PHYSICAL REVIEW B 71, 075320(2005

Quantum transport through a deformable molecular transistor
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The linear transport properties of a model molecular transistor with electron-electron and electron-phonon
interactions were investigated analytically and numerically. The model takes into account phonon modulation
of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both
effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo
effect is observed in the presence of electron-phonon interactions. There are important qualitative differences
between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin
fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between
the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the
relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is
perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.
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I. INTRODUCTION requires treating both interactions on the same footing and

There has been in recent years a surge of interest in tH&PnPerturbatively. _
study of transport phenomena in nanoscale systems moti- In a vibrating mplecule connected_ to electrodes the posi-
vated by their potential as electronic devices. These systen{n of the electronic energy levels with respect to the Fermi
differ fundamentally from conventional conductors in thatlevel and the height of the tunneling barrier between the
their electronic spectrum is discrete and their charging enefmolecule and the electrodes are phonon modulated. These
gies cannot be ignored. effects have important consequences for the transport. In a

Charging effects on the transport properties have been irPrevious publicatio we gave a short account of our results
tensively studied. Coulomb blockade has been observed if®r a model in which only the first effect was included. Here,
the conductance of quantum dbtand in single-molecule we present a detailed analysis of the model, including the
devices weakly coupled to the electrodésThe enhance- effects of tunneling-barrier modulation.
ment of the low-temperature conductance in the valley be- Our results are analytical and numerical. Fermi-liquid
tween Coulomb blockade peaks due to the Kondo effect hagieory was used to derive some general properties of the
also been observed both in quantum @aisd in single mol-  zero-temperature conductance and detailed information on
ecules having well defined spin and charge states. its dependence on the parameters of the model was obtained

An important feature of molecules is that they generallyin the limits of weak and strong electron-phonon coupling.
distort upon the addition or the removal of electrons. WhileNumerical calculations were also performed in all the rel-
in conventional systems the energies associated with atomivant parameter regimes using the Numerical Renormaliza-
motion are much lower than typical electronic energies, thigion Group method at zero and at finite temperature.
is not necessarily true in molecular devices. It has been re- Our main results are as follows. In all parameter regimes
cently shown that the Coulomb charging energies of singléhere is a peak in the zero-temperature conductance as a
molecules can be considerably reduced by screening due fonction of gate voltages(V,) whose height corresponds to
the electroded.The former may drop from a few eV, for an perfect transmission through the junction. It occurs at the
isolated molecule, to a few hundreds of meV becoming thervalue ofV, for which the average number of electrons in the
of the same order of magnitude than vibrational energiesdevice is an odd integer.

Interesting new physics emerges when the two energy scales The width and shape of the peak depend on the type and
become comparable as was observed in inelastic electrasirength of the electron-phonon coupling. When either en-
tunneling spectra of small molecules adsorbed on surfacesergy level modulatioELM) or tunneling barrier modula-

in Cgo molecular-scale transistotsind in a suspended quan- tion (TBM) are presentbut not both, G(Vy) is symmetric
tum dot cavity:° around its maximum. However, if the two are simultaneously

In this paper we study the linear transport properties of gresent, the curve is asymmetric. This feature is very pro-
model molecular device in which electron-electron andnounced in some cases. The two couplings have opposite
electron-phonon interactions are present. Previous authogedfects on the width oG(V,). ELM leads to peak narrowing
investigated similar models in the regimes of high temperawhile TBM has the opposite effect.
ture or weak electron-phonon couplifig® We are inter- There are parameter regimes in which resonant transmis-
ested here in the low-temperature transport properties in resion is due to the Kondo effect. When the amplitude of ELM
gimes for which the charging energy and the electrontanges from low to moderate, the effect is qualitatively simi-
phonon energies can be of the same order and largar to that observed in the absence of the electron-phonon
compared to the broadening of the electronic levels. Thigoupling. When ELM is strong, however, the nature of the
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trodes, and the coupling between them, respectively,
H=Hy+Hg+HyEg. (1)

The Hamiltonian of the molecule is

Hy = Sdﬁd + UﬁdTﬁdl - )\(ﬁd - 1)(a.+ aT) + woaTa, (2)

FIG. 1. A scheme of the m_odel device studied in this paper. AwhereﬁdzE(,de(, is the charge operator andl is the Cou-
molecule of average lengthy is connected to source and drain T

electrodes. As it vibrates symmetrically, the distance between th!eomb repulsion between two electrons on the same molecular

end groups and the electrodes fluctuates thus modulating the tur(?-rbl'tal' Iln apErOprlTate hunlts Wedwjf'te thﬁ el(i]ngatlon of the
neling barrier between the elements. There is also a modulation dh0lecule ax=a+a’, wherea anda’ are the phonon opera-

the position of the molecular energy levels with respect to the Ferm{Ors- . . .
level not represented in the scheme. The Hamiltonian of the leads is

