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We investigate the dynamics of electron spin qubits in quantum dots. Measurement of the qubit state is
realized by a charge current through the dot. The dynamics is described in the framework of the quantum
trajectory approach, widely used in quantum optics. The relevant master equation dynamics is unraveled to
simulate stochastic tunneling events of the current through the dot. Quantum trajectories are then used to
extract the counting statistics of the current. We show how, in combination with an electron spin resonance
field, counting statistics can be employed for quantum-state tomography of the qubit state. Further, it is shown
how decoherence and relaxation time scales can be estimated with the help of counting statistics, in the time
domain.
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I. INTRODUCTION

Controlling and preserving coherent quantum dynamics in
the framework of quantum information processing is a chal-
lenging task.1 Very recently, more and more experiments on
implementing such ideas in mesoscopic systems based on
solid-state devices2 have been realized—e.g., Josephson
junctions3–5 and also single-electron spins in single-defect
centers.6 The electron spin in quantum dots was recognized
early as a potential carrier of quantum information,7 but ex-
perimental developments of suitable mesoscopic devices
have only recently been pursued.

In previous work it was shown how quantum dots may
serve as spin filters or memory devices for electron spin.8

Important progress was made in both theoretical and experi-
mental research, focusing on measurement schemes through
charge currents.9–13 Even a single-shot readout of the elec-
tron spin state has been realized14 and allows for the mea-
surement of the relaxation time of a single spin. Still, the
decoherence time of a single-electron spin in a quantum dot
has not yet been determined experimentally.

In some of these experiments important quantities are the
counting statistics of tunneling electrons.15 As for charge qu-
bits, a measurement of the single-electron level may be
achieved through a single-electron transistorsSETd
device16–18 or with a quantum point contactsQPCd close to
the quantum dot.14,19–22

It is important to realize that the measurement through a
charge current itself has dynamical implications for the mea-
sured qubit. We are thus led to the problem of noise and
statistics induced by the measurement process in these me-
soscopic systems.23 Such problems were tackled some time
ago very elegantly through the concept ofquantum trajecto-
ries in quantum optical applications.24,25 In particular, jump
processes to describe the time evolution of open systems
while counting emitted quanta are well established in the
framework of systems that are described by a master equa-
tion of Lindblad type. Such ideas have already been applied
to measurement processes based on quantum point contacts
in mesoscopic devices.26–28 In the context of quantum infor-
mation processing, such quantum trajectory methods turn out
to be essential for the design of active quantum error correct-

ing codes29 and, more generally, of quantum feedback
mechanisms.30

Historically, a major driving force behind the develop-
ment of quantum trajectory methods were the growing pos-
sibilities to experiment with single-quantum systems in traps
or cavities. More recently, such experiments have been ex-
tended to mesoscopic solid-state devices. Therefore, we ex-
pect a growing need for such methods in these fields.

The aim of this paper is to show how counting statistics
can be used for practical purposes and to give another ex-
ample how quantum trajectories serve as a useful framework
to discuss the physics of mesoscopic carriers of quantum
information under continuous measurement. In particular, we
determine counting statistics of electrons tunneling through a
quantum dot, depending on the electron spin state. We show
how a simple setup for state tomography can be achieved
through a measurement of counting statistics in combination
with a coherent electron spin resonancesESRd field. We dis-
play how decoherence and relaxation time scales can be ex-
tracted from the measured data in the time domain.

II. ELECTRON SPIN DYNAMICS OF THE QUANTUM DOT

We consider a quantum dot with spin-1
2 ground state in

the Coulomb blockade regime as in Refs. 8–10; see also Fig.
1. The quantum dot is subject to a constant magnetic fieldBz
which leads to a Zeeman splittingDz=gmBBz of the elec-
tronic states, whereg is the electrong factor andmB the Bohr
magnetonsthroughout this paper we useugu=0.44 for GaAs
and units such that"=1d. Two leads at chemical potentials
m1 and m2 are coupled to the dot for charge transport. Fur-
ther, as in Ref. 10, we allow for an ESR field to drive coher-
ent transitions between the two spin states.

