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We report exact numerically calculated ground state and binding energies of a hydrogenic donor impurity
confined everywhere inside a spherical quantum dotsQDd surrounded by air or a vacuum. Finite spatial
steplike potentials allowing the electronic density to partially leak outside the QD are considered. This model
faces a divergence produced by the self-polarization potential at the position of the dielectric mismatch. We
bypass it by replacing the edge steplike dielectric mismatch by a continuous variation within an extremely thin
layer at this edge. A comprehensive study of several confining factors influencing electronic and binding
energies is carried out and a highly nonadditive interplay is found. Our calculations show that within both the
strong and weak confinement regimes we may be faced with three differentbehavior regimes. We call them
low, intermediate, andhigh. In the low and intermediate behaviors, the mass, polarization, and self-polarization
effects exert a very strong influence on the electron density distribution, so that perturbational estimations of
the binding energy may not be appropriate even in the strong confinement regime. These low and intermediate
behavior regimes are responsible for binding energy profiles not being monotonously decreasing vs off-
centering. It is even theoretically possible to design systems with off-centering independent binding energies.
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I. INTRODUCTION

A deep understanding of the effects of impurities on elec-
tronic states of semiconductor nanostructures is a fundamen-
tal question in semiconductor physics because their presence
can dramatically alter the performance of quantum devices.1

The binding energysEbd of shallow donor impurities in
nanoscopic systems depends upon materials and geometry
ssize and shaped, although it seems that shape has a minor
influence.2,3 The position of the impurity also has a strong
influence.4–6 By assuming homogeneous distribution of im-
purities in spherical quantum dotssQDsd, Silva et al.7 have
shown that impurities located next to the QD edge govern
the absorption spectra, a second smaller peak emerging for
large QDs which is associated with transitions involving im-
purities at the QD center.

Spatial confinement increasesEb with respect to the im-
purity in the bulk as it pushes up the allowed energies and
also because it reduces the size-dependent static dielectric
constant.8,9 However, this last indirect effect is very small for
QDs larger than 1 or 2 nm.10,11 In addition, we can increase
Eb by including the spatially dependent screening of an im-
purity ion caused by the valence electrons,12 but again this
Eb increment only amounts to a few meV, except for ex-
tremely small QDs.13,14

A major contribution to Eb comes from polarization
charges caused by the dielectric mismatch at the QD edge. If
the internalei static dielectric constant is larger than the ex-
ternal eo one, then the induced charge has the same sign as
the impurity, yielding an attractive interaction with the elec-
tron and, therefore, an appreciable increase inEb. If eo.ei,
the opposite holds.10,15–17The dielectric mismatch at the QD
edge also produces an additional dielectric effect, the so-
called self-energy, i.e., the interaction between the electron
and its induced polarization. Almost all calculations account-
ing for these polarization effects assume that the carriers are

confined inside the QD by an infinite barrier. This may be a
reasonable model for crystallites in vacuum, air, or a solvent
sbut definitely not for a QD embedded in a semiconductor
matrix with a materials band offset that is not very larged.
The infinite confinement potential has the practical advan-
tage of yielding a wave function that is zero at the QD edge,
thus eluding the divergence produced by self-potential at the
edgesoriginating from the steplike dielectric mismatchd. This
divergence is not integrable, since it is pathological for the
Schrödinger equation. Regularized self-energy, i.e., a linear
interpolation replacing the actual self-energy in a thin layer
at the interface of the order of a lattice constant, has been
employed with finite spatial confining potentials18 sthe un-
derlying assumption is that the electrodynamics of continu-
ous media breaks down in the microscopic domain and that
the above-mentioned interpolation is a good averaged. It
should be mentioned that this regularized self-energy does
not have a proper scaling with size. An alternative model for
self-energy having a correct scaling and simultaneously elud-
ing divergences has been suggested.11,19 In this model the
dielectric mismatch is replaced by a continuous variation of
the dielectric constant within a thin layer located at the in-
terface. This self-energy model has an analytical solution for
spherical QDs that can be written as an infinite, rather slowly
convergent, series.