- + -
ground state of the molecule changes and the Kondo effect He= 2 e¢(K)ClyCkoe (£ =L,R), ©)
does not result from spin fluctuatiofas is the case in quan- Kot

tum dotg but from charge fluctuations. There are important

qualitative differences between the two cases where we consider for simplicity the case of identical elec-

At finite temperature, in the Kondo regime, the height of70des With dispersiorg(k)=e (k)=s(k). We assume for

the conductance peak decreases and is strongly suppres&@iivenience that the conduction band is symmetric with re-
beyond a characteristic temperature, the Kondo temperaturép_ef:t to the chem|cal potential and we take the latter as the
An increase in TBM by itself leads to an increase of the®'lgin of energies.. . . .
Kondo temperature. The effect of increasing ELM is non- The third term in Eq.(1) is the tunneling Hamiltonian
monotonic: the Kondo temperature increases for small cou?€tween the molecule and the electrodes,
pling but it decreases for strong coupling.

Above the Kondo temperature well defined asymmetric Hyu-e=[1+g(a+ahlVv >, (dlc.,¢+H.c)
Coulomb blockade peaks are observed if ELM is not too kot
strong. When its strength increases, the Coulomb peaks be- [1+g(a+ah]Vo, (4)
come closer to each other and disappear in the strong cou-

pling regime. The effect of TBM is to smear these peaksyhere we assumed that the tunneling matrix eleméris

when they exist. . . k-independent and we defined the operatdor notational
The rest of this paper is organized as follows: In Sec. llconyvenience.

we describe the model that we use in our calculations. Sec- Note that if eitherg=0 or A=0 andey=-U/2, the Hamil-
tion 1l contains our analytical results, including the deriva- tgnian of the model is symmetric under an electron-hole
tion of the Fermi-liquid relations for our model and the transformation(plus the inversiorx— —x if A #0). At the
analysis of the limiting cases of weak and strong electrongymmetric point, the average number of electrons of the mol-
phonon coupling. Our numerical results are presented angd;le isng=(Ay=1. If bothg and\ are non vanishing, this

g‘iﬁfjl;siiegeiz S\f"c' IV. Finally, we state the conclusions of OUgy ymetry is lost. We shall see below that this has important

consequences.
An expression for the conductan€g of the molecular
Il. THE MODEL junction at zero bias can be derived using standard

methodst®17 We find
We model a molecule connected to metallic electrodes in

a range of gate voltages such that only one molecular orbital di
effectively participates in the transport. The molecule has a G= Y,
symmetric vibrational mode of frequeney, coupled to the sd
electronic coordinates. The energy(x) of the molecular . . ) .
level and the tunneling matrix elements between the moIWheref(."’) IS the Fermi functionA=2mpoV? and py is the
ecule and left(L) and right (R) electrodesV,(x)=V(x) (¢ electronic density of states of the electrodes eval~uated at the
=L,R), depend on a dimensionless vibrational coordinate Fermi level. The spectral densifyyy(w)=-7""Im Gy4(w),
For small distortions these quantities may be expanded aghere we defined a modified-electron Green function
eq(X) =eg—Ax and V(x) =V[1+gx], wherek andg are two  Gy4(w) as
coupling constant®> The first one is an energy scale, the
second one is dimensionless. A scheme of the device is . fm

_2 (" _é*f(w))~
o _md“’( o [Badw), (5)

shown in Fig. 1. Gud(w) = =i | dte“([(1+gx(1))d,(t),(1+gxd]1.).
The Hamiltonian of the combined system consists of three

terms that describe the isolated molecule, the isolated elec- (6)

0
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IIl. ANALYTICAL RESULTS Ged@) Gyl @) )

Gydw) Gyg(w)

The ground state of Hamiltoniafl) is expected to be a .01 which physical properties may be obtained.