Leaving sources of uncontrollable environmental influ-
ences aside for a momentssee belowd, the total Hamiltonian
consists of contributions from electrons on the dot, electrons
in the leads, and a tunneling interaction between dot and
leads:

Htot = Hdot + Hleads+ HT. s1d

Here, Hdot=H0+HESRstd contains contributions from charg-
ing and interaction energies of the electrons on the dot, the
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interaction energy −12Dzsz with the static magnetic field, and
the ESR HamiltonianHESRstd=−1

2gmBBstdsx of the interac-
tion of the electron spin with a magnetic fieldBstd
=Bx

0 cossvt−wd, oscillating linearly in thex direction. The
si si =x,y,zd denote the usual Pauli spin matrices. The
Hamiltonian for the two leadssk=1,2d reads Hleads

=Sknseknckns
† ckns, with ckns

† the creation operator of an elec-
tron with orbital staten, spin s, and energyekn in lead k.
Finally, the coupling between dot and leads is described by
the standard tunneling HamiltonianHT=SknmsTkn

s ckns
† dms

+H.c., where we denote withTkn
s a tunneling amplitude and

with dms the annihilation operator of an electron on the dot
in orbital statem. Following Ref. 10, for the description of
the dot dynamics in the following we will also include fur-
ther smicroscopically unspecifiedd dissipative interactions
between the dot states and their environment that are not
among the known contributions to the total energy as they
appear in Eq.s1d.

In the following we give a qualitative picture of the rel-
evant dot statesssee Fig. 1d; more details may be found in

Ref. 10. For simplicity we assume there is only one electron
on the dot. Withszu↑ l= + u↑ l, the electron has the ground
stateu↑l with energyE↑=0 and the exited stateu↓l with E↓
=Dz. If an electron tunnels onto the dot, the two electrons
can form the singlet stateuSl=su↑ ↓ l− u↓ ↑ ld /Î2 with energy
ES or either of the three triplet states. As the triplet state
uT+l= u↑ ↑ l has higher energysfor a suitable magnetic
field31d, the singletuSl is the ground state for two electrons
on the dot. The chemical potentials are chosen such thatES
.m1=ES−Dz/2.ES−Dz.m2=ES−3Dz/2. Under these
conditions the dot can be opened and closed for a sequential
tunneling current by a spin flip induced by an ESR field:10

An electron at chemical potentialm1 in the left lead and a dot
electron in stateu↑l do not have sufficient energy to form the
singlet state. If due to an ESR-induced excitation the dot
state isu↓l, however, less energy is required and an electron
in lead 1 can tunnel onto the dot to form the singlet state.
Tunneling onto the dot from lead 2 is suppressed by several
orders of magnitude if the thermal energy is much lower than
the energy gap even if the dot electron is in the excited state
u↓l. At higher temperatures, to assure that the singlet can only
be formed with the excited dot electron, one can choose spin-
polarized leads. This may be achieved with several methods;
see Ref. 10 and references therein.

Thus, within these constraints we see that the current in
lead 1 is proportional to the probability for the dot being in
the excited state—i.e.,I1

↑std~r↓—while the current in lead 2
is proportional to the probability of the dot being in the sin-
glet state,I2

↑std~rS; see Ref. 10.

Master equation

The traditional description of the dynamics of the dot is
based on a master equation for the reduced density operator
of the dot, obtained from the total density matrixrtotstd by
tracing over the degrees of freedom of the leads:rdot
= tr leadsfrtotg. As usual, we denote matrix elements withrnm

=knurdotuml sor rn=knurdotunld and include only the three rel-
evant dot statesn,mP h↑ , ↓ ,Sj. We assume the dot and leads
to be uncorrelated initially,rtots0d=rdots0d ^ rleadss0d. Start-
ing from the von Neumann equation for the full density op-
eratorṙtot=−ifHtot,rtotg, the master equation forrdot was de-
rived in Ref. 10 using standard methods within the Markov
approximation. Further, we will allow for an arbitrarysfixedd
phasew of the ESR field which will play an important role in
determining the spin state.

In order to eliminate the explicit time dependence emerg-
ing from the ESR field, we here base our analysis on the dot
state in a rotating frame:

r̃dotstd ; eivtu↓lk↓urdotstde−ivtu↓lk↓u. s2d

In fact, with the exception ofr̃↓↑=eivtr↓↑, r̃↓S=eivtr↓S and
the corresponding transposed expressions, this transforma-
tion leaves almost all matrix elements untouched.

Along the lines of the derivation in Ref. 10, one finds for
the dot state in the rotating frames2d a master equation of
Lindblad form.32 It can be written as

FIG. 1. sColor onlined Closed dotstopd: chemical potentials are
too small to allow an electron to tunnel onto the dot. Open dot
sbottomd: after excitation of the dot electron, the chemical potential
m1 is large enough for an electron of lead one to tunnel onto the dot
and form the singlet state with the dot electron.
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]tr̃dot = Lr̃dot ; − ifH,r̃dotg +
1

2o
nm

sfLnmr̃dot,Lnm
† g

+ fLnm,r̃dotLnm
† gd, s3d

with the time-independent Hamiltoniansin rotating-wave ap-
proximationd

H = sDz − vdu↓k↓ u + ESuSlkSu −
Dx

4
se−iwu↑lk↓ u + eiwu↓lk↑ ud

s4d

and the operatorsLnm=ÎWnmunlkmu describing incoherent
transitions between levelsm andn with a rateWnm.

