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We study the energy level structure of two-dimensional charged particles in a circular quantum dot in
inhomogeneous magnetic fields. In this system, the magnetic field is zero inside the dot and constant outside.
Such a device can be fabricated with present-day technology. We present detailed semiclassical studies of such
magnetic quantum dot systems and provide a comparison with exact quantum calculations. In the semiclassical
approach we apply the Berry-Tabor formula for the density of states and the Borh-Sommerfeld quantization
rules. In both cases we found good agreement with the exact spectrum in the weak magnetic field limit. The
energy spectrum for a given missing flux quantum is classified in six possible classes of orbits and summarized
in a so-called phase diagram. We also investigate the current flow patterns of different quantum states and show
a clear correspondence with classical trajectories.
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I. INTRODUCTION

In the past decade, the study of systems of two-
dimensional electron gass2DEGd in semiconductors1 has
been extended by the application of spatially inhomogeneous
magnetic fields. The inhomogeneity of the magnetic field can
be realized experimentally either by varying the topography
of the electron gas,2,3 or by using ferromagnetic materials,4–9

depositing a superconductor on top of the 2DEG.10,11Numer-
ous theoretical works also show increasing interest in the
study of electron motion in an inhomogeneous magnetic field
ssee, e.g., Refs. 12–31d

In the experimental works mentioned above, for GaAs
heterostructures, on one hand, the electron dynamics is con-
fined to two dimensions. On the other hand, the coherence
length and the mean free path of the electron can be much
larger than the size of the system, while the Fermi wave-
length is comparable to the size of the 2DEG. Moreover, the
electron system can be described to a good approximation as
a free electron gas with an effective mass.1 Therefore, the
quantum-mechanical treatment of these systems is of some
physical interest.

In this paper, as an example, we consider the energy lev-
els of a two-dimensional noninteracting electron gas in a
magnetic field that is zero inside a circular region and con-
stant outside. This systemsshown in Fig. 1d will be called a
magnetic quantum dot; it was first studied by Solimany and
Kramer.32 Solving the Schrödinger equation it was shown
that there are bound states. Introducing an effective angular
momentum, the Schrödinger equation of the particle in sym-
metric gauge can be mapped to the Landau model. This ef-
fective angular momentum is a sum of the angular momen-
tum in a uniform magnetic field and the fluxsin units of the
flux quantumd missing from the uniform field. Recently, Sim
et al.22 have renewed the study of this system and pointed
out the crucial role of the magnetic edge states in the mag-
netoconductance. The classical counterparts of these states
correspond to trajectories of the charged particle that consist
of straight segments inside the nonmagnetic region and arcs
outside.

Although it is difficult to measure directly the density of
states of a quantum system, it affects many observable quan-
tities such as the magnetoconductance, the magnetization or
the susceptibility. In the interpretation of the experimental
results the semiclassical approximation proved to be a useful
tool. Several semiclassical approaches33–39 are known in the
literature and an excellent overview of the subject can be
found in the textbook by Brack and Bhaduri.40 Different
semiclassical theories for magnetic systems have success-
fully been applied, for example, in Refs. 41–44. For inte-
grable systems Berry and Tabor35 have shown that the oscil-
lating part of the density of states can always be expressed in
terms of classical periodic orbits. This formula is commonly
called the Berry-Tabor trace formula.

One of our aims in this paper is to apply the Berry-Tabor
trace formula for a magnetic quantum dot. To illustrate the
power of the method, we also calculate the exact eigenvalues
of the single-particle Schrödinger equation and find a very
good agreement between the two results. We should mention

FIG. 1. The two-dimensional electron gas in an inhomogeneous
magnetic field. The magnetic field is zero inside the circle of radius
R and constant outside the circle.
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here that the statement by Simet al.22 on the relation be-
tween the quantum states and the corresponding periodic or-
bits is somewhat misleading. Their condition for a given pe-
riodic orbit is not necessarily satisfied at the value of the
corresponding exact energy level as they claimed. However,
including more and more periodic orbits with the proper
weights in the trace formula the sum converges to the correct
quantum density of states. In practice only a few of the short-
est orbits are enough to get a rough estimate of the positions
of the exact energy levels.

The power of the semiclassical approach can also be dem-
onstrated by applying the Bohr-Sommerfeld approximation.
We shall show that the energy levels obtained from the Bohr-
Sommerfeld quantization rules also agree very well with the
numerically exact levels even for the lowest eigenstates.
Note that in this semiclassical treatment the quantization
should be applied to the classical motion on a two-
dimensional torus parametrized by the action variables and
their canonically conjugate angle variablessfor details see,
e.g., Ref. 40d.

The classical orbits can be classified by their cyclotron
radius% and their guiding centerc sdistance of the center of
the orbits from the origind. In the quantum-mechanical treat-
ment one can calculate the average of operators defining the
cyclotron radius and the guiding center. For circular mag-
netic billiards, Lent45 has derived approximate expressions
for these averages for a given quantum state. Following Ref.
45, one may derive the corresponding relations for magnetic
quantum dot systems. Thus, these relations are the basis for
classifying the different quantum states in terms of classical
orbits for our system. We will show that the quantum states
can be described by six different types of classical orbits. In
addition, this classification enables us to draw a so-called
“phase diagram” that shows a clear one-to-one correspon-
dence between classical orbits and quantum states.

To complete our semiclassical study, we finally present
results for the probability current density calculated from
quantum calculations. We shall argue that the current flow
patterns can be understood qualitatively from the corre-
sponding classical trajectories. Recently, Halperin46 has
shown that the total currentsthe integral of the current den-
sity along the radial directiond can be related to the disper-
sion of the energy levelsstheir angular momentum depen-
denced. As it will be shown this general relation works in our
magnetic quantum dot system, too.

Regarding the numerical calculations, we should mention
that the semiclassical approach presented in this paper proves
to be a very effective method. Moreover, it provides a better
understanding of the nature of the quantum system. Our
semiclassical method applied to magnetic quantum dot sys-
tems may be an important tool to understand the role of the
magnetic edge states in the density of states or the magneti-
zation sboth are experimentally accessible physical quanti-
tiesd. We believe that our semiclassical analysis can be ex-
tended to other types of inhomogeneous magnetic fields such
as those studied, e.g., in Refs. 6–9 as well as noncircular dot
systems.

