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We study the energy level structure of two-dimensional charged particles in a circular quantum dot in
inhomogeneous magnetic fields. In this system, the magnetic field is zero inside the dot and constant outside.
Such a device can be fabricated with present-day technology. We present detailed semiclassical studies of such
magnetic quantum dot systems and provide a comparison with exact quantum calculations. In the semiclassical
approach we apply the Berry-Tabor formula for the density of states and the Borh-Sommerfeld quantization
rules. In both cases we found good agreement with the exact spectrum in the weak magnetic field limit. The
energy spectrum for a given missing flux quantum is classified in six possible classes of orbits and summarized
in a so-called phase diagram. We also investigate the current flow patterns of different quantum states and show
a clear correspondence with classical trajectories.
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I. INTRODUCTION Although it is difficult to measure directly the density of

In the past decade, the study of systems of two-States of a quantum system, it affects many observable quan-
dimensional electron gaé2DEG) in semiconductofshas fities such as the magnetoconductance, the magnetization or
been extended by the application of spatially inhomogeneouée susceptibility. In the interpretation of the experimental
magnetic fields. The inhomogeneity of the magnetic field carfesults the semiclassical approximation proved to be a useful
be realized experimentally either by varying the topographytool. Several semiclassical approactie¥ are known in the
of the electron ga%? or by using ferromagnetic materigls’  literature and an excellent overview of the subject can be
depositing a superconductor on top of the 2D¥&Numer-  found in the textbook by Brack and BhadtfiDifferent
ous theoretical works also show increasing interest in th&emiclassical theories for magnetic systems have success-
study of electron motion in an inhomogeneous magnetic fieldully been applied, for example, in Refs. 41-44. For inte-
(see, e.g., Refs. 12-B1 grable systems Berry and TaBdhave shown that the oscil-

In the experimental works mentioned above, for GaAslating part of the density of states can always be expressed in
heterostructures, on one hand, the electron dynamics is coterms of classical periodic orbits. This formula is commonly
fined to two dimensions. On the other hand, the coherencealled the Berry-Tabor trace formula.
length and the mean free path of the electron can be much One of our aims in this paper is to apply the Berry-Tabor
larger than the size of the system, while the Fermi wavetrace formula for a magnetic quantum dot. To illustrate the
length is comparable to the size of the 2DEG. Moreover, thgpower of the method, we also calculate the exact eigenvalues
electron system can be described to a good approximation & the single-particle Schrodinger equation and find a very
a free electron gas with an effective masBherefore, the good agreement between the two results. We should mention
quantum-mechanical treatment of these systems is of some
physical interest.

In this paper, as an example, we consider the energy lev-
els of a two-dimensional noninteracting electron gas in a
magnetic field that is zero inside a circular region and con-
stant outside. This systefshown in Fig. 1 will be called a R
magnetic quantum dot; it was first studied by Solimany and
Kramer3? Solving the Schrodinger equation it was shown
that there are bound states. Introducing an effective angular
momentum, the Schrddinger equation of the particle in sym-
metric gauge can be mapped to the Landau model. This ef-
fective angular momentum is a sum of the angular momen-
tum in a uniform magnetic field and the fln units of the
flux quantum missing from the uniform field. Recently, Sim
et al?? have renewed the study of this system and pointed
out the crucial role of the magnetic edge states in the mag-
netoconductance. The classical counterparts of these states
correspond to trajectories of the charged particle that consist FIG. 1. The two-dimensional electron gas in an inhomogeneous

of straight segments inside the nonmagnetic region and ardgagnetic field. The magnetic field is zero inside the circle of radius
outside. R and constant outside the circle.
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here that the statement by Siet al?? on the relation be- boundary of the magnetic and nonmagnetic regions. In Sec.
tween the quantum states and the corresponding periodic o the semiclassical approximation is presented including the
bits is somewhat misleading. Their condition for a given pe-description of the classical motion of the particle in Sec.
riodic orbit is not necessarily satisfied at the value of theji| A, the characterization of the possible periodic orbits in
corresponding exact energy level as they claimed. Howevegec. |1l B, some numerical results in Sec. Il C, and the
including more and more periodic orbits with the properphase diagram in Sec. Il D. The current flow patterns of the

weights in the trace formula the sum converges to the corredystem are discussed in Sec. IV. Finally, the conclusions are
guantum density of states. In practice only a few of the Short'given in Sec. V.

est orbits are enough to get a rough estimate of the positions
of the exact energy levels.

The power of the semiclassical approach can also be dem- Il. QUANTUM CALCULATION
onstrated by applying the Bohr-Sommerfeld approximation. . . .
We shall sh())/w ?r?a)t/th% energy levels obtained f?gm the Bohr- In this section, we present the quantum-mec_ha_mcal treat-
Sommerfeld quantization rules also agree very well with thdnent of the magnetic quantum dot._The.magnetm field with a
numerically exact levels even for the lowest eigenstatesSOnStantB outside a circle of radiuR is assumed to be
Note that in this semiclassical treatment the quantizatio€rPendicular to the plane of the 2DEG. The Hamiltonian of

should be applied to the classical motion on a two-the electron of mass and chargee is given by

dimensional torus parametrized by the action variables and 2

their canonically conjugate angle variabldsr details see, b if r<R

e.g., Ref. 40 e 2M @
The classical orbits can be classified by their cyclotron | (p-eA)? |

radiuse and their guiding center (distance of the center of oM if r>R,

the orbits from the origin In the quantum-mechanical treat-
ment one can calculate the average of operators defining thghere p is the canonically conjugate momentum, and the
cyclotron radius and the guiding center. For circular magwector potential in polar coordinatgs,¢) and symmetric
netic billiards, Lent® has derived approximate expressionsgauge is given b

for these averages for a given quantum state. Following Ref.