In particular, the four operatorsLS↑, LS↓, L↑S, andL↓S de-
scribe transitions from and to the singlet state and hence
correspond to the tuneling of an electron off or onto the dot.
These four contributions give rise to the current in the leads
and are derived from the underlying Hamiltonians1d. The
rates areWS↓=WS↓

1 +WS↓
2 with WS↓

l =gl
↑f lsES−Dzd and W↓S

=W↓S
1 +W↓S

2 with W↓S
l =gl

↑f1− f lsES−Dzdg where flsEd=f1
+esE−mld/kTg−1 is the Fermi function of leadl. Analogously
we define the ratesWS↑, W↑S, WS↑

l , and W↑S
l with gl

↓ and
f lsESd. Heregl

↑=2pnl
↑uTl

↑u2 andgl
↓=2pnl

↓uTl
↓u2 are the transi-

tion rates with density of statesnl
↑,↓ and tunneling amplitude

Tl
↑,↓.10 In the limit kT!Dz we haveWS↓<g1

↑ and W↓S<g2
↑,

which resembles the sequential tunneling from lead 1 onto
the dot and into lead 2. Furthermore, we haveWS↑<0 and
W↑S<g1

↓+g2
↓, because we choosem1,m2,ES. Throughout

this paper we assume equal rates for both leads,g1
↑=g2

↑=g↑

andg1
↓=g2

↓=g↓. Finally, we setg=g↑=g↓ if the leads are not
spin polarized andg=g↑, g↓=0 in the case of spin polariza-
tion.

We simulate stochastically all processes that could be ob-
served in principle, but eventually extract the desired infor-
mation from those quantities that correspond to the specific
measurement scheme chosen. Quantum transitions between
the dot states may be observed by monitoring the current
through the dot, which is the starting point for our quantum
trajectory analysis of the following sections.

By contrast, mechanisms for incoherent spin flipssde-
scribed by the operatorsL↓↑ andL↑↓d and dephasing mecha-
nisms sdescribed by the projectorsLn;Lnn=ÎWnunlknud are
introduced on phenomenological grounds and not contained
in the Hamiltonians1d. The sphenomenologicald spin-flip
rates are assumed to satisfy the condition of detailed balance:
W↑↓ /W↓↑=eDz/kBT. The rates Wn are phenomenological
dephasing rates: the effect of an operatorLnn in Eq. s3d is to
destroy coherences between stateunl and the remaining
statessat a rateWnd, while leaving probabilities unaffected.

If the coupling to the leads is switched offsby an appro-
priate choice of the chemical potentialsd, the dynamics as
described by the master equations3d is that of a standard
decaying two-state spin system. Then the correspondingsin-
trinsicd relaxation and decoherence rates turn out to be

1/T1 = W↓↑ + W↑↓,

1/T2 = s1/T1 + W↑ + W↓d/2. s5d

Let us now turn to the dot dynamics: in terms of its coef-
ficients, the time evolution of the dot stater̃dot given by the
master equations3d reads

ṙ̃↑ = −
Dx

2
Imse−iwr̃↓↑d − sW↓↑ + WS↑dr̃↑ + W↑↓r̃↓ + W↑Sr̃S,

s6d

ṙ̃↓ =
Dx

2
Imse−iwr̃↓↑d − sW↑↓ + WS↓dr̃↓ + W↓↑r̃↑ + W↓Sr̃S,

s7d

ṙ̃S= − sW↑S+ W↓Sdr̃S+ WS↑r̃↑ + WS↓r̃↓, s8d

ṙ̃↓↑ = − fisDz − vd + V↓↑gr̃↓↑ + i
Dx

4
eiwsr̃↑ − r̃↓d, s9d

ṙ̃S↑ = − siEs + VS↑dr̃S↑ − i
Dx

4
eiwr̃S↓, s10d

ṙ̃S↓ = − fisEs − Dz + vd + VS↓gr̃S↓ − i
Dx

4
e−iwr̃S↑, s11d

with the effective rates

V↓↑ =
1

2
sW↓↑ + W↑↓ + WS↑ + WS↓ + W↓ + W↑d =

1

2
sWS↑ + WS↓d

+
1

T2
, s12d

VS↑ =
1

2
sW↓↑ + WS↑ + W↑S+ W↓S+ WS+ W↑d, s13d

VS↓ =
1

2
sW↑↓ + WS↓ + W↓S+ W↑S+ WS+ W↓d. s14d

Note that Eqs.s10d ands11d are decoupled from Eqs.s6d–s9d,
and the latter are the only ones of relevance to us. They
enable us to determine easily the counting statistics of tun-
neling electrons numerically by means of the quantum tra-
jectory method which we describe in the following sections.

