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Electron spin tomography through counting statistics: A quantum trajectory approach
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We investigate the dynamics of electron spin qubits in quantum dots. Measurement of the qubit state is
realized by a charge current through the dot. The dynamics is described in the framework of the quantum
trajectory approach, widely used in quantum optics. The relevant master equation dynamics is unraveled to
simulate stochastic tunneling events of the current through the dot. Quantum trajectories are then used to
extract the counting statistics of the current. We show how, in combination with an electron spin resonance
field, counting statistics can be employed for quantum-state tomography of the qubit state. Further, it is shown
how decoherence and relaxation time scales can be estimated with the help of counting statistics, in the time
domain.

DOI: 10.1103/PhysRevB.71.075321 PACS nunt®er73.63.Kv, 72.25-b, 85.35-p, 03.65.Ta

I. INTRODUCTION ing coded® and, more generally, of quantum feedback
Controlling and preserving coherent quantum dynamics ifnéchanisms? . . .

the framework of quantum information processing is a chal- Historically, a major driving force behind the develop-
lenging task: Very recently, more and more experiments onMent of quantum trajectory methods were the growing pos-
implementing such ideas in mesoscopic systems based G#Pilities to experiment with single-quantum systems in traps
solid-state devicéshave been realized—e.g., JosephsorP! cavities. More recently, such experiments have been ex-
junction$= and also single-electron spins in single-defecttended to mesoscopic solid-state devices. Therefore, we ex-
center< The electron spin in quantum dots was recognized®ect a growing need for such methods in these fields.

early as a potential carrier of quantum informatfoout ex- The aim of this paper is to show how counting statistics
perimental developments of suitable mesoscopic devicean be used for practical purposes and to give another ex-
have only recently been pursued. ample how quantum trajectories serve as a useful framework

In previous work it was shown how quantum dots mayto discuss the physics of mesoscopic carriers of quantum
serve as spin filters or memory devices for electron §pin_information under continuous measurement. In particular, we
Important progress was made in both theoretical and experpjetermine counting statistics of electrons tunneling through a
mental research, focusing on measurement schemes througHantum dot, depending on the electron spin state. We show
charge current®:13 Even a single-shot readout of the elec- Now a simple setup for state tomography can be achieved
tron spin state has been realitdnd allows for the mea- through a measurement of counting statistics in combination
surement of the relaxation time of a single spin. Still, theWith a coherent electron spin resonafESR) field. We dis-
decoherence time of a single-electron spin in a quantum ddgtlay how decoherence and relaxation time scales can be ex-
has not yet been determined experimentally. tracted from the measured data in the time domain.

In some of these experiments important quantities are th
counting statistics of tunneling electrolsAs for charge qu-
bits, a measurement of the single-electron level may be We consider a quantum dot with sp%nground state in
achieved through a single-electron transist¢SET)  the Coulomb blockade regime as in Refs. 8-10; see also Fig.
devicé®-18 or with a quantum point conta¢QPO close to 1. The quantum dot is subject to a constant magnetic Beld
the quantum dot*19-22 which leads to a Zeeman splitting,=gugB, of the elec-

It is important to realize that the measurement through dronic states, wherg is the electrorg factor andug the Bohr
charge current itself has dynamical implications for the meamagneton(throughout this paper we usg|=0.44 for GaAs
sured qubit. We are thus led to the problem of noise andnd units such that=1). Two leads at chemical potentials
statistics induced by the measurement process in these meg; and u, are coupled to the dot for charge transport. Fur-
soscopic systen?s.Such problems were tackled some time ther, as in Ref. 10, we allow for an ESR field to drive coher-
ago very elegantly through the conceptgufantum trajecto-  ent transitions between the two spin states.
ries in quantum optical applicatior$:2® In particular, jump Leaving sources of uncontrollable environmental influ-
processes to describe the time evolution of open systengnces aside for a momefgee beloy, the total Hamiltonian
while counting emitted quanta are well established in theconsists of contributions from electrons on the dot, electrons
framework of systems that are described by a master equér the leads, and a tunneling interaction between dot and
tion of Lindblad type. Such ideas have already been applieteads:
to measurement processes based on quantum point contacts
in mesoscopic device$28In the context of quantum infor-
mation processing, such quantum trajectory methods turn ouere, Hyo=Ho+Hgsg(t) contains contributions from charg-
to be essential for the design of active quantum error correcing and interaction energies of the electrons on the dot, the

fi. ELECTRON SPIN DYNAMICS OF THE QUANTUM DOT

Htot: Hdot+ Hleads+ HT- (1)
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{ { Ref. 10. For simplicity we assume there is only one electron
) on the dot. Witha|T)=+|1), the electron has the ground
[ state|1) with energyE;=0 and the exited statg) with E,
=A,. If an electron tunnels onto the dot, the two electrons
Eg 4\ | can form the singlet stat&=(|1 | )=|| 7))/\2 with energy