45, one may derive the corresponding relations for magnetic A=A, 08, (2
quantum dot systems. Thus, these relations are the basis for

classifying the different quantum states in terms of classicaf’/nere

orbits for our system. We will show that the quantum states 2_p2

can be described by six different types of classical orbits. In A r,¢)=B

addition, this classification enables us to draw a so-called

;phasebdltagram" I'that_ Sflwwk?ta clt(ejar onti-to-or:et COITESPOMYnde, is the unit vector in thep direction. Here®(x) is the
ence between classical orbits and quantum states. Heaviside step function.

To complete our se_miclassical studyz we finally present The energy levels of the system are the eigenvaliies

results for the probability current density calculated fromthe Schradin tion:
. ger equation:

quantum calculations. We shall argue that the current flow
patterns can be understood qualitatively from the corre-
sponding classical trajectories. Recently, Halpg€rilas
shown that the total currerithe integral of the current den- Rotational symmetry of the system implies a separation an-
sity along the radial directigncan be related to the disper- satz for the wave function as a product of radial and angular
sion of the energy levelgtheir angular momentum depen- parts. We choose for the angular part the appropriate angular
dence. As it will be shown this general relation works in our momentum eigenfunctiong™ with quantum numbem
magnetic quantum dot system, too. (heremis an integer. Thus the wave function for a givan

Regarding the numerical calculations, we should mentions separated a®(r,¢)=f(r)e™, where the radial wave
that the semiclassical approach presented in this paper provgfctionsf,(r) satisfy a one-dimensional Schrédinger equa-
to be a very effective method. Moreover, it provides a bettekion in the normal region:
understanding of the nature of the quantum system. Our
semiclassical method applied to magnetic quantum dot sys- r -
tems may be an important tool to understand the role of the (7 Ti(7) = £Tin(7), (43
magnetic edge states in the density of states or the magnetir which the radial Hamiltonian takes the form
zation (both are experimentally accessible physical quanti-
ties). We believe that our semiclassical analysis can be ex- h(7)=- ﬁ 10 +V.(7) (4b)
tended to other types of inhomogeneous magnetic fields such mi7) = s om -
as those studied, e.g., in Refs. 6-9 as well as noncircular dot
systems. Here we introduce the dimensionless variabte /1, where

The rest of the text is organized as follows. In Sec. Il thel=\#%/|eB is the magnetic lengthy.=|eB/M is the cyclo-
exact quantization conditioisecular equationis derived tron frequency,e=2E/(hw,) is the dimensionless energy,
from the matching conditions of the wave functions at theand the radial potential is given by

o O(r-R),

HW(r,¢) = EW(r,¢). (3)
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m? . Il. SEMICLASSICAL APPROXIMATION: THE BERRY-
) if r<R TABOR APPROACH
Vin(7) = (712 = mgg)? " (40 We now turn to the semiclassical treatment of the system.

2 r>R, Generally, ind dimensions, a system is integrable if there are

d independent constants of the motion. Usually this is the

result of the separability of the Hamiltonian: In a suitably
Mgt = S+ M sgr(eB), (4d) chosen coordinate system the Hamiltonian depends only on

oo ) ) B ) separate functiong;(q;,p;) of the coordinates and the con-
wheres=R®/(21%)=®/dg is the magnetic fIUXI_)‘BRZT’ (in " jugate momenta. This means that the dynamics can be
units of the magnetic flux quantushy=h/|e|) missing inside  \jewed as a collection of independent one-dimensional dy-

the circle of radiusR. The function sg) stands for the [,5mical systems. The functiat(q;, p;) plays the role of the

signum function. In the numerical results presented in thisyamiltonian in each subsystem. The one-dimensional semi-

paper, we always assume that the particle is an electron moyassical quantization procedure can be carried out in each
ing in a magnetic field along the positive axis, i.e., subsystem separately

sgneB)=-1. However, our theoretical results are not re-
stricted in such a way. _1 _ Vi _
Introducing the new variablg=7?/2 and transforming li= 27736 pidg _ﬁ(ni * a) NT 01.2,..., 10
the wave functions in the magnetic regiarn>R) as . ] ) . )
wherel, is the action variable and is the Maslov indexfor

f(7) = Emerl/2g782) (&), (5) details see, e.g., Ref. i0The Maslov index is the sum of the
Maslov indices of the turning points of the classical motion.
Eq. (4a) results in a Kummer differential equatitn Smooth or “soft” classical turning poinfzeros of pi(q;)]
contribute +1 to the Maslov index, while “hard” classical
d?xm dxm 1+|Megl —Meg—e turning points(infinite potential wall$ contribute +2. Equa-
gd_§2+(1+|meff|_§)d_§_ > Xm=0. tion (10), the Bohr-Sommerfeld quantization condition, is

widely used to approximate the energy levels of classically
6) integrable systems.
Alternatively, from Eqg.(10) a semiclassical trace formula
own as the Berry-Tabor formiffacan be derived for the
oscillating part of the density of states. For two-dimensional

Thus the ansatz for the radial wave function in the magneti<f<n
region can finally be written as

systems, this formula can be written as
1+ - My —&,
fm(r):gmeﬁ|/2e—§/2u< Mol = mes =2 1 +|meﬁ|,§>, .
2 . cos(JSE(E) ST 7_T>

7 % 2'P 4

@) AE) =dyE+ S 3 ——="
where U is the confluent hypergeometric functibhNote Pt n’h3’2\/1—2§’——g
that the functionJ tends to zero as— . To dl

Itis easy to show that the radial wave function inside the(for the detailed derivation of this expression see Appendix
circle of radigsR (where the lmagnetic field i§ zoreatisfies  p). Hered,(E) is the average density of states. Tinsum-
the Bessel differential equatidiThus the radial wave func-  mation runs over the primitive periodic orbits of the system,
tion is given by and thej summation runs over their repetitior;, T,, and
- v, denote the classical action, the time, and the Maslov index
Im(7) = Im(VeT), 8 of orbit p, respectively;n, , is the number of cycles in the
motion projected to the action variadlgunder one cycle of

whereJy(x) is the Bessel function of orden. _ the orbit; andl;=g(l,,E) denotes the action variable as a
Matching the radial wave functions inside and outside therunction of the energy anth.