III. QUANTUM TRAJECTORIES

One major motivation behind the development of quan-
tum trajectory methods was experiments with single quanta.
Before these developments, naturally, ensemble experiments
required simple ensemble theories. Matters changed with ex-
periments involving single atoms, electrons, or ions in traps.
Continuously monitoring those systems, single-quantum
jumps became visible to the bare eye. A theory of continuous
quantum measurement taking into account continuous mea-
surement records of the observed environment to update the
quantum state accordingly, were developed, mainly with an
eye on applications in quantum optics.
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Experiments on the single-quantum level have reached
solid-state devices, such as, for instance, electrons in quan-
tum dots. Accordingly, the dynamics of such nanoscale quan-
tum systems may be described adequately by quantum tra-
jectories. In fact, it may well turn out that these methods are
even more useful in solid-state devices since the sensitivity
of electron detectors is typically far better than that for pho-
ton detectors, on the single-quantum level.

As will be explained in the following, a quantum trajec-
tory rcstd describes a subensemble of the fullsensembled
density operatorrstd, conditionedon a certainsstochasticd
measurement record, here detection events at certain times.
In this approach we determine the dynamics of an electron
on a quantum dot, conditioned on the measuredsstochasticd
tunneling current through the dot.

Quantum trajectory methods have changed remarkably
the way we think about open quantum system dynamics.
While traditionally an open quantum system is described by
its density operatorrstd as in the last section, quantum tra-
jectories describe open system dynamics taking into account
certain continuous, stochastic measurement outcomes. In
other words, with quantum trajectories one determines acon-
ditioned density operatorrcstd, reflecting knowledge ob-
tained from a continuous monitoring of the environment.
Sampling over all these possible measurement records—i.e.,
ignoring the state of the environment—one recovers the
usual full ensemblerstd. We write rstd=Mfrcstdg where
Mf¯g denotes the ensemble mean over all possible mea-
surement records with corresponding probabilityssee be-
lowd.

The principal idea is to monitor the environment rather
than ignoring—i.e., tracing over it. In quantum optics one
tries to detect photons emitted from the quantum system of
interest; here, we detect electrons in the leads coupled to the
quantum dot.

In order to illustrate this approach, we consider a simpli-
fied open quantum system—the generalization to the quan-
tum dot case will be obvious. This model system consists of
two levels and is coupled to a continuum of states. Excitation
is done by some additional mechanism, included in the
Hamiltonian of the systemH. We start with a master equa-
tion of type s3d and in this model with a single Lindblad
operatorL:

ṙ = Lr = − ifH,rg + 1
2sfLr,L†g + fL,rL†gd. s15d

In the following we abbreviate the right-hand side of the
equation with the superoperatorLr. For concreteness, con-
siderL to describe a spontaneous transition from levelu1l to
level u0l with rate W—i.e., L=ÎWu0lk1u. We introduce the
superoperatorS such that

Sr = LrL†, s16d

Heff = sL − Sdr = − ifH,rg − 1
2sL†Lr + rL†Ld. s17d

The superoperatorS is referred to as thejumpoperator since
its describes an emission process accompanied by the re-
placement of the density operatorr with the ground state:
LrL†=Wk1uru1l u0l k0u. With S such defined, one obtains the

quantum jump representation24 of the solution of Eq.s15d in
the form

s18d

Clearly, the solutionrstd is a sumsor integral, respectivelyd
over any numberm of emission processessnumber of pro-
jections ontou0l k0u due to the application of the jump op-
eratorSd, appearing at any timest1,t2, . . . ,tm between zero
and the current timet. One has to integrate over all corre-
spondingsunnormalizedd density operatorsr̄cstd, as apparent
from expressions18d. Thus, one particularquantum trajec-
tory is the normalized density operatorrcstd= r̄cstd / trhr̄cstdj
which describes the time evolution of the quantum system
conditionedon the particular measurement record—i.e., con-
ditioned on the number and times of emission processes. The
quantum trajectoryrcstd occurs with probability trhr̄cstdj.
The interpretation of the formal solutions18d in terms of
quantum trajectories of actual measurement records is based
on perfect efficiency of the detectors and a time coarse grain-
ing which amounts to the Markov approximation made for
the master equation. A more fundamental derivation of Eq.
s18d starting from the usualsphotond counting theories may
be found in Ref. 24.

