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We present a numerical approach for solving time-dependent quantum transport problems in molecular
electronics. By directly solving Green’s functions in the time domain, this approach does not rely on the
wide-band limit approximation thereby is capable of taking into account the detailed electronic structures of the
device leads which is important for molecular electronics. Using this approach we investigate two typical
situations: current driven by a bias voltage pulse and by a periodic field, illustrating that the computational
requirement is no more than an inversion of a relatively small triangular matrix plus several matrix multipli-
cations. We then present numerical results of time-dependent charge current for a one-dimensional atomic
chain. The numerical solution recovers known results in the wide-band limit, and reveals physical behavior for
leads with finite bandwidth.
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I. INTRODUCTION

The idea of using single molecules as basic functional
units for electronic device operation dates back to 1974 when
Aviram and Ratner discussed the working principle of a mo-
lecular rectifier.1 Since then there have been numerous theo-
retical and experimental investigations on charge and spin
transport through various molecular systems in the metal-
molecule-metalsMMM d configurations.2 Here, the “mol-
ecule” indicates the device scattering region,3–6 and the metal
serves as device leads which extend to electron reservoirs far
away where external voltage bias is applied so that a current
is driven through. Since the ultimate goal of molecular elec-
tronics is in the application domain of nanotechnology, one
of the most important questions which has yet to be an-
swered, is how fast or how slow can a device turn on/off a
current? In other words, if one applies a square voltage pulse
of time durationt, what is the time-dependent currentIstd of
the MMM system? What isIstd for other shapes of the time-
dependent voltage? These questions should be answered be-
fore one can attempt to judge if a particular switching device
is technologically viable. Indeed, some recent experimental
efforts have already been devoted to the study of how does a
molecular device respond to a gigahertz to even terahertz ac
signals.7,8 High frequency quantum transport in coherent
conductors is also interesting in its own right. Upon applying
an external fieldDsx,td to a quantum conductor at positionx
and timet, wave functions of charge carriers acquire a phase
factor expf−ietDsx,t8ddt8g, so that the spatial and temporal
variables combine to play important roles in the time-
dependent transport. For this reason ac quantum transport
has rich behavior but its theory is complicated even for
simple model analysis9,10 without including any chemical de-
tail present in a molecular device.

To make quantitative analysis of molecular devices in the
form of MMM which typically involves large number of
electrons, a practical and state-of-art dc transport formalism

exists11–13 which is based on carrying out the density func-
tional theorysDFTd within the nonequilibrium Green func-
tionssNEGFd. Here the DFT takes care of atomic and chemi-
cal details of the device while the NEGF deals with the
transport boundary conditions and nonequilibrium density
matrix.11–13 Quantitatively accurate comparisons to experi-
mental data have been made using such a tool.14,15 Despite
its success in analyzing dc quantum transport, existing
NEGF-DFT packages11–13 cannot be directly applied to ac
situations.

In principle, an ac theory could be based on self-
consistent solutions of the time-dependent Kohn-Sham equa-
tion plus time-dependent electrodynamics. This is, however,
impractical at the present stage due to its complexity and its
prohibitively large computational demand. A simpler ap-
proach is to note the fact that an externally applied electric
field, in most practical situations, is orders of magnitude
smaller than the electrostatic field inside a molecule. Hence,
one may start from a steady-state Hamiltonian, add the time-
dependent field to the metal leads adiabatically, and then
evaluate transport current. This idea has been widely adopted
in mesoscopic physics and an elegant theory has been devel-
oped 10 years ago.16 However, applications of this theory17

rely on the so called wide-band limitsWBLd—an approxi-
mation in which device leads are assumed to have no energy
dependent features. For molecular devices, however, the va-
lidity of the WBL is unclear because such devices are very
sensitive to the molecule-metal contacts, hence, any approxi-
mation on the contact property should be carefully examined.
In particular, recent interest in molecular devices sandwiched
between semiconductors18,19 requires careful examination on
the effect of the nontrivial band structure of the leads, hence,
quantitative predictions become difficult if the WBL is
adopted. Therefore, it is highly desirable to develop an ap-
proach to calculate time-dependent quantum transport in
MMM devices that does not rely on the WBL. Such an ap-
proach will then allow the time-dependent transport theory to
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cooperate with the NEGF-DFT model11,12 or a tight-binding
model to account for atomic details.

It is the purpose of this paper to report a numerical ap-
proach to solve time-dependent quantum transport problems
without the WBL approximation. We have found that for
several very relevant time-dependent problems, Green’s
functions can be solved directly in the time domain without
using the WBL. The method is applied to investigate time-
dependent current driven by a bias voltage pulse and a peri-
odic field. We compare results in the WBL and beyond the
WBL, and demonstrate that the WBL approximation can lead
to qualitatively different transport features.

The paper is organized as follows. In the next section, we
briefly review the the NEGF formalism for time-dependent
quantum transport.17 To apply the formalism beyond the
WBL, a possible approach is to work in the time domain and
such a theory is presented in Sec. III. We confirm the theory
and its associated numerics using an exactly solvable model.
In Sec. IV, we investigate two important cases: time-
dependent current driven by a voltage pulse and by a peri-
odic field. As a demonstration, we apply our approach to a
simple but nontrivial tight binding model of a one-
dimensional atomic chain, which recovers known results in
the WBL but reveals physical behavior beyond the WBL.
Finally, a short summary is given in Sec. V.

