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Time-dependent quantum transport: Direct analysis in the time domain
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We present a numerical approach for solving time-dependent quantum transport problems in molecular
electronics. By directly solving Green’s functions in the time domain, this approach does not rely on the
wide-band limit approximation thereby is capable of taking into account the detailed electronic structures of the
device leads which is important for molecular electronics. Using this approach we investigate two typical
situations: current driven by a bias voltage pulse and by a periodic field, illustrating that the computational
requirement is no more than an inversion of a relatively small triangular matrix plus several matrix multipli-
cations. We then present numerical results of time-dependent charge current for a one-dimensional atomic
chain. The numerical solution recovers known results in the wide-band limit, and reveals physical behavior for
leads with finite bandwidth.
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l. INTRODUCTION existd-3which is based on carrying out the density func-
. . _ . ~ tional theory(DFT) within the nonequilibrium Green func-

The idea of using single molecules as basic functionations(NEGP. Here the DFT takes care of atomic and chemi-
units for electronic device operation dates back to 1974 whegg| details of the device while the NEGF deals with the
Aviram and Ratner discussed the working principle of a mo+ransport boundary conditions and nonequilibrium density
lecular reCtIerl;: Since then there have been numerous theOmatrix_ll—13 Quantitative|y accurate Comparisons to experi_

retical and experimental investigations on charge and spifhental data have been made using such afd§lDespite
transport through various molecular systems in the metalits success in analyzing dc quantum transport, existing

molecule-metal(MMM) configurations. Here, the “mol-  NEGF-DFT packagéé 3 cannot be directly applied to ac
ecule” indicates the device scattering regiohand the metal  sjiyations.

serves as device leads which extend to electron reservoirs far In princip|e, an ac theory could be based on self-
away where external voltage bias is applied so that a curreidonsistent solutions of the time-dependent Kohn-Sham equa-
is driven through. Since the ultimate goal of molecular eleC‘tion p|us time_dependent e|ectrodynamics_ This isi however,
tronics is in the application domain of nanotechnology, ongmpractical at the present stage due to its complexity and its
of the most important questions which has yet to be anprohibitively large computational demand. A simpler ap-
swered, is how fast or how slow can a device turn on/off agroach is to note the fact that an externally applied electric
current? In other words, if one applies a square voltage pulsgeld, in most practical situations, is orders of magnitude
of time durationr, what is the time-dependent curréf®) of  smaller than the electrostatic field inside a molecule. Hence,
the MMM system? What i§(t) for other shapes of the time- one may start from a steady-state Hamiltonian, add the time-
dependent voltage? These questions should be answered lgpendent field to the metal leads adiabatically, and then
fore one can attempt to judge if a particular switching deviceevaluate transport current. This idea has been widely adopted
is technologically viable. Indeed, some recent experimentah mesoscopic physics and an elegant theory has been devel-
efforts have already been devoted to the study of how does@ped 10 years ag. However, applications of this thedry
molecular device respond to a gigahertz to even terahertz aely on the so called wide-band limfVBL)—an approxi-
signals’® High frequency quantum transport in coherentmation in which device leads are assumed to have no energy
conductors is also interesting in its own right. Upon applyingdependent features. For molecular devices, however, the va-
an external field\(x,t) to a quantum conductor at positian  Jidity of the WBL is unclear because such devices are very
and timet, wave functions of charge carriers acquire a phasgensitive to the molecule-metal contacts, hence, any approxi-
factor exp—i['A(x,t")dt'], so that the spatial and temporal mation on the contact property should be carefully examined.
variables combine to play important roles in the time-In particular, recent interest in molecular devices sandwiched
dependent transport. For this reason ac quantum transpdsetween semiconductdfs® requires careful examination on
has rich behavior but its theory is complicated even forthe effect of the nontrivial band structure of the leads, hence,
simple model analysig®without including any chemical de- quantitative predictions become difficult if the WBL is
tail present in a molecular device. adopted. Therefore, it is highly desirable to develop an ap-
To make quantitative analysis of molecular devices in theproach to calculate time-dependent quantum transport in
form of MMM which typically involves large number of MMM devices that does not rely on the WBL. Such an ap-
electrons, a practical and state-of-art dc transport formalisrproach will then allow the time-dependent transport theory to
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cooperate with the NEGF-DFT mod&F? or a tight-binding  that onlyquadraticterms of creation/annihilation operations
model to account for atomic details. appeatr.

