1 represents the loss of electromagnetic energy because of tfgnted for the grating with parameters 11.9, Dg=1.75um, a
absorption in the metal. =0.35um, andh=1.4 um. Each colored strip represents the elec-

tric field of the trapped mode associated with corresponding

. . L. maxima of the transmission coefficie(siee Fig. 3. The datafrom
quen.CIe}; can b'e Improved by taking into 'accou.nt the pe'_n'top to bottom starts with the largest wavelength resonance. at
etration of the field into the metal whose dielectric properties_ 1.5D, and ends with the resonancexat 1D, The red and blue

are described by Ed3). This yields colors correspond, respectively, to positive and negative values of
cm) 2 the field. The data has been normalized to 1 at maximum so that
wm= Qz+( r) , m=12, ..., (7 color scale covers the randgel, +1]. The x range for each strip
hve (along the vertical axjscorresponds to —0.26m<x<0.26 um

and the range faz (horizontal axi$is specified in the figure in units

where () is the frequency of the lowest eigenmode in theof D

stationary equation o

FPEXX) Q2 Because of dissipative losses of energy in the Drude

o2 T 2 M OEX =0. (8)  metal, the transmittance does not reach 100% and is, in fact

relatively small. While for a lossless medium the sum of the

Equation(8) is solved numerically under the condition that reflection and transmission coefficients must be 1 as follows
E(x) must decay exponentially outside the intervat®<a  from electromagnetic energy conservation, this is not the
(i.e., in the metagl For a=0.35um and h=1.4 um, this  case when attenuation is pres¢olue curve in Fig. 8 The
gives the following resonant wavelengtfexpressed in the maximal loss of energy corresponds to resonant wavelengths.
units of grating period \;=1.493, A\,=1.352,\3=1.185, This can be easily understood because the trapped modes
N4=1.031, andA5=0.899. The improved estimate of the remain in contact with the metal much longer than the main
resonant wavelengths agrees closely with the results obtaingulilse[cf. Figs. 2a) and 2Zb)] and, therefore, can dissipate
from numerical simulations for the exact problem only for more energy through exciting surface electrical currents in
the largest resonant wavelength,=1.493. The wave- the metal. We further illustrate this point by computing the
lengths corresponding to the maximum of the transmissiotransmission coefficient in the same system but without at-
coefficient for higher modes are redshifted as compared ttenuation(y=0). The result is shown by the dashed black
the estimated values. A similar result was reported bycurve, which reaches 1 at resonant wavelengths. Observe the
Takakura’, but for the TM incident wave polarization. The deviation of the transmission coefficient from 1 for the nar-
redshift can be explained by spreading of the trapped modeswest resonance at~ 1.5D even in the absence of absorp-
into the vacuum due to a finite thickness of the gratisge tion. This resonance possesses an extremely long lifetime, so
also Fig. 4 and its discussion belpwvhile the Fabry-Perrot much so that we had to stop the calculation before it had
modes of the electromagnetic field, used in our rough estidecayed completely; that is, the total energy trapped into this
mate, satisfy the zero-boundary condition at the dielectricmode was not completely radiated out and, hence, was not
vacuum interface. Clearly, an increase of the spatial voluméully accounted for. For the resonancexat D, the transmis-
occupied by a standing wave implies increasing its wavesion coefficient does not reach 1 because we study only the
length and, hence, lowering its frequency. zero-diffraction-order scattering channel.
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Wave functions (field configurations of the trapped T
modes can be extracted from the time-dependent wave — grating period D /4
packet by the time-to-frequency Fourier transform:

0.8} — grating period Do/1 5
— grating period D

V(w) = f k P (t)etdt. 9 0.6
0

0.4

transmission

The wave function of a particular trapped mode is obtained
by settingw to the frequency at which the transmission co-
efficient attains the corresponding maximum. In order to im- 0.2
prove the contrast, the wave functions have been extracted

for the case with no attenuation. The results are presented in

Fig. 4 for the grating with parameterg=11.9, D, e 1 A 12 18 e s
=1.75um, a=0.35um, andh=1.4 um. There are five col- wavelength ( units of D )

ored strips in Fig. 4. Each colored strip represents the electric 0

field of the trapped mode associated with corresponding i, 5. (Color onling Zero-order transmission coefficient as a
maxima of the transmission coefficielsee Fig. 3 The data  fynction of the wavelength of the incident radiation measured in
(from the top to the bottojrstart with the largest wavelength units of the period,=1.75 um. The computed data are given for
resonance ah~1.5Dy and end with the resonance At a grating structure characterized by=11.9, a=0.3um, h
~1Dg. The red and blue colors represent, respectively, nega=0.8 um, and different period®,. The red curve shows the trans-
tive and positive values of the electric field amplitude. Eachmission coefficient forDg=Dq=1.75um, the blue curve foD,
colored strip covers the coordinate range: -Qu@8<x  =Dy/1.5, and the black curve fdby=D/4.