circle gives a secular equation whose solutions are the eigen-
values of the system. The matching conditions =R yield
A. Classical dynamics of the system

(D7t igm(r) rerr=fm(n) 7t Efm(r) .9 It is easy to show that the classical Hamiltonian in polar
dr dr r=Ri coordinatedr, ¢), inside and outside the nonmagnetic region
. . . . is
For a givenm this secular equation depends only on a single
dimensionless parameter, the missing flsixNote that addi- Pr2
tional solutions can be found when the wave functibge) H=og ¥ V(r), (12)

and g,(7) are zero, and their derivatives are equal at the

boundary. In this case E¢Q) cannot be applied. This proce- wherep, andp, are the canonically conjugate momenta, and
dure provides a complete set of the eigenstates of the protthe radial potentiaV/(r) = (% w./2)V,(7) is the same as in Eq.
lem. (4c) with the following replacements:
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TABLE I. Classification of the orbits and the corresponding radial action variables. See text also.

Case Conditions (mlh)l,
A g$ 7R @nd T§m> R Ooule, Tgm) _®0ut(8 ) TR) +®in(8 ) TR) _®in(8 , 7J(;])
B T‘f“t> R Ouufe, Tgm)_@out(s ) Tclzut)
1.
m=Pe, (133 0=Ie, (178
h
—_—
c=IlVe + 2 my. (17b
Mgsf = S+ p#sgr(eB). (13b) f

. . . Th rivation in the frame of classical mechanics i tlin
Note that heran andmg are continuous classical variables. . € derivatio e frame of classical mechanics is outlined

As we shall see below in the semiclassical approximationIn Appendix B. Following Ref. 45 the relation between these

the canonical momenturp, is quantized according to the guantities and the corresponding quantum states of the sys-
Bohr-Sommerfeld quantizgtion rulés0) tem can be derived from guantum mechanics. It turns out

Since the Hamiltonian does not depend explicitly on that the same relations hold for the cyclotron radius and the

(the system is rotationally invarignthe conjugate momen- ggw'?sg;rf?rtg p;v.:_?]?‘*’ IS gu&r‘etlzsz(:n?ﬁs:?hrg’t Végﬁrrgg b
tum p,, is a constant of motion. Thus the angular action vari- ger. Mt Ty Y y
able becomes Eq. (4d). The same _results were fo_und by Sénal#< Using
Eq. (17) we shall discuss in detail the correspondence be-
1 tween classical orbits and quantum states in Secs. Il D and
I‘P = —% p‘Pd@ = p(p. (14) V. _ _ _ _ .
2m The turning points given in Ed16b) can be expressed in

. - . terms of the cyclotron radius and the guiding center:
The conjugate momentum inside the quantum dot is in fact

the angular momentum. Outside the quantum dot there is an
additional term due to the nonzero vector potential. From {c— o if mg>0

_ . | out 18
@=3H/dp, one finds 7 o—c if mg<O0. (183
Mr2p if r<R
= _ r’—-R? 15
P Mr2¢ + eB 5 if r>R. (19 I5%=c+ 0. (18b)

We can now classify the classical orbits according to the
We now choosd;=I, andl,=I, in Eq. (10). To calculate relation between the values of the turning points given by
the radial action variablé, =g(l,,E) one needs to perform Egs. (163 and (16b) and the corresponding radius of the
the integral ofp,=E-V(r) between the classical turning circular nonmagnetic regiotin units ofl)
points of the radial potential. For a giveh these turning
points can be obtained froM(r) =E. Using the same dimen-
sionless variables as in Sec. Il, we have one turning point for
the potential inside the nonmagnetic circle:

TR—

R
T= \2s. (19)

=

=

' (169 There are two different cases listed in Table I. For orbits of
type A the particle outside the nonmagnetic region moves
and for the potential valid outside the circle there are two?l0Ng @ cyclotron orbit and then passes through the
turning points: magnetic-field-free region as a free particle. In the case of
orbits of typeB the particle does not penetrate the nonmag-
out_ ./ — 5 netic region. In this case one can further distinguish two
7127 V2o + Mey) F 2ve(e + 2Mey) additional types of cyclotron orbits depending on the sign of
=&+ Mg+ Mol T Ve + Mo — |[Meg],  (16b) Mg The condition7$"> 7, listed in Table | and Eq(18a
imply that c-p >R for mg>0, andg-c>R for mg<O0.
where the uppeflower) sign of = distinguishes the first From a simple geometrical consideration it follows that in

(second turning point. Note that$"'< 75", and the turning the first case the cyclotron orbitdenoted byB,) lie outside

™

A%

points are real if eithemy;>0 or e = -2 my for my<<0. the circle of radiusR, while in the latter case the orbitde-
For a given energ¥ and momentunp,, one can calculate noted byB,) completely encircle the nonmagnetic region.
the cyclotron radiup and the guiding centes: These conditions can be rewritten as
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msgreB) >\2se>0 for B, (203
-msgneB) >\V2se>0 for B,. (20b)

For both types3, andB,, e <m?/2s is valid. In the case of
orbits of typeA we haves >n?/2s.