Fermi liquid. Exact relationships can then be established be- The Green function associated to the Hamiltork#is
tween the zero-temperature conductance through the junc-

tion, the spectral density of the molecule at the Fermi level 1G () — \EV’ -1
and its charge. To derive these relations the structure of the Go(w) = = , o
expansion of the electronic Green functions in powers of the V2V w-g

electron-electron and electron-phonon interactions COUp"ngvhere ch is the green fuction at site calculated withV

constants must be examined. —0. For & flat conduction band it is qiven b
We start by noting that when the molecule is coupled to or a fiat conduction ba S given by

G(w) =< (16)

A. Exact results at zero temperature

17

the contacts it will in general deform. It is then convenient to D+w
apply a canonical transformation that shifts the phonon op- Gow) =, U(w— &) = —impg + poIn ‘ , (18
erators,a— b+«, and write k D-

H(a,a") =H(b+ a,b"+ a) = H!(b,b"), (7)  where p,=1/2D is the bulk density of states of the elec-

which defines the transformed Hamiltonihﬁ(b,b*). g&dg;ig:de t?]]:fgs;shdtf]le%s/s%??ﬂ:g 0'2 a self-energy ma-

Since the ground state energy is invariant under this trans-
formation, G_l(w) — Gal((o) _ E(UJ) (19)

Bo=(H) = (Ho)a, ® In a Fermi-liquid ground state all the elements of the self-
we may take the derivative with respectdmf this equation  energy matrix are purely real at the Fermi level. We checked
to obtain, that this is the case for our model by computing a few low-

. L order diagrams in the expansion »fin powers ofH;. Lut-
wolb+ b, + 2000~ 2Mfig = 1o + 29M(0)o =0, (9) tinger's theorerf'1% can then be generalized to the present
where(---),, denotes an expectation value with respect to thesituation in order to establish some useful Fermi-liquid rela-
exactground state of the transformed Hamiltonian. The delionships.

formation (x) of the molecule is found by imposing thét We found a simple relationship between(0), the
+b'),=0 on the transformed ground state: c-component of the spectral density at the Fermi level, and

the electronic population of the molecule in the physically

X N A<ﬁ _1), - gv@ (10) relevant wideband limitsee Appendix It reads,
2 wo d a wo ar
an
The transformed Hamiltonian can be expressed as a sum of ped(0) = po COS (End)- (20)
one-body and many-body terms as
H' = H)+HJ, (11  Equation(20) is an exact result valid for all values of the

parameters of the Hamiltoniail). For g=0 but keeping\
(12) arbitrary we found an equivalent expression fgg(0), the
projection of the spectral density on the molecular orbital. In
the wideband limit this is

Ho=Hg+ wgb™b+ gy +V'D,
Hi = (b+b"[gV(©® ~ (D)) = Mg = (A o)] + Ui g,
(13

where we dropped a constant energy shift and we defined the
renormalized parameters

1
Pad0)]g=0= N Si#(g”d) : (21

The content of Eq(21) is that, forg=0, thed-spectral den-
4= eq— 2 @ andV’' =V(1 + 2ga). (14)  sity of the interacting system at the Fermi level is pinned at
the value it takes for a noninteracting system with the same
Blectron occupancy. This is a well known result for madel
in the absence of electron-phonon couphfigVe see that it
remains valid for all values of andg=0.

However, Luttinger's theorem doe®t lead to a similar

This transformation, where no approximation has been mad
will allow us to present the results in a simpler way.

The molecule is only coupled to a local symmetric linear
combination of the states of the leads,

By = A12S Uy )+ Wy ) 15 result for pyq in the generab# 0 case and the elements of
W)= ” V2 ' (15 the self-energy matrix appear explicitly in the corresponding
expression.

where N is a normalization factor. The remaining  There is some simplification in the particular case0,

conduction-electron states can be integrated out reducing thg=-U/2. Then, the Hamiltoniaril) is electron-hole sym-
problem to an effective interacting two-site model with a 2 metric (cf. Sec. 1), ng=1, and.(0) andX440) vanish. In

X 2 Green-function matrix this case we find
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1
PadO)\=0n=1= = (22
A

where

A= ’ITpo[\/‘EV/ +3c(0) ]2

It can be easily shown that, is of orderg? and higher. It

then follows from Eqgs.(10), (14), and (23) thatZ:A[l
+0(g)+: -],

Interestingly, the nonuniversality ¢fy4(0) [of which Eq.
(22) is only an exampledoes not extend to tHE=0 conduc-
tance. The latter is obtained settifig:0 in Eq. (5),

(23)

G ~
Gy mApad(0), (24)

whereGy=2¢€?/h is the quantum of conductance.
An expression for the modified Green functi@yy(w)

can be obtained by writing down the equation of motion for

the conduction-electron Green functidB.(w) using the
definition (6) and the original Hamiltoniail). We find

Ge(®) = Gw) + 2V2G2 () Gy @)Go(w).  (25)

PHYSICAL REVIEW B1, 075320(2005

Ut= exp[il(a— aT)}.
wo

At g4=-U/2 the states with zero and two electrons are
degenerate. We take this as a reference point and write

(29)

u
Sd:__+vd. (30)
2
The number of electrons in the ground state of the mol-
ecule is either odd or even depending on whether @, is
smaller or larger thalJ. It is convenient to define an effec-
tive interaction parameter,
2\2
Ugg=U-—.