Eg or either of the three triplet states. As the triplet state

Ee— A Y iAz IT.)=|171) has higher energy(for a suitable magnetic
P e R M field®), the singlet|S) is the ground state for two electrons
1 -‘—
K2

on the dot. The chemical potentials are chosen suchBjat
> w1 =Eg—A,/2>Egs-A,> u,=Es—3A,/2. Under these
-+ —+ conditions the dot can be opened and closed for a sequential
A tunneling current by a spin flip induced by an ESR fild:
et 2 An electron at chemical potentiglh in the left lead and a dot
i A, electron in staté]) do not have sufficient energy to form the
$ singlet state. If due to an ESR-induced excitation the dot
state is|]), however, less energy is required and an electron
in lead 1 can tunnel onto the dot to form the singlet state.
Ery Tunneling onto the dot from lead 2 is suppressed by several
orders of magnitude if the thermal energy is much lower than
the energy gap even if the dot electron is in the excited state
|1). At higher temperatures, to assure that the singlet can only
B A T be formed with the excited dot electron, one can choose spin-
polarized leads. This may be achieved with several methods;

Es— A, see Ref. 10 and references therein.
T ---%-- _&_ Thus, within these constraints we see that the current in
M2

lead 1 is proportional to the probability for the dot being in
the excited state—i.el}(t) = p,—while the current in lead 2

T T is proportional to the probability of the dot being in the sin-
A, glet state | }(t) < ps see Ref. 10.
\ IAZ
— C e Master equation

The traditional description of the dynamics of the dot is
FIG. 1. (Color online Closed dof(top): chemical potentials are based on a master equation for the reduced density operator

too small to allow an electron to tunnel onto the dot. Open dotof the dot, obtained from the total density matyix(t) by
(bottom): after excitation of the dot electron, the chemical potentialtracing over the degrees of freedom of the leadgs
w1 is large enough for an electron of lead one to tunnel onto the doEtrg,qd pioil- AS Usual, we denote matrix elements wiihy,
and form the singlet state with the dot electron. =(n|pgodMm) (or p,=(n|pgodn)) and include only the three rel-
evant dot states,me {7, | ,S. We assume the dot and leads
to be uncorrelated initiallypi(0) = pgol 0) ® pleagd0). Start-
ing from the von Neumann equation for the full density op-
erator pyo=—i[Ho, piotl, the master equation far,,, was de-
rived in Ref. 10 using standard methods within the Markov
approximation. Further, we will allow for an arbitratfixed)
phasep of the ESR field which will play an important role in
determining the spin state.

interaction energy %Azoz with the static magnetic field, and
the ESR HamiItoniarHESR(t)=—%g,uBB(t)oX of the interac-
tion of the electron spin with a magnetic fiel&(t)
=B cogwt- ¢), oscillating linearly in thex direction. The

o; (i=x,y,2) denote the usual Pauli spin matrices. The
Hamiltonian for the two leads(k=1,2) reads Hcaqs
=3 o €krnCingCkno» With ¢l the creation operator of an elec-
tron with orbital staten, spin o, and energye,, in lead k.

) ) ) . In order to eliminate the explicit time dependence emerg-
Finally, the coupling between dot and leads is described ang from the ESR field, we herpe base our apnalysis on the dgot
the standard tunneling Hamiltoniahl:=3m, T2.Cl,d i

. . 1knemmo - gtate in a rotating frame:
+H.c., where we denote witfiy,, a tunneling amplitude and g

with d.,, the annihilation operator of an electron on the dot _ . .

in orbital statem. Following Ref. 10, for the description of Paolt) = &1 gy tyetetiill, 2

the dot dynamics in the following we will also include fur- A A

ther (microscopically unspecifieddissipative interactions In fact, with the exception op;=€“p|;, p;s=€“p;s and

between the dot states and their environment that are néhe corresponding transposed expressions, this transforma-

among the known contributions to the total energy as theyion leaves almost all matrix elements untouched.

appear in Eq(1). Along the lines of the derivation in Ref. 10, one finds for
In the following we give a qualitative picture of the rel- the dot state in the rotating fran{@) a master equation of

evant dot statessee Fig. 1; more details may be found in Lindblad form3? It can be written as

075321-2



ELECTRON SPIN TOMOGRAPHY THROUGH COUNTING. PHYSICAL REVIEW B 71, 075321(2005

1 Let us now turn to the dot dynamics: in terms of its coef-
= =T =—ilHTD =S ([Lorpaos L . X ) ;
APdot= LPaor= ~ I[H,puorl + 2 ([LmPdon Laml ficients, the time evolution of the dot statg, given by the
nm master equatio3) reads