II. NEGF THEORY FOR TIME-DEPENDENT TRANSPORT

We describe a MMM device by the following model
Hamiltonian:

H = H0 + Hextstd, s1d

whereH0 is the equilibrium or steady-state Hamiltonian of
the device while Hextstd is an externally applied time-
dependent perturbation. In generalH0 has the following
form:

H0 = o
b

Hb + HC + HT. s2d

Here,Hb is the equilibrium Hamiltonian of thebth lead

Hb = o
k

ebkabk
† abk, s3d

whereabk
† /abk creates/annihilates an electron in leadb with

quantum numberk. The second termHC is the Hamiltonian
of the device scattering region

HC = o
n

sen + Undcn
†cn,

where cn
†/cn creates/annihilates an electron in the device

scattering region at quantum staten, Un is the single-particle
potential energy. The third termHT is the Hamiltonian de-
scribing the coupling between the device and the leads

HT = o
bkn

fvbknabk
† cn + H.c.g,

wherevbkn gives the coupling strength. InH0, the electron-
electron interactions are treated at the mean-field level so

that onlyquadratic terms of creation/annihilation operations
appear.

When there is no explicit time dependence in the Hamil-
tonian, i.e., Hextstd=0, the steady-state quantum transport
problem is determined byH0, and can be solved for molecu-
lar devices in the MMM configuration. Such a steady-state
analysis involves a self-consistent calculation of device
HamiltonianH0 by the density functional theory combined
with nonequilibrium Green’s functions in the energy space,
as shown in Refs. 11 and 12. From now on, we will assume
that H0 has been calculated this way or known from some
tight binding parametrization, and focus on how to solve the
problem whenHextstdÞ0. To proceed, we further assume
that the time-dependent perturbationHextstd is locally uni-
form on each lead, and the energy levels in the lead are
shifted adiabatically with it.Hextstd has the form

Hextstd = o
k

Dbstdabk
† abk,

whereDbstd is the time-dependent perturbation field. For the
following analysis, it is convenient to absorbDbstd into a
phase factor by applying an unitary transformation discussed
in Ref. 20 so that the coefficientvbkn becomes

vbknstd = vbknexpF− iEt

dt8Dbst8dG . s4d

For the time-dependent problem of Hamiltonians1d, a
general formulation for quantum transport based on the
NEGF technique has been established before.16 An extension
of this theory to include displacement current was addressed
in Ref. 10. It has been shown that the current in a lead la-
beled with b at time t can be written in terms of Green’s
function and self-energy16

Ibstd =
2e

"
2 ReTrE dt1fGrst,t1dSb

,st1,td + G,st,t1dSb
ast1,tdg,

s5d

whereG is the Green’s function matrix of the scattering re-
gion defined byGmnst1,t2d;kkcmst1ducn

†st2dll; Sb is the self-
energy matrix due to coupling between the scattering region
and the leads, defined bySb,mnst1,t2d;ok vbkm

* st1d
3kkabmst1duabn

† st2dllvbknst2d. sThe notationkkAst1duBst2dll is
used to represent all of the real time Green’s functions such
as retarded Green functionkkAst1duBst2dllr ;−iust1− t2d
3khAst1d ,Bst2djl, lesser Green functionkkAst1duBst2dll,

; ikBst2dAst1dl, etc.d; and the trace is over the degree of free-
dom in the scattering region.Gr and G, satisfy the Dyson
equation and Keldysh equation, respectively,

Grst1,t2d = grst1,t2d +E E dt3dt4g
rst1,t3dSrst3,t4dGrst4,t2d,

s6d
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G,st1,t2d =E E dt3dt4G
rst1,t3dS,st3,t4dGast4,t2d. s7d

The total self-energyo is a summation over contributions
from self-energy of each lead, which can be expressed as20

Sb
r,,st1,t2d =E de

2p
e−iest1−t2dS̃b

r,,sedexpF− iE
t2

t1

DbstddtG ,

whereS̃b
r,,sed is the Fourier transform of the self-energy in

the absence of any time-dependent perturbation.
In order to calculate the transport current from Eq.s5d,

one needs to solve the integral Eq.s6d and then evaluate the
multiple integrals in Eq.s7d. Since these are difficult to do, in
practice one usually applies an additional approximation, the

so called wide-band limit.21–23In the WBL, S̃b
r sed is assumed

to be an energy-independent constant so thatSb
r st1,t2d is pro-

portional to dst1− t2d. Consequently,Grst1,t2d becomes ex-
actly the same as that without the time-dependent perturba-
tion, and the current formulas5d only containsG,st ,td for
which the double integral in Eq.s7d can be reduced to two
single integrals. This procedure drastically simplifies subse-
quent analysis. The WBL is reasonable if the leads have no
energetic features near its Fermi energy. But it fails to de-
scribe leads with a finite bandwidth and the energy depen-
dence of the leads’ density of statessDOSd. These situations
are important for molecular electronics because the detailed
chemistry in molecule-lead contact region can dominate the
entire transport features. In the next section, we shall develop
a numerical approach for solving Eqs.s5d–s7d beyond the
WBL.