Wo

(31

It will be seen below that the physics in the caség>0
andU.4<0 is quite different.

1. Ugy>0

In this case the ground-state of the isolated molecule for
|V4 <U/2 is the spin-doublefir,0). There is a charge exci-
tation gap given by~U.4=U—-2\?/ w, for V4=0 and a pho-
non gapwg. The low-energy excitations are spin fluctuations.

An effective Hamiltonian for excitations involving the

Setting =0 and taking the imaginary part of the above spin doublet can be derived by perturbatively projecting out

equation this becomes

Pec(0) = po[ 1 = mADgd(0)]. (26)

Comparing Eq(26) with the Fermi-liquid relationshig20)
we find

WA’ﬁdd(O) = E = Sir?(gnd) .

S @7

The zero-temperature conductance thus depends only on the,

the empty and doubly occupied states from the space of
available states by means of a Schrieffer-Wolff transforma-
tion. To lowest order inV/U, the low-energy effective
Hamiltonian for spin fluctuationsl is

Hef = wpa'a+ Hg +JS - s, (32

where S is the spin operator for the doublet arsl
:1/225,5,020-5,5,%, is the spin operator of an electron on the
state(15) coupled to the molecule. The coupling constaig

en by

occupation of the molecular orbital just as in the absence o

tunneling barrier modulation and it reaches its maximum
valueGywhenny=1. Arelated result was obtained in Ref. 11

in perturbation theory i\ for U=0 andg=0.

B. Analysis of limiting cases

Many features of the solution of our problem can be
found from an analysis of the limiting cases of small and

large electron-phonon coupling.

We start from the Hamiltonian of the isolated molecule
given in Eq.(2). Its eigenvalues and eigenfunctions can be

written down explicitly*

2

Eo’m: -—+ mwo,
o

0,m) = U*|0)Jm),

|or,m) =)l m), Ep.m= €4+ My,
2

~ A
2m) =071 1)dm), Eam==——+254+ U+ mog,
0
(28)

where the subscrig denotes electronic statgs)) is themth
excited state of the harmonic oscillator and

(O[[1 +g(a+ah]u | m)?
1 - 2% wU + 2meg/U

(33

Jz%ii'

m=0 u=+

whereJy=8A/(7wUpg) and we have takeWy=0 for simplic-
ity.

A simple analytical expression can be derived in the limit
of small electron-phonon coupling,\/U<1. We find®

(2MU)2 + g2 ..
1+ 200/U

Therefore,J increases with the electron-phonon coupling in
the weak coupling limit.

Equation (32) is the well known Kondo model
Hamiltonian!® The dependence of the conductance on tem-
perature, gate-voltage, and magnetic field is well understood
in the absence of electron-phonon coupling. We summarize
below the main features fag=x=0.

At T=0, there is a narrow resonance of widifx
~D exd-1/(Jpg)] in the d-electron spectral density at the
Fermi level. This resonance provides a channel for conduc-
tion and, at the symmetric pointy=1, G=G, in agreement
with Luttinger’s theorem.

J=Jo| 1+ (34)
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For V4# 0, the gap between the ground state doublet andbe easily estimated in the limkt/ wy>1 by noting that
the empty statéVy>0), or the doubly occupied stat®/y om
<0) is reduced. The charge then deviates frogx1. The (O[U*my(m|U|0y = e—(x/woﬁm
Kondo resonance shifts with respect to the Fermi level and m!
the pyy(0) decreases. FoVy=U/2 the Kondo resonance _ Al ~,
disappears. There is thus a pealGiV/y) whose width~U is = (= DOV Im)m[U7(0).  (38)
large. An applied magnetic fiel8 also destroys the Kondo Considered as a function af, the last expression on the
resonance by breaking the symmetry between the spin ugght-hand side of the upper line of E¢38) is strongly
and spin down ground states. This happenBferT, which  peaked aim*=(\/wp)?> 1, while the denominators in Egs.
is very small in the Kondo limit. Therefore, the peak@B)  (36) and(37) are slowly varying functions af. In the strong
is narrow. At finite temperature the conductance at the symeoupling limit these can be approximated by their value at
metric point decreases becoming very small Toe Ty. In m* and taken out of the sum. This results in
this temperature rang@é exhibits Coulomb blockade peaks
at gate voltage¥y~ +U/2. 3, ~ 4JowoU 3.~ Je2WNawp)? (39)
These features are present throughout the weak coupling ! R '
regime with some minor modifications. It follows from Eq.
(34) that T increases with increasingandg. Therefore, the
peak inG(B) becomes wider and the temperature variation o
the conductance at resonance becomes slower. Ifdatid