+ [anahf"dotl-lm])! (3)

with the time-independent Hamiltonidim rotating-wave ap- Pr
proximation) 6)

A _ - ~ ~
== IM(EPy) = (W) + Wy )y + Wi B, + Wi,

Ay .
H= (8= o) L1+ E4S(S = X1+ €#(1)(1)
(4)

and the operators =W, Jn}m| describing incoherent

transitions between levets andn with a rateW,,,, - _ 5 _
In particular, the four operatolss;, Lg;, L;s, andL s de- ps=— (Wis+ W, glps+ Wsp; + Wgp,, (8)

scribe transitions from and to the singlet state and hence

correspond to the tuneling of an electron off or onto the dot. - . A -

These four contributions give rise to the current in the leads pip==li(A; =) +VIp; + 'ZeWG’T aak 9)

and are derived from the underlying Hamiltonigh). The

rates areWs =Wg +W5 with Ws =7f|(Es-A,) and W;s . A

=Ws+Wo5 with W s=9[1-f(Es-A,)] where fI(E)=[1 P = = (IEg+ Vg s = izxei"ﬁsw (10)

+e(E-ul)/kT]-1 is the Fermi function of lead Analogously

we define the rate®s;, W;s, Wy, and V\/'JS with y and _ A

fi(Eg). Here.yﬂ:ZmJHTl 2 and y =2 |T}| are the transi- P = —[I(Es— A+ ) + Vg Ipg — i =€ %pg,  (1D)

tion rates with density of stateé*L and tunneling amplitude 4

T2 In the limit KT<A, we haveWs =y} andW s~y it the effective rates

which resembles the sequential tunneling from lead 1 onto

the dot and into lead 2. Furthermore, we haVg ~0 and

- A » - - -
p = EX Im(e™¥p; ;) — (W, + Ws))p, + W, p; + W, gps,

(7

S

1
W,s=~ yi+y;, because we choose,u,<Es Throughout Vip =5 (Wip + Way + Wep + W + W) + W) = S (Wg; + W)
this paper we assume equal rates for both Iea@s,y;:)ﬂ
andy;=y5=v!. Finally, we sety=y'=19! if the leads are not + 1 (12)
. . — T l_ . . . 1
spin polarized and/=v', ¥*=0 in the case of spin polariza- T,
tion.
We simulate stochastically all processes that could be ob- 1
served in principle, but eventually extract the desired infor- Vs = E(W” +Wg + W g+ Wig+Ws+W,), (13
mation from those quantities that correspond to the specific
measurement scheme chosen. Quantum transitions between 1
the dot states may be observed by monitoring the current Vg = —(Wy, + W + Wjg+ Wyg+Ws+ W), (14)
through the dot, which is the starting point for our quantum 2
trajectory analysis of the following sections. Note that Eqs(10) and(11) are decoupled from Eqés)—(9),

I'Bby dC%mrt?]St’ mecf;agsmsdfﬁr mco(;u(ajrenrt] Spin ﬂmr; and the latter are the only ones of relevance to us. They
Scrbe q y .S %pgratg 1 an t”) aan fRWas'ng MECNA- anable us to determine easily the counting statistics of tun-
nisms (described by the projectots, =L,=\Wmnl) are jaeling electrons numerically by means of the quantum tra-

introduced on phenomenological grounds and not containefl tqry method which we describe in the following sections.
in the Hamiltonian(1). The (phenomenological spin-flip

rates are assumed to satisfy the condition of detailed balance:

— Ak ;
WN/WH—eAZ’ 8T, The rates W, are phenomenological lll. QUANTUM TRAJECTORIES

dephasing rates: the effect of an operatgyin Eg. (3) is to

destroy coherences between state and the remaining One major motivation behind the development of quan-

states(at a rateW,), while leaving probabilities unaffected. tum trajectory methods was experiments with single quanta.
If the coupling to the leads is switched dffy an appro- Before these developments, naturally, ensemble experiments
priate choice of the chemical potentiglshe dynamics as required simple ensemble theories. Matters changed with ex-
described by the master equati@@) is that of a standard periments involving single atoms, electrons, or ions in traps.
decaying two-state spin system. Then the correspon@ng Continuously monitoring those systems, single-quantum
trinsic) relaxation and decoherence rates turn out to be  jumps became visible to the bare eye. A theory of continuous
guantum measurement taking into account continuous mea-

T =Wy + Wy, surement records of the observed environment to update the
quantum state accordingly, were developed, mainly with an
UT,= (T + W, +W)/2. (5)  eye on applications in quantum optics.
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Experiments on the single-quantum level have reacheduantum jump representati&hof the solution of Eq(15) in
solid-state devices, such as, for instance, electrons in quathe form
tum dots. Accordingly, the dynamics of such nanoscale quan- % . b
tum systems may be described adequately by quantum tra- plt) = S| a f”l dr 1f dr,
jectories. In fact, it may well turn out that these methods are v PO P
even more useful in solid-state devices since the sensitivity
of electron detectors is typically far better than that for pho-
ton detectors, on the single-quantum level.