III. TIME DOMAIN DECOMPOSITION

One always has the freedom to choose working either in
the real space or in the Fourier-transformed space. Most of
the time, Fourier transform can help to convert differential or
integral equations into algebraic equations, which greatly
simplifies the mathematical procedure. The time-dependent
transport problem defined in Eqs.s5d–s7d, however, is an
exception because in the presence of time-dependent pertur-
bation, the Green’s functionGst1,t2d is neither a function of
t1-t2 nor is subjected to periodic boundary condition for each
time variable. Even in the presence of periodic field with
period T, the Green function satisfiesGst1+T,t2+Td
=Gst1,t2d rather thanGst1+T,t2d=Gst1,t2d and Gst1,t2+Td
=Gst1,t2d. While one can use a double Fourier transform to
convert Green’s functions into energy space,24,25 in general
this does not simplify matters without further approxima-
tions.

Alternatively, let us workdirectly in the time domain by
discretizing the time variables in Eqs.s5d–s7d. In the time
domain, the Green’s functions become matrices; the integral
Eq. s6d becomes a matrix equation; the multiple integrals in
Eqs. s6d and s7d become matrix multiplication; and more
importantly, the temporal features of the Green’s functions
are exposed explicitly in the structure of matrices. A naive
computation based on this idea, however, does not work be-

cause the integral variables in Eqs.s5d–s7d run from −̀ →
+` so that one needs to deal with hugesif not infinitely
larged matrices: in particular one must invert such a huge
matrix to solve Eq.s6d that is a computational challenge.
Fortunately, we found that for quantum transport problems in
an open system, the time limits −̀→ +` in Eqs.s5d–s7d can
be effectively truncated to a finite time domain having a
scale of the correlation timefsee Eq.s8d belowg. For some
typical cases the finite time domain can be further decom-
posed into smaller blocks: the Green’s function in Eq.s6d for
each block can be calculated efficiently without needing to
invert any huge matrixssee next section for detailed discus-
siond. We call this technique “time domain decomposition”
sTDDd.

TDD is based on physically motivated grounds. First, the
time =+` limit in Eqs. s5d–s7d can be replaced by the upper
time limit concerned in the calculationsnot an approxima-
tiond, as the “future” must not affect what happens “now.”
Second, the time =−̀ limit can becutoffat some remote past
whose phase memory is totally lost by nowsa well-
controlled approximationd. In an isolated system, such corre-
lation can be infinite long: the initial state att=−` can de-
termine the present state by the Schrödinger equation. But
for an open system such as a MMM device, the lifetime of
quantum scattering states in the device scattering region is
finite, hence, a finite characteristic correlation time exists in
this problem. Mathematically, Green’s functions for a trans-
port problem scale ase−Gut1−t2u at large time, whereG is the
total coupling strength of the device scattering region to its
environment. This gives a natural cutoff in time

TC =
"

G
. s8d

One may, therefore,practically take Gr,a,,st1,t2d<0 if ut1
− t2u.TC. With this lower time cutoff, Eqs.s5d–s7d can be
calculated directly in the time domain.

To show that TDD is quantitatively accurate, we present
an exactly solvable transport problem and compare the nu-
merical results obtained in TDD with that of the analytical
solution. The problem is described as follows: consider a
device whose scattering region consists of a single energy
level, and the device is coupled to a single lead withfinite
band width WsLorentzian shaped. The retarded self-energy
can be obtained as

Srsed = GE dek

2p

1

e − ek + i0+

W2

W2 + ek
2 =

G

2

W

e + iW
. s9d

At the time t=0, the energy level abruptly jumps fromE1 to
E2 due to some external perturbation.

For this simple problem, the retarded Green’s function
can be derived analyticallyssee the Appendix for more de-
tailsd:

Grst1 . 0,t2 . 0d = − iust1 − t2dhst1 − t2,E1d, s10d

Grst1 , 0,t2 , 0d = − iust1 − t2dhst1 − t2,E2d, s11d
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Grst1 . 0,t2 , 0d = − ifhst1,E2dhs− t2,E1d

+ fst1,E2dfs− t2,E1dg, s12d

Grst1 , 0,t2 . 0d = 0, s13d

in which

hst,Eld ;
El

+ + iW

El
+ − El

− e−iEl
+t +

El
− + iW

El
− − El

+ e−iEl
−t,

fst,Eld ;
ÎGW/2

El
+ − El

−se−iEl
+t − e−iEl

−td,

El
± ; 1

2fEl − iW ± ÎEl
2 + 2iWEl − W2 + 2GWg.

In the last expression,El
± correspond to the +/− signs on the

right-hand side. Figure 1sad shows a gray-scale plot of the
retarded Green’s function of this exact solution. Then we
solve the same problem by numerically computingGrst1,t2d
matrix using the TDD techniques200 time points are used in
the computationd. The result is shown in Fig. 1sbd, which is
indistinguishable from the exact solution in Fig. 1sad. Figures
1scd and 1sdd show time-dependent currentIstd versus timet
obtained from TDD for two different cutoffs. For a small
cutoff fFig. 1scdg, the result deviates significantly from the
exact solution whent approaches the lower cutoff, although
the result is still reliable whent is far from the lower cutoff.
For larger cutofffFig. 1sddg, the numericalIstd is essentially

identical to the exact solution in the full time range. We
conclude that to obtain a correct current behavior at some
time t0, one needs to compute the Green’s function down to
time t0-TC, as the quantum system cares about the history at
time scaleTC.

