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The linear transport properties of a model molecular transistor with electron-electron and electron-phonon
interactions were investigated analytically and numerically. The model takes into account phonon modulation
of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both
effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo
effect is observed in the presence of electron-phonon interactions. There are important qualitative differences
between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin
fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between
the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the
relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is
perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.
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I. INTRODUCTION

There has been in recent years a surge of interest in the
study of transport phenomena in nanoscale systems moti-
vated by their potential as electronic devices. These systems
differ fundamentally from conventional conductors in that
their electronic spectrum is discrete and their charging ener-
gies cannot be ignored.

Charging effects on the transport properties have been in-
tensively studied. Coulomb blockade has been observed in
the conductance of quantum dots1 and in single-molecule
devices weakly coupled to the electrodes.2,3 The enhance-
ment of the low-temperature conductance in the valley be-
tween Coulomb blockade peaks due to the Kondo effect has
also been observed both in quantum dots4 and in single mol-
ecules having well defined spin and charge states.2,5–7

An important feature of molecules is that they generally
distort upon the addition or the removal of electrons. While
in conventional systems the energies associated with atomic
motion are much lower than typical electronic energies, this
is not necessarily true in molecular devices. It has been re-
cently shown that the Coulomb charging energies of single
molecules can be considerably reduced by screening due to
the electrodes.3 The former may drop from a few eV, for an
isolated molecule, to a few hundreds of meV becoming then
of the same order of magnitude than vibrational energies.
Interesting new physics emerges when the two energy scales
become comparable as was observed in inelastic electron
tunneling spectra of small molecules adsorbed on surfaces,8

in C60 molecular-scale transistors,9 and in a suspended quan-
tum dot cavity.10

In this paper we study the linear transport properties of a
model molecular device in which electron-electron and
electron-phonon interactions are present. Previous authors
investigated similar models in the regimes of high tempera-
ture or weak electron-phonon coupling.11–13 We are inter-
ested here in the low-temperature transport properties in re-
gimes for which the charging energy and the electron-
phonon energies can be of the same order and large
compared to the broadening of the electronic levels. This

requires treating both interactions on the same footing and
nonperturbatively.

In a vibrating molecule connected to electrodes the posi-
tion of the electronic energy levels with respect to the Fermi
level and the height of the tunneling barrier between the
molecule and the electrodes are phonon modulated. These
effects have important consequences for the transport. In a
previous publication14 we gave a short account of our results
for a model in which only the first effect was included. Here,
we present a detailed analysis of the model, including the
effects of tunneling-barrier modulation.

Our results are analytical and numerical. Fermi-liquid
theory was used to derive some general properties of the
zero-temperature conductance and detailed information on
its dependence on the parameters of the model was obtained
in the limits of weak and strong electron-phonon coupling.
Numerical calculations were also performed in all the rel-
evant parameter regimes using the Numerical Renormaliza-
tion Group method at zero and at finite temperature.

Our main results are as follows. In all parameter regimes
there is a peak in the zero-temperature conductance as a
function of gate voltageGsVgd whose height corresponds to
perfect transmission through the junction. It occurs at the
value ofVg for which the average number of electrons in the
device is an odd integer.

The width and shape of the peak depend on the type and
strength of the electron-phonon coupling. When either en-
ergy level modulationsELMd or tunneling barrier modula-
tion sTBMd are presentsbut not bothd, GsVgd is symmetric
around its maximum. However, if the two are simultaneously
present, the curve is asymmetric. This feature is very pro-
nounced in some cases. The two couplings have opposite
effects on the width ofGsVgd. ELM leads to peak narrowing
while TBM has the opposite effect.

There are parameter regimes in which resonant transmis-
sion is due to the Kondo effect. When the amplitude of ELM
ranges from low to moderate, the effect is qualitatively simi-
lar to that observed in the absence of the electron-phonon
coupling. When ELM is strong, however, the nature of the
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ground state of the molecule changes and the Kondo effect
does not result from spin fluctuationssas is the case in quan-
tum dotsd but from charge fluctuations. There are important
qualitative differences between the two cases.

At finite temperature, in the Kondo regime, the height of
the conductance peak decreases and is strongly suppressed
beyond a characteristic temperature, the Kondo temperature.
An increase in TBM by itself leads to an increase of the
Kondo temperature. The effect of increasing ELM is non-
monotonic: the Kondo temperature increases for small cou-
pling but it decreases for strong coupling.

Above the Kondo temperature well defined asymmetric
Coulomb blockade peaks are observed if ELM is not too
strong. When its strength increases, the Coulomb peaks be-
come closer to each other and disappear in the strong cou-
pling regime. The effect of TBM is to smear these peaks
when they exist.