The normalized quantum trajectoryrcstd may be deter-
mined directly through the following prescription: at timet
+Dt the new density operatorrcst+Dtd is obtained in one of
two ways:

First, the probabilityPjump, to undergo a quantum jump—
i.e., to emit a quantum during the time intervalDt—is equal
to the jump rate times the length of the time interval times
the probability to be in the excited state:Pjump
=Wk1urcstdu1lDt=trfL†LrcstdgDt=trhSrcstdjDt. If a quantum
is emittedsand thus detectedd—i.e., a jump has occurred—
the conditioned quantum state is the ground state:rcst+Dtd
=rjump= u0lk0u=Srcstd / trhSrcstdj. If, however, no jump oc-
curs, the new density operator is given by

rcst + Dtd = rno jump=
eHeff Dtrcstd

trheHeff Dtrcstdj
, s19d

as is apparent from the representations18d. In practice, there-
fore, a quantum trajectory is obtained by determining a ran-
dom numberr between 0 and 1 in each time stepDt: if r
ø Pjump, we setrcst+Dtd=rjump; if, however, r . Pjump, we
setrcst+Dtd=rno jump. The full ensemble of possible states is
thus given byrst+Dtd=Pjumprjump+s1−Pjumpdrno jump and,
indeed, one may easily verify that the right-hand side equals
LrDt as expected from the master equations15d for the full
ensemble.

This branching may occur at any time step and a thus
huge ensemble of different quantum trajectories may be ob-
tained. As mentioned before, the usual reduced density op-
erator is obtained by taking the ensemble mean. In order to
obtain counting statistics as in the following sections, we
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simply average over many runs and obtain numerically a
distribution of jump times as in a real experiment involving a
single-quantum system. We note that apart from an appealing
physical interpretation, the advantage of the quantum trajec-
tory approach is that it does not require solving large systems
of linear differential equations, as the master equation some-
times does.

IV. COUNTING STATISTICS AND STATE TOMOGRAPHY

An electron spin on a quantum dot has been found useful
as a memory device or a qubit for quantum information pro-
cessing. Readout of the spin state through a tunneling current
was investigated using a rather restricted parameter regime
for which analytical results were obtained in Ref. 10.

First we want to show how the analytical results emerge
very easily and directly from the quantum trajectory ap-
proach. Now we consider a regime where we can neglect
spin flips—i.e.,W↑↓=W↓↑=Dx=0. As in Ref. 10 we choose
spin-polarized leadsg↓=0=WS↑=W↑S, and g↑=W. In the
limit kT!Dz we then haveWS↓=W↓S=W. The initial state is
u↓l, and since no spin flip occurs on the time scale of interest,
the only processes that happen are transitions betweenu↓l
and uSl. The quantum jump representations18d of this par-
ticular solution then reads

rstd = o
m=0

` E
0

t

dtmE
0

tm

dtm−1¯ E
0

t2

dt1

3 eHeffst−tmdSi je
Heffstm−tm−1dS ji ¯ SS↓eHeff t1rs0d,

s20d

with i , j = ↓ ,S andSi jr=Wuilk j uru jlki u. In the regime chosen
we can writeeHeffstk−tk−1dr̄cstk−1d=e−Wstk−tk−1dr̄cstk−1d and then
get

rstd = e−Wto
m=0

` E
0

t

dtmE
0

tm

dtm−1¯ E
0

t2

dt1Si jS ji ¯ SS↓rs0d

s21d

s22d

Here every operatorSS↓ describes an electron tunneling onto
the dot from lead 1 andS↓S represents the transition from a
dot electron into lead 2. Since the initial state isu↓l, the first
transition isu↓ l→ uSl and with a second transition back tou↓l
the first electron accumulates in lead 2. A third transition to
the singlet does not change the number of electrons in lead 2.
For a particularq snumber of electrons in lead 2d we have to
considerm=2q si = ↓ d and m=2q+1 si =Sd and thesunnor-
malizedd density operator for a certainq at time t is

rsq,td = e−Wt o
m=2q

2q+1
sWtdm

m!
uilki u. s23d

Therefore, the probability to find exactlyq electrons in lead
two at timet is

Psq,td = trhrsq,tdj = e−WtsWtd2q

2q!
S1 +

Wt

2q + 1
D , s24d

confirming the findings in Ref. 10.
With the general quantum jump representations18d, we

can overcome the limitations of the analytical result, consid-
ering arbitrary regimes and investigating the dynamics nu-
merically. So far, the proposed measurement scheme allows
one to deduce the probability to be in either of the two spin
states from the current through the dot. A relative phase be-
tween u↑l and u↓l, however, cannot be detected. In order to
measure the full spin state, therefore, a tomographical mea-
surement setup is required. Here, the freedom to apply the
ESR field comes into play. We show that while applying an
ESR field, phase-sensitive counting statistics result, leading
to clear identification of the qubit state on the Bloch sphere.
As in quantum optical setups, the full state could also be
obtained with appropriatep /2 pulses, which effectively
change the measurement axis. In this way, not only thekszl
component as in the original proposal, but alsoksxl andksyl
and thus the fullr can be measured. A simpler concept, not
involving these precise pulses, is to measure the spin state
via counting statistics of a current through the dot in con-
junction with a constant ESR field as we will show in the
following. For this scheme to be successful it is crucial to
control the interaction between the dot and leads. We are not
interested in the asymptotic, stationary distribution, but in
the typical time between switching the coupling on and the
first sor second, or third, and so ond electron appearing in
lead 2. Also, it is not necessary to be able to measure the
electrons in lead 2 with a high temporal resolution: one can
switch off the coupling between the dot and lead 2 after a
certain timet and has any time thereafter to collect the elec-
trons in lead 2. We note that different measurement schemes
are possible. Since an electron tunneling onto the dot already
carries the information about the spin of the dot electron, one
could abandon lead 2 altogether and try to monitor the num-
ber of electrons on the quantum dot—e.g., with a quantum
point contact. Our proposal for quantum-state tomography
could be transferred to other setups as well, as for recent
experiments.6,14