The rest of the text is organized as follows. In Sec. II the
exact quantization conditionssecular equationd is derived
from the matching conditions of the wave functions at the

boundary of the magnetic and nonmagnetic regions. In Sec.
III the semiclassical approximation is presented including the
description of the classical motion of the particle in Sec.
III A, the characterization of the possible periodic orbits in
Sec. III B, some numerical results in Sec. III C, and the
phase diagram in Sec. III D. The current flow patterns of the
system are discussed in Sec. IV. Finally, the conclusions are
given in Sec. V.

II. QUANTUM CALCULATION

In this section, we present the quantum-mechanical treat-
ment of the magnetic quantum dot. The magnetic field with a
constantB outside a circle of radiusR is assumed to be
perpendicular to the plane of the 2DEG. The Hamiltonian of
the electron of massM and chargee is given by

H =5
p2

2M
if r , R

sp − eAd2

2M
if r . R,

s1d

where p is the canonically conjugate momentum, and the
vector potential in polar coordinatessr ,wd and symmetric
gauge is given by32

A = Awsr,wdêw, s2d

where

Awsr,wd = B
r2 − R2

2r
Qsr − Rd,

and êw is the unit vector in thew direction. HereQsxd is the
Heaviside step function.

The energy levels of the system are the eigenvaluesE of
the Schrödinger equation:

ĤCsr,wd = ECsr,wd. s3d

Rotational symmetry of the system implies a separation an-
satz for the wave function as a product of radial and angular
parts. We choose for the angular part the appropriate angular
momentum eigenfunctionseimw with quantum numberm
sherem is an integerd. Thus the wave function for a givenm
is separated asCsr ,wd= fmsrdeimw, where the radial wave
functions fmsrd satisfy a one-dimensional Schrödinger equa-
tion in the normal region:

ĥmstdfmstd = «fmstd, s4ad

in which the radial Hamiltonian takes the form

ĥmstd = −
]2

]t2 −
1

t

]

]t
+ Vmstd. s4bd

Here we introduce the dimensionless variablet=r / l, where
l =Î" / ueBu is the magnetic length,vc= ueBu /M is the cyclo-
tron frequency,«=2E/ s"vcd is the dimensionless energy,
and the radial potential is given by
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Vmstd =5
m2

t2 if r , R

st2/2 − meffd2

t2 if r . R,

s4cd

meff = s+ m sgnseBd, s4dd

wheres=R2/ s2l2d=F /F0 is the magnetic fluxF=BR2p sin
units of the magnetic flux quantumF0=h/ ueud missing inside
the circle of radiusR. The function sgns·d stands for the
signum function. In the numerical results presented in this
paper, we always assume that the particle is an electron mov-
ing in a magnetic field along the positivez axis, i.e.,
sgnseBd=−1. However, our theoretical results are not re-
stricted in such a way.

Introducing the new variablej=t2/2 and transforming
the wave functions in the magnetic regionsr .Rd as

fmstd = jumeffu/2e−j/2xmsjd, s5d

Eq. s4ad results in a Kummer differential equation47

j
d2xm

dj2 + s1 + umeffu − jd
dxm

dj
−

1 + umeffu − meff − «

2
xm = 0.

s6d

Thus the ansatz for the radial wave function in the magnetic
region can finally be written as

fmstd = jumeffu/2e−j/2US1 + umeffu − meff − «,

2
,1 + umeffu,jD ,

s7d

where U is the confluent hypergeometric function.47 Note
that the functionU tends to zero asr →`.

It is easy to show that the radial wave function inside the
circle of radiusR swhere the magnetic field is zerod satisfies
the Bessel differential equation.47 Thus the radial wave func-
tion is given by

gmstd = JmsÎetd, s8d

whereJmsxd is the Bessel function of orderm.
Matching the radial wave functions inside and outside the

circle gives a secular equation whose solutions are the eigen-
values of the system. The matching conditions atr =R yield

gmstd−1u
d

dt
gmstdUr=R/l= fmstd−1U d

dt
fmstdU

r=R/i
. s9d

For a givenm this secular equation depends only on a single
dimensionless parameter, the missing flux,s. Note that addi-
tional solutions can be found when the wave functionsfmstd
and gmstd are zero, and their derivatives are equal at the
boundary. In this case Eq.s9d cannot be applied. This proce-
dure provides a complete set of the eigenstates of the prob-
lem.

III. SEMICLASSICAL APPROXIMATION: THE BERRY-
TABOR APPROACH

We now turn to the semiclassical treatment of the system.
Generally, ind dimensions, a system is integrable if there are
d independent constants of the motion. Usually this is the
result of the separability of the Hamiltonian: In a suitably
chosen coordinate system the Hamiltonian depends only on
separate functionsfisqi ,pid of the coordinates and the con-
jugate momenta. This means that the dynamics can be
viewed as a collection of independent one-dimensional dy-
namical systems. The functionfsqi ,pid plays the role of the
Hamiltonian in each subsystem. The one-dimensional semi-
classical quantization procedure can be carried out in each
subsystem separately,

I i =
1

2p
R pidqi = "Sni +

ni

4
D, ni = 0,1,2, . . . , s10d

whereI i is the action variable andni is the Maslov indexsfor
details see, e.g., Ref. 40d. The Maslov index is the sum of the
Maslov indices of the turning points of the classical motion.
Smooth or “soft” classical turning pointsfzeros of pisqidg
contribute +1 to the Maslov index, while “hard” classical
turning pointssinfinite potential wallsd contribute +2. Equa-
tion s10d, the Bohr-Sommerfeld quantization condition, is
widely used to approximate the energy levels of classically
integrable systems.