The rest of this paper is organized as follows: In Sec. II
we describe the model that we use in our calculations. Sec-
tion III contains our analytical results, including the deriva-
tion of the Fermi-liquid relations for our model and the
analysis of the limiting cases of weak and strong electron-
phonon coupling. Our numerical results are presented and
discussed in Sec. IV. Finally, we state the conclusions of our
study in Sec. V.

II. THE MODEL

We model a molecule connected to metallic electrodes in
a range of gate voltages such that only one molecular orbital
effectively participates in the transport. The molecule has a
symmetric vibrational mode of frequencyv0 coupled to the
electronic coordinates. The energy«dsxd of the molecular
level and the tunneling matrix elements between the mol-
ecule and leftsLd and right sRd electrodes,V,sxd=Vsxd s,
=L,Rd, depend on a dimensionless vibrational coordinatex.
For small distortions these quantities may be expanded as
«dsxd<«d−lx and Vsxd<Vf1+gxg, wherel and g are two
coupling constants.15 The first one is an energy scale, the
second one is dimensionless. A scheme of the device is
shown in Fig. 1.

The Hamiltonian of the combined system consists of three
terms that describe the isolated molecule, the isolated elec-

trodes, and the coupling between them, respectively,

H = HM + HE + HM-E. s1d

The Hamiltonian of the molecule is

HM = «dn̂d + Un̂d↑n̂d↓ − lsn̂d − 1dsa + a†d + v0a
†a, s2d

wheren̂d=osds
†ds is the charge operator andU is the Cou-

lomb repulsion between two electrons on the same molecular
orbital. In appropriate units we write the elongation of the
molecule asx=a+a†, wherea anda† are the phonon opera-
tors.

The Hamiltonian of the leads is

HE = o
k,s,,

«,skdcks,
† cks, s, = L,Rd, s3d

where we consider for simplicity the case of identical elec-
trodes with dispersion«Rskd=«Lskd=«skd. We assume for
convenience that the conduction band is symmetric with re-
spect to the chemical potential and we take the latter as the
origin of energies.

The third term in Eq.s1d is the tunneling Hamiltonian
between the molecule and the electrodes,

HM−E = f1 + gsa + a†dgV o
k,s,,

sds
†cks, + H.c.d

; f1 + gsa + a†dgVv̂, s4d

where we assumed that the tunneling matrix elementV is
k-independent and we defined the operatorv̂ for notational
convenience.

Note that if eitherg=0 or l=0 anded=−U /2, the Hamil-
tonian of the model is symmetric under an electron-hole
transformationsplus the inversionx→−x if lÞ0d. At the
symmetric point, the average number of electrons of the mol-
ecule isnd;kn̂dl=1. If both g andl are non vanishing, this
symmetry is lost. We shall see below that this has important
consequences.

An expression for the conductanceG of the molecular
junction at zero bias can be derived using standard
methods.16,17 We find

G = U dI

dVsd
U

Vsd=0
=

2e2

h
pDE

−`

`

dvS−
] fsvd

]v
Dr̃ddsvd, s5d

where fsvd is the Fermi function,D=2pr0V
2 and r0 is the

electronic density of states of the electrodes evaluated at the

Fermi level. The spectral densityr̃ddsvd=−p−1 Im G̃ddsvd,
where we defined a modifiedd-electron Green function

G̃ddsvd as

G̃ddsvd = − iE
0

`

dteivtkfs1 + gxstdddsstd,s1 + gxdds
†g+l.

s6d

FIG. 1. A scheme of the model device studied in this paper. A
molecule of average lengthL0 is connected to source and drain
electrodes. As it vibrates symmetrically, the distance between the
end groups and the electrodes fluctuates thus modulating the tun-
neling barrier between the elements. There is also a modulation of
the position of the molecular energy levels with respect to the Fermi
level not represented in the scheme.
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III. ANALYTICAL RESULTS

A. Exact results at zero temperature

The ground state of Hamiltonians1d is expected to be a
Fermi liquid. Exact relationships can then be established be-
tween the zero-temperature conductance through the junc-
tion, the spectral density of the molecule at the Fermi level
and its charge. To derive these relations the structure of the
expansion of the electronic Green functions in powers of the
electron-electron and electron-phonon interactions coupling
constants must be examined.