Basically, there are two approximations in the TDD tech-
nique, one is the discretization in time, the other is the lower
cutoff in time. The validity of the first approximation re-
quires that the time interval used in the discretization is
smaller than the characteristic scale of the variation in
Green’s functions. This scale corresponds to" over the
maximum energy scale in the problem, e.g., the coupling
strengthG, the peak value of the bias pulseD, etc. The sec-
ond approximation relies on the physics discussed in the last
paragraph, i.e., there exists a characteristic correlation time
in an open quantum system beyond which two physical
events are uncorrelated. The calculation ofGr is more accu-
rate thanG,, in the sense thatGr only involves the first
approximation whileG, relies on both. This is because the
time variables of retarded quantities in the Dyson equation
are constrained by time sequencessee next section for de-
tailsd. While there is no constraint for lesser quantities, one
must make a truncation to obtain a finite matrix. We empha-
size that both approximations are well controlled. In practice,
one may estimate the correlation time and discretization in-
terval by relevant energy scales, and check the validity of the
two approximations by doubling or halving these values in a
numerical computation until the results have no significant
change.

Direct inversion of Green’s function matrix with the time
scaleTC is able to deal witharbitrary time-dependent per-
turbations. But a serious numerical problem will arise when
the coupling strengthG→0 so that the cutoffTC→`, where
one encounters a huge matrix inversion in TDD. This situa-
tion occurs when the device scattering region is weakly
coupled to the leads. However, we found that by taking ad-
vantage ofspecific properties of time-dependent perturba-
tion, largeTC limit can also be efficiently treated in the TDD.
These special cases cover a wide range of physically impor-
tant situations, such as sending a pulsed signal or applying a
periodic field to the MMM device, as demonstrated in the
next section.

IV. CURRENT DRIVEN BY VOLTAGE PULSE AND
PERIODIC FIELD

In this section, we investigate two most relevant cases:
electric current driven by a bias voltage pulse and by a peri-
odic field. We show that the specific features of the time-
dependent perturbation will greatly simplify the computation
in TDD, so that calculation for largeTC limit is possible with
relatively small computational demand.

Since the equilibrium or steady-state HamiltonianH0 can
be computed by applying the NEGF-DFTab initio method
of Refs. 11 and 26, or by assuming a simple tight binding
form,27 let us assume that the equilibrium or steady-state

Green’s function of the scattering regionG̃r and the self-

energyS̃r of the leads are known fromH0. Upon applying a
time-dependent signalDbstd to thebth lead, the total Hamil-

FIG. 1. Solution of an exactly solvable problem.sad andsbd are
the gray-scale plot of the Green’s function matrixGrst1,t2d obtained
from the exact analytical solution and the numerical solution using
TDD, respectively. Notice that theGr matrix is zero in the upper
triangle. We plot the real part of matrix elements in the upper tri-
angle and the imaginary part in the lower triangle.scd and sdd are
numerical results ofIstd curves with different lower time cutoffs in
TDD: scd is for a small cutoff such thatIstd deviates from the exact
result when time is near the lower cutoff;sdd is for larger cutoff
which is indistinguishable from the exact resultsbecause they are
indistinguishable, the exact result is not shownd. We set"=e=1.
Other parameters are:E1=4, E2=−4, G=1, W=2.

ZHU et al. PHYSICAL REVIEW B 71, 075317s2005d

075317-4



tonian has the form of Eq.s1d. The retarded Green’s function
of the total HamiltonianH satisfies a “modified” Dyson
equation

Grst1,t2d = G̃rst1,t2d +E E dt3dt4G̃
rst1,t3dVrst3,t4dGrst4,t2d,

s14d

whereVr is a summation overVb
r with

Vb
r st1,t2d ; S̃b

r st1 − t2dHexpF− iE
t2

t1

DbstddtG − 1J .

s15d

This modified Dyson equation differs from the usual Dyson

Eq. s6d, using G̃r instead ofgr as its unperturbed Green’s
function. It means that the time-dependent calculation is built
on the equilibrium or steady-state Green’s functions.

A. Pulsed signal

A bias voltage pulse applied tobth lead can be considered
to have the following form:

Dbstd = H0 for t , 0 or t . tpulse

Þ0 for 0, t , tpulse
.

To simplify notation, hereafter we callt,0 the T− region;
0, t,tpulse the Tt region; andt.tpulse the T+ region.