Exact solutions for hydrogenic donors located at the cen-
ter of spherical QDs have been obtained,20–24 while
variational5–7,10,13,14,20,25–30 and perturbational
calculations9,16,17,31,32have been carried out for on- and off-
centered impurities. In the present paper, we employ the self-
energy model of continuous change of dielectric constant at
the QD edge, assume a realistic, finite confining potential,
and carry out exactsnumericald calculation on ground state
and binding energies of spherical QDs with off-centered im-
purities, including polarization and self-energy terms. The
aim of the paper is the study of the interplay of different
factors influencing binding energy. These factors include the
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direct Coulomb term, the spatial confinement coming from
the band offsets, the confinement produced by hydrostatic
strain, the differences in effective masses in different media,
polarization induced by discontinuities in the static dielectric
constant, and electron self-energy coming from differences
in dynamic or optical dielectric constants in different media.
We exclude donor self-energy because this interaction con-
tributes to the donor formation energy when the donor is
introduced into the QD. We consider both weaksR.a0

*d and
strongsR,a0

*d confinement regimes,a0
* andR being the ef-

fective Bohr and QD radii, respectively. We prove that it is
important to carry out exact calculations for a proper com-
parison of the results obtained. We will show that by tuning
the different sources of interactionsstailoringd we can design
a QD including a donor impurity whose off-centering may
stabilize, unstabilize, or almost have no effect on the binding
energy. Since there is nowadays widespread interest in the
research of new materials with very high or very low dielec-
tric constants,33–39our results may stimulate specific research
into these new materials in order to design new nanoscopic
devices.

II. THEORETICAL OUTLINE

We consider spherical semiconductor nanocrystals and
study the effect of off-centering a shallow donor impurity on
the electronic ground state and binding energies. The hydro-
genic energy levels can be well described by the effective
mass approachsEMAd down to nanocrystallite sizes of the
order of 2 nmsRefs. 10 and 40d. The corresponding Hamil-
tonian sa.u.d reads

H = −
1

2
¹ S 1

m*sr d
¹ D + Vsr d + fc + fs. s1d

The first term is the Hermitian kinetic energy operator for
a position-dependent mass.41 Vsr d is given by

Vsr d = H 0 if r , R,

V0 if r ù R.
J s2d

HereV0 is the dot-matrix band offset. Since we deal with
spherical nanocrystals, the strain comes into the Hamiltonian
Eq. s1d just by modifying the valueV0 and, indirectly, by a
slight modification of the electron effective mass.42,43

fc is the Coulomb term, including polarization effects.
We employ a macroscopic treatment, the validity of which
has been well established for semiconductor QDs.11 The ana-
lytical expression offc for an exciton in a multishell spheri-
cal nanocrystal is explicitly given in Ref. 11 as an infinite
series in terms of the Legendre polynomials. We have par-
ticularized this expression for an electron interacting with an
off-centered donor ionsa centered hydrogenic impurity is a
straightforward and well-known particular cased. Without
loss of generality, we assume that the donor ion is located on
thez axis sat a distancez0 from de QD centerd, and writefc
in cylindrical coordinates. Sincez0 is a fixed position,fc
only depends on ther andz coordinates of the electron. In
the case of a quantum dot in a matrix,fc can be written in
the following form:

fc
1,1sz0;r,zd = fA + fB + fC, r , R, s3d

fc
1,2sz0;r,zd = fD + fE, r . R, s4d

with

fA = −
1

ei
o
l=0

`

PlscosgdS r,

r.
Dl 1

r.

, s5d

fB = −
ei − e0

eie0

1

R
, s6d

fC = −
1

ei
o
l=1

`

PlscosgdS sl + 1dsei − e0d
e0sl + 1d + eil

1

R
S r.

R

r,

R
DlD , s7d

fD = −
1

e0

1

r.

, s8d

fE = −
1

e0
o
l=1

`

Plscosgd
1

r.
S r,

r.
DlS1 +

lse0 − eid
e0sl + 1d + eil

D , s9d

where r,sr.d is the smallestsgreatestd absolute value be-
tweenr =Îr2+z2 and z0. Indoors,fA is the direct Coulomb
term, fB is the polarization potential of an on-center impu-
rity, andfC is the polarization correcting term coming from
off-centering. Outdoors,fD is the potential corresponding to
an on-center impurity andfE is the corresponding off-
centering correction.