As will be explained in the following, a quantum trajec- Pclr) (18)
tory pc(t) describes a subensemble of the flahsemble  cjeqrly, the solutionp(t) is a sum(or integral, respectively
density operatop(t), conditionedon a certain(stochasti¢ over any numbem of emission processesumber of pro-
measurement record, here detection events at certain timejéctions onto|0) (0] due to the application of the jump op-

In this approach we determine the dynamics of an electroator ), appearing at any times, t,, ... t., between zero
on a quantum dot, conditioned on the measustdchastit  ang the current time. One has to integrate over all corre-
tunneling current through the dot. sponding(unnormalizedl density operatorgg(t), as apparent

Quantum trajectory methods have changed remarkablyq expression(18). Thus, one particulaquantum trajec-
the way we think about open quantum system dynamiCSyy is the normalized density operatpg(t) =pg(t)/tr{pa(t)}
While traditionally an open quantum system is described b5(/vhich describes the time evolution of the quantum system
its density operatop(t) as in the last section, quantum tra- conditionedon the particular measurement record—i.e., con-
jectories describe open system dynamics taking into accoulfitioned on the number and times of emission processes. The
certain continuous, stochast!c measurement outcomes. Hhantum trajectoryp.(t) occurs with probability #pg(t)}.
o_ther words, V.V'th quantum trajectorles_ one determinesra The interpretation of the formal solutiofi8) in terms of
dmoned density opgratorpc(t), r'eflgctmg knowledge ob- quantum trajectories of actual measurement records is based
talned_from a continuous monitoring of the environment. perfect efficiency of the detectors and a time coarse grain-
_Samplmg over all these p053|bl_e measurement records—l.qng which amounts to the Markov approximation made for
ignoring the state of the environment—one recovers thgne master equation. A more fundamental derivation of Eq.
usual full ensemblep(t). We write p(t)=M(p()] where (1g) starting from the usualphoton counting theories may
M[---] denotes the ensemble mean over all possible Mease tound in Ref. 24.
surement records with corresponding probabilisee be- The normalized quantum trajectopi(t) may be deter-

low). mined directly through the following prescription: at time

Thg pripcipal_ idea is.to monitc_)r the environmen_t rather At the new density operatar,(t+At) is obtained in one of
than ignoring—i.e., tracing over it. In quantum optics oney, o ways:

tries to detect photons emitted from the quantum system o First, the probabilityPj,m, to undergo a quantum jump—

interest; here, we detect electrons in the leads coupled to the, 5 emit a quantum during the time internsi—is equal

quantum dot. _ _ __to the jump rate times the length of the time interval times
In order to illustrate this approach, we consider a simpli-i, probability to be in the excited stateP
jump

fied open quantum systgm—the_ generalization to the.quan—:W<1|pc(t)|1>At:tI’[LTLpC(t)]At:tI’{Spc(t)}At. If a quantum
tum dot case will be obvious. This model system consists o{s emitted(and thus detecte-i.e., a jump has occurred—
two levels and is coupled to a continuum of states. Excitation, "0 G000 quantum state. |s the ground stagée:+At)

is done by some additional mechanism, included in the =~ = _ _ o i
Hamiltonian of the systerhl. We start with a master equa- _ " Jum%|0><0|—§f) C(t?t/tr{Sp C(ti}' I.f’ h'owe\l/)er, no jump oc
tion of type (3) and in this model with a single Lindblad curs, the new density operalor IS given by

operatorL: eltet p(t)
. . 1 pet+At) = py, jump= Pe (19
p=Lp==i[Hpl+3([Lp,L"T+[LpL"]). (15

~tr{elen Mp (1)}
In the following we abbreviate the right-hand side of the;:’1S is apparent from _the rep_resenta_uﬂma). In practlc_e,_there-
. . ore, a quantum trajectory is obtained by determining a ran-
equation with the superoperatdp. For concreteness, con-
siderL to describe a spontaneous transition from ld¥gto

dom numbenr between 0 and 1 in each time stap: if r
level |0) with rate W—i.e., L=yW|0)}(1|. We introduce the = Plump We Setpc(t+AD =piump; if, hOWeVer,r> Py, we
superoperato§ such that

setpc(t+At)=pn, jump The full ensemble of possible states is
thus given by p(t+At)=Pjymujump* (1 =Pjump)Pno jump @nd,
Sp=LpLT, (16) indeed, one may easily verify that the right-hand side equals
LpAt as expected from the master equati@b) for the full
—(r_ - 1t t ensemble.
Hen=(L=Sp==iHp]=3(L Lo+ pLlL).  (17) This branching may occur at any time step and a thus
The superoperataf is referred to as thpimp operator since  huge ensemble of different quantum trajectories may be ob-
its describes an emission process accompanied by the reined. As mentioned before, the usual reduced density op-
placement of the density operatprwith the ground state: erator is obtained by taking the ensemble mean. In order to
LpLT=W(1|p|1) |0) (0|. With S such defined, one obtains the obtain counting statistics as in the following sections, we