We now turn to the calculation of the radial action vari-
ablel,. Using the radial potential given by E@lc) inside the
nonmagnetic circle we find

®i”(8*7)5%fprdfzj Ve = V(7) dr=\e7? — P

m
—marccos—=,
TVE

(219

and similarly outside, we have

1
®out(8y7') = %f p.dr :f \yde

N

2
o7 meff)
1 .
- 5(8 + rneff)arcsw(

1
"2
£+ My — 712
Ve(e + 2my)
(e + Meg) — 2mGy

72\”/8(8 + 2Myg)

|
)

(21b

2|meff|arcsw<

The radial action variables for the orbits of typeandB can
be expressed in terms of the functiofg, and®,,, and are
listed in Table I. Note that

(0]

Ooule. 5 ==+ my~Ime), (223

Ouude, TgUt) == 0Ogye, Tgm)- (22b

Thus, for orbits of typeB, the radial action variablg can be
simplified to

h

|r:5(8+meff_|meff|)- (23)

It is clear from Eq(14) and Table I that for fixed, the radial
action variable, is a function of the rescaled energyand
the angular action variable, throughm and mg¢. Then, for
orbits of typeA, the partial derivative in the denominator of
Eqg. (11) has a rather simple form:

ﬁ&zlr_ 1 S+ Mg
2~ [ :
0|(p m2se—-mPet+2 My

(24)

However, the amplitude for orbits of tyg@in Eq. (11) can-
not be calculated using the second partial derivative, of

PHYSICAL REVIEW B 71, 075331(2005

Knowing the explicite and |, dependence of the radial
action variabld,, the Bohr-Sommerfeld quantization condi-
tions given by Eq(10) for orbits of typeA can be rewritten
as

(253

Ir:h<n+}>, (25b)
2
wheren=0,1,2,... andm is an integer, and the energy-
dependent radial action variablgis given in Table I(the
Maslov indices arer,=0 andv,=2; for details see, e.g., Ref.
40). Using Eq.(23) for orbits of typeB, the semiclassical
guantization conditions can be simplified and the energy lev-
els are

T L
wheremgz=s+m sgneB), andm andn are integers. These
levels coincide with the familiar Landau levels in a homoge-
neous magnetic field but the quantum numiveis replaced
by mg4. Below in Sec. 1l C we shall compare the exact en-
ergy levels with those obtained from the Bohr-Sommerfeld
guantization conditions for orbits of typésand B.

B. Periodic orbits

To apply the Berry-Tabor formuléll), one needs to de-
scribe the possible periodic orbits of the magnetic quantum
dot system. The periodic orbits of typgecan be character-
ized by their winding numbew (the number of turns around
the center under one cy¢land the number of identical orbit
segmentsng the orbit can be split up to. These segments
consist of a circular path outside the quantum dot followed
by a straight line inside. We introduce the angle® and y
to characterize these basic orbit segments as shown in Fig. 2.
These angles always fulfill

n(B+7y) =w, (269
sin(a) _ R
SN p (269

(e and B are always positive and the sign gffollows the
sign of w). The relations between the indicesng and the
angles characterizing the basic orbit segment are summarized
in Table 1l for the four possible subclasses. When eithés
negative (orbits of typeA;), or the cyclotron radiugp is
smaller than the radius of the quantum dotbits of type
A,), the anglesy, 8, andy are fully determined byv andn,,
since in these casegsis definitely smaller thanr/2. On the
other hand, wherw>0 and p>R, one must also specify
whetherg is smaller(orbits of typeA;) or larger(orbits of
type A,) than /2 to fully determine the periodic orbit.

therefore the contribution from these orbits to the semiclas- The action of periodic orbip can generally be expressed

sical level density is calculated separately in Appendix C.

as
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TABLE Il. The different subclasses of orbits of tygeand the
corresponding relations between the angles defining the basic orbit
segment and the indices and ns. Every orbit with a negative
winding numbew falls into subclasg\;, regardless of whetheris
smaller or larger thaiR. The subclas®\, consists of those orbits
that have a positive winding number apéR. In case ofw>0,
p>RandB< /2, the orbit is of typeAs; otherwise it is of typeA,.

The anglex can be obtained fromv andng directly. Theng can be
calculated froma,p andR, and finally y from « and 8.

)/

I

w > 0, w > 0,
w > 0,

A w<0 2 A3z:S p>R, |A1:{ p>R,
p<R

B<x/2 B>mn/2

FIG. 2. Two examples for the basic orbit segmeais arc in the =
magnetic field followed by a straight line inside the quantum) dbt @[} @ @ @
orbit typeA, and the related angles, 8, andy. A particle traveling
along the segments moves counterclockwise with respect to the
center of the quantum dot in the case drawn on the left, while in the a=7+5% o=,
other example it moves clockwise on the straight line inside the 8 =y = arcsin(4 sina) | B=7~-P0
quantum dot. Thus in this case the anglés negative.

v=a—ﬂ—ﬂ‘ y=a-4

S, =fikL, + eBA,, (27)

wherek=y2ME/# is the wave numbet,, is the length of P, and, as already mentioned, inside the quantumpgas
the orbit, andA,, is the area inside the magnetic field. In our equivalent to the angular momentum.
case

Lp=2ndp a+Rsin(4)], (28 C. Results

In this section we compare the numerically exact energy
sin 2« levels with those calculated from the Bohr-Sommerfeld
2 quantization conditions. Similarly, we present results for the
) density of states obtained from the Berry-Tabor formap.
sin ZBH (29) The numerically exact energy levels of the magnetic
2 guantum dot system are calculated from the secular(8q.
for fixed m. Solving Eq.(25) for &, we obtain the energy
levels in the Bohr-Sommerfeld approximation. The results

Ay = ns{pz[ a+sgn2a—m)

- R{/ﬂ sgr(2B3 - )

Therefore the action in our units can be written as

— . for a given magnetic field are shown in Fig. 3. The agree-

S/t = ”s{z & a+2V2s e sin(|y)) ment between the exact and the semiclassically calculated
2 energy levels is excellent. Our results also agree with those

_\SIn presented in Ref. 22. For largm| the energy levels tend to
+sgr(eB)[e<a+sgr{2a ) 2 ) the Landau levels, while in tq]he| opposite case a substantial
. deviation can be seen. In the latter case, the energy levels

- 25<ﬁ+ sqr(2f - Tr)sln 2,8)}} (309  result from the quantization of orbits of tyge In the work

2 by Simet al?? these states were called magnetic edge states.