Alternatively, from Eq.s10d a semiclassical trace formula
known as the Berry-Tabor formula35 can be derived for the
oscillating part of the density of states. For two-dimensional
systems, this formula can be written as

dsEd = d0sEd+ o
p

o
j=1

+` cosS jSpsEd
"

−
p

2
jnp +

p

4
D

p"3/2Î jsn2,pd3

Tp
2

]2g

]I1
2

s11d

sfor the detailed derivation of this expression see Appendix
Ad. Hered0sEd is the average density of states. Thep sum-
mation runs over the primitive periodic orbits of the system,
and thej summation runs over their repetitions;Sp,Tp, and
np denote the classical action, the time, and the Maslov index
of orbit p, respectively;n2,p is the number of cycles in the
motion projected to the action variableI2 under one cycle of
the orbit; andI1=gsI2,Ed denotes the action variableI1 as a
function of the energy andI2.

A. Classical dynamics of the system

It is easy to show that the classical Hamiltonian in polar
coordinatessr ,wd, inside and outside the nonmagnetic region
is

H =
pr

2

2M
+ Vsrd, s12d

wherepr andpw are the canonically conjugate momenta, and
the radial potentialVsrd=s"vc/2dVmstd is the same as in Eq.
s4cd with the following replacements:
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m=
pw

"
, s13ad

meff = s+
pw

"
sgnseBd. s13bd

Note that herem andmeff are continuous classical variables.
As we shall see below in the semiclassical approximation,
the canonical momentumpw is quantized according to the
Bohr-Sommerfeld quantization ruless10d.

Since the Hamiltonian does not depend explicitly onw
sthe system is rotationally invariantd, the conjugate momen-
tum pw is a constant of motion. Thus the angular action vari-
able becomes

Iw =
1

2p
R pwdw = pw. s14d

The conjugate momentum inside the quantum dot is in fact
the angular momentum. Outside the quantum dot there is an
additional term due to the nonzero vector potential. From
ẇ=]H /]pw one finds

pw = 5Mr2ẇ if r , R

Mr2ẇ + eB
r2 − R2

2
if r . R.

s15d

We now chooseI1; Ir and I2; Iw in Eq. s10d. To calculate
the radial action variableIr =gsIw ,Ed one needs to perform
the integral ofpr =ÎE−Vsrd between the classical turning
points of the radial potential. For a givenE these turning
points can be obtained fromVsrd=E. Using the same dimen-
sionless variables as in Sec. II, we have one turning point for
the potential inside the nonmagnetic circle:

t0
in =

m
Î«

, s16ad

and for the potential valid outside the circle there are two
turning points:

t1,2
out = Î2s« + meffd 7 2Î«s« + 2meffd

=Î« + meff + umeffu 7 Î« + meff − umeffu, s16bd

where the upperslowerd sign of 7 distinguishes the first
ssecondd turning point. Note thatt1

out,t2
out, and the turning

points are real if eithermeff.0 or «ù−2 meff for meff,0.
For a given energyE and momentumpw one can calculate

the cyclotron radius% and the guiding centerc:

% = lÎ«, s17ad

c = lÎ« + 2 meff. s17bd

The derivation in the frame of classical mechanics is outlined
in Appendix B. Following Ref. 45 the relation between these
quantities and the corresponding quantum states of the sys-
tem can be derived from quantum mechanics. It turns out
that the same relations hold for the cyclotron radius and the
guiding center providedpw is quantized aspw="m, wherem
now is an integer. Then,meff is the same as that defined by
Eq. s4dd. The same results were found by Simet al.22 Using
Eq. s17d we shall discuss in detail the correspondence be-
tween classical orbits and quantum states in Secs. III D and
IV.

The turning points given in Eq.s16bd can be expressed in
terms of the cyclotron radius and the guiding center:

lt1
out = Hc − % if meff . 0

% − c if meff , 0,
s18ad

lt2
out = c + % . s18bd

We can now classify the classical orbits according to the
relation between the values of the turning points given by
Eqs. s16ad and s16bd and the corresponding radius of the
circular nonmagnetic regionsin units of ld

tR =
R

l
= Î2s. s19d

There are two different cases listed in Table I. For orbits of
type A the particle outside the nonmagnetic region moves
along a cyclotron orbit and then passes through the
magnetic-field-free region as a free particle. In the case of
orbits of typeB the particle does not penetrate the nonmag-
netic region. In this case one can further distinguish two
additional types of cyclotron orbits depending on the sign of
meff. The conditiont1

out.tR listed in Table I and Eq.s18ad
imply that c−%.R for meff.0, and%−c.R for meff,0.
From a simple geometrical consideration it follows that in
the first case the cyclotron orbitssdenoted byB1d lie outside
the circle of radiusR, while in the latter case the orbitssde-
noted byB2d completely encircle the nonmagnetic region.
These conditions can be rewritten as

TABLE I. Classification of the orbits and the corresponding radial action variables. See text also.

Case Conditions sp /"dIr

A t0
inøtR andt2

out.tR Qouts« ,t2
outd−Qouts« ,tRd+Qins« ,tRd−Qins« ,t0

ind
B t1

out.tR Qouts« ,t2
outd−Qouts« ,t1

outd
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m sgnseBd . Î2 s « . 0 for B1, s20ad

− m sgnseBd . Î2 s « . 0 for B2. s20bd

For both typesB1 andB2, «,m2/2s is valid. In the case of
orbits of typeA we have«.m2/2s.

We now turn to the calculation of the radial action vari-
ableIr. Using the radial potential given by Eq.s4cd inside the
nonmagnetic circle we find

Qins«,td ;
1

"
E prdr =E Î« − Vstd dt=Î«t2 − m2

− m arccos
m

tÎ«
, s21ad

and similarly outside, we have

Qouts«,td ;
1

"
E prdr =E Î« − Vstddt

=
1

2
Î« t2 − S t2

2
− meffD2

−
1

2
s« + meffdarcsinS« + meff − t2/2

Î«s« + 2meffd
D

−
1

2
umeffuarcsinS t2s« + meffd − 2meff

2

t2Î«s« + 2meffd
D .

s21bd

The radial action variables for the orbits of typesA andB can
be expressed in terms of the functionsQin andQout, and are
listed in Table I. Note that

Qouts«,t1
outd = −

p

4
s« + meff − umeffud, s22ad

Qouts«,t2
outd = − Qouts«,t1

outd. s22bd

Thus, for orbits of typeB, the radial action variableIr can be
simplified to

Ir =
"

2
s« + meff − umeffud. s23d

It is clear from Eq.s14d and Table I that for fixeds, the radial
action variableIr is a function of the rescaled energy« and
the angular action variableIw throughm andmeff. Then, for
orbits of typeA, the partial derivative in the denominator of
Eq. s11d has a rather simple form:

"
]2Ir

]Iw
2 =

1

pÎ2 s « − m2

s+ meff

« + 2 meff
. s24d

However, the amplitude for orbits of typeB in Eq. s11d can-
not be calculated using the second partial derivative ofIr;
therefore the contribution from these orbits to the semiclas-
sical level density is calculated separately in Appendix C.