We start by noting that when the molecule is coupled to
the contacts it will in general deform. It is then convenient to
apply a canonical transformation that shifts the phonon op-
erators,a→b+a, and write

Hsa,a†d = Hsb + a,b† + ad ; Ha8sb,b†d, s7d

which defines the transformed HamiltonianHa8sb,b†d.
Since the ground state energy is invariant under this trans-

formation,

E0 ; kHl = kHa8la, s8d

we may take the derivative with respect toa of this equation
to obtain,

v0kb + b†la + 2av0 − 2lkn̂d − 1la + 2gVkv̂la ; 0, s9d

wherek¯la denotes an expectation value with respect to the
exactground state of the transformed Hamiltonian. The de-
formation kxl of the molecule is found by imposing thatkb
+b†la=0 on the transformed ground state:

kxl
2

; a =
l

v0
kn̂d − 1la −

g

v0
Vkv̂la. s10d

The transformed Hamiltonian can be expressed as a sum of
one-body and many-body terms as

H8 = H08 + H18, s11d

H08 = HE + v0b
†b + «d8n̂d + V8v̂, s12d

H18 = sb + b†dfgVsv̂ − kv̂lad − lsn̂d − kn̂dladg + Un̂d↑n̂d↓,

s13d

where we dropped a constant energy shift and we defined the
renormalized parameters

«d8 = «d − 2la andV8 = Vs1 + 2gad. s14d

This transformation, where no approximation has been made,
will allow us to present the results in a simpler way.

The molecule is only coupled to a local symmetric linear
combination of the states of the leads,

uCcl = N−1/2o
k

uCk,Rl + uCk,Ll
Î2

, s15d

where N is a normalization factor. The remaining
conduction-electron states can be integrated out reducing the
problem to an effective interacting two-site model with a 2
32 Green-function matrix

Gsvd = SGccsvd Gcdsvd
Gdcsvd Gddsvd

D , s16d

from which physical properties may be obtained.
The Green function associated to the HamiltonianH08 is

G0svd = S1/Gcc
0 svd − Î2V8

− Î2V8 v − ed8
D−1

, s17d

where Gcc
0 is the green fuction at sitec calculated withV

=0. For a flat conduction band it is given by

Gcc
0 svd = o

k
1/sv − «kd = − ipr0 + r0 lnUD + v

D − v
U , s18d

where r0=1/2D is the bulk density of states of the elec-
trodes. The effects ofH18 are embodied in a self-energy ma-
trix defined through the Dyson equation

G−1svd = G0
−1svd − Ssvd. s19d

In a Fermi-liquid ground state all the elements of the self-
energy matrix are purely real at the Fermi level. We checked
that this is the case for our model by computing a few low-
order diagrams in the expansion ofS in powers ofH18. Lut-
tinger’s theorem18,19 can then be generalized to the present
situation in order to establish some useful Fermi-liquid rela-
tionships.

We found a simple relationship betweenrccs0d, the
c-component of the spectral density at the Fermi level, and
the electronic population of the molecule in the physically
relevant wideband limitssee Appendixd. It reads,

rccs0d = r0 cos2Sp

2
ndD . s20d

Equations20d is an exact result valid for all values of the
parameters of the Hamiltonians1d. For g=0 but keepingl
arbitrary we found an equivalent expression forrdds0d, the
projection of the spectral density on the molecular orbital. In
the wideband limit this is

urdds0dug=0 =
1

pD
sin2Sp

2
ndD . s21d

The content of Eq.s21d is that, forg=0, thed-spectral den-
sity of the interacting system at the Fermi level is pinned at
the value it takes for a noninteracting system with the same
electron occupancy. This is a well known result for models1d
in the absence of electron-phonon coupling.19 We see that it
remains valid for all values ofl andg=0.

However, Luttinger’s theorem doesnot lead to a similar
result for rdd in the generalgÞ0 case and the elements of
the self-energy matrix appear explicitly in the corresponding
expression.

There is some simplification in the particular casel=0,
ed=−U /2. Then, the Hamiltonians1d is electron-hole sym-
metric scf. Sec. IId, nd=1, andSccs0d andSdds0d vanish. In
this case we find
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urdds0dul=0,nd=1 =
1

pD̃
, s22d

where

D̃ = pr0fÎ2V8 + Scds0dg2. s23d

It can be easily shown thatScd is of orderg2 and higher. It

then follows from Eqs.s10d, s14d, and s23d that D̃=Df1
+Osg2d+¯g.

Interestingly, the nonuniversality ofrdds0d fof which Eq.
s22d is only an exampleg does not extend to theT=0 conduc-
tance. The latter is obtained settingT=0 in Eq. s5d,

G

G0
= pDr̃dds0d, s24d

whereG0=2e2/h is the quantum of conductance.

An expression for the modified Green functionG̃ddsvd
can be obtained by writing down the equation of motion for
the conduction-electron Green functionGccsvd using the
definition s6d and the original Hamiltonians1d. We find

Gccsvd = Gcc
0 svd + 2V2Gcc

0 svdG̃ddsvdGcc
0 svd. s25d

Setting v=0 and taking the imaginary part of the above
equation this becomes

rccs0d = r0f1 − pDr̃dds0dg. s26d

Comparing Eq.s26d with the Fermi-liquid relationships20d
we find

pDr̃dds0d ;
G

G0
= sin2Sp

2
ndD . s27d

The zero-temperature conductance thus depends only on the
occupation of the molecular orbital just as in the absence of
tunneling barrier modulation and it reaches its maximum
valueG0 whennd=1. A related result was obtained in Ref. 11
in perturbation theory inl for U=0 andg=0.