One can see that even the low-lying energy levels of these
magnetic states can be accurately calculated in the Bohr-
Sommerfeld approximation. However, a significant deviation

Finally, to use Eqgs(11) and (24), we also need the time
period T, and I, associated with the orbit, which can be

written as .
of the eigenvalues of these states from the bulk Landau lev-
L, 2n — . els can be seen in the figure. The lowest-energy level of the
_Lp_¥<ls ) .
Tp= v wc[1+\‘23/8 sin(| A1, (30D) magnetic quantum dot system is the state0 and n=0.
Note that the spectrum can be calculated much more easily
— 4 e in the semiclassical approximation than from the exact secu-
|, /Jh= %42 L . B .
oo V2sz cogy), (300 lar equation involving the confluent hypergeometric function
wherev denotes the velocity and in the latter expression theJ.
upper sign is for the orbits witlv>0 and the lower sign is Increasing the magnetic field, we experienced slight de-

for the orbits withw< 0. This expression fof, can be ob- viations. These discrepancies may be explained qualitatively
tained from Eq.14): the angular action variable is equal to in the following way. As the magnetic field tends to infinity,
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FIG. 4. The quantum-mechanical energy levels as a function of
FIG. 3. Exacf(crossepand semiclassicdl signg energy levels s and the semiclassical level density obtained from the Berry-Tabor
(in units of iwc/2) of the circular magnetic quantum dot obtained approach as function of are plotted together. The smoothing pa-
from Egs. (9) and (25) as functions ofm for s=5. We take  rameters for the periodic orbit sum was=0.002, and the summa-
sgreB)=-1 as in Ref. 22. tion of the orbits runs fromg=2 to Ng me,=240 and fromw=0 to
Wnax=120. (Numerical experience showed that with these maxi-
the charged particle spends less and less time outside tieum valuesnsmax and Wmay the broadened functions are quite
circular region, and in the limiting case its motion is de- Prominent at semiclassical energjes.
scribed by an elastic reflection from the boundary of the
magnetic and nonmagnetic regions. The radial potential besame way for nonperiodic orbits as well; therefore this clas-
comes a hard wall at=R. Thus, one of the classical turning sification can be applied to nonperiodic cases as well as for
points for orbits of typeA becomes a hard one and the cor- periodic orbits.
responding contribution to the Maslov index tends to 2. Bl- The cyclotron radiusp and the guiding centec fully

aschke and Brac¢k observed a similar situation in circular determinea, 8, andy as
magnetic billiards. Their numerical investigations have con-

firmed the argument presented above. Here we do not discuss a=arccof(R? - p* - ¢?)/(2pc)], (31a
this issue further.

We now present results for the density of states calculated B = arcco§(R? + c® - p?)/(2R0)], (31b)
from the Berry-Tabor formuld11) for two magnetic fields
given by the missing flux quant=5 ands=10. To evaluate {a_ B if a-pB<ml2
the semiclassical density of states in practice, we have regu- v= . (310
larized the periodic orbit sum in Eq11) with a Gaussian a=f-m it a=-p>ml2.

smoothing by multiplying the amplitude of the orbits with The classical-quantum correspondence is based ori1Ey.

e % (whered is infinitesima), as discussed in Refs. 40 and defining ¢ and c. Namely, a quantum state given by the
41. This factor suppresses the contribution from the |0n9quantum numberm,n (and the energy eigenvali&, ,) and
orbits and broadens th&functions at semiclassical energies. the missing flux quantacan be classified by calculating first
Substituting Eqs(Zé_l) and(30)_|nto t_he regulgrlzed version  , andc from Eq.(17) , and then using Eq31) to obtaina,

of Eq.(11), we obtamf[he semchaSS|_caI densﬂy_shown in Flg.lg, and y. Note that the resulting angles typically do not
4 plotted together with the numerically obtained quantumyyfjl| the Eq. (268 condition for the periodic orbits; there-
energy levels. The agreement between the two results is goggre in most cases the classical orbits corresponding to the
for the majority of the levels; however, in the case of MissiNgquantum states are not periodic.

flux quantas=10, apparent discrepancies can be observed, The conditions given in the first row of Table Il for the
for example, at energies closede= 3. We think that a better gjfferent types can be reformulated in terms of the energy of
agreement can be obtained for stronger magnetic fields bye particles and the quantum numben as shown in Table

taking into account the magnetic-field-dependent Maslov inqj; A similar classification has been made for electron states
dex. The work along this line is in progress.

TABLE Ill. Conditions in terms ofe and m for different sub-

D. Phase diagram, the classical-quantum correspondence ~ Classes of orbits of type& andB. Here we take sgeB)=-1.

In this section we classify the exact energy levels in terms 5 A, As A, B, B,
of the classical orbits. In Sec. Il A orbits of typésand B
has been introduced according to the positions of the turning e>m?/2s e<m?/2s
points compared to magnetic antidot. Clé@ssan further be m<o0 m=0 m=<0
divided into subclasses @; - A, with the help of the angles e< s e=2s m=s

a, B, and y defined in Fig. 2, as it has been shown in Sec.

- . . . m=<2s m>2s e=2(m-9)
[Il B for periodic orbits. These angles can be defined in the
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€

40

=20 -10 10 20

FIG. 5. Phase diagram in the spacesodndm: the classically
allowed regions defined by the conditions in Table Il for the dif-
ferent orbits. Heres=5 and sgfeB)=-1.

of a circular ring in magnetic fiefd and for ring-shaped
Andreev billiards?®

It may also be useful to present the conditions listed in
Table Ill graphically. Ine-m space, the classically allowed FIG. 6. The current flowfin units of /(2M)] for statem=-1
regions corresponding to the different orbits look like aznqn=0. The classical orbit is of typa,. Here and in Figs. 9-12
“phase diagram.” In Fig. 5 such a phase diagram is plotted ifhe missing flux quanta is=5, and we choose sggB)=-1.
e-m space for a given magnetic field. This phase diagram
should be compared with Fig. 3, the plot of the energy levelgrrow with length proportional to the magnitude of the cur-
from the quantum-mechanical calculation. In this way, therent density and the midpoint of the arrow is at the point
different exact levels can be classified in terms of the correat 5 given energy and quantum numbercorresponding to
sponding classical orbits. We should stress again that thesge classical canonical momentysp=%m the cyclotron ra-
orbits are not necessarily periodic. Examples will be shownjiys and the guiding center of the classical orbit is calculated
in Sec. IV. from Eq. (17). Hence the classical trajectory of the particle
can be determined and are shown in the figusesling is in
units of the magnetic length. In Figs. 9 and 12 the radial
dependence of the current density is plotted for the corre-