Knowing the explicit« and Iw dependence of the radial
action variableIr, the Bohr-Sommerfeld quantization condi-
tions given by Eq.s10d for orbits of typeA can be rewritten
as

Iw = " m, s25ad

Ir = "Sn +
1

2
D , s25bd

where n=0,1,2, . . . andm is an integer, and the energy-
dependent radial action variableIr is given in Table Isthe
Maslov indices arenw=0 andnr =2; for details see, e.g., Ref.
40d. Using Eq.s23d for orbits of typeB, the semiclassical
quantization conditions can be simplified and the energy lev-
els are

Em,n = "vcSn +
umeffu − meff + 1

2
D , s25cd

wheremeff=s+m sgnseBd, andm and n are integers. These
levels coincide with the familiar Landau levels in a homoge-
neous magnetic field but the quantum numberm is replaced
by meff. Below in Sec. III C we shall compare the exact en-
ergy levels with those obtained from the Bohr-Sommerfeld
quantization conditions for orbits of typesA andB.

B. Periodic orbits

To apply the Berry-Tabor formulas11d, one needs to de-
scribe the possible periodic orbits of the magnetic quantum
dot system. The periodic orbits of typeA can be character-
ized by their winding numberw sthe number of turns around
the center under one cycled and the number of identical orbit
segmentsns the orbit can be split up to. These segments
consist of a circular path outside the quantum dot followed
by a straight line inside. We introduce the anglesa ,b andg
to characterize these basic orbit segments as shown in Fig. 2.
These angles always fulfill

nssb + gd = wp, s26ad

sin sad
sin sbd

=
R

r
s26bd

sa and b are always positive and the sign ofg follows the
sign of wd. The relations between the indicesw,ns and the
angles characterizing the basic orbit segment are summarized
in Table II for the four possible subclasses. When eitherw is
negative sorbits of type A1d, or the cyclotron radiusr is
smaller than the radius of the quantum dotsorbits of type
A2d, the anglesa ,b, andg are fully determined byw andns,
since in these casesb is definitely smaller thanp /2. On the
other hand, whenw.0 and r.R, one must also specify
whetherb is smallersorbits of typeA3d or largersorbits of
type A4d thanp /2 to fully determine the periodic orbit.

The action of periodic orbitp can generally be expressed
as
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Sp = "kLp + eBAp, s27d

wherek=Î2ME/" is the wave number,Lp is the length of
the orbit, andAp is the area inside the magnetic field. In our
case

Lp = 2nsfr a + R sinsugudg, s28d

Ap = nsHr2Fa + sgns2a − pd
sin 2a

2
G

− R2Fb + sgns2b − pd
sin 2b

2
GJ . s29d

Therefore the action in our units can be written as

Sp/" = nsH2 « a + 2Î2s « sinsugud

+ sgnseBdF«Sa + sgns2a − pd
sin 2a

2
D

− 2sSb + sgns2b − pd
sin 2b

2
DGJ . s30ad

Finally, to use Eqs.s11d and s24d, we also need the time
period Tp and Iw associated with the orbit, which can be
written as

Tp =
Lp

v
=

2ns

vc
f1 +Î2s/« sinsugudg, s30bd

Iw,p/" = ± Î2s« cossgd, s30cd

wherev denotes the velocity and in the latter expression the
upper sign is for the orbits withw.0 and the lower sign is
for the orbits withw,0. This expression forIw can be ob-
tained from Eq.s14d: the angular action variable is equal to

pw, and, as already mentioned, inside the quantum dotpw is
equivalent to the angular momentum.

C. Results

In this section we compare the numerically exact energy
levels with those calculated from the Bohr-Sommerfeld
quantization conditions. Similarly, we present results for the
density of states obtained from the Berry-Tabor formulas11d.

The numerically exact energy levels of the magnetic
quantum dot system are calculated from the secular Eq.s9d
for fixed m. Solving Eq.s25d for «, we obtain the energy
levels in the Bohr-Sommerfeld approximation. The results
for a given magnetic field are shown in Fig. 3. The agree-
ment between the exact and the semiclassically calculated
energy levels is excellent. Our results also agree with those
presented in Ref. 22. For largeumu the energy levels tend to
the Landau levels, while in the opposite case a substantial
deviation can be seen. In the latter case, the energy levels
result from the quantization of orbits of typeA. In the work
by Simet al.22 these states were called magnetic edge states.
One can see that even the low-lying energy levels of these
magnetic states can be accurately calculated in the Bohr-
Sommerfeld approximation. However, a significant deviation
of the eigenvalues of these states from the bulk Landau lev-
els can be seen in the figure. The lowest-energy level of the
magnetic quantum dot system is the statem=0 and n=0.
Note that the spectrum can be calculated much more easily
in the semiclassical approximation than from the exact secu-
lar equation involving the confluent hypergeometric function
U.

Increasing the magnetic field, we experienced slight de-
viations. These discrepancies may be explained qualitatively
in the following way. As the magnetic field tends to infinity,

TABLE II. The different subclasses of orbits of typeA and the
corresponding relations between the angles defining the basic orbit
segment and the indicesw and ns. Every orbit with a negative
winding numberw falls into subclassA1, regardless of whetherr is
smaller or larger thanR. The subclassA2 consists of those orbits
that have a positive winding number andr,R. In case ofw.0,
r.R andb,p /2, the orbit is of typeA3; otherwise it is of typeA4.
The anglea can be obtained fromw andns directly. Thenb can be
calculated froma ,r andR, and finallyg from a andb.