To solve Eq.s14d with the TDD technique, there are two
mathematical properties to rely on:sad By definition, time
variables in the retarded quantities like retarded Green’s
functions and retarded self-energies are sorted according to
time sequence, e.g.,t1. t3. t4. t2 in Eq. s14d. This property
is general for the retarded Dyson equation.sbd From Eq.
s15d, Vb

r has the property thatVb
r st1,t2d;0 if t1, t2PT− or t1,

t2PT+. This property is specific for the pulsed signal. Ac-
cordingly, the retarded Green’s functionGr in Eq. s14d can
be subdivided into a 333 block matrix in the time domain

Grst1,t2d =

t1 \ t2 − t +

− G−−
r 0 0

t Gt−
r Gtt

r 0

+ G+−
r G+t

r G++
r

s16d

and the remaining task is to evaluate these blocks. The three
zeros in the upper right triangle are due to the propertysad.

Below we show that the computation of those nonzero
blocks is equivalent to an inverse of a small matrix plus
some matrix multiplications. First, let us consider the block
G−−

r sor G++
r d, whose time variablest1, t2 belong toT− sor T+d.

Because of the propertysad, those intermediate variablest3,
t4 in Eq. s14d also belong toT− sor T+d. Due to the property

sbd, Vrst3,t4d=0, and thereforeG−−
r =G̃−−

r and G++
r =G̃++

r .

SinceG̃ is known already, these blocks do not need any new
computation. Second, for the blockGtt

r , t1,t2PTt and there-
fore t3,t4PTt, in Eq. s14d. As a result, Eq.s14d becomes a
closedequation forGtt

r , which can be solved by matrix in-
version. Third, consider the blocksG+t

r and Gt−
r . For block

G+t
r , the time variablest1PT+ and t2PTt. In Eq. s14d, t4

must belong toTt, otherwise eithert4PT− which contradicts
to the time sequencet4. t2, or t4PT+ shence,t3PT+ due to
t3. t4d which leads toVrst3,t4d=0. Thus both time variables
in Grst2,t4d belong toTt, and the blockG+t

r is related to the
known blockGtt

r by the Dyson equation. For the blockGt−
r ,

one can apply a similar argument to an alternative form of
the Dyson equation

Grst1,t2d = G̃rst1,t2d +E E dt3dt4G
rst1,t3dVrst3,t4dG̃rst4,t2d,

s17d

and show thatt3 must belong toTt, and the blockGt−
r is also

related toGtt
r by this equation. Finally, consider the block

G+−
r . In the same way, one can apply the propertiessad and

sbd to a more fancy form of the Dyson equationfeasily to be
verified by substituting Eq.s17d into Eq. s14dg:

Grst1,t2d = G̃rst1,t2d +E E dt3dt6G̃
rst1,t3dVrst3,t6dG̃rst6,t2d

+E E E E dt3dt4dt5dt6G̃
rst1,t3dVrst3,t4dGrst4,t5d

3Vrst5,t6dG̃rst6,t2d,

and show thatt4PTt and t5PTt, thereforeG+−
r is related to

Gtt
r by this equation.
For a voltage pulse, the time durationtpulse!" /G, there-

fore Tt!T+, T−. The above scheme reduces the inversion of
a huge matrix associated with the scaleT++Tt+T− to the
inversion of a much smaller matrix associated with the scale
Tt. The inversion itself is also much simpler than inverting a
general matrix because the retarded Green’s function matrix
in the time domain has nonzero elements only in the lower

matrix triangle. In practice, one first generatesVr and G̃r

matrices from the unperturbed HamiltonianH0, then derives
Gtt

r by matrix inversion, after that computes other nonzero
blocks by matrix multiplications. For the other limit, the long
pulse whose durationtpulse@" /G, one can simply divide the
pulsed signal into several pieces each with length," /G, and
deal with each piece using the TDD technique discussed in
the last section.

The above discussion of solving the blocks in Eq.s16d is
based on the integral Dyson equation and the specific prop-
erty of the voltage pulse. If we look at the problem from a
mathematical point of view, the reasoning becomes much
more straightforward. Consider a general 333 block trian-
gular matrixfe.g., Eq.s16dg:

A = 1A11 0 0

A21 A22 0

A31 A32 A33
2 , s18d
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whose inversion must also be a 333 block triangular matrix

B = 1B11 0 0

B21 B22 0

B31 B32 B33
2 .

Hence AB= I implies B11=A11
−1, B22=A22

−1, B33=A33
−1, B21=

−B11A21B11, B32=−B33A32B22, and B31=−B33A31B11
+B33A32B22A21B11. Notice that only three matrix inversions
appear in the expressions ofB blocks sB11, B22, and B33d,
while other blocks are obtained by multiplications of known
matrices. Now, recall that the solution of the Dyson equation

can be expressed asGr =sI −G̃rSrd−1G̃r, solving integral Eq.
s14d is therefore equivalent to inverting a huge matrixsI
−G̃rSrd followed by a matrix multiplication in the time do-
main. Specially in the pulse case, the huge matrix can be
subdivided into a 333 block matrix andS11

r =S33
r =0 due to

the propertysbd discussed above. Hence, the inversions of
B11 and B33 lead to nothing but the equilibrium or steady-
state Green’s function which is already known; only one in-
version is necessary to deriveB22. With this mathematical
argument, identifying the corresponding matrix blocks be-
tween Eq.s16d and Eq.s18d, it is not surprising to find the
same result for the blocks ins16d, in matrix form: sid G−−