N

IV. COMPARISON OF THE CURRENT DISTRIBUTIONS
AND THE CLASSICAL TRAJECTORIES

An apparent correspondence between the classical orbit: R S ~
and the quantum states can also be made by calculating th '
current flow patterns in the magnetic quantum dot system. » J/ /
The particle (probability) current densit§?*° in magnetic ‘
field is given by /

__ih - e q
j—ZM(\Ifgrad\If Y grad¥) I\/|A|\If|. (32 / »

Using the vector potential2) the current densityin our /
unit) for states¥,, , can be written ag=j(&,/r), where

I (\ /]
andé, is the unit vector in thep direction. \ ' ' / /

Solving the secular equatidd) and then determining the
normalized eigenstates, the related current densities can b |
calculated from Eq(33). Figures 6—8, 10, and 11 show the N
current flow patterns for given eigenstates and the corre- NN . — T
sponding classical trajectories of the particle. The missing
flux quanta iss=5 and sgfeB)=-1 in all figures. In these FIG. 7. The current floy}in units of#/(2M)] for statem=0 and
figures the current densifyr) at pointr is represented by an n=0. The classical orbit is of typA,.

#
(7 = oy [Vl T2m = sgrieB)(~ - RO (r- 13)],

075331-8
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0.07 T T
0.05F 8
0.03 8
< 0.0l 8
-0.01F 8
— m=-1, n=0
— m=0, n=0
_0.03} — m=1,n=1
005 3 ; 0
T
FIG. 9. The current densitigg as functions of (in units ofl)
for states shown in Figs. 6—8. The vertical line igaR.

Note that in all of these figures the classical trajectories

FIG. 8. The current flovfin units of#2/(2M)] for statem=1and  are not periodic orbits with energy corresponding to the
n=0. The classical orbit is of typéy. given eigenstate. This is not surprising, since the quantiza-
sponding eigenstates. States,n)=(~1,0),(0,0), and(1,0) tion shoulq not be applied t.o peripdic orbits in real space but
were called magnetic edge states in Ref. 22. to the motion on the two—d|m¢n3|onal torus pare}metnzed by

In Fig. 6 the current inside the nonmagnetic region ﬂowsthe, action varlabl_es and their canonically conjugate angle
clockwise (the magnitude of the current density is negativevariables(for details see, e.g., Ref. #0n fact, the Berry-
in accordance with Fig.)9while outside the magnetic dot it Tabor formula(11) suggests that an infinite number of peri-
flows counterclockwise. The classical trajectories inside th@dic orbits with proper weights can only result in the correct
dot form a “caustic” and the current is enhanced here in th&luantum mechanical density of states.
clockwise direction. From Table 1ll we find that the orbit is It has been shown by Halpeffhthat the probability cur-
of type A;. The trajectory apparently also satisfies the condi+ent can be related to the derivative of the energy levels with
tions given in Table I(without the requirement for the peri- respect to the angular momentum quantum number:
odicity of the orbits.

In Fig. 7 for statean=0 andn=0 the current is zero inside
the magnetic dot. This can easily be seen from &89 ,
while the direction of the current flow is counterclockwise
outside. The orbit is a limiting case between typgandA,.
Figure 8 for statan=1 andn=0 shows a counterclockwise

current flow both inside and outside the magnetic dot. The” /[ ™~
currentj,, is positive everywhere as it can be also seen in \
Fig. 9. The orbit is again of typ#,, in accordance with the - / - D

conditions given in Tables Il and lII.

One can observe that the current dengijtys not differ- / ;
entiable atr=R. This is because of th& function in
Eq. (33). Physically, this is a consequence of the step func- . — . |
tion behavior of the magnetic field. Nevertheless, the diver—l
gence of the current density vecjois still zero everywhere.

Finally, orbits of typesA; and A, are shown in Figs. 10 \
and 11 for statedm,n)=(1,6) and (14,2, respectively. ) o -/
Similarly, for these states the corresponding current densities \ AN

/

;\\\

-
!
~
—

as functions of the distance from the origin are plotted in Fig. P
12. For both states the current is very small inside the mag- NN

netic dot. In the case of staten,n)=(1,6), the trajectories _—
almost cross the origittim is smal), while for state(m,n) ) N ’ ~

=(14,2 only a small portion of the trajectory penetrates into
the magnetic quantum dot regions. The qualitative agreement
between the current flow patterns and the classical trajecto- FIG. 10. The current flowin units of #/(2M)] for statem=1
ries is, again, clearly visible. andn=6. The classical orbit is of typAs.

—
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0.3

m=1, n=6

FIG. 12. The current densitigs as functions of (in units ofl)
for states shown in Figs. 10 and 11. The parameters are the same as
in Fig. 6. The vertical line is at=R.

FIG. 11. The current floWin units of#/(2M)] for statem=14  €nergy levels of the magnetic quantum dot systems obtained
andn=2. The classical orbit is of typa,. from the two semiclassical methods were in good agreement

with the numerically exact quantum results for weak mag-
. netic fields. However, by increasing the magnetic field, a
| :f i@ dr:}fﬂfm,n (34) slight deviation between the exact and the semiclassically
Rl S @ ' approximated energy levels can be observed. We argued that
the reason for this discrepancy may be traced back to the fact
In Fig. 13 the integral of the current densities given in Eq.that the Maslov index should be magnetic field dependent. A
(34) is plotted as functions afn for n=0,1,2. One can see thorough investigation of this problem might be an interest-
that form<0 the total current is zer@these are the orbits of ing future work.
type B in our classificationand that form>2s it tends to a A classification of the energy spectrum for arbitrary mag-
constant valugtype B,). The current is negative for states netic fields was presented in terms of the classical orbits
corresponding to orbits of typ&,, while it increases mono- defined by their cyclotron radius and guiding center. Such
tonically for states corresponding to orbits of types-A,.  identifications are based on the explicit relations between
This is in accordance with the right-hand side of Eg4)  these classical parameters of the orbits and the quantum

using the energy dispersidthe m dependence of the energy States. The correspondence between the quantum states and
levels plotted in Fig. 3. the classical trajectories can be made transparent by drawing

a phase diagram with regions corresponding to six different
types of orbits in the space of energy and angular momentum
V. CONCLUSIONS quantum number.