In order to achieve accuracy, the above-mentioned Leg-
endre polynomials have been calculated at each coordinated
value by a recurrence formula.44

fs is the electron self-polarization energy, which can be
obtained fromfc sRef. 11d. The implementation of this self-
potential for a quantum dot in a matrixstwo regions and then
two different dielectric constantsd or a multishell quantum
dot sseveral regions with different dielectric constantsd yields
divergences at the interfaces. As is stated in the Introduction,
divergences arise at the positions where theesr d profile has a
steplike discontinuity. We then assume a continuous cosine-
like model for esr d across a thin 3 Å layer at the
interface.11,19However, since we carry out numerical integra-
tion, the cosinelike model will be discretized to yield a mul-
tistep profile. Then, we use a discretization scheme that
avoids calculating at the dielectric discontinuities.45 This
scheme eludes every divergence and mimics the continuous
variation of the dielectric constant. A convenient rewriting of
the fs expression in Ref. 11 is also carried out in order to
elude the low convergence and numerical inaccuracy coming
from computational cutoff errors.45

Summing up, we obtain a differential equation only de-
pendent on two electron coordinatessr andzd and including
the following kinetic energy operator:

T̂ = −
1

2r

]

]r
S r

m*sr,zd
]

]r
D −

1

2

]

]z
S 1

m*sr,zd
]

]z
D , s10d

wherem*sr ,zd is the steplike variable effective mass. In or-
der to elude the source of inaccuracy arising from the
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d-function nature of]m* /]r and ]m* /]z, we discretize Eq.
s10d susing central finite differencesd following the scheme
proposed by Harrison,46 which ensures the robustness of the
method even for large changes in the effective mass across
the interfaces.

The discretization of Eq.s1d yields eigenvalue problems
of asymmetric, huge, and sparse matrices. Energies and wave
functions are obtained by means of diagonalizations. To this
end we use the Arnoldi solver47 implemented in theARPACK

package.48

III. NUMERICAL RESULTS

In this section we study the influence of different confine-
ment sources on the energy andEb of an electron trapped by
an impurity located in a QD surrounded by air or vacuum
seo=mo

* =1d. This is the environment where the dielectric ef-
fects are expected to be the largest. Exploratory calculations
on the isolated contribution of each confining source on the
ground state of the system show that an external effective
masssmo

*d higher than that of the QDsmi
*d leads to an energy

stabilization vs the impurity off-centeringzI =zo/R. This can
be easily understood in terms of the kinetic contribution to
the energy: A higher effective mass in the external region,
where the wave function is still different from zero, trans-
lates into a minor kinetic energy and, then, a lower total
energy. As the impurity gets closer to the edge a larger
amount of electronic density spreads over the QD surround-
ing medium and, thus, a higher energy stabilization occurs.

A similar reasoning led us to the conclusion that the spa-
tial confining potential provided by the band offset induces
an energy unstabilization aszI increases.

The contribution of thefc term in Hamiltonian Eq.s1d to
the ground state energy of the system is stabilizing, its action
increasing withzI when ei .eo. However, the off-centering
stabilization capability offc is ei dependent. It has been
found45 that the largest contribution to the energy differences
between on-center and off-center impurities occurs when
employing dielectric constants of aboutei =3 sassumingeo
=1d.

Self-polarizationfs enhances these energy differences: In
the case ofei .eo, this potential looks like a small, almost
constant, barrier inside the QD, and a deep and narrow well
outside, by the QD edge.11 As we move the impurity from
the center towards the crystallite border, an increasing
amount of electron density comes into the deep, stabilizing
well of the self-polarization potential.

However, the previous off-center stabilizing effects can be
drastically reduced by the spatial confining potential, as it
may prevent the wave function from leaking outside the QD.
In the next subsection we will show that these confinement
effects are highly nonadditive so that specific interplays will
yield singular behaviors, such as an increasing or decreasing
of Eb as the impurity is being off-centered.

A. Off-centering of a hydrogenic impurity in a SiO2

nanocrystal: A paradigmatic case of weak confinement regime

As pointed out in the Introduction, we may find in the
literature many variational calculations on the ground state

and binding energiessEbd of donor impurities located every-
where in QDs that have been modeled by parabolic and step-
like confining potentials swith both finite and infinite
barriersd.5–7,20,25–27To our knowledge all these calculations
deal with systems where the dielectric mismatch is small, so
that polarization and self-polarization effects have been ne-
glected. A second common feature of these calculations is
that they include situations in which the studied system is in
the weak confinement regime, where perturbational methods
are not suitable and, thus, the variational approach is a good
alternative. In the present paper, we carry out exactsnumeri-
cald calculations and will show that in some situations this is
about the only reliable tool.