]
X eHeff(’_tm)SgHeff(tm_tm—l)S ‘o SeHeff llp(o) .
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s[mply average over many runs and obt:_:un nu.menc.ally a _ _ _Wt(Wt)Zq Wit
distribution of jump times as in a real experiment involving a P(q,n =tr{p(q,t)} =€ 2! a+1) @
single-quantum system. We note that apart from an appealing '

physical interpretation, the advantage of the quantum trajeczonfirming the findings in Ref. 10.

tory approach is that it does not require solving large systems With the general quantum jump representatidg), we

of linear differential equations, as the master equation somezan overcome the limitations of the analytical result, consid-

times does. ering arbitrary regimes and investigating the dynamics nu-
merically. So far, the proposed measurement scheme allows
IV. COUNTING STATISTICS AND STATE TOMOGRAPHY one to deduce the probability to be in either of the two spin

states from the current through the dot. A relative phase be-

An electron spin on a quantum dot has been found usefutween|T) and||), however, cannot be detected. In order to
as a memory device or a qubit for quantum information pro-measure the full spin state, therefore, a tomographical mea-
cessing. Readout of the spin state through a tunneling currestirement setup is required. Here, the freedom to apply the
was investigated using a rather restricted parameter reginteSR field comes into play. We show that while applying an
for which analytical results were obtained in Ref. 10. ESR field, phase-sensitive counting statistics result, leading

First we want to show how the analytical results emergeo clear identification of the qubit state on the Bloch sphere.
very easily and directly from the quantum trajectory ap-As in quantum optical setups, the full state could also be
proach. Now we consider a regime where we can negleatbtained with appropriater/2 pulses, which effectively
spin flips—i.e.,W; =W,;=A,=0. As in Ref. 10 we choose change the measurement axis. In this way, not only(the
spin-polarized leadsy'=0=Wg;=W,s, and y'=W. In the = component as in the original proposal, but alsg) and(oy)
limit kKT<A, we then havéVg =W s=W. The initial state is  and thus the fulp can be measured. A simpler concept, not
|1}, and since no spin flip occurs on the time scale of interestnvolving these precise pulses, is to measure the spin state
the only processes that happen are transitions betWgen via counting statistics of a current through the dot in con-
and[S). The quantum jump representatioid8) of this par-  junction with a constant ESR field as we will show in the

ticular solution then reads following. For this scheme to be successful it is crucial to
© . \ pontrol the .interaction betwgen th<=T dot and' Iegds._ We are not

o= dth dtm—l"'f dt, mterest_ed in the asymptotlg, st_atlonary dlstr_lbutlon, but in

m=0J 0 0 0 the typical time between switching the coupling on and the

first (or second, or third, and so prlectron appearing in
lead 2. Also, it is not necessary to be able to measure the
(200  electrons in lead 2 with a high temporal resolution: one can
L e ) switch off the coupling between the dot and lead 2 after a
with i,j= | ,S and S;p=WIi)jlplj)il. In the regime chosen cerain timet and has any time thereafter to collect the elec-
we can writee’er%1p (t, 1) =€ hUp(t,;) and then  trons in lead 2. We note that different measurement schemes
get are possible. Since an electron tunneling onto the dot already
o . & carries the information about the spin of the dot electron, one
p(t) = e dth dtm—l"'f dt,S;;Sji -+ Ss,p(0) could abandon lead 2 altogether and try to mo.n|tor the num-
m=0J 0 0 0 ber of electrons on the quantum dot—e.g., with a quantum
(21) point contact. Our proposal for quantum-state tomography
could be transferred to other setups as well, as for recent
w " experiment$:*4
WS (Wr) |iX1p(0)])4. We assume that the dot is in a given initial state=a,
ey M —_— when the coupling to the leads is switched on. Then we
=t (22) measure the number of electrons tunneling into lead 2. Ac-
Here every operata$s, describes an electron tunneling onto cording to the quantum trajectory approach we calculate the
the dot from lead 1 ands represents the transition from a evolution of the density matrix. Every jump frof8) to ||) or
dot electron into lead 2. Since the initial statd|js the first ~ |1) indicates that an electron tunneled out of the dot. At very
transition is| | ) —|S) and with a second transition back|tp ~ low temperatures, as assumed throughout this paper, the
the first electron accumulates in lead 2. A third transition toprobability of tunneling into lead 2 is close to unity, while
the singlet does not change the number of electrons in lead funneling into lead 1 is very unlikely.