Finally, we calculated the current flow patterns for eigen-

sionless variables the only relevant parameter of the systepsyts one can see the close correspondence between the
is the missing flux quantum. The system is separable, and igirycture of the trajectories and the distribution of the current
the quantum calculation the energy levels are the solutions Qfensities obtained from the quantum calculations.

the secular equation derived from the matching conditions of From the energy spectrum of the magnetic quantum dot
the wave functions inside and outside the dot. In the semisystems one can determine the free energy. The good agree-
classical treatment we presented two different methods. Oment between the semiclassical and quantum treatment of
one hand, the density of states was calculated using thgae system allows us to use semiclassical methods in the
Berry-Tabor formula. On the other hand, the energy levelsveak field limit for calculating the energy spectrum. There-
obtained from the Bohr-Sommerfeld quantization rules. Thefore, the semiclassical approach provides a useful starting
main difference between the two methods is that in the firspoint for successive studies of thermodynamic properties,
case one needs to characterize the possible periodic orbits $uch as magnetization. Moreover, the semiclassical approxi-
real space, while in the latter, the motion of the particle is ormation can be an effective tool for investigating arbitrarily

a torus in the space of the action variables. In our numericashaped magnetic quantum ddghich would be a very dif-
results we compared the quantum energy spectrum and théitult task in the quantum cagser systems with more com-
obtained in the semiclassical approach. We showed that thslicated magnetic field profiles.
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' ' ' ' ' ' Here, we used the Fourier expansion of thiinction spike
train. The termm;=0(i=1,2, ... d) can be evaluated directly
and yields the nonoscillatory average density of states. Other
terms can be evaluated by the saddle-point method, when
h— 0. The saddle-point conditions select the periodic orbits
of the system, and the result of the integration is

0.3

0.2

+o0

m,n

(2,”_)((1—1)/2
d(E) = do(E) +Ep Zi Z(Xp_l)ﬁ(d+1)/2

" o jSy(E)/h = (1/2)jvy + (wl4)(d - 1)]
V(T)* (- detDy) '

= 0.1

(A4)
-0.1 L ! ! ! ! !
e e Boom Here p is the index of the primitive periodic orbitg,is the
) _ _ number of repetitionssS, is the classical action along the
FIG. 13. The total currenky,, [in units of #/(2M)] obtained  orhit, T, is the time period of the orbit, ane, is the Maslov

from the integral ofj, given in Eq.(34) as functions ofn for n - jndex. The quantityy, is the number of action variables of

=0,1,2. Theparameters are the same as in Fig. 6. the periodic orbit whose saddle-point value is zéig=0),
since in this case the Gaussian saddle-point integral is only
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Equation(A4) is the generic form of the semiclassical den-
sity of states in terms of periodic orbits, known as the Berry-

APPENDIX A: THE BERRY-TABOR FORMULA Tabor formula®
The quantized energies can be recovered if we express the In two dimensions, very often the Hamiltonian cannot be
Hamiltonian in terms of;: expressed with the action variables explicitly, only the im-

plicit function
E(nlanZI e vnd) = H(|11|21 T vld) = H(ﬁ(nl + Vl/4)!ﬁ(n2

+0,04), ... Fi(ng+ vgld)). (A1) 12=9(13,H),

The semiclassical density of states is the density of thesl available. In this case it is more useful to express the
energies: quantities in the Berry-Tabor trace formula in terms of the

derivatives ofg. Taking the partial derivative of EqAB)
with respect td; yields

(A6)

o0

dE)= > S&E-E(y,n, ...Nny). (A2)

r11*”2!"'“[1:O 0_ (99('1,H) + &g(ll,H) O"H(ll,lz)
The density of states can be rewritten via the Poisson resum- aly dH aly

mation technique

(A7)

while the partial derivative of Eq(A6) with respect tol,

d(E) = f di S(E-H(1y, ... 1) gives

1= ag(ly,H) dH(14,15) .

d +o v I (A8)
< I1 2 a0 -#ln + w/4) ’ o2
=1 = The frequencies can be expressed from these equations as
- dd dt i
=S X exp['—<t[E d9(13,H)
My My, == J 27 h -
1M M dH(l4,15) dly
W = =- , (A9)
“H(y, ... l]+ 27> mi(li—fwi/4))} (A3) dla 99(13,H)
i aH
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dH(l1,15) 1
Al10
“27 70, agliyH) (A10)
JH

Periodic orbits are recovered from»;=27n,;/T and w,
=27,/ T. The actionl, for a periodic orbit at energi can
be obtained by solving equation

oM _Np_ 990LE) (AL1)
(,L)Z n2 n2,p (9'1 '

PHYSICAL REVIEW B71, 075331(2005

d(E) = do(E)
ZEcos{JSp(E)/h (w/2)va+(w/4)(d 1]
bt 2%m(h)¥Aj(ny)(Pgla12)I T

(A18)

APPENDIX B: DERIVATION OF THE CYCLOTRON
RADIUS AND THE GUIDING CENTER

The cyclotron radius can be determined from the en&rgy

where we introducedh; =jn, , and n,=jn,,, corresponding of the particle. The energy is conserved, and obviously
to the primitive orbit. Then the period can be expressed sim=: chgz thus

ply as
ﬁg(ll!H)
T=2mn . Al2
T2 b 9H ( )
The main determinant to be calculated reads
PH(1,15) PH( 1,15 dH(4,1)
12 alydl, aly
PHA 15 PHA L) dH( 4,1
detp = | Pzl PHULlY) Syl
alyal, a3 al,
IH(1,15)  dH(14,1,) 0
al, al,
(92H<(9H) L, PH dHH
| a2 (7I2 Al dl,alydl,
aZH H
— (A13)
a2\ al,