We assume that the dot is in a given initial state att=0,
when the coupling to the leads is switched on. Then we
measure the number of electrons tunneling into lead 2. Ac-
cording to the quantum trajectory approach we calculate the
evolution of the density matrix. Every jump fromuSl to u↓l or
u↑l indicates that an electron tunneled out of the dot. At very
low temperatures, as assumed throughout this paper, the
probability of tunneling into lead 2 is close to unity, while
tunneling into lead 1 is very unlikely.

A single run of the stochastic evolution will display emis-
sion processes—i.e., contributions to the current—at certain
random times. Counting the corresponding number of quanta
in lead 2 as a function of time for a large ensemble of quan-
tum trajectories allows us to determine the probabilityPsq,td
of finding exactlyq electrons in lead 2 at timet for a given
initial state of the dot. Such counting distributions are dis-
played in the following figures. Our numerical procedure can
be applied to any parameter values and any time dependence
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of the driving ESR field. For the regime chosen in Ref. 10,
we recover the analytical resultss24d to a high degree of
precision, as will be shown below.

Let us now turn to the probability distributionsPsq,td of
finding exactlyq electrons in lead 2 at timet for a given
initial stater. As we will show, by employing the ESR field,
the counting statistics allows us to clearly identify the full
two-level state, including the relative phase. As usual, we
choose to parametrize the latter through the coordinates on
the Bloch sphere: the spin-up stateu↑l corresponds to the
north pole withr =1, u=0°, while the spin-down stateu↓l has
coordinatesr =1, u=180°. The full mixture r0= 1

2su↑ lk↑u
+ u↓ lk↓ud corresponds to the center of the Bloch sphere,r
=0, while coherent superpositionsc=su↑ l+eifu↓ ld /Î2 re-
side on the equator withr =1, u=90°, f.

In order to be able to use these counting statistics as a
method for spin-state tomographyssee Sec. IV Ad, the right
choice of parameters is crucial. From Eqs.s6d–s9d it is obvi-
ous that coherences in the two-level state can only be trans-
ferred to measurable probabilities through the coupling intro-
duced by the ESR field of magnitudeDx. On the other hand,
a large value ofDx leads to Rabi oscillations and thus pre-
vents us from distinguishing clearly the two fundamentalu↑l
and u↓l states on a time scale large compared with the Rabi
frequencyDx/2. Closer inspection of Eqs.s6d, s7d, and s9d
and numerical evidence shows that a good phase sensitivity
with preserved distinguishability ofu↑l and u↓l is achieved
through the choices

Dx

2
< WS↓,

Dz − v <
Dx

4
. s25d

Physically, the first conditionson the ESR field strengthd
means that the spin should not be flipped to fastscompared

with the measurement time scaleWS↓d, but still, the ESR
field had time enough to make the coherences felt. The sec-
ond conditionson the ESR field frequencyd ensures that the
method is sensitive to all values of the phase anglef.

In Fig. 2 we show counting statistics for the first electron
Psq=1,td to appear in lead 2. We choose the transition rate
g=106 s−1, an experimentally accessible magnetic field
strength12,33 of the ESR fieldBx<5.16 G, a slightly detuned
ESR field frequencyDz−v=53105 s−1, a temperatureT
=20 mK, and a static magnetic field of strengthBz=12 T.
For the ESR field to start at zero we choose the fixed phase
w=3p /2. Furthermore, we assumeT1=10−4 s and T2
=10−5 s for the intrinsic relaxation and decoherence times.
All figures are calculated with an ensemble of 50 000 trajec-
tories.