X eHeﬁ(t_thSijeHeﬁ(tm_tm—l)Sji cee SSleHeff tlp(O),

For a particulag (number of electrons in lead ¥ve have to A single run of the stochastic evolution will display emis-
considerm=2q (i=]) andm=2q+1 (i=S) and the(unnor-  sion processes—i.e., contributions to the current—at certain
malized density operator for a certamat timet is random times. Counting the corresponding number of quanta

2e1 in lead 2 as a function of time for a large ensemble of quan-
wt (wpm tum trajectories allows us to determine the probabHity, t)
pa,)=e Z ml Xl (23)  of finding exactlyq electrons in lead 2 at timefor a given
m=2d initial state of the dot. Such counting distributions are dis-
Therefore, the probability to find exacttyelectrons in lead played in the following figures. Our numerical procedure can
two at timet is be applied to any parameter values and any time dependence
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FIG. 2. Counting statistic®(q=1,t) for the first electron with
initial spin-up statgdashed liner=1, 6=0), spin-down statédot- 01

ted line,r=1, #=1809, and the totally mixed statésolid curve,r

=0). The respective coordinates refer to the Bloch sphere. The inse _
shows the same curves with the counting statistics of the fully T
mixed state subtracted. Parameters chosenAare2y=4(A,— ) s
=2x10° 5L, T=20 mK, B,=12 T. A

of the driving ESR field. For the regime chosen in Ref. 10, in
we recover the analytical result®4) to a high degree of
precision, as will be shown below.

Let us now turn to the probability distributior®q,t) of
finding exactlyq electrons in lead 2 at time for a given
initial statep. As we will show, by employing the ESR field,
the counting statistics allows us to clearly identify the full
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two-level state, including the relative phase. As usual, we

choose to parametrize the_: latter through the coordinates on FiG. 3. Counting statisticgtop) P(q=1,t) for eight coherent
the Bloch sphere: the spin-up stdte corresponds to the superpositionsy=(| 7)+€¢| | })/12 along the equator of the Bloch

north pole withr=1, #=0°, while the spin-down stafg) has
coordinatesr=1, §=180°. The full mixture py=3(| 7)1

sphere(r=1, #=90°, various angleg) and the fully mixed state
(r=0, solid ling. The lower diagram shows the same curves with

+| [ )(!]) corresponds to the center of the Bloch sphe&re, P(q=1,t) of the full mixture subtracted. Same parameters as in Fig.

=0, while coherent superpositionﬂs:(|T)+e‘¢|l))/\s’§ re- 2.
side on the equator with=1, §=90°, ¢.

In order to be able to use these counting statistics as
method for spin-state tomograplisee Sec. IV A the right
choice of parameters is crucial. From E®—(9) it is obvi-
ous that coherences in the two-level state can only be tran
ferred to measurable probabilities through the coupling intro-
duced by the ESR field of magnitudg. On the other hand,
a large value ofA, leads to Rabi oscillations and thus pre-
vents us from distinguishing clearly the two fundameifital
and||) states on a time scale large compared with the Ra
frequencyA,/2. Closer inspection of Eqs6), (7), and (9)
and numerical evidence shows that a good phase sensitiviE/0

with the measurement time scal), but still, the ESR
fleld had time enough to make the coherences felt. The sec-
ond condition(on the ESR field frequengyensures that the
Q_wethod is sensitive to all values of the phase anfjle
In Fig. 2 we show counting statistics for the first electron
P(q=1,t) to appear in lead 2. We choose the transition rate
y=10° s71, an experimentally accessible magnetic field
strength?33 of the ESR fieldB,~5.16 G, a slightly detuned
gESR field frequencyA,-w=5X 10° s%, a temperaturel

=20 mK, and a static magnetic field of strenddh=12 T.

r the ESR field to start at zero we choose the fixed phase

with preserved distinguishability dff) and ||) is achieved

through the choices

Ay
<X =Wy,
2 S
A
Az—wxf.

Physically, the first conditior{on the ESR field strength
means that the spin should not be flipped to fasimpared

(25)

¢=37/2. Furthermore, we assum&;=10%s and T,
=10"° s for the intrinsic relaxation and decoherence times.
All figures are calculated with an ensemble of 50 000 trajec-
tories.