This strong anisotropy originates in the fact that the pho-
fon ground states corresponding to the two charge states
Qq=2 and Q=0 are very different. In the strong-coupling
limit, the anisotropy ratioJ, /J, is precisely the overlap

A # 0 the zero-temperature peak @G(V,) shifts fromVy=0 (2,00, 0 between thenficf. Eq. (28)]. The Kondo tempera-
to Vy=V; such thainyg=1 and acquires an asymmetric shape.tur’e Of’ the AKM i<0.21

These features are related to the loss of particle-hole symme-

try referred to above. The conductance is higher to the left of J, \ Ao mwo N\

the maximum than to its right because for negative values of AKM ~ (T) ~Dexp - —<—> , (40
V4V the doubly occupied state that has a stronger coupling !
to the electrodes is favored. The width of the peak and thavhere the last expression is its asymptotic form for large
separation between the finite-temperature Coulomb blockade/ wg.

peaks, that are also asymmetric, decrease with increasing In contrast with the weak-coupling situatiofiyg, de-

(0]

mirroring the evolution ol creases sharply whenincreases. Application of a small po-
tential | V4| = Taxy Splits the charge doublet and destroys the
2. Ug<O Kondo resonance. Hence, the peakdfV,) is very narrow

in this limit. Conversely, the doublet is insensitive to a mag-

netic field and the width-2\2/ wy—U of the peak inG(B) is

gow large. Finally, no Coulomb blockade peaks are to be

there is a large gap 2\2/ wy—U for spin excitations, seen upon application of a gate voltage because it leads to an
increaseof the energy difference between a ground state

We discuss the casg=0 first. A low-energy effective ith | d od ith
Hamiltonian can be found as before applying a SchriefferVIth Zero or two electrons and an excited state with one

Wolff transformation, but now we project out the singly oc- electron irrespective of its sign. These features are opposite

- : : of those that characterize the properties@fin the weak
cupied states. We introduce pseudo-spin operatf@nd 7 { prop

with eigenvalues +1/2, corresponding to the eigenvalQes coupling regime.

=2 andQ=0 of the charge of the molecule and of the orbital Wel_dlscussl_ n(()jw ;he Cas@:ffo' Th‘l?h m]:_)dulatlor_l of the
¢, respectively. We also define raising and lowering operazunpe'nﬁ amp |tL|1_ € has two effects. The first one Is to renor-
tors, 73=(73)'=d'd’ and similar ones for the leads. In terms Ma1z€ the coupling constants,

of these, the effective Hamiltonian fafy;=g=0 is J— 3 =31 + (M wp)?],

In this regime the ground-state fof=0 is a charge dou-
blet formed by the state2,0) and|0,0). The low-energy
excitations of the system are thus charge fluctuations an

J _ -
H :HE+J||7'§T€+?L(TETC+ TqTe), (35) J, —J, =J3,[1-(gMwy)?]. (47)

The second effect is the appearance of a term in the

with the couplings Hamiltonian that breaks the symmetry between the two

1o) i <0|D+|m)(m|0‘|0> . charge states, favoring the doubly occupied one
-0 2l ~ 1+ 2mog U’ Han — i = 23,77 (@2
0]

©

_ (O[U*mym[U*|0) where Hy,, denotes the AKM Hamiltonian with the new
L= Om:() 20 woU — 1 + 2mawg/U (37) couplings. These effects can be understood quite easily. In
the state with charg®,=2 the molecule elongates. This in-
Equationg35—(37) define the Hamiltonian of an anisotropic creases its coupling to the electrodes and its energy is low-
Kondo model(AKM).2%21 The couplings(36) and (37) can  ered with respect to that of the empty state. The tunneling

J
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40

barrier between them also increases which translates into .
reduction ofJ .

We can use the modified couplingél) to compute the
g-dependent Kondo temperature. The result is

MN @(A)Ll[(A)Z_l]} 43
Takm exp{ A o wo ' (49

In the strong coupling regime the Kondo temperature in-
creases or decreases wghdepending on the ratin/ wg.