It is the purpose of this paper to report a numerical ap- When there is no explicit time dependence in the Hamil-
proach to solve time-dependent quantum transport problemtsnian, i.e., Hq,(t)=0, the steady-state quantum transport
without the WBL approximation. We have found that for problem is determined bi,, and can be solved for molecu-
several very relevant time-dependent problems, Green'ar devices in the MMM configuration. Such a steady-state
functions can be solved directly in the time domain withoutanalysis involves a self-consistent calculation of device
using the WBL. The method is applied to investigate time-HamiltonianH, by the density functional theory combined
dependent current driven by a bias voltage pulse and a penvith nonequilibrium Green’s functions in the energy space,
odic field. We compare results in the WBL and beyond theas shown in Refs. 11 and 12. From now on, we will assume
WBL, and demonstrate that the WBL approximation can leadhat H, has been calculated this way or known from some
to qualitatively different transport features. tight binding parametrization, and focus on how to solve the

The paper is organized as follows. In the next section, weproblem whenH,,{t) # 0. To proceed, we further assume
briefly review the the NEGF formalism for time-dependentthat the time-dependent perturbatieh,(t) is locally uni-
quantum transpoff. To apply the formalism beyond the form on each lead, and the energy levels in the lead are

WBL, a possible approach is to work in the time domain andshifted adiabatically with itHe,(t) has the form
such a theory is presented in Sec. Ill. We confirm the theory

and its associated numerics using an exactly solvable model.

In Sec. IV, we investigate two important cases: time- Hex(t) =2 Aﬁ(t)a;r;kaﬁk,

dependent current driven by a voltage pulse and by a peri- k

odic field. As a demonstration, we apply our approach to a

simple but nontrivial tight binding model of a one- whereAg(t) is the time-dependent perturbation field. For the
dimensional atomic chain, which recovers known results irfollowing analysis, it is convenient to absody(t) into a

the WBL but reveals physical behavior beyond the WBL.phase factor by applying an unitary transformation discussed

Finally, a short summary is given in Sec. V. in Ref. 20 so that the coefficienty, becomes
t

IIl. NEGF THEORY FOR TIME-DEPENDENT TRANSPORT . , ,

Uﬁkn(t) = UﬁkneX[{_ |f dt A,B(t ):| . (4)

We describe a MMM device by the following model
Hamiltonian: For the time-dependent problem of Hamiltoniéh, a
H = H + H () 1) general formulation for quantum transport based on the
— o ext\t/) s

NEGF technique has been established bef®am extension
where H, is the equilibrium or steady-state Hamiltonian of of this theory to include displacement current was addressed
the device while Hg(t) is an externally applied time- in Ref. 10. It has been shown that the current in a lead la-
dependent perturbation. In generd}, has the following beled with 8 at timet can be written in terms of Green’s
form: function and self-enerd§

Ho=> Hg+Hc+Hr. ) 2e
A 15(t) = %2 ReTrJ dtl[Gr(tntl)EE(tlut) + G (1,12 5(ty, )],
Here,Hg is the equilibrium Hamiltonian of th@th lead 5)
Hp=2> eﬁka};kaﬁkv (3
K whereG is the Green’s function matrix of the scattering re-
wherea, /ag creates/annihilates an electron in legavith ~ gion defined bYG ity to) = ((Crr(ty)[cl(t)); S5 is the self-
quantum numbek. The second ternii is the Hamiltonian ~ energy matrix due to coupling between the scattering region