The spin-down state only allows for electrons to tunnel
through the dot, which is clearly visible in the counting sta-
tistics: if the spin starts off in the spin-up statotted curvg
the time to measure the first electron is delayed compared to
the mixture and even more so compared to the spin-down
state. Eventually, however, due to the presence of the ESR
field, a sufficient spin-down component will be established,
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rt 7t Qf: 02
0.15 |
FIG. 4. Graphs taken from Fig. 3 for two pairs of opposite states o1 b
along the equator of the Bloch sphere. )
0.05 |
allowing electrons to tunnel through the dot. Still, both states 0 o .
are clearly distinguishable through their counting statistics. o 1 2 3 4 t5 6 7 8 9 10
Not only are counting statistics useful to distinguish be- v
tween up and down states. The arrival time distribution also — 7¢ - T - T - T2 - T3 - TQJ

differentiates between coherent superpositions and mixtures.
In conjunction with the ESR field one may even determine FIG. 6. Constructed curve fof, according to Eq.(26) and
the phase of coherent superpositions of type(|1)  curves forro, 1, 2, 5. For comparison the curve fog, simulated
+ei¢|l>)/\°§ as displayed in Fig. 3. The solid line corre- with the quantum jump method. See text for numerical values.
sponds toP(q=1,t) of a fully mixed initial state(r=0), the _ _ .
dashed and dotted lines correspond to eight coherent supdtlly mixed state. It is also worth noting that we keep the
positions along the equator of the Bloch sphere. Clearly!n't'a| phasey of the ES_R pulse fixed for all_calculanons. An
P(g=1,t) shows different behavior for different angles average over all possible phases would indeed lead to the
and may thus be used to fully identify the initial state. graph of the fully mixed state, irrespective of the phasef

As we have seen, with these choices for the ESR field, ndf€ initial quantum state.
only can we distinguishi) from ||) through counting statis-
tics as in Fig. 2. We are in a position to fully determine the A. Tomography
two-level state—in particular, it is possible to clearly distin-
guish a coherent superposition [6f and||) from the mix- - _ o
ture of the two, as shown in Fig. 3. +r,-0)/2 from observed counting statistics, we propose the

The insets of Figs. 2 and 3 reveal an interesting structuréollowing procedure: One simulates theoretical curves
underlying the shapes d¢*(q=1,t): Once the counting dis- P«(q,t) for the four different initial stategp;=(1+f;-)/2
tribution of the full mixture(r=0) is subtracted, the statistics with f,=(0,0,0 (the full mixture, r;=(1,0,0 (the state
of states corresponding to opposite points on the Blocht)), f,=(0,1,0 [the state(|)+|]))/+2], andF3=(0,0,1)
_sphe_re appear as mirror ima_ges of each_other, as highlig_htqﬂqe state(|T>+i|l>)/\f’§], using the experimental param-
in Figs. 4 and 5. In these figures we display the countingyers Three of these curvésith the full mixture subtracted
statisticsP(q=1,1) for four pairs of opposite initial states represent three basis curves corresponding to the three basis
along the equator of the Bloch sphere and clearly confirm thgectors, and the counting statistics for fully mixed initial
observations just mentioned. A linear combination of initial sate represents the origin of the Bloch sphere. Now counting
states leads to a linear combination of counting statistics Ratistics for any initial statéwith f.=(x,y,2)] can be ob-

the ensemble and thus to this symmetry. Sitill, each curve iggineq from a linear combination of the four theoretical
itself seems complicated enough to underline the importancg

of our numerical approach. Using the quantum trajectory urves:

method, any time dependence of the fields and any choice of Pr-c(q,t) = P;O + x(P;1 - P;o) + y(PF2 - P;O) + z(P;3 - Pf'o)'

parameters is possible. (26)
The more mixed the initial state—i.e., the smaHer1 on

the Bloch sphere—the closer the curve to the curve of th@y scanning the Bloch sphere—i.e., the three fit parameters

X,Y,z—one can find the theoretical curvec(q,t) fitting the

In order to obtain an unknown initial statp?:(i

T oaf —$=0° - T ot =135 experimental dat#; (q,t) best and thus the Bloch vectds
s s of the unknown initial state. We illustrate this in Fig. 6,
QI" 0 / QI" 0 o Wherel\%e SD(Z)W the curves fég, 1y, 1, 3 and the curve for
S 1an0 4 _ a1r9 r.=(27%2,27Y2 0) constructed according to Edq26). For
SR \\//. ¢._ 1803 aforp - ¢._:?15- comparison we show the cung,=(2712,2712,0) simu-
0 2 ;t 6 8 10 0 2 4t 6 8 10 lated with the quantum jump method.
Y