FIG. 2. Two examples for the basic orbit segmentssan arc in the
magnetic field followed by a straight line inside the quantum dotd of
orbit typeA, and the related anglesa ,b, andg. A particle traveling
along the segments moves counterclockwise with respect to the
center of the quantum dot in the case drawn on the left, while in the
other example it moves clockwise on the straight line inside the
quantum dot. Thus in this case the angleg is negative.
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the charged particle spends less and less time outside the
circular region, and in the limiting case its motion is de-
scribed by an elastic reflection from the boundary of the
magnetic and nonmagnetic regions. The radial potential be-
comes a hard wall atr =R. Thus, one of the classical turning
points for orbits of typeA becomes a hard one and the cor-
responding contribution to the Maslov index tends to 2. Bl-
aschke and Brack41 observed a similar situation in circular
magnetic billiards. Their numerical investigations have con-
firmed the argument presented above. Here we do not discuss
this issue further.

We now present results for the density of states calculated
from the Berry-Tabor formulas11d for two magnetic fields
given by the missing flux quantas=5 ands=10. To evaluate
the semiclassical density of states in practice, we have regu-
larized the periodic orbit sum in Eq.s11d with a Gaussian
smoothing by multiplying the amplitude of the orbits with
e−dLp swhered is infinitesimald, as discussed in Refs. 40 and
41. This factor suppresses the contribution from the long
orbits and broadens thed functions at semiclassical energies.
Substituting Eqs.s24d and s30d into the regularized version
of Eq. s11d, we obtain the semiclassical density shown in Fig.
4 plotted together with the numerically obtained quantum
energy levels. The agreement between the two results is good
for the majority of the levels; however, in the case of missing
flux quantas=10, apparent discrepancies can be observed,
for example, at energies close to«<3. We think that a better
agreement can be obtained for stronger magnetic fields by
taking into account the magnetic-field-dependent Maslov in-
dex. The work along this line is in progress.

D. Phase diagram, the classical-quantum correspondence

In this section we classify the exact energy levels in terms
of the classical orbits. In Sec. III A orbits of typesA andB
has been introduced according to the positions of the turning
points compared to magnetic antidot. ClassA can further be
divided into subclasses ofA1−A4 with the help of the angles
a ,b, andg defined in Fig. 2, as it has been shown in Sec.
III B for periodic orbits. These angles can be defined in the

same way for nonperiodic orbits as well; therefore this clas-
sification can be applied to nonperiodic cases as well as for
periodic orbits.

The cyclotron radius% and the guiding centerc fully
determinea ,b, andg as

a = arccosfsR2 − r2 − c2d/s2rcdg, s31ad

b = arccosfsR2 + c2 − r2d/s2Rcdg, s31bd

g = Ha − b if a − b ø p/2

a − b − p if a − b . p/2.
s31cd

The classical-quantum correspondence is based on Eq.s17d
defining % and c. Namely, a quantum state given by the
quantum numbersm,n sand the energy eigenvalueEm,nd and
the missing flux quantas can be classified by calculating first
% andc from Eq. s17d , and then using Eq.s31d to obtaina,
b, and g. Note that the resulting angles typically do not
fulfill the Eq. s26ad condition for the periodic orbits; there-
fore in most cases the classical orbits corresponding to the
quantum states are not periodic.

The conditions given in the first row of Table II for the
different types can be reformulated in terms of the energy of
the particle« and the quantum numberm as shown in Table
III. A similar classification has been made for electron states

FIG. 3. Exactscrossesd and semiclassicals+ signsd energy levels
sin units of "vc/2d of the circular magnetic quantum dot obtained
from Eqs. s9d and s25d as functions ofm for s=5. We take
sgnseBd=−1 as in Ref. 22.

FIG. 4. The quantum-mechanical energy levels as a function of
s and the semiclassical level density obtained from the Berry-Tabor
approach as function of« are plotted together. The smoothing pa-
rameterd for the periodic orbit sum wasd=0.002, and the summa-
tion of the orbits runs fromns=2 to ns,max=240 and fromw=0 to
wmax=120. sNumerical experience showed that with these maxi-
mum valuesns,max and wmax, the broadenedd functions are quite
prominent at semiclassical energies.d

TABLE III. Conditions in terms of« and m for different sub-
classes of orbits of typesA andB. Here we take sgnseBd=−1.

A1 A2 A3 A4 B1 B2

«.m2/2s «øm2/2s

m,0 mù0 mø0
m.s

«,2s «ù2s

mø2s m.2s «ù2sm−sd
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of a circular ring in magnetic field43 and for ring-shaped
Andreev billiards.48

It may also be useful to present the conditions listed in
Table III graphically. In«-m space, the classically allowed
regions corresponding to the different orbits look like a
“phase diagram.” In Fig. 5 such a phase diagram is plotted in
«-m space for a given magnetic field. This phase diagram
should be compared with Fig. 3, the plot of the energy levels
from the quantum-mechanical calculation. In this way, the
different exact levels can be classified in terms of the corre-
sponding classical orbits. We should stress again that these
orbits are not necessarily periodic. Examples will be shown
in Sec. IV.

IV. COMPARISON OF THE CURRENT DISTRIBUTIONS
AND THE CLASSICAL TRAJECTORIES

An apparent correspondence between the classical orbits
and the quantum states can also be made by calculating the
current flow patterns in the magnetic quantum dot system.
The particle sprobabilityd current density45,49 in magnetic
field is given by

j =
i"

2M
sCgradC* − C*gradCd −

e

M
A uCu2. s32d

Using the vector potentials2d the current densitysin our
unitsd for statesCm,n can be written asj = jwsêw / rd, where

jwstd =
"

2M
uCm,nu2f2m− sgnseBdst2 − tR

2dQst − tRdg,

s33d

and êw is the unit vector in thew direction.
Solving the secular equations9d and then determining the

normalized eigenstates, the related current densities can be
calculated from Eq.s33d. Figures 6–8, 10, and 11 show the
current flow patterns for given eigenstates and the corre-
sponding classical trajectories of the particle. The missing
flux quanta iss=5 and sgnseBd=−1 in all figures. In these
figures the current densityj sr d at pointr is represented by an

arrow with length proportional to the magnitude of the cur-
rent density and the midpoint of the arrow is at the pointr .
At a given energy and quantum numberm corresponding to
the classical canonical momentumpw="m the cyclotron ra-
dius and the guiding center of the classical orbit is calculated
from Eq. s17d. Hence the classical trajectory of the particle
can be determined and are shown in the figuressscaling is in
units of the magnetic lengthld. In Figs. 9 and 12 the radial
dependence of the current density is plotted for the corre-

FIG. 5. Phase diagram in the space of« andm: the classically
allowed regions defined by the conditions in Table III for the dif-
ferent orbits. Heres=5 and sgnseBd=−1.