B. Analysis of limiting cases

Many features of the solution of our problem can be
found from an analysis of the limiting cases of small and
large electron-phonon coupling.

We start from the Hamiltonian of the isolated molecule
given in Eq.s2d. Its eigenvalues and eigenfunctions can be
written down explicitly14

u0,ml = Ũ+u0leuml, E0,m = −
l2

v0
+ mv0,

us,ml = usleuml, Es,m = «d + mv0,

u2,ml = Ũ−u↑↓leuml, E2,m = −
l2

v0
+ 2«d + U + mv0,

s28d

where the subscripte denotes electronic states,uml is themth
excited state of the harmonic oscillator and

Ũ± = expF±
l

v0
sa − a†dG . s29d

At «d=−U /2 the states with zero and two electrons are
degenerate. We take this as a reference point and write

«d = −
U

2
+ Vd. s30d

The number of electrons in the ground state of the mol-
ecule is either odd or even depending on whether 2l2/v0 is
smaller or larger thanU. It is convenient to define an effec-
tive interaction parameter,

Ueff = U −
2l2

v0
. s31d

It will be seen below that the physics in the casesUeff.0
andUeff,0 is quite different.

1. Ueff.0

In this case the ground-state of the isolated molecule for
uVdu,U /2 is the spin-doubletus ,0l. There is a charge exci-
tation gap given by,Ueff=U−2l2/v0 for Vd=0 and a pho-
non gapv0. The low-energy excitations are spin fluctuations.

An effective Hamiltonian for excitations involving the
spin doublet can be derived by perturbatively projecting out
the empty and doubly occupied states from the space of
available states by means of a Schrieffer-Wolff transforma-
tion. To lowest order inV/U, the low-energy effective
Hamiltonian for spin fluctuationsHeff is

Heff = v0a
†a + HE + JS ·sc, s32d

where S is the spin operator for the doublet andsc
=1/2os,s8cs

†ss,s8cs8 is the spin operator of an electron on the
states15d coupled to the molecule. The coupling constantJ is
given by

J =
J0

2 o
m=0

`

o
m=±

uk0uf1 + gsa + a†dgŨmumlu2

1 − 2l2/v0U + 2mv0/U
, s33d

whereJ0=8D / spUr0d and we have takenVd=0 for simplic-
ity.

A simple analytical expression can be derived in the limit
of small electron-phonon coupling,g,l /U!1. We find33

J = J0F1 +
s2l/Ud2 + g2

1 + 2v0/U
+ ¯G . s34d

Therefore,J increases with the electron-phonon coupling in
the weak coupling limit.

Equation s32d is the well known Kondo model
Hamiltonian.19 The dependence of the conductance on tem-
perature, gate-voltage, and magnetic field is well understood
in the absence of electron-phonon coupling. We summarize
below the main features forg=l=0.

At T=0, there is a narrow resonance of widthTK
,D expf−1/sJr0dg in the d-electron spectral density at the
Fermi level. This resonance provides a channel for conduc-
tion and, at the symmetric point,nd=1, G=G0 in agreement
with Luttinger’s theorem.
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For VdÞ0, the gap between the ground state doublet and
the empty statesVd.0d, or the doubly occupied statesVd

,0d is reduced. The charge then deviates fromnd=1. The
Kondo resonance shifts with respect to the Fermi level and
the rdds0d decreases. ForuVdu*U /2 the Kondo resonance
disappears. There is thus a peak inGsVgd whose width,U is
large. An applied magnetic fieldB also destroys the Kondo
resonance by breaking the symmetry between the spin up
and spin down ground states. This happens forB,TK which
is very small in the Kondo limit. Therefore, the peak inGsBd
is narrow. At finite temperature the conductance at the sym-
metric point decreases becoming very small forT*TK. In
this temperature rangeG exhibits Coulomb blockade peaks
at gate voltagesVd, ±U /2.

These features are present throughout the weak coupling
regime with some minor modifications. It follows from Eq.
s34d thatTK increases with increasingl andg. Therefore, the
peak inGsBd becomes wider and the temperature variation of
the conductance at resonance becomes slower. If bothg and
lÞ0 the zero-temperature peak inGsVdd shifts from Vd=0
to Vd=Vd

! such thatnd=1 and acquires an asymmetric shape.
These features are related to the loss of particle-hole symme-
try referred to above. The conductance is higher to the left of
the maximum than to its right because for negative values of
Vd−Vd

! the doubly occupied state that has a stronger coupling
to the electrodes is favored. The width of the peak and the
separation between the finite-temperature Coulomb blockade
peaks, that are also asymmetric, decrease with increasingl
mirroring the evolution ofUeff.