of the device scattering region and the leads, defined by ;q(ty,t) =2y v*ﬁkm(tl)
) X ((@gm(ty)[@(t))v gin(t). (The notation((A(ty)|B(t,)) is
He=2 (6 + Un)CrCn, used to represent all of the real time Green’s functions such
n

as retarded Green functiof(A(t,)|B(t,))) =-if(t;—t,)
where c!/c, creates/annihilates an electron in the devicex({A(ty),B(t,)}), lesser Green function((A(ty)|B(t)))~
scattering region at quantum staieU,, is the single-particle  =i(B(t,)A(t;)), etc); and the trace is over the degree of free-
potential energy. The third teri; is the Hamiltonian de- dom in the scattering regiois’ and G~ satisfy the Dyson
scribing the coupling between the device and the leads  equation and Keldysh equation, respectively,

Hr= E [vﬁkna;,kcn +H.c],
pkn

Gr(tl,tz)=gr(t1,t2)+ffdt3dt4gr(t1,tg)E’(t3,t4)Gr(t4,t2),
wherewv g, gives the coupling strength. IH,, the electron-
electron interactions are treated at the mean-field level so (6)
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cause the integral variables in Ed5)—(7) run from - —
G=(ty,tp) = J f dizdt,G'(ty, 12~ (t5,t)G(ta ). (7)  +% so that one needs to deal with hugé not infinitely
large matrices: in particular one must invert such a huge
The total self-energy: is a summation over contributions matrix to solve Eq.(6) that is a computational challenge.
from self-energy of each lead, which can be express&l as Fortunately, we found that for quantum transport problems in
an open system, the time limitse= +« in Egs.(5)—7) can
Sh(t t):f Ee-ie<t1-t2)ir,<(e)exp _if A4(t)dt be effectively truncated to a finite time domain having a
p b2 27 B t A ’ scale of the correlation timgsee Eq.(8) below]. For some
- typical cases the finite time domain can be further decom-
WhereE;f(e) is the Fourier transform of the self-energy in posed into smaller blocks: the Green’s function in Ej.for
the absence of any time-dependent perturbation. each block can be calculated efficiently without needing to
In order to calculate the transport current from E5), invert any huge matrixsee next section for detailed discus-
one needs to solve the integral E§) and then evaluate the sion). We call this technique “time domain decomposition”
multiple integrals in Eq(7). Since these are difficult to do, in (TDD).
practice one usually applies an additional approximation, the TDD is based on physically motivated grounds. First, the
so called wide-band lim&-23In the WBL, 3/y(e) is assumed ~ fime =+ limit in Eqgs. (57) can be replaced by the upper
to be an energy-independent constant so¥it; ,t,) is pro- time limit corlcerneg in the calculatiofmot an approxima-
portional to &(t;—t,). ConsequentlyG'(t;,t,) becomes ex- tion), as the _future must not affect what happens “now.
actly the same as that without the time-dependent perturbas-econd’ the time == limit can becutoffat some remote past
tion, and the current formulé) only containsG=(t,t) for whose phase memory IS to'gally lost by not@ well-
which the double integral in Eq7) can be reduced to two controlled approximation In an isolated system, such corre-

single integrals. This procedure drastically simplifies subselation can be infinite long: the initial state &~ can de-

quent analysis. The WBL is reasonable if the leads have npermine the present state by the Schrbd!nger quati_on. But
energetic features near its Fermi energy. But it fails to delOF @n open system such as a MMM device, the lifetime of

scribe leads with a finite bandwidth and the energy depenguantum scattering states in the device scattering region is

dence of the leads’ density of stat@09). These situations finite, hence, a finite characteristic correlation time exists in
are important for molecular electronics because the detailegj'"st prott))llem. Matlhemfiﬁ'gilzl‘y’ tG|reen i functl(;ns QLOF aﬂ'irans-
chemistry in molecule-lead contact region can dominate th%Or problem scale as al large time, where 1s the

t

2

entire transport features. In the next section, we shall develo ta_I coupllntg %t]r_ength of the tdevllce tsifaptetr_lng region to its
a numerical approach for solving Eq&)—(7) beyond the ~ShVIronment. This gives a natural cutott in ime
WBL.
Te==. 8
=T ®)