Now, the second derivatives &f can be expressed with the
second derivatives af by taking further partial derivatives
of Egs.(A7) and(A8) with respect td; andl,. Then we can

express the second derivatives as

M1 79 @@_@<0_9)2
% (aglaH)3| “aH a1 a1 oH  gHA\ Iy
#g( g \?
--?(—g) ] (A14)
912\ oH
#H 1 &g 9 #g 9
3< 92 g__79 —g), (A15)
Ayaly  (aglaH)3\aHZal, a1, aH oH
#H 1 &
= g (AL6)

G2 (9glaH)® aH?
Using these expressions, the determinant becomes

1 Fg__(2myy*

detD=-————=- :
(9glaH)® 912 T a2

(A17)

The density of states in two dimensions is then

=s. (B1)

o4
I
The guiding center may be calculated as follows. As we have
seen, the conjugate momentum given by Eidp) is a con-
stant of motion, therefore, e.g., foe> R the right-hand side
of Eq. (15) should also be a constant at any point of the orbit.
At first apply this equation for point® andQ, which are the
points closest to and farthest from the origthe center of
the circle of radiusR) of an orbit lying outside the quantum
dot. These are special points of the orbits for which the right-
hand side of Eq(15) has a simpler form. Then the distances
of points P and Q from the origin arerp=c—¢ andrg=c
+p (we assume that poiQ is farther from the origin From
a simple geometrical argument one finds that the angular
velocity at pointsP and Q satisfies the following equations:

Ippp = Qw. SgreB), (B2)

roeq =~ QwcsgrieB). (B3)

Substituting, for examplerp,=c—p and ¢p from Eq. (B2)
into Eqg. (15) , and using Eq(B1), we find

=er2my (B4)

The same results can be obtained by using(Bg) for point

Q. If the oribit encompasses the quantum dot, then the right-
hand side of Eq(B2) should be multiplied by a factor of -1.
The case of orbits with trajectories penetrating into the quan-
tum dot can be treated similarly. However, the expressions
for the cyclotron radius and the guiding center are the same
as above for all cases.

APPENDIX C: CONTRIBUTION OF THE CYCLOTRON
ORBITS TO THE SEMICLASSICAL DENSITY OF
STATES

In the case of the cyclotron orbits, the integral jrin Eq.
(A3) has to be calculated directly rather than using the
saddle-point method. Ak, is constant, the integrand does
not depend on the integration variable and therefore the in-
tegral is equal to the measure of the interval of the possible
I,s. Without loss of generality, we take $gB)=-1 in this
section.
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1. Cyclotron orbits of type B, S=2ml, =#me, (C7)

Cyclotron orbits that do not encompass the quantum dofn their Maslov index ig.=2; therefore the contribution to

(type B,) are possible at any value @f and any negative o semiclassical level density from these orbits reads
angular momentunp,, (see Table Ill. At point P of these

orbits (points P and Q of a cyclotron orbit are defined in ~ - _ _
Appendix B, from Eqgs.(14) and (15) we obtain d:(E) = A codjem— jm). (Cy
=1
r2-R2 . l
l,=p,= Mr%ipp+eB P . (CD The sum has Diracé peaks at e=2n+1, where n
2 =0,1,2,... andn<0. These are the familiar Landau levels

This is minimal wherrp=R (and the cyclotron orbit touches ©f @n €lectron fom<0.

the boundary of the quantum dpand is maximal when the

o . 2. Cyclot bits of t B
orbit is placed as far as possible from the quantum dot. By yelotron orbits 0T ype B2

denoting the radius of the system with(in units of) the For cyclotron orbits encompassing the quantum (tigte
intergation in Eq.(A3) with respect tol, yields a factor Bp) the angular momentum satisfies the conditipyi7i=m
Al,=1,(R)~1,(L). Using Egs(C1) and(B2), one finds >2s (see Table Il). At point Q of these orbits, using Egs.
(14) and (15), we can write
AI — ~ 1
—f=Le—\2se +-(L2-29). (C2 r2 - R2
h 2 l,=p,= Mréin+eB§2—. (C9

Thel, andt integrals can be evaluated with the saddle-point o .
method, just as in the case of a one-dimensional system. ThEe minimum and the maximum af, are ¢ and 2-R,

determinant of the second derivative matrix is respectively. Between these valuggs,as a function of o, is
monotonic, thus the integration in EGA3) over |, gives
_PHL M Al=1(0)~1,(20-R). Using Eqs(C9) and (B3), we have
deD=d a; M| (M) Al, & —
eD=de{ ==\ ) (C3 == 45— \2se. (C10
2 0 o 2
ol

Similarly to Eq.(C6), the amplitude of the orbits becomes

From Egs.(A8) and(23), we find —
Al, 1 (e/2)+s—\2se

t_— ¢ =
oH 1 = (C1y
— = —— =W, (C4 h ﬁwc hwc
dl,  dgloE , _ ]
Using Eq.(23), the action forp,/A=m>2sis
deD = - w?. (C5) S=2ml, = fim(e + 25— 2m). (C12
Thus, the total amplitude of these orbits in the periodic orbitFinally, the contribution to the periodic orbit sum of these
sum is orbits is
__ AL, 11 - = 1 - ) )
= —h@h—wc = o, LNe—\2se+ 5(/3 -29)|. di(E) =AY, cogmj(e +25s-2m) - j7]. (C13

=1

(Co) The sum has Dirad peaks ate=2(m-s)+2n+1, wherem
The action can be calculated from E@3), and forp,/2  andn are non-negative integers, amt>2s. These are again

=m<0 we have the familiar Landau levels of an electron for> 2s.
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