The spin-down state only allows for electrons to tunnel
through the dot, which is clearly visible in the counting sta-
tistics: if the spin starts off in the spin-up statesdotted curved,
the time to measure the first electron is delayed compared to
the mixture and even more so compared to the spin-down
state. Eventually, however, due to the presence of the ESR
field, a sufficient spin-down component will be established,

FIG. 2. Counting statisticsPsq=1,td for the first electron with
initial spin-up statesdashed line,r =1, u=0d, spin-down statesdot-
ted line, r =1, u=180°d, and the totally mixed statessolid curve,r
=0d. The respective coordinates refer to the Bloch sphere. The inset
shows the same curves with the counting statistics of the fully
mixed state subtracted. Parameters chosen areDx=2g=4sDz−vd
=23106 s−1, T=20 mK, Bz=12 T.

FIG. 3. Counting statisticsstopd Psq=1,td for eight coherent
superpositionsc=su↑ l+eifu↓ ld /Î2 along the equator of the Bloch
spheresr =1, u=90°, various anglesfd and the fully mixed state
sr =0, solid lined. The lower diagram shows the same curves with
Psq=1,td of the full mixture subtracted. Same parameters as in Fig.
2.
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allowing electrons to tunnel through the dot. Still, both states
are clearly distinguishable through their counting statistics.

Not only are counting statistics useful to distinguish be-
tween up and down states. The arrival time distribution also
differentiates between coherent superpositions and mixtures.
In conjunction with the ESR field one may even determine
the phase of coherent superpositions of typec=su↑ l
+eifu↓ ld /Î2 as displayed in Fig. 3. The solid line corre-
sponds toPsq=1,td of a fully mixed initial statesr =0d, the
dashed and dotted lines correspond to eight coherent super-
positions along the equator of the Bloch sphere. Clearly,
Psq=1,td shows different behavior for different anglesf
and may thus be used to fully identify the initial state.

As we have seen, with these choices for the ESR field, not
only can we distinguishu↑l from u↓l through counting statis-
tics as in Fig. 2. We are in a position to fully determine the
two-level state—in particular, it is possible to clearly distin-
guish a coherent superposition ofu↑l and u↓l from the mix-
ture of the two, as shown in Fig. 3.

The insets of Figs. 2 and 3 reveal an interesting structure
underlying the shapes ofPsq=1,td: Once the counting dis-
tribution of the full mixturesr =0d is subtracted, the statistics
of states corresponding to opposite points on the Bloch
sphere appear as mirror images of each other, as highlighted
in Figs. 4 and 5. In these figures we display the counting
statisticsPsq=1,td for four pairs of opposite initial states
along the equator of the Bloch sphere and clearly confirm the
observations just mentioned. A linear combination of initial
states leads to a linear combination of counting statistics in
the ensemble and thus to this symmetry. Still, each curve in
itself seems complicated enough to underline the importance
of our numerical approach. Using the quantum trajectory
method, any time dependence of the fields and any choice of
parameters is possible.

The more mixed the initial state—i.e., the smallerr ,1 on
the Bloch sphere—the closer the curve to the curve of the

fully mixed state. It is also worth noting that we keep the
initial phasew of the ESR pulse fixed for all calculations. An
average over all possible phases would indeed lead to the
graph of the fully mixed state, irrespective of the phasef of
the initial quantum state.

A. Tomography

In order to obtain an unknown initial stater?=s1̂
+rW?·ŝW d /2 from observed counting statistics, we propose the
following procedure: One simulates theoretical curves

PrWsq,td for the four different initial statesri =s1̂+rWi ·ŝ
W d /2

with rW0=s0,0,0d sthe full mixtured, rW1=s1,0,0d sthe state
u↑ld, rW2=s0,1,0d fthe statesu↑ l+ u↓ ld /Î2g, and rW3=s0,0,1d
fthe statesu↑ l+iu↓ ld /Î2g, using the experimental param-
eters. Three of these curvesswith the full mixture subtractedd
represent three basis curves corresponding to the three basis
vectors, and the counting statistics for fully mixed initial
state represents the origin of the Bloch sphere. Now counting
statistics for any initial statefwith rWc=sx,y,zdg can be ob-
tained from a linear combination of the four theoretical
curves:

PrWc
sq,td = PrW0

+ xsPrW1
− PrW0

d + ysPrW2
− PrW0

d + zsPrW3
− PrW0

d.

s26d

By scanning the Bloch sphere—i.e., the three fit parameters
x,y,z—one can find the theoretical curvePrWc

sq,td fitting the
experimental dataPrW?

sq,td best and thus the Bloch vectorrW?

of the unknown initial state. We illustrate this in Fig. 6,
where we show the curves forrW0, rW1, rW2, rW3 and the curve for
rWc=s2−1/2,2−1/2,0d constructed according to Eq.s26d. For
comparison we show the curverWQJ=s2−1/2,2−1/2,0d simu-
lated with the quantum jump method.

B. Higher-order statistics and q=0

We close this section by pointing out that also higher-
order counting statisticssq=2,3,4,5d display state-sensitive

FIG. 4. Graphs taken from Fig. 3 for two pairs of opposite states
along the equator of the Bloch sphere.