Ill. TIME DOMAIN DECOMPOSITION One may, thereforepractically take G2 <(t;,t,) =0 if |t;

One always has the freedom to choose working either ity > Tc. With this lower time cutoff, Eqs(5)~(7) can be
the real space or in the Fourier-transformed space. Most dfalculated directly in the time domain.
the time, Fourier transform can help to convert differential or  To show that TDD is quantitatively accurate, we present
integral equations into algebraic equations, which greathan exactly solvable transport problem and compare the nu-
simplifies the mathematical procedure. The time-dependerinerical results obtained in TDD with that of the analytical
transport problem defined in Eq&)—(7), however, is an solution. The problem is described as follows: consider a
exception because in the presence of time-dependent pertitevice whose scattering region consists of a single energy
bation, the Green’s functio@(t,,t,) is neither a function of level, and the device is coupled to a single lead Vitiite
t;-t, nor is subjected to periodic boundary condition for eachPand width W(Lorentzian shape The retarded self-energy
time variable. Even in the presence of periodic field withcan be obtained as
period T, the Green function satisfiess(t;+T,t,+T)
=G(ty,t,) rather thanG(t;+T,t,) =G(ty,t,) and G(t;,t,+T) S @) =T deg 1 W2 T W
=G(t4,t,). While one can use a double Fourier transform to (6) = o e €+i0"WP + & T2 e+ iW
convert Green’s functions into energy spaté& in general

this does not simplify matters without further approxima- At the timet=0, the energy level abruptly jumps frof to
tions. _ _ _ _ ) E, due to some external perturbation.
Alternatively, let us workdirectly in the time domain by For this simple problem, the retarded Green’s function

discretizing the time variables in Eq)—(7). In the time  can be derived analyticallisee the Appendix for more de-
domain, the Green’s functions become matrices; the integrails):

Eq. (6) becomes a matrix equation; the multiple integrals in
Egs. (6) and (7) become matrix multiplication; and more G'(t,>0,t,>0) = —i6(t; - t)h(t, -t E;),  (10)
importantly, the temporal features of the Green’s functions
are exposed explicitly in the structure of matrices. A naive
computation based on this idea, however, does not work be- G'(t;<0,t, <0 =-ift, —ty)h(t; - t,,Ey),  (11)

9)
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04 © identical to the exact solution in the full time range. We
03] cutoff=10 conclude that to obtain a correct current behavior at some
time t;, one needs to compute the Green’s function down to
£ 021 time ty-T¢, as the quantum system cares about the history at
5 01 time scaleTc.
Basically, there are two approximations in the TDD tech-
0.0 nique, one is the discretization in time, the other is the lower
cutoff in time. The validity of the first approximation re-
0.4 T T T . . . . . . . .
(d) cutofi=20 quires that the time interval used in the discretization is
034 smaller than the characteristic scale of the variation in
- 02] Green’s functions. This scale correspondstoover the
g maximum energy scale in the problem, e.g., the coupling
3 0.1 strengthl’, the peak value of the bias pulde etc. The sec-
00 ond approximation relies on the physics discussed in the last
' paragraph, i.e., there exists a characteristic correlation time
-0.1 . : : in an open quantum system beyond which two physical
(b) 10 S o 5 1 events are uncorrelated. The calculatiorGfis more accu-