FIG. 6. The current flowfin units of " / s2Mdg for statem=−1
andn=0. The classical orbit is of typeA1. Here and in Figs. 9–12
the missing flux quanta iss=5, and we choose sgnseBd=−1.

FIG. 7. The current flowfin units of" / s2Mdg for statem=0 and
n=0. The classical orbit is of typeA2.
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sponding eigenstates. Statessm,nd=s−1,0d ,s0,0d, ands1,0d
were called magnetic edge states in Ref. 22.

In Fig. 6 the current inside the nonmagnetic region flows
clockwisesthe magnitude of the current density is negative
in accordance with Fig. 9d, while outside the magnetic dot it
flows counterclockwise. The classical trajectories inside the
dot form a “caustic” and the current is enhanced here in the
clockwise direction. From Table III we find that the orbit is
of typeA1. The trajectory apparently also satisfies the condi-
tions given in Table IIswithout the requirement for the peri-
odicity of the orbitsd.

In Fig. 7 for statem=0 andn=0 the current is zero inside
the magnetic dot. This can easily be seen from Eq.s33d ,
while the direction of the current flow is counterclockwise
outside. The orbit is a limiting case between typesA1 andA2.
Figure 8 for statem=1 andn=0 shows a counterclockwise
current flow both inside and outside the magnetic dot. The
current jw is positive everywhere as it can be also seen in
Fig. 9. The orbit is again of typeA2, in accordance with the
conditions given in Tables II and III.

One can observe that the current densityjw is not differ-
entiable at r =R. This is because of theQ function in
Eq. s33d. Physically, this is a consequence of the step func-
tion behavior of the magnetic field. Nevertheless, the diver-
gence of the current density vectorj is still zero everywhere.

Finally, orbits of typesA3 and A4 are shown in Figs. 10
and 11 for statessm,nd=s1,6d and s14,2d, respectively.
Similarly, for these states the corresponding current densities
as functions of the distance from the origin are plotted in Fig.
12. For both states the current is very small inside the mag-
netic dot. In the case of statesm,nd=s1,6d, the trajectories
almost cross the originsm is smalld, while for statesm,nd
=s14,2d only a small portion of the trajectory penetrates into
the magnetic quantum dot regions. The qualitative agreement
between the current flow patterns and the classical trajecto-
ries is, again, clearly visible.

Note that in all of these figures the classical trajectories
are not periodic orbits with energy corresponding to the
given eigenstate. This is not surprising, since the quantiza-
tion should not be applied to periodic orbits in real space but
to the motion on the two-dimensional torus parametrized by
the action variables and their canonically conjugate angle
variablessfor details see, e.g., Ref. 40d. In fact, the Berry-
Tabor formulas11d suggests that an infinite number of peri-
odic orbits with proper weights can only result in the correct
quantum mechanical density of states.

It has been shown by Halperin46 that the probability cur-
rent can be related to the derivative of the energy levels with
respect to the angular momentum quantum number:

FIG. 9. The current densitiesjw as functions ofr sin units of ld
for states shown in Figs. 6–8. The vertical line is atr =R.

FIG. 10. The current flowfin units of " / s2Mdg for statem=1
andn=6. The classical orbit is of typeA3.

FIG. 8. The current flowfin units of" / s2Mdg for statem=1 and
n=0. The classical orbit is of typeA2.
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Im,n =E
0

`

j · êwdr =
1

h

]Em,n

]m
. s34d

In Fig. 13 the integral of the current densities given in Eq.
s34d is plotted as functions ofm for n=0,1,2. One can see
that form!0 the total current is zerosthese are the orbits of
typeB1 in our classificationd and that form@2s it tends to a
constant valuestype B2d. The current is negative for states
corresponding to orbits of typeA1, while it increases mono-
tonically for states corresponding to orbits of typesA2−A4.
This is in accordance with the right-hand side of Eq.s34d
using the energy dispersionsthem dependence of the energy
levelsd plotted in Fig. 3.

V. CONCLUSIONS

In this paper we investigated the energy spectrum of the
circular magnetic quantum dot systems obtained from exact
quantum and semiclassical calculations. In the proper dimen-
sionless variables the only relevant parameter of the system
is the missing flux quantum. The system is separable, and in
the quantum calculation the energy levels are the solutions of
the secular equation derived from the matching conditions of
the wave functions inside and outside the dot. In the semi-
classical treatment we presented two different methods. On
one hand, the density of states was calculated using the
Berry-Tabor formula. On the other hand, the energy levels
obtained from the Bohr-Sommerfeld quantization rules. The
main difference between the two methods is that in the first
case one needs to characterize the possible periodic orbits in
real space, while in the latter, the motion of the particle is on
a torus in the space of the action variables. In our numerical
results we compared the quantum energy spectrum and that
obtained in the semiclassical approach. We showed that the

energy levels of the magnetic quantum dot systems obtained
from the two semiclassical methods were in good agreement
with the numerically exact quantum results for weak mag-
netic fields. However, by increasing the magnetic field, a
slight deviation between the exact and the semiclassically
approximated energy levels can be observed. We argued that
the reason for this discrepancy may be traced back to the fact
that the Maslov index should be magnetic field dependent. A
thorough investigation of this problem might be an interest-
ing future work.

A classification of the energy spectrum for arbitrary mag-
netic fields was presented in terms of the classical orbits
defined by their cyclotron radius and guiding center. Such
identifications are based on the explicit relations between
these classical parameters of the orbits and the quantum
states. The correspondence between the quantum states and
the classical trajectories can be made transparent by drawing
a phase diagram with regions corresponding to six different
types of orbits in the space of energy and angular momentum
quantum number.