2. Ueff,0

In this regime the ground-state forVd=0 is a charge dou-
blet formed by the statesu2,0l and u0,0l. The low-energy
excitations of the system are thus charge fluctuations and
there is a large gap,2l2/v0−U for spin excitations.

We discuss the caseg=0 first. A low-energy effective
Hamiltonian can be found as before applying a Schrieffer-
Wolff transformation, but now we project out the singly oc-
cupied states. We introduce pseudo-spin operatorst d

z andt c
z

with eigenvalues ±1/2, corresponding to the eigenvaluesQ
=2 andQ=0 of the charge of the molecule and of the orbital
c, respectively. We also define raising and lowering opera-
tors,td

+=std
−d†=d↑

†d↓
† and similar ones for the leads. In terms

of these, the effective Hamiltonian forVd=g=0 is

H = HE + Jit d
zt c

z +
J'

2
std

+tc
− + td

−tc
+d, s35d

with the couplings

Ji = J0o
m=0

` k0uŨ+umlkmuŨ−u0l
2l2/v0U − 1 + 2mv0/U

, s36d

J' = J0o
m=0

` k0uŨ+umlkmuŨ+u0l
2l2/v0U − 1 + 2mv0/U

. s37d

Equationss35d–s37d define the Hamiltonian of an anisotropic
Kondo modelsAKM d.20,21 The couplingss36d and s37d can

be easily estimated in the limitl /v0@1 by noting that

k0uŨ+umlkmuŨ−u0l = e−sl/v0d2sl/v0d2m

m!

= s− 1dmk0uŨ+umlkmuŨ+u0l. s38d

Considered as a function ofm, the last expression on the
right-hand side of the upper line of Eq.s38d is strongly
peaked atm!=sl /v0d2@1, while the denominators in Eqs.
s36d ands37d are slowly varying functions ofm. In the strong
coupling limit these can be approximated by their value at
m! and taken out of the sum. This results in

Ji ,
4J0v0U

l2 , J' , Jie−2sl/v0d2. s39d

This strong anisotropy originates in the fact that the pho-
non ground states corresponding to the two charge states
Qd=2 andQd=0 are very different. In the strong-coupling
limit, the anisotropy ratioJ' /Ji is precisely the overlap
k2,0u0,0l between themfcf. Eq. s28dg. The Kondo tempera-
ture of the AKM is20,21

TAKM , SJ'

Ji
D1/Jir0

, D expF−
pv0

D
S l

v0
D4G , s40d

where the last expression is its asymptotic form for large
l /v0.

In contrast with the weak-coupling situation,TAKM de-
creases sharply whenl increases. Application of a small po-
tential uVdu*TAKM splits the charge doublet and destroys the
Kondo resonance. Hence, the peak inGsVdd is very narrow
in this limit. Conversely, the doublet is insensitive to a mag-
netic field and the width,2l2/v0−U of the peak inGsBd is
now large. Finally, no Coulomb blockade peaks are to be
seen upon application of a gate voltage because it leads to an
increaseof the energy difference between a ground state
with zero or two electrons and an excited state with one
electron irrespective of its sign. These features are opposite
of those that characterize the properties ofG in the weak
coupling regime.

We discuss now the casegÞ0. The modulation of the
tunneling amplitude has two effects. The first one is to renor-
malize the coupling constants,

Ji → Ji8 = Jif1 + sgl/v0d2g,

J' → J'8 = J'f1 − sgl/v0d2g. s41d

The second effect is the appearance of a term in the
Hamiltonian that breaks the symmetry between the two
charge states, favoring the doubly occupied one

HAKM → HAKM8 −
gl

v0
Jit d

z, s42d

where HAKM8 denotes the AKM Hamiltonian with the new
couplings. These effects can be understood quite easily. In
the state with chargeQd=2 the molecule elongates. This in-
creases its coupling to the electrodes and its energy is low-
ered with respect to that of the empty state. The tunneling
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barrier between them also increases which translates into a
reduction ofJ'.

We can use the modified couplingss41d to compute the
g-dependent Kondo temperature. The result is

TAKM8

TAKM
, expHpg2v0

D
S l

v0
D4FS l

v0
D2

− 1GJ . s43d

In the strong coupling regime the Kondo temperature in-
creases or decreases withg, depending on the ratiol /v0.