<0.26 um (along the vertical axjsand the range faz (hori-

zontal axig is specified in the figure in units &y. The fields 3 shows that the reduction of and primarily ofa, leads to
localized inside the grating and fields radiated into thene plueshift of the whole resonance series. A similar depen-
vacuum(the lasing effeqtare clearly visible in the figure. gence of the resonance wavelengths on the grating thickness
The trapped modes localized inside the dielectric part of thg, has been reported as well for the TM polarizatiérHow-

the quantization in the direction. Observe a slight spreading Tz results in view of their different boundary conditions.
of the field into the vacuum regiong<0 andz>h, which

explains the redshift of the resonant wav_elengths as com- IV. SIGNIEICANCE OF TRAPPED MODES
pared to the pure FabryjPer(_)t prediction given by oy IN RESONANT SCATTERING

The structure of the field in the present case is such that
one can regard the grating openings as an ensemble of inde- The example of the grating structure considered above
pendent emitters. They are coherently excited by the inciderguggests that knowledge of long-lived trapped modes is cru-
pulse, and their coherent emission builds up the radiatiowial for a custom design of nanostructured materials with
field associated with the resonantly enhanced transmissicenhanced transmissiomeflection properties in designated
(reflection properties of the grating. This is in contrast with narrow intervals of wavelengths. Here we offer a rather gen-
the previously reported TM results, where the excitation oferal approach which establishes a direct relation between
plasmons leads to the coupling between effective emittersransmissior{reflectior) properties of nanostructured materi-
associated with the grating openings. This point is furtherals and the existence of trapped modes. We assert that once
illustrated in Fig. 5, where we show the transmission coeffithe Maxwell equations have been reformulated in
cient calculated for the grating structure with parameters Schrédinger form, the significance of trapped modes for the
=11.9, a=0.3um, h=0.8 um, and different periodsD, light transmission can immediately be understood from the
=Dg=1.75um, Dy=Dy/1.5, andD,=Dy/4. The change of basic principles of quantum resonant scattering th&ory.
the grating period does not affect positions of the peaks in Recall that the approach relies on a representation of the
the transmission coefficient, pointing at the independence dbtal wave function of the system as a sum of nonresonant
the trapped field associated with different openings. On thand resonant contributiod$3? Consider the case without
contrary, for the TM-polarized light, the resonant wave-losses so that the corresponding Hamiltonian is Hermitian.
lengths are “pinned” to the grating perffiL—this fact be- Let H be the total Hamiltonian of a nanostructured material,
ing a reason for the ongoing discussion on the role of surfaceupporting resonant®, and H, be a Hamiltonian respon-
plasmons in the TM radiation transmission. The overall in-sible for a nonresonant scattering. In the present ehaed
crease of the transmission coefficient when the grating peH, are Hamiltonians of the metal grating with and without
riod is reduced is due to the increase of the density of emitdielectric insertions, respectively. For the TM polarization
ters (opening$, while the time scale of the lasing effect the natural choice will be to sét, to be a Hamiltonian of the
remains the same because it is set by the attenuation of tlemple metal slab with no gratings. The Lippmann-
metal and by the coupling of each individual grating regionSchwinger formalisi#34is applied to describe the scattering
to the vacuum. In agreement with Ed), a direct compari- of a plane wave on a scatterer that has resonant excitations.
son of the result foD4=D, with the results presented in Fig. Now we will show that the existence of long-lived quasista-
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tionary states in the symmetrigz— -z transformationgrat-  leads to 100% transmission close to the wavelengths of the
ing with dielectric insertions implies that there exists a fre-trapped modes in symmetric nanostructured materials which
guency at which the grating becomes transparent. i the  otherwise(in the absence of such modese not transparent.
frequency of the incoming wave, then a solution of theThe same approach can be used to analyze a possible 100%
Schrddinger equatiofH — w)¥ =0 can be written in the form reflection in dielectric gratings, which otherwigia the ab-

. . sence of trapped modeare nearly transparent in the zero

W=Wo+G(w) (H=Ho)Wo=Wo+¥7, (10) diffraction order. It also explains possible Fano profiles in the

where G*(w)=[w-H+i7y]|™L, — 0+ is the Green function, transmissior’(reflfectior) co_efficient in the cases when non-
W, is a solution of(Hy—w)¥,=0, and¥* satisfies radiation eésonant scattering described by the Hamiltortigrieads to
(outgoing wavé boundary conditions and describes the scat20th reflection and transmission.

tered wave due to dielectric insertions. If the incoming wave N @ generic case, in order for 100% transmission to be
is polarized along the grating, then the wave functidns ~ POSSible, the parity symmetry of the Hamiltoniesystem is
and ¥* contain only one component of the electric field NOt required, but the weaker conditi¢tB) on the asymptotic

which is denotedE, andE*, respectively. Let the frequency behavior of ¥* is indeed necessary. The latter readily fol-
» be in the range in which the structure describedHhy lows from flux conservation. A sufficient condition for 100%