A general trend found in all the above-mentioned studies
is that the ground stateEb always diminishes aszI increases.
A simple reasoning emerges: the closer the impurity is to the
QD edge, the higher the amount of electronic density close to
the unstabilizing potential barrier will be. Nevertheless, our
preliminary studies lead us to suspect that at least some spe-
cific interplays may yield an opposite trend forEb san off-
centering stabilization due tomi ,m0 andei .e0d. It has been
determined that, for a crystallite in air or vacuum, the highest
energy variation vszI occurs for values of the dielectric con-
stantei <3. Then, the study of a SiO2 nanocrystalswith static
dielectric constantes=4d may be of special interest. We con-
sider next a sphericalR=3 nm SiO2 nanocrystal in air. The
material parameters employed are effective massmi

* =0.5
sRef. 49d, electroaffinityEA=0.9 eVsRef. 50d, static dielec-
tric constantes=4 sRef. 17d, and dynamic or optical dielec-
tric constante`=2 sRef. 51d. The effective Bohr radius is,
then,a0

* =a0es/m
* =4.2 Å!R, i.e., the confinement regime of

the nanocrystal is clearly weak.
We carry out two series of calculations ofEb vs zI, which

are shown in Fig. 1sad, namely, S0sdotted lined excluding
self-energy and S1sfull lined including self-energy calculated
using thesappropriate53d opticale` dielectric constant.54 The
spatial confinement step potential height is assumed to equal
electroaffinity.52 Binding energyEb, as commonly defined, is
the difference between the ground state energy of a QD with-
out and with impurity.

As we suspected, Fig. 1sad shows thatEb increases with
zI. It is just the opposite to the generally accepted trend ofEb
vs zI. This is a new, relevant result of this work. In other
words, despite the unstabilizing spatial confining potential,
the interplay with mass, polarization, and self-polarization
yields stabilization aszI increases.

One may think that the relatively small SiO2 electroaffin-
ity sEA=0.9 eVd and, therefore, the relatively shallow spatial
confining potentials0.9 eV highd may be the reason for the
calculated anomalousEb vs zI behavior. Indeed, most semi-
conductors haveEA<4 eV. Thus, we repeat the above cal-
culation but artificially increase the spatial confining barrier
up to 10 eVshigher than those of most semiconductorsd. The
results are shown in Fig. 1sbd. We can see there that from
zI =0 up tozI <0.7Eb increasessthe electron density does not
feel the barrier yetd. Nevertheless, larger values ofzI involve
a decrease inEb. We will discuss the interplay of factors
influencingEb in greater detail later in the paper.
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B. Strong confinement regime: exact calculations vs
perturbational approach

Small crystallites built of materials with large dielectric
constants and light effective masses are in the strong con-
finement regimesR,a0

*d. For calculating binding energies in
these nanocrystals, including full dielectric effects, Ferreyra
et al.17,32 have developed the so-called strong confinement
approach55 and have carried out calculations employing two
models of spatial confining potential, namely parabolic and
infinite hard wall, and for both on- and off-centered impuri-
ties. Their results show that the strong confinement approach
yields meaningful results in all the cases studied, from which
a general trend seems to emerge:Eb is a monotonous de-
creasing function ofzI sthe same result as the one found in
the variational calculations discussed in the previous subsec-
tiond.

In order to check whether the strong confinement ap-
proach can be generalized to thesmore realisticd finite step-
like spatial confining potential, we carry out the same calcu-
lation as in the previous subsectionsSiO2 in vacuumd but,
this time, we have artificially reduced the effective mass to
m* =0.05, in order to move into the strong confinement re-
gime. The results are shown in Fig. 2sad, where we can see
that if Eb is calculated numerically excluding self-energy
sS0d it is almost insensitive to the off-centering, while this is
not the case when self-energy is includedsS1d. This is so
because forzI .0.7 the attractive self-polarization potential

well squeezes part of the electronic density into the well,
yielding a relevant increase inEb. The differences we find
out between S0 and S1 and the fact that exactEb increases
with zI lead us to suspect that the first-order perturbation
approach would not be appropriate in this case. On the one
hand, the self-polarization potentialfs has not first-order
contribution toEb and, on the other hand, the Coulombfc
term always predicts a reduction inEb vs zI sRefs. 17 and
31d. This steady prediction can be explained as follows: in
the strong confinement approachEb is calculated as the op-
posite sign expectation value of thefc potential, Eqs.
s3d–s9d, in the impurity free QD ground state. The angular
part of the corresponding wave function is just a constant
Y0

0su ,fd=1/Î4p. Thus, when integrating over the angular
coordinates, only the termsPlscosgd of fc contain the angu-
lar su ,fd variables. Since

Plscosgd =
4p

2l + 1 o
m=−l

m=l

Yl
msu0,f0d*Yl

msu,fd, s11d

wheresu0,f0d are thesfixedd coordinates of the impurity and

FIG. 1. sad Ground state binding energy vs impurity off-
centeringzI corresponding to aR=3 nm spherical SiO2 nanocrystal
in air or vacuumsmo

* =eo=1d. Calculations have been performed
without sS0, dotted lined and with the inclusion of the self-
polarization contributionssS1, full lined. SiO2 parameters are speci-
fied in the text.sbd Same assad but with V0=10 eV and the self-
polarization potential that is now calculated withei =4 ande0=1.