The consequences of a finiteg on the conductance are
twofold. First, the peak inGsVdd no longer occurs atVd=0
but it shifts toVd

!,gJil /v0, the value for which the asym-
metry generated by the second term in Eq.s42d is compen-
sated. Second, as in the previous case, the singly occupied
states are more strongly coupled to the doubly occupied state
leading to asymmetry in the shape ofGsVdd. This time, the
asymmetry is much more pronounced than for weak cou-
pling because the relative weights of the components with
Qd=0 andQd=2 in the wave function are more sensitive to
Vd.

IV. NUMERICAL RESULTS

In this section we present the numerical solution of model
s1d using the numerical renormalization group method
sNRGd sRefs. 22–25d incorporating a modification designed
to improve the accuracy of the computation of the spectral
density.26

Results for the caseg=0 were discussed in a previous
paper.14 Here, we focus on the effects of tunneling barrier
modulation on the conductance.

In our numerical calculations we used half the bandwidth
of the conduction electron bandD as the unit of energy. The
parametersU=0.1, D=0.01, andv0=0.05 were kept fixed
and we studied the conductance as a function ofg, l, andVd.

A. The electron hole symmetric case atl=0

We start by analyzing the electron-hole symmetric case,
l=0, Vd=0 fcf. Eq. s30dg. Figure 2 shows the spectral den-
sity rddsvd at zero temperature for several values ofg be-
tween 0 and 0.5.

The top curve corresponds tog=0. It exhibits a narrow
Kondo resonance centered at the Fermi level and two Cou-
lomb peaks atv, ±U /2. The height of the Kondo resonance
is 1/pD,32 in this case.

With increasingg the height of the central peak decreases
and its width increases. This evolution is shown in more
detail in the left inset to the figure.

That the height of the central peak depends upong shows
that rdds0d does not obey Luttinger’s theorem in the simple

form of Eq. s21d. An effective hybridization parameterD̃
may be obtained from the numerical values ofrdds0d using
Eq. s22d. Its dependence ong is represented in the right inset

to the figure. It is seen thatD̃ increases quadratically withg
in the electron-hole symmetric case as was anticipated in
Sec. III A.

The figure shows that the full width at half maximumG of
the Kondo resonance increases monotonically withg. The
dependence ofG on g is represented in the inset to Fig. 3 that
shows that logG varies quadratically withg for smallg. This
behavior can be understood from Eq.s34d, that predicts a
quadratic increase of the Kondo couplingJ for small g and
l=0, recalling thatG,TK and that the latter varies exponen-
tially with J−1.

Finally, we observe that the Coulomb peaks broaden with
increasingg until they eventually disappear when the system
enters the mixed-valence regime for largeg.

The temperature dependence of the conductance atVd
=0 is shown in Fig. 3 for the same values ofg as in Fig. 2.
Gsg,Td reaches its maximum valueG0 at T=0 for all g in
agreement with Eq.s27d. This confirms the result of Fermi-

FIG. 2. Spectral densityrddsvd at zero temperature in the
electron-hole symmetric case. The electron-phonon couplingg var-
ies between 0 and 0.5 in steps of 0.05 from top to bottom in the
region of the central peak. Left inset: a zoom of the central part of
the main figure. Right inset:g-dependence of the effective hybrid-

ization parameterD̃.

FIG. 3. Temperature dependence of the conductance in the
electron-hole symmetric case. The electron-phonon couplings are as
in Fig. 2. The curves correspond to increasing values ofg from left
to right. Inset:g-dependence of the width of the central peak of the
curves shown in the previous figure.
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liquid theory that tunneling barrier modulation does not lead
to a renormalization of the value of the conductance at reso-
nance despite that the spectral density at the Fermi level is
modified.

The conductance at resonance decreases with tempera-
ture. The temperature scale for this process is the Kondo
temperature. The observed shift of the curves to higher tem-
peratures with increasingg reflects the evolution of the latter.

B. The general case,l and gÅ0

We pointed out in Sec. II that when bothl and g are
nonzero the system loses electron-hole symmetry. This is at
the origin of several observable features in the frequency
dependence of the molecule’s spectral density and in the de-
pendence of the conductance on gate voltage. All the results
described below were obtained withg=0.2.

Figure 4 shows thed-electron spectral density at zero
temperature in the strong coupling regime,Ueff,0. We dis-
play results for three values ofVd: Vd

!, chosen so thatnd=1,
andVd=Vd

!±dVd.
The thick line representsrddsvd for Vd=Vd

!. We observe a
very narrow peak at the Fermi level due to the anisotropic
Kondo effect described in Sec. III B 2. We also observe side-
band peaks that are associated to excitation of the higher
levels of the isolated molecule atv, ±Ueff fcf. Eq. s28dg. It
is seen that these are not positioned symmetrically with re-
spect to the central peak and that their widths and heights are
different. As discussed above, the origin of the asymmetry is
that the states withQd=0 andQd=2 are coupled with differ-
ent strength to the states withQd=1. The matrix element for
the transitionu2,0l→ u1s ,0l is larger than that for the tran-
sition u0,0l→ u1s ,0l.