The consequences of a finiteon the conductance are
twofold. First, the peak irG(Vy) no longer occurs at/4=0
but it shifts toV3~gJ\/w,, the value for which the asym-
metry generated by the second term in ER) is compen-
sated. Second, as in the previous case, the singly occupie
states are more strongly coupled to the doubly occupied state
leading to a_symmetry in the shape @fVy). This time, the FIG. 2. Spectral densitypyq(w) at zero temperature in the
asymmetry is much more pronounced than for weak COUgjectron-hole symmetric case. The electron-phonon coupliva-
pling because the relative weights of the components withes petween 0 and 0.5 in steps of 0.05 from top to bottom in the
Qy=0 andQy=2 in the wave function are more sensitive t0 region of the central peak. Left inset: a zoom of the central part of
Va. the main figure. Right inseg-dependence of the effective hybrid-

ization parameter&.

0

IV. NUMERICAL RESULTS The figure shows that the full width at half maximunof
Fhe Kondo resonance increases monotonically withThe

In this section we present the numerical solution of mode ; . . .
P dependence df ongis represented in the inset to Fig. 3 that

(1) using the numerical renormalization group method : . : !
(NRG) (Fgefs. 22-25incorporating a modifica?ion Fc)iesigned shows that lod" varies quadratically witly for smallg. This

to improve the accuracy of the computation of the spectraPehaVio.r can be understood from H@'.A')' that predicts a
density?® quadratic increase of the Kondo coupliddor smallg and

N=0, recalling thal” ~ Tk and that the latter varies exponen-
tially with J™.

Finally, we observe that the Coulomb peaks broaden with
hincreasingg until they eventually disappear when the system
enters the mixed-valence regime for lage

The temperature dependence of the conductancé,at
=0 is shown in Fig. 3 for the same values@és in Fig. 2.
G(g,T) reaches its maximum valug, at T=0 for all g in
agreement with Eq(27). This confirms the result of Fermi-

Results for the casg=0 were discussed in a previous
papert* Here, we focus on the effects of tunneling barrier
modulation on the conductance.

In our numerical calculations we used half the bandwidt
of the conduction electron baridl as the unit of energy. The
parameterd)J=0.1, A=0.01, andwy=0.05 were kept fixed
and we studied the conductance as a functiog, af andV,.

A. The electron hole symmetric case ah=0 . _ -

We start by analyzing the electron-hole symmetric case,
A=0, V4=0 [cf. Eq. (30)]. Figure 2 shows the spectral den-
sity pyq(w) at zero temperature for several valuesgobe-
tween 0 and 0.5.

The top curve corresponds g=0. It exhibits a narrow 46
Kondo resonance centered at the Fermi level and two Couuf
lomb peaks aiv~ +U/2. The height of the Kondo resonance %'
is 1/7A ~ 32 in this case. 04

With increasingg the height of the central peak decreases
and its width increases. This evolution is shown in more o2l
detail in the left inset to the figure. ’ T o O 05 02 s

That the height of the central peak depends ugpshows I &

that py4(0) does not obey Luttinger’s theorem in the simple ol el il i

form of Eq. (21). An effective hybridization paramete?k D

Elayzbze (I)tbtzlned gom the r_1umerlcal \/talggs;ﬁj(O)_ ‘r‘ft'!"g i FIG. 3. Temperature dependence of the conductance in the
9. ( )_' S ep_en ence GQHS represented in _e ng !nse electron-hole symmetric case. The electron-phonon couplings are as

to the figure. It is seen that increases quadratically with  in Fig. 2. The curves correspond to increasing valueg fobm left

in the electron-hole symmetric case as was anticipated it right. Inset:g-dependence of the width of the central peak of the
Sec. llIl A. curves shown in the previous figure.

08
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30 T T : T T T T

FIG. 4. Spectral densityyq(w) at T=0 for A=-0.06 andg
=0.2. Thick line: V4/U=V3/U=0.159,n4=1. Dashed lineVy/U
=0.163,ng<1. Thin line:V4/U=0.155,n4> 1. Inset: a zoom of the 0.8
central peak showing the evolution of the Kondo peak with varying
Vg.

[
liquid theory that tunneling barrier modulation does not lead 8
to a renormalization of the value of the conductance at reso- =~ 4
nance despite that the spectral density at the Fermi level i
modified.

The conductance at resonance decreases with temperi 02
ture. The temperature scale for this process is the Kondc
temperature. The observed shift of the curves to higher tem-
peratures with increasirgreflects the evolution of the latter.