FIG. 2. sad Exact and first-order perturbational estimations of
binding energyEb vs off-centeringzI for a R=3 nm spherical QD in
air or vacuumsmi

* =0.05, m0
* =1, ei =4, eo=1 andV0=0.9 eVd. S1

sfull linesd include while S0sdotted linesd exclude self-polarization
contributions. The zeroth-order wave functions employed in the
perturbational calculations are those of the impurity-free QD in the
presence and absence of the self-polarization potential, respectively.
sbd Same assad but with V0=10 eV andei =4. scd Same assad but
with V0=10 eV andei =8.
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1
Î4p

kYl
msu,fdl = klmu00l = dl,0dm,0, s12d

we have kPlscosgdl=4pdl,0dm,0. Therefore, only thel =0
terms in Eqs.s3d–s9d contribute to the expectation value. It
works as iffc would be reduced to

fc
1,1sl = 0d = −

1

eir.

−
ei − e0

eie0

1

R
, r , R, s13d

fc
1,2sl = 0d = −

1

e0r.

, r . R, s14d

wherer.=r if r .z0 andr.=z0 if r ,z0, sr=0,z0d being the
impurity location. In other words, onlyfc

1,1 depends onz0,
and this dependencesthe largerz0 is, the shallowerfc

1,1 will
bed always leads to a decrease inEb vs zI.

The previous reasoning also helps to understand why the
perturbational approach works quite well for on-centerszI

=0d impurities and deteriorates aszI increasesfsee Fig. 2sadg.
Indeed, if zI =0, Eqs.s3d–s9d reduce to Eqs.s13d and s14d,
with r. replaced byr, so that by calculating the expectation
value we do not actually neglect any term coming from
higher order perturbation theory, which is not the case ifzI
Þ0.

We may describe the results in Fig. 2sad as a balance
between polarization potentialsstabilizationd and spatial con-
fining potentialsunstabilizationd yielding anEb that is almost
insensitive to off-centeringfsee S0 series in Fig. 2sadg. When
self-energysstabilizationd comes into play, then a net in-
crease inEb vs zI results. We may reverse the situation by
increasing the spatial confining potential. This is the case
plotted in Fig. 2sbd, where a huge 10 eV potential barrier
sfelt almost like infinity by the ground stated is present. In
this case the strong confinement approach works well even at
zI close to one. It should be mentioned that in this case self-
energy has almost no influence onEb.

By looking at the numerical wave function it can be seen
that the huge spatial confining potential prevents the elec-
tronic density from leaking into the self-polarization poten-
tial well. Thus, a double stabilizing effect is switched off; on
the one hand, the stabilization coming from the self-potential
itself and, on the other hand, the effect of the external mass
sreducing the kinetic energyd. We can say that both self-
energy and mass effects almost vanish, so that the small dif-
ferences between exact and perturbationally calculatedEb
come from the off-center polarization correcting termfC,
Eq. s7d, which first-order perturbational contribution toEb is
zero but, obviously, makes a nonzero contribution to the ex-
act Eb if zI Þ0.

Above we stated that the sensitivity ofEb to a change inzI
is maximum aroundei =3. It is connected to the fact thatufCu
fEq. s7dg also has a maximum around this value ofei sRef.
45d. In the above calculationei =4. A largerei is expected to
mean a smallerufCu, i.e., a better performance of the pertur-
bational approach. This is shown in Fig. 2scd.