FIG. 5. Same as Fig. 4 witR(q=1,t) of the full mixture sub- B. Higher-order statistics and q=0

tracted. We clearly see the symmetry of the curves for opposite We close this section by pointing out that also higher-
states on the Bloch sphere. order counting statisticg=2,3,4,5 display state-sensitive
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1 05 : : : :
¢g=0,r=0
og Hi -~ q=1,'[‘=0 04 |
........... ¢g=571=0
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FIG. 7. Counting statistics of exactly zero, one, and five elec- FIG. 8. Same graph as Fig. 3. Here, however using spin-
trons tunneling through the dot. Evidently, if less pronounced, allpolarized leads withy! =1x 10° 7%, '=0.
counting statisticsP(q,t) (q=0,1,...,5,..) carry information

about the initial quantum state. the ESR field had time to populate the excited state that a

second electron may tunnel through the dot. In fact, it turns
behavior—if only less pronounced. This is quite obviousout that this mechanism is the preferred tunneling event: for
since a delayed first tunneling event shifts the starting timehe parameters of Fig. 2 we find/;s=1X10° st and W,
for the following electrons. Fog=0, the difference between =2x10f s71.
the counting statistics for various initial states is well pro-
nounced. In this latter case, however, the curves do not cross V- RELAXATION AND DECOHERENCE TIMES
which diminishes the distinguishability of states and the best oy proposed setup including the ESR field may be used
choice for that isg=1. As displayed in Fig. 7, higher-order {5 getermine the intrinsic relaxation tinTg and decoherence
counting statistic®(q, t) still distinguishes between the fully time T, of the qubit in the time domain. Tuning the tunneling
mixed state(r=0) and a coherent superpositian=1,6  rate over a wide rangend adjusting the ESR field strength
=90°). and frequency according to conditio(®5)], one can easily
see the effect of decoherence and relaxation. In the series of
graphs in Fig. 9 we show counting statistics for theand
|T) state, for the full mixture and for two coherent superpo-
The original proposal for the spin-state readout was basesitions (states on the equator of the Bloch sphef@early,
on spin-polarized leads in order to clearly distinguish the twdor large tunneling ratdleft graph ()], all states may be
statesT), ||) by a single-shot measurement. As the countingdistinguished. The third graplt) shows a regime where de-
statistics require an ensemble measurement, our results sugpherence has fully set in: while the statgsand|T) remain
gest that spin polarization is not required for those—not everssentially unaffected, the counting statistics of the coherent
advantageous, in fact. In Fig. 8 we display counting statisticsuperpositions collapses onto the curve of the full mixture. In
P(g=1,t) for spin-polarized lead&nly spin-up electrons in other words, while no relaxation has set in yet, coherences
the leads—i.e.;»'=0). We notice only marginal differences between the statd$) and|) have disappeared. Decreasing
compared to the case of unpolarized leéeig. 3). the tunneling rate even further, the counting statistics finally
For large times, it is more likely to observe precisely onereveals the relaxation time: eventually, the initial stdtgs
electron in the case of unpolarized leads. The reason for thiand |T) may no longer be distinguished; i.e., relaxation has
behavior is the fact that for unpolarized leads, there is alstéaken place.
the possibility that the spin-up electron on the daither
than the spin-down electron entering the)dagy tunnel out VI. CONCLUSIONS
of the dot. Then the dot is in the ground state and therefore We use quantum trajectory methods to investigate the
closed for the tunneling of another electron. It is only aftercounting statistics of electrons tunneling through a quantum

C. Role of spin-polarized leads

7=1x10%" y=1x10%"! y=1x10%"!

N 0.4
% 03 ,;‘/ e 03 FIG. 9. Measurement of a va-
Eoetlf/ f = riety of states(|1), ||), coherent

01 7 ] 01 superpositioh facilitates an esti-

% 2 4 & 8 10 4 2 4 6 & 10 0 mate ofT, andT;.
1t t r
—r=0 —8=180°r=1-—8=0°r=1 —0=00% ¢ =0°r=1 -m8=00°¢=45r=1

075321-8



ELECTRON SPIN TOMOGRAPHY THROUGH COUNTING. PHYSICAL REVIEW B 71, 075321(2005

dot. We show how an additional ESR field may actively bemeasurement record, as in actual experiments with single
used to perform a full “state tomography.” Applying the field quanta.

during the measurement allows one to clearly identify the We believe that such connections between the methods of
coherences between the two superposed states. We illustrajgantum optics and mesoscopic devices will prove more and
the relevance of our findings for determining the intrinsicmore useful in the future as nanotechnology achieves further
relaxation and decoherence times of electron spin states toreakthroughs in the coherent manipulation of quantum dy-
quantum dots—in the time domain. The similarities of thenamics in solid-state devices.

investigated quantum dot to three-level systems in quantum

qptlcs (e.g., so—calleq “Vr systen)sare evident. We undgr- ACKNOWLEDGMENTS
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