FIG. 5. Same as Fig. 4 withPsq=1,td of the full mixture sub-
tracted. We clearly see the symmetry of the curves for opposite
states on the Bloch sphere.

FIG. 6. Constructed curve forrWc according to Eq.s26d and
curves forrW0, rW1, rW2, rW3. For comparison the curve forrWQJ simulated
with the quantum jump method. See text for numerical values.
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behavior—if only less pronounced. This is quite obvious
since a delayed first tunneling event shifts the starting time
for the following electrons. Forq=0, the difference between
the counting statistics for various initial states is well pro-
nounced. In this latter case, however, the curves do not cross
which diminishes the distinguishability of states and the best
choice for that isq=1. As displayed in Fig. 7, higher-order
counting statisticsPsq,td still distinguishes between the fully
mixed statesr =0d and a coherent superpositionsr =1,u
=90°d.

C. Role of spin-polarized leads

The original proposal for the spin-state readout was based
on spin-polarized leads in order to clearly distinguish the two
statesu↑l, u↓l by a single-shot measurement. As the counting
statistics require an ensemble measurement, our results sug-
gest that spin polarization is not required for those—not even
advantageous, in fact. In Fig. 8 we display counting statistics
Psq=1,td for spin-polarized leadssonly spin-up electrons in
the leads—i.e.,g↓=0d. We notice only marginal differences
compared to the case of unpolarized leadssFig. 3d.

For large times, it is more likely to observe precisely one
electron in the case of unpolarized leads. The reason for this
behavior is the fact that for unpolarized leads, there is also
the possibility that the spin-up electron on the dotsrather
than the spin-down electron entering the dotd may tunnel out
of the dot. Then the dot is in the ground state and therefore
closed for the tunneling of another electron. It is only after

the ESR field had time to populate the excited state that a
second electron may tunnel through the dot. In fact, it turns
out that this mechanism is the preferred tunneling event: for
the parameters of Fig. 2 we findW↓S=13106 s−1 and W↑S
=23106 s−1.

V. RELAXATION AND DECOHERENCE TIMES

Our proposed setup including the ESR field may be used
to determine the intrinsic relaxation timeT1 and decoherence
time T2 of the qubit in the time domain. Tuning the tunneling
rate over a wide rangefand adjusting the ESR field strength
and frequency according to conditionss25dg, one can easily
see the effect of decoherence and relaxation. In the series of
graphs in Fig. 9 we show counting statistics for theu↓l and
u↑l state, for the full mixture and for two coherent superpo-
sitions sstates on the equator of the Bloch sphered. Clearly,
for large tunneling ratefleft graph sadg, all states may be
distinguished. The third graphscd shows a regime where de-
coherence has fully set in: while the statesu↓l andu↑l remain
essentially unaffected, the counting statistics of the coherent
superpositions collapses onto the curve of the full mixture. In
other words, while no relaxation has set in yet, coherences
between the statesu↓l and u↑l have disappeared. Decreasing
the tunneling rate even further, the counting statistics finally
reveals the relaxation time: eventually, the initial statesu↓l
and u↑l may no longer be distinguished; i.e., relaxation has
taken place.

VI. CONCLUSIONS

We use quantum trajectory methods to investigate the
counting statistics of electrons tunneling through a quantum

FIG. 8. Same graph as Fig. 3. Here, however using spin-
polarized leads withg↑=13106 s−1, g↓=0.

FIG. 7. Counting statistics of exactly zero, one, and five elec-
trons tunneling through the dot. Evidently, if less pronounced, all
counting statisticsPsq,td sq=0,1, . . . ,5 , . . .d carry information
about the initial quantum state.

FIG. 9. Measurement of a va-
riety of statessu↑l, u↓l, coherent
superpositiond facilitates an esti-
mate ofT2 andT1.
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dot. We show how an additional ESR field may actively be
used to perform a full “state tomography.” Applying the field
during the measurement allows one to clearly identify the
coherences between the two superposed states. We illustrate
the relevance of our findings for determining the intrinsic
relaxation and decoherence times of electron spin states in
quantum dots—in the time domain. The similarities of the
investigated quantum dot to three-level systems in quantum
optics se.g., so-called “V” systemsd are evident. We under-
line these connections by applying the quantum jump
method in order tounravel the dynamics of the full density
operatorrstd into subensemblesrcstd corresponding to cer-
tain measurement records in the leads. Thus, we describe the
conditionedtime evolution of the spin state, given a certain

measurement record, as in actual experiments with single
quanta.

We believe that such connections between the methods of
quantum optics and mesoscopic devices will prove more and
more useful in the future as nanotechnology achieves further
breakthroughs in the coherent manipulation of quantum dy-
namics in solid-state devices.
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