rate thanG=, in the sense thaG" only involves the first
FIG. 1. Solution of an exactly solvable problefa) and(b) are  approximation whileG= relies on both. This is because the
the gray-scale plot of the Green’s function ma@X(t,,t,) obtained  time variables of retarded quantities in the Dyson equation
from the exact analytical solution and the numerical solution usingare constrained by time sequen@ee next section for de-
TDD, respectively. Notice that th€" matrix is zero in the upper tails). While there is no constraint for lesser quantities, one
triangle. We plot the real part of matrix elements in the upper tri-must make a truncation to obtain a finite matrix. We empha-
angle and the imaginary part in the lower triangle. and (d) are  sjze that both approximations are well controlled. In practice,
numerical results of(t) curves with different lower time cutoffs in  gne may estimate the correlation time and discretization in-
TDD: (C) is for a small cutoff such thd’(t) deviates from the exact terval by relevant energy ScaleS, and Check the Va“d'ty of the
result when time is near the lower cutoffl) is for larger cutoff 0 approximations by doubling or halving these values in a
which is indistinguishable from the exact res(iecause they are  merical computation until the results have no significant
indistinguishable, the exact result is not showWe setii=e=1. change.
Other parameters ar&; =4, Ep=—4, I'=1, W=2. Direct inversion of Green’s function matrix with the time
scaleTc is able to deal witharbitrary time-dependent per-
G'(t; > 0,t, < 0) = —i[h(t;,Ep)h(-t,, Ey) turbations. But a serious numerical problem will arise when
the coupling strengtli’ — O so that the cutoff :— o, where

B LE], 12 5ne encounters a huge matrix inversion in TDD. This situa-
; _ tion occurs when the device scattering region is weakly
Gt <0t,>0=0, (13) coupled to the leads. However, we found that by taking ad-
in which vantage ofspecific properties of time-dependent perturba-
£ 4iW E 4+ iW tion, largeT. limit can also be efficiently treated in the TDD.
h(t,E) = — ! e iEt 4 ;e—iE[t, These special cases cover a wide range of physically impor-
E -E E -E tant situations, such as sending a pulsed signal or applying a
periodic field to the MMM device, as demonstrated in the
| — .
VIWI2 v ey next section.
f(t,E)=———(E"™'-e™l),
EI - EI

IV. CURRENT DRIVEN BY VOLTAGE PULSE AND
Ef = 1[E - iW+ VE? + 2IWE - W2 + 2I'W]. PERIODIC FIELD

In this section, we investigate two most relevant cases:

In the last expressiork correspond to the +/- signs on the electric current driven by a bias voltage pulse and by a peri
ight-h ide. Fi h -scale plot of th e i =
right-hand side. Figure (@ shows a gray-scale plot of the odic field. We show that the specific features of the time-

retarded Green’s function of this exact solution. Then we . . o .
solve the same problem by numerically comput®t; ,t,) erendent perturbatlon_ will greatly smpllfy the computation
matrix using the TDD techniqué00 time points are used in in TDD, so that calculatlo_n for larg€&c limit is possible with
the computatiop The result is shown in Fig.(f), which is relatively small computational demand.

T P : Since the equilibrium or steady-state Hamiltontdgcan
indistinguishable from the exact solution in Figall Figures . L
1(c) and 1d) show time-dependent curreht) versus timet be computed by applying the NEGF-DFID initio method

obtained from TDD for two different cutoffs. For a small of Refs. 11 and 26, or by assuming a simple tight binding

g AR,
cutoff [Fig. 1(c)], the result deviates significantly from the form,** let us_assume that the. equmb.rgjm or steady-state
exact solution when approaches the lower cutoff, although Green’s function of the scattering regids and the self-
the result is still reliable whenhis far from the lower cutoff. energy' of the leads are known fromd,. Upon applying a
For larger cutoff Fig. 1(d)], the numerical(t) is essentially  time-dependent signai(t) to the Ath lead, the total Hamil-
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tonian has the form of Eq1). The retarded Green’s function G, the time variables; e T, andt, e T.. In Eq. (14), t,