Finally, we calculated the current flow patterns for eigen-
states that correspond to orbits with trajectories penetrating
into the field-free region. The related classical trajectories
were also shown for the sake of comparisson. From these
results one can see the close correspondence between the
structure of the trajectories and the distribution of the current
densities obtained from the quantum calculations.

From the energy spectrum of the magnetic quantum dot
systems one can determine the free energy. The good agree-
ment between the semiclassical and quantum treatment of
the system allows us to use semiclassical methods in the
weak field limit for calculating the energy spectrum. There-
fore, the semiclassical approach provides a useful starting
point for successive studies of thermodynamic properties,
such as magnetization. Moreover, the semiclassical approxi-
mation can be an effective tool for investigating arbitrarily
shaped magnetic quantum dotsswhich would be a very dif-
ficult task in the quantum cased or systems with more com-
plicated magnetic field profiles.

FIG. 11. The current flowfin units of " / s2Mdg for statem=14
andn=2. The classical orbit is of typeA4.

FIG. 12. The current densitiesjw as functions ofr sin units of ld
for states shown in Figs. 10 and 11. The parameters are the same as
in Fig. 6. The vertical line is atr =R.
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APPENDIX A: THE BERRY-TABOR FORMULA

The quantized energies can be recovered if we express the
Hamiltonian in terms ofI i:

Esn1,n2, . . . ,ndd = HsI1,I2, . . . ,Idd = H„"sn1 + n1/4d,"sn2

+ n2/4d, . . . ,"snd + nd/4d…. sA1d

The semiclassical density of states is the density of these
energies:

dsEd = o
n1,n2,. . .,nd=0

`

d„E − Esn1,n2, . . . ,ndd…. sA2d

The density of states can be rewritten via the Poisson resum-
mation technique

dsEd =E ddI d„E − HsI1,I2, . . . ,Idd…

3 p
i=1

d

o
ni=−`

+`

d„I i − "sni + ni/4d…

= o
m1,m2,...,md=−`

` E ddI dt

2p"d+1 3 expF i

"StfE

− HsI1, . . . ,Iddg + 2po
i

misI i − "ni/4dDG . sA3d

Here, we used the Fourier expansion of thed-function spike
train. The termmi =0si =1,2, . . . ,dd can be evaluated directly
and yields the nonoscillatory average density of states. Other
terms can be evaluated by the saddle-point method, when
"→0. The saddle-point conditions select the periodic orbits
of the system, and the result of the integration is

dsEd = d0sEd + o
p

o
j=1

+`
s2pdsd−1d/2

2sxp−1d"sd+1d/2

3
cosf jSpsEd/" − sp/2d jnp + sp/4dsd − 1dg

Îs jTpdd−1s− detDpd
.

sA4d

Here p is the index of the primitive periodic orbits,j is the
number of repetitions,Sp is the classical action along the
orbit, Tp is the time period of the orbit, andnp is the Maslov
index. The quantityxp is the number of action variables of
the periodic orbit whose saddle-point value is zerosIk=0d,
since in this case the Gaussian saddle-point integral is only
one-sided, and its contribution is 1/2 of the full Gaussian
integral. The matrixDp is related to the second derivative
matrix

det D = det1
]2HsI1, . . . ,Idd

]I i ] I j

]HsI1, . . . ,Idd
]I i

]HsI1, . . . ,Idd
]I j

0 2 . sA5d

EquationsA4d is the generic form of the semiclassical den-
sity of states in terms of periodic orbits, known as the Berry-
Tabor formula.35

In two dimensions, very often the Hamiltonian cannot be
expressed with the action variables explicitly, only the im-
plicit function

I2 = gsI1,Hd, sA6d

is available. In this case it is more useful to express the
quantities in the Berry-Tabor trace formula in terms of the
derivatives ofg. Taking the partial derivative of Eq.sA6d
with respect toI1 yields

0 =
]gsI1,Hd

]I1
+

]gsI1,Hd
]H

]HsI1,I2d
]I1

, sA7d

while the partial derivative of Eq.sA6d with respect toI2
gives

1 =
]gsI1,Hd

]H

]HsI1,I2d
]I2

. sA8d

The frequencies can be expressed from these equations as

v1 =
]HsI1,I2d

]I1
= −

]gsI1,Hd
]I1

]gsI1,Hd
]H

, sA9d

FIG. 13. The total currentIm,n fin units of " / s2Mdg obtained
from the integral ofjw given in Eq.s34d as functions ofm for n
=0,1,2. Theparameters are the same as in Fig. 6.
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v2 =
]HsI1,I2d

]I2
=

1

]gsI1,Hd
]H

. sA10d

Periodic orbits are recovered fromv1=2pn1/T and v2
=2pn2/T. The actionI1 for a periodic orbit at energyE can
be obtained by solving equation

v1

v2
=

n1

n2
=

n1,p

n2,p
= −

]gsI1,Ed
]I1

, sA11d

where we introducedn1= jn1,p and n2= jn2,p, corresponding
to the primitive orbit. Then the period can be expressed sim-
ply as

T = 2pn2,p
]gsI1,Hd

]H
. sA12d

The main determinant to be calculated reads

det D =*
]2HsI1,I2d

]I1
2

]2HsI1,I2d
]I1 ] I2

]HsI1,I2d
]I1

]2HsI1,I2d
]I1 ] I2

]2HsI1,I2d
]I2

2

]HsI1,I2d
]I2

]HsI1,I2d
]I1

]HsI1,I2d
]I2

0
*

= F−
]2H

]I1
2 S ]H

]I2
D2

+ 2
]2H

]I1 ] I2

]H

]I1

]H

]I2

−
]2H

]I2
2 S ]H

]I1
D2G . sA13d

Now, the second derivatives ofH can be expressed with the
second derivatives ofg by taking further partial derivatives
of Eqs.sA7d andsA8d with respect toI1 andI2. Then we can
express the second derivatives as