Hamiltonian is a total reflector: then transmission is the absence of scattering channels with dif-
_ . ferent quantum numbers at the resonance frequency—e.g.,
Eo— A ?+ A, 7z -0, (11 higher-order diffraction and/or coupling to scattering states

with different polarization. All these effects lead to a break-
tered atz=0. For the TM polarization, the magnetic field ing of the flgx conservation in a se'lected s_cat.t(.ermg channel.
If the coupling to other channels is not significant, an en-

Sh%&ig;gggﬁ;ﬂerﬁaﬂzngoflrgls%rnlgnisés that exist in thréanced(not 100% transmission can still be observed in the
a ! nary states, ' : selected channel. It can be quantified by conventional means
grating with dielectric insertions correspond to eigenvectors

f H with outaoi bound diti d. theref of quantum scattering theory applied to the effective electro-
?h ey V;”re ::Sgg:g.?e\év?/\\llifh p?cljlgsaé? ;%n(;rfgr? %nnc’mg;i ore’mag.netic Hamiltonian of Fhe system in questio_n. In practice,
Note that due to the complex boundary conditi¢hsvould gratings often have the imperfections which induce a cou-
have complex eigenvalues,—il'/2 with negative imaginary pling betwegn TEand TM pglanzaﬂon. T_hus, n the TE reso-
parts(I'>0) which specify resonance widths. Thus, in the nant scattering channel 100% transmission will be lost due to

icinity of le. the f d d £ th a leaking of the energy flux into higher-order diffraction
vicinity of a pole, the frequency dependence of the Greeyndlor T™ polarization channels induced by the imperfec-
function can be approximated by

tions. One should not, however, expect a resonant transmis-
1 sion in the TM channel facilitated by the imperfections since
(12) the resonantenhanceptransmission is essentially due to the
constructive interference which, in turn, occurs thanks to the
Let w be near a resonant frequen@yithin the resonance periodicity of the structure, while imperfections are usually
width), while the resonant frequenay, is assumed to re- randomly distributed. In fact, in a lossless grating, a devia-
main in the range of total reflectivity of the pure metallic tion of the transmission coefficient from one at the resonant
grating. In this case, from the symmetry of the Hamiltonianfrequency can be used as a measure of the grating quality.
H under the parity transformatioa;— -z, it follows that Finally, it is worth mentioning that a loss of the electro-
" magnetic energy in dispersive materials prevents 100%
E'— [sgrgPAe™?, 2 2o, (13)  {ransmission(reflection from occurring, again because of
where the parity factor oA* corresponds to either a sym- breaking of flux conservation even in a single-scattering
metric (p=0) or antisymmetric(p=1) eigenfunction ofH. channel available. This is clearly seen from our numerical
The lowest-frequency resonance corresponds to the symmégsults with and without attenuatidfig. 3. Our formalism
ric solution. The amplitudé* has to be found from energy Offers a possibility to quantify such effects by studying the
flux conservation. The incident flux i#|2. The outgoing Unitarity violation of the scattering matrix caused by the
flux is |Agx A*|2+|A*[2. Let ¢y and ¢* be the phases o,  Skew-Hermitian part of the effective Hamiltonidsee, e.g.,
and A*, respectively. Then from flux conservation we infer Ref. 36. Note that in quantum systems a leak of the prob-
that |A*[2=|Ag|2co(¢ho— ¢b*). From Eq.(12) it follows that  ability density into scattering channels weakly coupled to the
4, as a function of the frequenay, rapidly changes byr ~ One of interest is often modeled by an effective non-
over a small interval containing the resonant frequefiog ~ Hermitian Hamiltonian for the mair(selectedl scattering
eigenvalue oH), while the phasep, describing the nonreso- channels) only.
nant scattering is nearly constant, or changes slowly. There-
fore by continuity of¢* in the vicinity of the resonant _fre— V. CONCLUSIONS
quency there exists a frequency at whjag|*>=|A*|?; that is,
the incoming flux coincides with the transmitted flux and the We have elucidated the role of trapped modes in the ex-
grating becomes transparent. traordinary light transmission in nanostructured materials by
Thus, in the absence of attenuation, the existence afeformulating the Maxwell equations for passive linear me-
trapped electromagnetic mdde or resonances necessarily dia in the form of the time dependent Schrddinger equation

and E, vanishes ag— o assuming that the grating is cen-

G(w) ~——————=.
(@) w=—wy+il'/2
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and applying to the latter the basic principles of quantumbecome transparent for certdiresonant wavelengths when
resonant scattering theory—in particular, the Lippmann-the fillings are present. In accordance with quantum resonant
Schwinger formalism. Trapped electromagnetic modes irscattering theory, stationary states have been observed in the
nanostructured materials play the same role as resonanceslaiter case and none in the former.

guantum scattering. This offers well-developed quantum me-
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