The spectral densities forVd=Vd
!±dVd are represented in

the figure by dashed and solid thin lines, respectively. For
our choice of parameters,udVdu&TAKM. Therefore, the
Kondo resonance continues to exist but it shifts and its am-

plitude decreases as shown in the inset to Fig. 4 which is a
detailed view of the central part of the main plot.

WhenVd.Vd
! the empty orbital has a larger weight in the

ground state wave function than the doubly occupied orbital.
Then, the sideband atv.0 is enhanced and that atv,0 is
suppressed. The opposite occurs forVd,Vd

!.
For udVdu*TAKM snot shownd, the molecule becomes

fully charge polarized14 and the Kondo peak is completely
suppressed.

We have also computed the spectral density in the weak
coupling regime,Ueff.0 snot shownd. For moderate values
of g, Vd

!,0 and the effects of the asymmetry are much less
pronounced than for the strong coupling case just discussed.

We now turn to the analysis of the results for the conduc-
tance. Figure 5 showsGsVdd for several temperatures and
two values ofl, both in the regimeUeff.0. We observe a
broad conductance peak of width,Ueff at zero temperature.
There is perfect conductance atVd

!Þ0 and the peak is asym-
metric with respect toVd

!.
At finite temperature the Kondo effect is first suppressed

at the center of the peak where the Kondo temperature is the
lowest, leading to a two-peak structure. There are two Cou-
lomb blockade peaks whose widths and heights are different

FIG. 4. Spectral densityrddsvd at T=0 for l=−0.06 andg
=0.2. Thick line: Vd/U=Vd

! /U=0.159, nd=1. Dashed line:Vd/U
=0.163,nd,1. Thin line:Vd/U=0.155,nd.1. Inset: a zoom of the
central peak showing the evolution of the Kondo peak with varying
Vd.

FIG. 5. Conductance as a function ofVd and temperature for
weak coupling,Ueff.0. Panelsad: l=0.02. Panelsbd: l=0.035.
Temperatures are:T=0, 7.3310−4, 1.5310−3, 3310−3, 6310−3,
0.023, and 0.094 from top to bottom. In all casesg=0.2.
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for the same reasons that make the spectral density asymmet-
ric.

A comparison between Figs. 5sad and 5sbd shows that an
increase ofl leads to an enhancement of the anisotropy. This
is easily understood as we saw that the latter arises from the
simultaneous presence of ELM and TBM. We also observe a
narrowing of the Coulomb blockade valley that originates
from the decrease ofUeff.

A further increase ofl takes the molecule away from the
standard Coulomb blockade regime. Figure 6 shows results
for Ueff=0. Here, the differences between the energies of the
four charge states of the isolated molecule are comparable
with their width and no Kondo effect is expected to occur.
No Coulomb blockade peaks appear upon raising the tem-
perature as we argued in Sec. III B 2.

The conductance in the strong-coupling caseUeff,0 is
shown in Fig. 6sbd. As in the previous regimes the zero-
temperature conductance is enhanced and reaches the quan-
tum of conductance at some value ofVd but, now, the peak is

exceedingly narrow. This is the regime where the anisotropic
Kondo effect occurs. The width of the peak inGsVdd is now
TAKM not uUeffu. A very small shiftudVdu*TAKM is sufficient
to destroy the Kondo resonance. The asymmetry generated
by the tunneling barrier is in this case extremely pronounced
because the charge on the molecule switches fromnd=0 and
nd=2 within a very small interval of values ofVd. Similarly,
the conductance at resonance decreases very rapidly with
increasing temperature as shown in the inset to Fig. 6sbd.

We close this section with a comparison between the con-
ductance of the device calculated from Eq.s5d and that com-
puted from Eq.s27d, using ndsVdd obtained from the NRG
calculation. The data are shown in the inset to Fig. 6sad. It is
seen that the Fermi-liquid relations27d is satisfied within the
numerical error.

V. CONCLUSIONS

We studied the linear transport properties of a model mo-
lecular transistor in the presence of electron-electron and
electron-phonon interactions analytically and by numerically
solving the model using the Numerical Renormalization
Group method.

Electron-phonon interactions lead to modulation of the
positions of the energy levels of the molecule with respect to
the Fermi level and of the height of the tunneling barrier
between the molecule and the electrodes. These effects give
rise to new features in the spectral and transport properties of
the system.