r

=G̃−−
r and G++

r =G̃++
r . sii d Gtt

r satisfiesGtt
r =G̃tt

r +G̃tt
r Vtt

r Gtt
r ,

which can be solved by direct matrix inversion.siii d Gt−
r

and G+t
r can be related toGtt

r by Gt−
r =G̃t−

r +os Gtt
r Vts

r G̃s−
r

and G+t
r =G̃+t

r +os G̃+s
r Vst

r Gtt
r , respectively. sivd G+−

r can

be related to Gtt
r by G+−

r =G̃+−
r +os,t G̃+s

r Vst
r G̃t−

r

+os,t G̃+s
r Vst

r Gtt
r Vtt

r G̃t−
r . Finally, we point out that this numeri-

cal method to deal with the pulse signal can be easily gen-
eralized to investigate the transition between two steady
states, i.e., the current flow driven by a step-like bias profile
ssee also the Appendixd.

B. Periodic field

For a periodic field,Dbst+Td=Dbstd whereT is the pe-
riod. Here we will not repeat the complicated analysis on the
integral Dyson equation. Instead, let us look at the Green’s
function matrix in the time domain where the characteristics
of time dependence is clearly exposed. It is straightforward
to observe that in the presence of a periodic field, the Green’s
functions have the propertyGst1+T,t2+Td=Gst1,t2d. In the

time domain, the retarded quantities such asG̃r, Vr, andGr

share the same matrix structure

t1 \ t2 T 2T 3T 4T ¯

T A0 0 0 0 ¯

2T A1 A0 0 0 ¯

3T A2 A1 A0 0 ¯

4T A3 A2 A1 A0 ¯

¯ ¯ ¯ ¯ ¯ ¯

. s19d

We name the ensemble of matrices with the structures19d as

“T-class.” It turns out that solving the Dyson equation in the
presence of periodic field is equivalent to invert a T-class
matrix plus a T-class matrix multiplication. It is easy to see
that the product of two T-class matrices is still a T-class
matrix. Explicitly, let C=AB whereA andB are T-class ma-
trices, C is also a T-class matrix withCk=oi=0

k AiBk−i. The
inversion of a T-class matrix is still a T-class matrix. Explic-
itly, let B=A−1 whereA is a T-class matrix,B is also a T-class
matrix with B0=A0

−1 andBk=−B0oi=0
k−1Ak−1Bi for kù1. Again,

we see that the scale of the matrix needs to be inverted is no
more thanT rather than the cutoff" /G. In practice, if" /G
,T, one solves the Dyson equation directly by matrix inver-
sion. On the other hand, if" /G.T, one first derivesG0

r sthe
A0 blockd by matrix inversion, then computesGn

r snù1d
blocks by matrix multiplication untilnT." /G.

C. Numerical example: One-dimensional atomic chain

We now apply the TDD Eqs.s16d and s19d to investigate
a simple one-dimensionals1Dd tight binding model of an
infinitely long chain of atoms, shown in the inset of Fig. 2sad.
In this chain, one atom has a different energy level than the
rest, and this atom provides the scattering region, the entire
system mimics an open structure in the MMM configuration.
The Hamiltonian of the chain, Eq.s2d, is specified as
follows:

FIG. 2. Istd curvesssolid lined of the 1D atomic chain in re-
sponse to a rectangular bias voltage pulsesdotted lined. The pulse
has an amplitudeDL=−DR=1.5 and durationtpulse=10. sad is ob-
tained using the WBL with parametersv0=4, vL=vR=0.5, due to
which the bandwidth isW=16 and the coupling strength isG0

=0.25. sbd is obtained with TDD for a finite bandwidth, with pa-
rametersv0=0.5, vL=vR=0.25 and, hence,W=2 andG0=0.5. The
inset ofsad schematically shows the 1D atomic chain under consid-
eration; the inset ofsbd plots the real and imaginary part of the
retarded self-energy.scd and sdd illustrate the energy diagrams in
case of WBL and finite bandwidth, respectively.

ZHU et al. PHYSICAL REVIEW B 71, 075317s2005d

075317-6



H0 = o
b=L,R

Hb + HC + HT,

Hb = o
,i j .

v0abi
† ab j + H.c.,

HC = E0c
†c,

HT = o
b=L,R

vbstdab0
† c + H.c., s20d

whereki j l refer to the index pair of adjacent neighbors in the
1D chain,ab0

† is the creation operator for the outmost site of
bth lead toward the central atom, and the time-dependent
field has been transformed to the hopping parameterfsee Eq.
s4dg:

vbstd = vbexpF− iEt

dt8Dbst8dG .

HereHb is nondiagonal which differs from Eq.s3d. Although
the difference can be formally eliminated by diagonalization,
it is more convenient to work with this nondiagonal form so
that one can use the surface Green’s function technique to
construct self-energy for the semi-infinite lead.11,12

Due to the simplicity of the model, the equilibrium self-
energy of the lead to the scattering region can be obtained
analytically28

S̃b
r sed =5

2vb
2

e + iÎ4v0
2 − e2

ueu , 2v0

2vb
2

e + sgnsedÎe2 − 4v0
2

ueu . 2v0

,

where e is the electron energy. Clearly, this self-energy is
beyond the wide-band limit and we plot it in Fig. 2sbd: the

imaginary part ofS̃b
r sed indicates a finite bandwidth 4v0. The

effective total coupling strength can be estimated asG0

=4vb
2 /v0. We Fourier transformS̃b

r sed back to time which
can be analytically accomplished

S̃b
r st1 − t2d = − iust1 − t2d

v1
2

v0st1 − t2d
J1f2v0st1 − t2dg,

S̃b
,st1 − t2d = i

v1
2

2v0st1 − t2d
hJ1f2v0st1 − t2dg

+ iH1f2v0st1 − t2dgj,

whereJnszd is thenth order Bessel function andHnszd thenth
order Struve-H function.