]2H

]I1
2 =

1

s]g/]Hd3F2
]2g

]H ] I1

]g

]I1

]g

]H
−

]2g

]H2S ]g

]I1
D2

−
]2g

]I1
2S ]g

]H
D2G , sA14d

]2H

]I1 ] I2
=

1

s]g/]Hd3S ]2g

]H2

]g

]I1
−

]2g

]I1 ] H

]g

]H
D , sA15d

]2H

]I2
2 = −

1

s]g/]Hd3

]2g

]H2 . sA16d

Using these expressions, the determinant becomes

det D = −
1

s]g/]Hd3

]2g

]I1
2 = −

s2pn2,pd3

T3

]2g

]I1
2 . sA17d

The density of states in two dimensions is then

dsEd = d0sEd

+ o
p

o
j=1

+`
cosf jSpsEd/" − sp/2d jnp + sp/4dsd − 1dg

2xpps"d3/2Îjsn2,pd3s]2g/]I1
2d/Tp

2
.

sA18d

APPENDIX B: DERIVATION OF THE CYCLOTRON
RADIUS AND THE GUIDING CENTER

The cyclotron radius can be determined from the energyE
of the particle. The energy is conserved, and obviouslyE
= 1

2Mvc
2%2; thus

%

l
= Î«. sB1d

The guiding center may be calculated as follows. As we have
seen, the conjugate momentum given by Eq.s15d is a con-
stant of motion, therefore, e.g., forr .R the right-hand side
of Eq. s15d should also be a constant at any point of the orbit.
At first apply this equation for pointsP andQ, which are the
points closest to and farthest from the originsthe center of
the circle of radiusRd of an orbit lying outside the quantum
dot. These are special points of the orbits for which the right-
hand side of Eq.s15d has a simpler form. Then the distances
of points P and Q from the origin arerP=c−% and rQ=c
+% swe assume that pointQ is farther from the origind. From
a simple geometrical argument one finds that the angular
velocity at pointsP andQ satisfies the following equations:

rPẇP = %vc sgnseBd, sB2d

rQẇQ = − %vcsgnseBd. sB3d

Substituting, for example,rP=c−% and ẇP from Eq. sB2d
into Eq. s15d , and using Eq.sB1d, we find

c

l
= Î« + 2 meff. sB4d

The same results can be obtained by using Eq.sB3d for point
Q. If the oribit encompasses the quantum dot, then the right-
hand side of Eq.sB2d should be multiplied by a factor of −1.
The case of orbits with trajectories penetrating into the quan-
tum dot can be treated similarly. However, the expressions
for the cyclotron radius and the guiding center are the same
as above for all cases.

APPENDIX C: CONTRIBUTION OF THE CYCLOTRON
ORBITS TO THE SEMICLASSICAL DENSITY OF

STATES

In the case of the cyclotron orbits, the integral inIw in Eq.
sA3d has to be calculated directly rather than using the
saddle-point method. AsIw is constant, the integrand does
not depend on the integration variable and therefore the in-
tegral is equal to the measure of the interval of the possible
Iws. Without loss of generality, we take sgnseBd=−1 in this
section.
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1. Cyclotron orbits of type B1

Cyclotron orbits that do not encompass the quantum dot
stype B1d are possible at any value ofr and any negative
angular momentumpw ssee Table IIId. At point P of these
orbits spoints P and Q of a cyclotron orbit are defined in
Appendix Bd, from Eqs.s14d and s15d we obtain

Iw = pw = MrP
2ẇP + eB

rP
2 − R2

2
. sC1d

This is minimal whenrP=R sand the cyclotron orbit touches
the boundary of the quantum dotd, and is maximal when the
orbit is placed as far as possible from the quantum dot. By
denoting the radius of the system withL sin units of ld the
intergation in Eq.sA3d with respect toIw yields a factor
DIw= IwsRd− IwsLd. Using Eqs.sC1d and sB2d, one finds

DIw

"
= LÎ« − Î2s« +

1

2
sL2 − 2sd. sC2d

The Ir and t integrals can be evaluated with the saddle-point
method, just as in the case of a one-dimensional system. The
determinant of the second derivative matrix is

detD = det1−
]2H

]Ir
2 T −

]H

]Ir

−
]H

]Ir
0 2 = − S ]H

]Ir
D2

. sC3d

From Eqs.sA8d and s23d, we find

]H

]Ir
=

1

]g/]E
= vc, sC4d

detD = − vc
2. sC5d

Thus, the total amplitude of these orbits in the periodic orbit
sum is

Ac
− ;

DIw

"

1

"vc
=

1

"vc
FLÎ« − Î2s« +

1

2
sL2 − 2sdG .

sC6d

The action can be calculated from Eq.s23d, and for pw /"
;m,0 we have

S= 2pIr = "p«, sC7d

and their Maslov index ism=2; therefore the contribution to
the semiclassical level density from these orbits reads

dc
−sEd = Ac

−o
j=1

`

coss j«p − jpd. sC8d

The sum has Diracd peaks at «=2n+1, where n
=0,1,2, . . . andm,0. These are the familiar Landau levels
of an electron form,0.

2. Cyclotron orbits of type B2

For cyclotron orbits encompassing the quantum dotstype
B2d the angular momentum satisfies the conditionpw /"=m
.2s ssee Table IIId. At point Q of these orbits, using Eqs.
s14d and s15d, we can write

Iw = pw = MrQ
2 ẇQ + eB

rQ
2 − R2

2
. sC9d

The minimum and the maximum ofrQ are % and 2%−R,
respectively. Between these values,Iw, as a function ofrQ, is
monotonic, thus the integration in Eq.sA3d over Iw gives
DIw= Iws%d− Iws2%−Rd. Using Eqs.sC9d and sB3d, we have

DIw

"
=

«

2
+ s− Î2s«. sC10d

Similarly to Eq.sC6d, the amplitude of the orbits becomes

Ac
+ ;

DIw

"

1

"vc
=

s«/2d + s− Î2s«

"vc
. sC11d

Using Eq.s23d, the action forpw /";m.2s is

S= 2pIr = "ps« + 2s− 2md. sC12d

Finally, the contribution to the periodic orbit sum of these
orbits is

dc
+sEd = Ac

+o
j=1

`

cosfp js« + 2s− 2md − jpg. sC13d

The sum has Diracd peaks at«=2sm−sd+2n+1, wherem
andn are non-negative integers, andm.2s. These are again
the familiar Landau levels of an electron form.2s.
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