We found that when there is tunneling barrier modulation,
the strength of the coupling between the molecule and the
leads depends on the charge of the former. In general this
effect breaks electron-hole symmetry leading to an asymmet-
ric curve of conductance as a function of gate voltage.

The Kondo effect occurs in the presence of electron-
phonon interactions but its nature is quite different for weak
and strong coupling. In the first regime the ground state of
the isolated molecule is a spin doublet and this leads to a
standard Kondo effect with renormalized parameters. In the
second regime the lowest lying states of the isolated mol-
ecule form a charge doublet and the associated charge fluc-
tuations are described by an anisotropic Kondo model in a
narrow interval of gate voltages. The two charge states of the
doublet are coupled differently to excited states which gives
rise to pronounced asymmetries in the conductance and in
the spectral density.

We established Fermi-liquid relationships for the interact-
ing model. Tunneling barrier modulation leads to a nonuni-
versal relation between the spectral density of the molecule
and the electron occupancy. Quite remarkably, the relation
between the zero-temperature conductance and the charge
remains unchanged. An important consequence is that there
is perfect transmission in all regimes when the number of
electrons in the molecule is an odd integer.

These results may be useful in the context of manganites27

where electron-electron interactions and the coupling of the
electrons with a local phonon mode have to be considered to
describe the physics.28–30

FIG. 6. Panelsad: Conductance as a function ofVd and tempera-
ture for Ueff=0 sl=0.05d. Temperatures areT=0, 3310−3, 6
310−3, 1.2310−2, 2.4310−2, and 4.7310−2. Inset: Check of the
validity of Luttinger’s theorem, Eq.s27d. Panelsbd: Same assad for
Ueff,0 sl=0.06d. Temperatures areT=0 and 0.012. Inset: Zoom of
the conductance peak for temperaturesT=1.1310−5, 2.3310−5,
4.6310−5, 9.2310−5, and 1.83310−4 from top to bottom. For all
the curves shown in this figureg=0.2.
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APPENDIX: PROOF OF EQ. (20)

The number of electrons with spins in the molecule and
the local statec ssee Sec. III Ad at T=0 is given by

nds + ncs = −
1

p
E

−`

0

dv ImfTr Gsvdg, sA1d

an expression that can be rewritten in the form

nds + ncs = −
1

p
ImE

−`

0

dv
]

]v
Tr ln G−1svd

−
1

p
ImE

−`

0

dv TrFGsvd
]

]v
SsvdG

−
1

p
ImE

−`

0

dvGccsvd
]

]v
fv − 1/Gcc

0 svdg,

sA2d

by taking the derivative of Eq.s19d and using Eq.s17d.
The second integral on the right-hand side of Eq.sA2d

vanishes due to the Luttinger theorem31 which leads to

nds =
1

p
fws− `d − ws0dg + I1, sA3d

where

wsvd = Im lnhf1/Gcc
0 svd − Sccsvdg 3 fv − «d8 − Sddsvdg

− uÎ2V8 + Sdcsvdu2j sA4d

and

I1 =
1

p
ImE

−`

0

dvGccsvd
]f1/Gcc

0 svdg
]v

. sA5d

In the wide band limit Eq.sA5d reduces to

I1 .
1

p
ImE

−`

0

dvGcc
0 svd

]f1/Gcc
0 svdg

]v
= −

1

2
, sA6d

for a symmetric band.

Introducing the renormalized parameters«̃d=«d8+Sdds0d,
«̃c=Sccs0d, andṼ=V8+Scds0d /Î2 we find

nds + 1/2 = 2 −
1

p
Im lnf«̃d«̃c − 2Ṽ2 − i «̃d/pr0g . sA7d

For a Fermi-liquid ground state the self-energy matrix at the
Fermi energy is purely real and so are the renormalized pa-
rameters. A straightforward calculation then yields

nds +
1

2
=

1

p5d, «̃c,«̃d . 0, «̃c«̃d . 2Ṽ2

2p + d, «̃c,«̃d , 0, «̃d«̃c . 2Ṽ2

p + d otherwise,

sA8d

where

d = arctanS «̃d/pr0

«̃c«̃d − 2Ṽ2D . sA9d

In all cases we have the relationship

S «̃d/pr0

«̃c«̃d − 2Ṽ2D2

= tan2spnds + p/2d. sA10d

ExpressionssA8d–sA10d are identical to those that one
would obtain for the noninteracting problem with the renor-
malized real parameters replacing the bare ones.

Similarly, the c-site spectral density for spins at the
Fermi energy is given by

rccs0d =
1

p

«̃d
2/pr0

s«̃c«̃d − 2Ṽ2d2 + s«̃d/pr0d2
, sA11d

which, using Eq.sA10d, can be cast in the form

rccs0d = r0 cos2spndsd. sA12d

This is Eq.s20d of the main text.
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