By numerically evaluating Eqs.s16d and s19d, we inves-
tigate the time-dependent currentIstd in the atomic chain
driven by a rectangular pulse and by a sinusoidal signal,
results are shown in Figs. 2 and 3, respectivelyfILstd
=−IRstd; Istdg. In Figs. 2sad and 3sad, the parameters are
chosen such that the bandwidth of the leads is much larger
than all other energy scales, and the resultingIstd curves
recover those obtained within the WBL approximation.17

Figures 2sbd and 3sbd, in contrast, correspond to the case of
finite bandwidth, and the behavior ofIstd curves isqualita-
tively different from the WBL result.

In Fig. 2sbd, we set the amplitude of the rectangular pulse
larger than the bandwidth of the leads. It is interesting to
observe that the current can be temporarily driven tonega-
tive values even though the bias pulse is strictly positive.
This is a direct consequence of a finite bandwidth. For leads
in the wide-band limit, the current is always positive and
exhibits damping oscillation around its steady state value. On
the other hand, in the zero-band limit the system reduces to
three quantum levels and a perturbation on these levels will
stimulate sinusoidal oscillation of charges among them. Fi-
nally, in the case of a finite bandwidth, the current behavior
is between these two limit situations: we now have a damp-
ing oscillation around zero. The reason for a zero steady-
state current is because of the fact that energy bands of the
left and right leads are shifted to opposite directions: when
there is no overlap between them, current cannot flow since
no states are available in the leadsfsee Fig. 2sdd, and com-
pare Fig. 2sdd with the WBL band diagram of Fig. 2scdg. We
believe this effect can be exploited to measure the bandwidth
of leads by tuning the amplitude of the voltage pulse.

In Fig. 3sbd, current is driven by a sinusoidal voltage sig-
nal imposed on a dc bias. Similar to the case of pulsed sig-
nal, theIstd curve behaves qualitatively different from that of

FIG. 3. Istd curvesssolid lined of the 1D atomic chain in re-
sponse to a sinusoidal bias signalsdotted lined. The ac signal has
amplitudeDL=−DR=5 and frequencyv=2, imposed on a dc volt-
ageVL=−VR=5. sad is obtained using the WBL, with parameters
v0=9, vL=vR=1.5, due to which the bandwidth isW=36 and the
coupling strength isG0=1. sbd is obtained using TDD for the case
of finite bandwidth, with parametersv0=2.5, vL=vR=1.5, due to
which W=10 andG0=3.6.
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the WBL: the current does not reach its minimum at the
voltage minimum, and the current is driven tonegativeat the
voltage maximum. The behavior can be, roughly, understood
in an analogous way as to Fig. 2sbd. However, the periodic
case is more complicated because the current at timet is
determined by the voltage history fromt−TC to t, which may
cover several periods. Hence calculation based on the TDD
technique is essential to gain a complete insight to the quan-
tum ac conductance. The simple 1D atomic chain studied
here indicates that for both the bias pulse and sinusoidal
driving voltages, behavior emerges inIstd when the ampli-
tude of the time-dependent field is comparable to the band-
width of the leads.

Generalization of the 1D model to a real three-
dimensionals3Dd molecular device in the MMM configura-
tion is possible. In the 3D situation, the equilibrium or

steady-state Green’s functionG̃r itself becomes a matrix in-
dexed by atomic orbitals of each atom. One needs to replace
each scalar element in theGrst1,t2d matrix by a block matrix
with atomic orbital indexes. The matrices in 3D are therefore
larger than those of 1D: the total matrix dimension in 3D is
the atomic orbital number multiplying the time domain di-
mension. Within the TDD approach discussed above, the ma-
trix to be inverted is still relatively small compared with the
total matrix. Hence, we conclude that the TDD should be
equally effective for 3D situations.

V. SUMMARY

In summary, we have developed a numerical approach to
handle time-dependent quantum transport beyond the WBL,
based on the NEGF formalism presented in Ref. 16. This
numerical approach, termed time domain decomposition, is
based on directly solving the Dyson’s equation in real time.
TDD is numerically feasible for transport problems in MMM
devices mainly owing to the fact that the time degree of
freedom can be truncated in an open system for thet=−`
limit. The computational cost of the TDD technique can be
roughly estimated by the number of time point,N, which is
determined by the cutoffTC fsee Eq.s8dg and time interval
Dt. For the numerical examples illustrated in Figs. 2 and 3,
we have usedN=200 andN=50, respectively. Generally,N
of the order of 102–103 should be sufficient to derive smooth
Istd curves. The computational memory requirement scales
with N2, and the computational time requirement scales with
N4 for the pulsed signal case and withN3 for the periodic
signal case. We have shown that in both pulse and periodic
cases, the matrix operations can be further reduced to an
inversion of a small triangular matrix plus several matrix
multiplications, and the latter can be easily parallelized for
distributed computation. This is an exploration to numeri-
cally solve nonequilibrium Green’s functions in real time
domain as opposed to Fourier transformed energy domain.
We believe TDD will be useful as it provides a simple but
efficient solution to time-dependent transport problems.
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APPENDIX:

In this Appendix, we outline the derivation of the analyti-
cal solution to the exactly solvable transport problem dis-
cussed in Sec. III. The problem is described as follows: con-
sider a device whose scattering region has of a single energy
level, and the device is coupled to a single lead withfinite
band width WsLorentzian shaped. The retarded self-energy
of such a lead can be obtained as in Eq.s9d. At time t=0, the
energy level abruptly jumps fromE1 to E2 due to some ex-
ternal perturbation.

To solve the Green’s functions of this problem exactly, we
Fourier transformSrsed of Eq. s9d:

Srst1,t2d =E de

2p
e−iest1−t2dG

2

W

e + iW

= − iust1 − t2d
G

2
We−Wst1−t2d.

The retarded Green’s function of the decoupled quantum
level swithout the leadd can be easily derived as

grst1 . 0,t2 . 0d = − iust1 − t2de−iE1st1−t2d,

grst1 , 0,t2 , 0d = − iust1 − t2de−iE2st1−t2d,

grst1 . 0,t2 , 0d = − ie−isE2t1−E1t2d,

grst1 , 0,t2 . 0d = 0.

The total Green’s function of this quantum level coupled
with the lead satisfies the integral Dyson equation

Grst1,t2d = grst1,t2d +E E dt3dt4g
rst1,t3dSrst3,t4dGrst4,t2d.

For simplicity, this integral equation can be written in a ma-
trix notation

Gr = gr + grSrGr . sA1d

The Green’s function and the self-energy of Eq.sA1d can be
subdivided into a 232 block matrix according tot.0 and
t,0, so that the Dyson Eq.sA1d has the forms+ for t.0
and − for t,0d:

SG−−
r 0

G+−
r G++

r D = Sg−−
r 0

g+−
r g++

r D + Sg−−
r 0

g+−
r g++

r DSS−−
r 0

S+−
r S++

r D
3SG−−

r 0

G+−
r G++

r D .

This matrix equation can be solved as

ZHU et al. PHYSICAL REVIEW B 71, 075317s2005d

075317-8



G−−
r = sI − g−−

r S−−
r d−1g−−

r ,

G++
r = sI − g++

r S++
r d−1g++

r ,

G+−
r = sI + G++

r S++
r dg+−

r sI + S−−
r G−−

r d + G++
r S+−

r G−−
r ,

G−+
r = 0. sA2d

We emphasize that the right-hand side of expressions
sA2d are the matrix form of time integrals. The remaining
task is to evaluate them. ForG−−

r andG++
r , we obtain

G−−
r st1,t2d =E de

2p
e−iest1−t2d 1

e − E1 − Srsed
,

G++
r st1,t2d =E de

2p
e−iest1−t2d 1

e − E2 − Srsed
,

in which the energy integrals on the right hand side can be
easily evaluated by residual summation.

Next, G+−
r has two terms denoted byG+−

r sId andG+−
r sII d,

which can be explicitly expressed as

G+−
r sId =E dt3ust3dE dt4us− t4dE de1

2p
E de2

2p
e−ie1st1−t3d

3F1 +
Srse1d

e1 − E2 − Srse1dGs− ide−isE2t3−E1t4de−ie2st4−t2d

3F1 +
Srse2d

e2 − E1 − Srse2dG . sA3d

G+−
r sII d =E dt3ust3dE dt4us− t4dE de1

2p
E de2

2p

3e−ie1st1−t3d 1

e1 − E2 − Srse1d
s− id

3
G

2
We−Wst3−t4de−ie2st4−t2d 1

e2 − E1 − Srse2d
.

sA4d

Using the identity

E dtus± tdeiet=
i

±e + i0+ ,

one can evaluate the time integrals and energy integrals in
expressionssA3d and sA4d. The results are given in Eqs.
s10d–s13d.

Finally, the time-dependent current can be expressed in
terms of the Green’s functions as

Istd = ustd2 RefG++
r S++

, + G+−
r S−+

, + G++
, S++

a + G+−
, S−+

a gtt,

where

G+−
, = G++

r S+−
, G−−

a + G+−
r S−−

, G−−
a ,

G++
, = G++

r S++
, G++

a + G+−
r S−+

, G++
a + G++

r S+−
, G−+

a + G+−
r S−−

, G−+
a .

Notice that all the time dependence inGr are in the exponen-
tial form. After further tedious but straightforward algebra,
these time integrals in the last two equations can be evalu-
ated analytically, and the currentIstd can be written in the
form of a single integral over energysnot shownd. We then
use this exactly solvedIstd to compare with the numerical
results obtained by TDD. Because the results are indistin-
guishable, in Fig. 1 only the curve from TDD is shown.
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