C. Binding energy vs band offset

In the above subsections we have shown three differentEb

vs zI profiles. In this subsection we will show that the above-
mentioned profiles correspond to the three possiblebehavior
regimeswe may meet as we increase the spatial confining
potential. We will refer them to aslow, medium, and high
behavior regimes, although the border between consecutive
regimes, i.e., the corresponding potential height, will be very
much dependent on the other factorssdielectric constantsei

ande0, effective massesmi
* andm0

*d.
For the sake of clarity, we will fix the effective masses

smi
* =0.2 andm0

* =1d in order to diminish the number of vari-
ables in our study. Then we carry out three series of calcu-
lations including highei =16 slike eGed, mediumei =8 slike
eZnOd, and lowei =4 slike eSiO2

d internal dielectric constants
and an externaleo=1 scorresponding to vacuum or aird. We
scan spatial confining potential heightsV0 from near zero up
to V0=4 eV swhich covers most semiconductorsd. We plotEb

vs V0 for different off-centeringsszI =0, 0.4, 0.6, 0.8, and
0.9d. Finally, in order to see the effect of self-energy, we
again carry out two series of calculations: S0sdotted linesd
without self-energy56 and S1sfull linesd full calculation. The
nanocrystal radius, as in the above subsections, is fixed to
R=3 nm.

Figure 3sad displays the results corresponding to the low
ei =4 dielectric constant and the above-mentioned behavior
regimes can be seen. In the range 0,V0,1.6 eV Eb is a
monotonously increasing function ofzI. In the rangeV0

.2.5 eV Eb is a monotonously decreasing function ofzI.
Finally, in the intermediate region 1.6,V0,2.5 eV,Eb first
increases vszI, then reaches a maximum and finally de-
creases.

All the same, Fig. 3sad reveals that self-polarization is
crucial to determine the behavior regime regions. Thus, S0
calculations predict a 0,V0,2.2 eV low region, and a me-
dium one extending from 2.2 up toV0.4 eV, the highest
potential included in our calculations.

Finally, it is worthwhile pointing out that the effective
massmi

* =0.2 and the dielectric constantei =4 employed in
all calculations included in Fig. 3sad yield an effective Bohr
radius a0

* =10.5 Å, which means that we are in the weak
confinement regime. All the same, all three possibleEb be-
havior regimes are encountered here.

The next two sets of calculations, namely those forei =8
andei =16, represent a transit towards the strong confinement
regime sa0

* =2.1 nm anda0
* =4.2 nm vs R=3 nm, respec-

tivelyd. The results are shown in Figs. 3sbd and 3scd. Again
all threeEb vs zI behavior regimes arise; the most remarkable
feature is that by increasingei a shrinking of the intermediate
region occurs, so that for high values ofei it almost disap-
pears and becomes just a dot between low and high behavior
regions. Turning this the other way round, we see that for
high dielectric constants we may find a potentialV0 for
which Eb does not depend onzI. This is another relevant
result of this work that may beuseful in technological appli-
cations: since impurities may appear almost randomly in
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different locations within the QD and since electronic prop-
erties depend on their location, they are usually a nuisance.
However, doping with impurities in azI-independent mate-

rial may be useful in the design of nanoelectronic devices.
Finally, we would underline another relevant result that

can be seen in Figs. 3sad–3scd: self-energy has a huge influ-
ence onEb in the low behavior region, while its influence is
small for high potentials. From a practical point of view this
means that we should not use perturbational estimations of
self-energy in the low and intermediate behavior regimes,
with the additional difficulty that the borders of these regions
cannot be established in generalsthey depend onei, e0, mi

* ,
m0

* and also the QD radiusd. The reliability of Eb first-order
perturbational estimations published to date is connected
with the negligible role played by self-energy onEb when
infinite spatial potential models are employed9,16,17,31,32.

IV. CONCLUDING REMARKS

Using exactsnumericald integration, we have reported cal-
culated ground state and binding energies of a donor con-
fined everywhere inside a spherical QD surrounded by air or
vacuum. A comprehensive study of several confining factors
influencing electronic and binding energies is carried out. We
find a highly nonadditive interplay that to a large extent
makes it difficult to assess general behavior trends.

Our calculations show that within both, the strong and the
weak confinement regime, three differentbehavior regimes
may occur, and that in the low and intermediate behaviors,
the mass, polarization, and self-polarization effects influence
the electron density distribution so much that we cannot
safely carry out perturbational estimations of the binding en-
ergy. Then, we conclude that a strong regime of confinement
cannot always guarantee a safe estimation of binding ener-
gies by means of first-order perturbation theorysstrong con-
finement approachd.

These low and intermediate behavior regimes have not
been reported so far in the literature and, as we show in this
paper, they are responsible for theEbszId profiles that are
different from the always monotonously decreasing previ-
ously reportedsin both cases, strong and weak confinement
regimesd. We also show that it is possible to tune an off-
centering independentEb, which can be of technological in-
terest in designing new nanoelectronic devices.
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