B. The general case\ and g#0 FIG. 5. Conductance as a function & and temperature for

We pointed out in Sec. I that when both and g are weak coupling,Ugs>0. Panel(az: A=0.02. Panel(b): A=0.035.
nonzero the system loses electron-hole symmetry. This is demperatures aref=0, 7.3x10°%, 1.5x10°% 3x10°% 6x 107,
the origin of several observable features in the frequency-023: and 0.094 from top to bottom. In all cagse0.2.
dependence of the molecule’s spectral density and in the deyjiyde decreases as shown in the inset to Fig. 4 which is a
pendence of the conductance on gate voltage. All the resuligetailed view of the central part of the main plot.
described below were obtained wig*0.2. WhenV,>V} the empty orbital has a larger weight in the

Figure 4 shows thel-electron spectral density at zero ground state wave function than the doubly occupied orbital.
temperature in the strong coupling regintgs<<0. We dis-  Then, the sideband ai>0 is enhanced and that at<0 is
play results for three values &;: V3, chosen so thaty=1,  suppressed. The opposite occurs ¥gr< V.
andVy=Vj* 6Vg. For |6Vy=Takm (not shown, the molecule becomes

The thick line representsyy(w) for V4=V;. We observe a fully charge polarizetf and the Kondo peak is completely
very narrow peak at the Fermi level due to the anisotropicsuppressed.

Kondo effect described in Sec. 11l B 2. We also observe side- We have also computed the spectral density in the weak
band peaks that are associated to excitation of the highe@oupling regimeU.>0 (not shown. For moderate values
levels of the isolated molecule at~ +Uq [cf. Eq. (28)]. It  of g, V3~0 and the effects of the asymmetry are much less
is seen that these are not positioned symmetrically with repronounced than for the strong coupling case just discussed.
spect to the central peak and that their widths and heights are We now turn to the analysis of the results for the conduc-
different. As discussed above, the origin of the asymmetry isance. Figure 5 show&(V,) for several temperatures and
that the states witl,=0 andQy=2 are coupled with differ- two values of\, both in the regiméJ >0. We observe a
ent strength to the states wi@y=1. The matrix element for broad conductance peak of widthU at zero temperature.
the transition2,0)— |10, 0) is larger than that for the tran- There is perfect conductance\g}# 0 and the peak is asym-
sition [0,0)— |10, 0). metric with respect td/;.

The spectral densities fafy=V3+ 6V4 are represented in At finite temperature the Kondo effect is first suppressed
the figure by dashed and solid thin lines, respectively. Foat the center of the peak where the Kondo temperature is the
our choice of parameters|éVy=Taku. Therefore, the lowest, leading to a two-peak structure. There are two Cou-
Kondo resonance continues to exist but it shifts and its amlomb blockade peaks whose widths and heights are different
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exceedingly narrow. This is the regime where the anisotropic
Kondo effect occurs. The width of the peak@{Vy) is now
Takm NOt [Ugg|. A very small shift| 6Vy| = Takw is sufficient
to destroy the Kondo resonance. The asymmetry generated
by the tunneling barrier is in this case extremely pronounced
because the charge on the molecule switches figa0 and
ng=2 within a very small interval of values &fy. Similarly,
the conductance at resonance decreases very rapidly with
increasing temperature as shown in the inset to Hig). 6

We close this section with a comparison between the con-
ductance of the device calculated from Eg). and that com-
puted from Eq.(27), using ny(Vy) obtained from the NRG
calculation. The data are shown in the inset to Fig).at is
seen that the Fermi-liquid relatig27) is satisfied within the
numerical error.

V. CONCLUSIONS

We studied the linear transport properties of a model mo-
lecular transistor in the presence of electron-electron and
electron-phonon interactions analytically and by numerically
solving the model using the Numerical Renormalization
Group method.

Electron-phonon interactions lead to modulation of the
positions of the energy levels of the molecule with respect to

[ the Fermi level and of the height of the tunneling barrier
~ ‘&L n between the molecule and the electrodes. These effects give
0 | 1 rise to new features in the spectral and transport properties of

-1 05 0 05 1 the system.
VU We found that when there is tunneling barrier modulation,
) the strength of the coupling between the molecule and the

FIG. 6. Panela): Conductance as a function U and tempera-  eads depends on the charge of the former. In general this
ture gor Ueff=09=°-03- Temperatures ard=0, 3x107% 6 — gffect preaks electron-hole symmetry leading to an asymmet-
X107, 1.2X10°%, 2.4x10°% and 4.7<10°. Inset: Check of the ¢ o ;ye of conductance as a function of gate voltage.
validity of I__uttlngerstheorem, Eq(.zz). Panel(b): Same z.aia) for The Kondo effect occurs in the presence of electron-
Ue<0 (A=0.09. Temperatures afe=0 and 0.012. Inset: Zoom of h int tions but its nature is quite different for weak
the conductance peak for temperatufies1.1x 1075, 2.3X 1075, phonon interactio i a
4.6x 1075 9.2x 105 and 1.83< 10°* from top to bottom. For all and strong coupling. In the first regime the ground state of
the curves shown in this figuig=0.2. the isolated molecule is a spin dout_)let and this leads to a

standard Kondo effect with renormalized parameters. In the
for the same reasons that make the spectral density asymmegcond regime the lowest lying states of the isolated mol-
ric. ecule form a charge doublet and the associated charge fluc-

A comparison between Figs(# and b) shows that an tuations are described by an anisotropic Kondo model in a
increase of leads to an enhancement of the anisotropy. Thigarrow interval of gate voltages. The two charge states of the
is easily understood as we saw that the latter arises from th@oublet are coupled differently to excited states which gives
simultaneous presence of ELM and TBM. We also observe #ise to pronounced asymmetries in the conductance and in
narrowing of the Coulomb blockade valley that originatesthe spectral density.
from the decrease dfl . We established Fermi-liquid relationships for the interact-

A further increase ok takes the molecule away from the ing model. Tunneling barrier modulation leads to a nonuni-
standard Coulomb blockade regime. Figure 6 shows resultgersal relation between the spectral density of the molecule
for U.+=0. Here, the differences between the energies of thand the electron occupancy. Quite remarkably, the relation
four charge states of the isolated molecule are comparableetween the zero-temperature conductance and the charge
with their width and no Kondo effect is expected to occur.remains unchanged. An important consequence is that there
No Coulomb blockade peaks appear upon raising the tems perfect transmission in all regimes when the number of
perature as we argued in Sec. Il B 2. electrons in the molecule is an odd integer.

The conductance in the strong-coupling cakg<O0 is These results may be useful in the context of mangaites
shown in Fig. 6b). As in the previous regimes the zero- where electron-electron interactions and the coupling of the
temperature conductance is enhanced and reaches the quetectrons with a local phonon mode have to be considered to
tum of conductance at some value\ofbut, now, the peak is  describe the physic$:3°
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APPENDIX: PROOF OF EQ. (20)

The number of electrons with spnin the molecule and
the local statec (see Sec. Ill A at T=0 is given by

1 0
Ngoy + Ney = — —f do Im[Tr G(w)], (A1)
T
an expression that can be rewritten in the form
(N
Ngy + Neg == — Imf do— Trin G Y w)
™ o Jw
1 (° J
-— Imf dow Tr{G(w)—E(w)}
T o Jw
1 0 ]
-— ImJ doG.(w)—[w - l/GgC(w)],
i o Jw
(A2)

by taking the derivative of Eq.19) and using Eq(17).
The second integral on the right-hand side of B&2)
vanishes due to the Luttinger theor&mwhich leads to

Ny = (=) = O]+ 1, (a3)

where

o(@) = 1M INf[ /G2 () = S @)] X [0 - &~ S44(@)]

- [V2v' + Sgdw)|?} (A4)
and
1 (° LG (w)]
L==1Im| dwGw)———. (A5)
i e Jw
In the wide band limit Eq(A5) reduces to
1 0 A[1/G? 1
|1:—|mf degc(w)M:——, (A6)
T o Jw 2

for a symmetric band.

PHYSICAL REVIEW B 71, 075320(2005

Introducing the renormalized paramet@s= e +2.44(0),

5.=3.40), andV=V'+3,.40)/12 we find

1 IO S
Ng,+1/2=2-—1m |n[8dsC -2V?2- Isd/ﬂ'po:l. (A7)
T

For a Fermi-liquid ground state the self-energy matrix at the
Fermi energy is purely real and so are the renormalized pa-
rameters. A straightforward calculation then yields

1 1 S, FoEg> 0, F@Eg>2V2
nda'+ E = 277 + 5, EC!Ed < O’ ’éd’éc > 2’\72
T+ 6 otherwise,
(A8)
where
edlmpo
o=arcta) —— |. (A9)
By~ 2V2

In all cases we have the relationship

( Bdmpo \?

~2) = tarf(mng, + 7/2). (A10)
Beeq— 2V

Expressions(A8)—(A10) are identical to those that one
would obtain for the noninteracting problem with the renor-
malized real parameters replacing the bare ones.

Similarly, the c-site spectral density for spior at the
Fermi energy is given by

1 B4l mp
pe0) = =————=2 . (A1D)
T(EEa—2V)? + (4 mpo)
which, using Eq(A10), can be cast in the form
pec(0) = po COS (Mg (A12)

This is Eq.(20) of the main text.
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