+7

of the total HamiltonianH satisfies a “modified” Dyson must belong tdr,, otherwise eithet, e T_ which contradicts

equation to the time sequendg>t,, ort, e T, (hencet; e T, due to
t3>1,) which leads toV'(ts,t,)=0. Thus both time variables
G'(ty,t,) = G'(ty,t,) + f f dtzdt,G'(ty, ta) V' (ta, 1) G (L 1), in G'(t,,t,) belong toT,, and the blockG},, is related to the
known blockG! by the Dyson equation. For the blo€K_,

(14) one can apply a similar argument to an alternative form of

. . _ the Dyson equation
whereV' is a summation ovev;g with

ty
V?s“l’tz)Ezrﬁ“l“z){exlo{‘i f Aﬁa)d‘}‘l}- Gt t) = Gty t) + f f A5 (1, 19V (13,0 G (o),

2
(15 (17
This modified Dyson equation differs from the usual Dyson

Eq. (6), using G’ instead ofg" as its unperturbed Green’s and show that; must belong tar,, and the blockG!_ is also
function. It means that the time-dependent calculation is builtelated toG!_ by this equation. Finally, consider the block

on the equilibrium or steady-state Green’s functions. G'_. In the same way, one can apply the proper{®sand
(b) to a more fancy form of the Dyson equatipgasily to be
A. Pulsed signal verified by substituting Eq(17) into Eq. (14)]:

A bias voltage pulse applied 8th lead can be considered
to have the following form:

0 fort<Oort> myyee
Agt) = .
#0 for 0<t< 7yyse

G(ty,tp) = G'(ty,tp) + f f dtadtsG (ty, ts) V' (ts,t) G (tg, t)

+ f f J f dtzdt,dtsdtsG' (ty, ta) V' (3,15 G' (g ts)

To simplify notation, hereafter we calk<0 the T_ region;
0<t<mpsethe T, region; andt> 7, the T, region.

To solve Eq.(14) with the TDD technique, there are two
mathematical properties to rely ofe) By definition, time
variables in the retarded quantities like retarded Green's g show that, e T, andts e T,, thereforeG._ is related to
functions and retarded self-energies are sorted according tgr by this equation.
time sequence, e.d;,>t;>1t,>1, in Eq. (14). This property T

\ k For a voltage pulse, the time duratiep,sc<#/T", there-
is general for the retarded Dyson equatioh) From Ed.  fore T_<T,, T_. The above scheme reduces the inversion of

(15), Vs has the property thay(ty,tp)=0if t;, t,e T_orty, 3 hyge matrix associated with the scale+T,+T_ to the

t,e T.. This property is specific for the pulsed signal. Ac- jnyersion of a much smaller matrix associated with the scale
cordingly, the retarded Green’s functi@lf in Eq. (14) can T The inversion itself is also much simpler than inverting a

be subdivided into a & 3 block matrix in the time domain  general matrix because the retarded Green’s function matrix
in the time domain has nonzero elements only in the lower

XV (ts, t6) G (te, 1),

tl\t2 - T + . . ) ) .
_ & 0 o0 matrix triangle. In practice, one f|r§t ggneraté% and_Gr
G'(ty,ty) = o (1)  Matrices from the unperturbed Hamiltonibly, then derives
G- G, O G!, by matrix inversion, after that computes other nonzero
+ G, G.. G, blocks by matrix multiplications. For the other limit, the long

o ) pulse whose duration,sc>7/1", one can simply divide the
and the remaining task is to evaluate these blocks. The thrqﬁﬂsed signal into several pieces each with length/ T, and
zeros in the upper right triangle are due to the prop@ty  deal with each piece using the TDD technique discussed in

Below we show that the computation of those nonzerane |ast section.
blocks is equivalent to an inverse of a small matrix plus The above discussion of solving the blocks in Etp) is
some matrix multiplications. First, let us consider the blOCkbased on the integra| Dyson equation and the Specific prop-
GL_ (or G,), whose time variables, t, belong toT_ (or T,).  erty of the voltage pulse. If we look at the problem from a
Because of the propertyp), those intermediate variablés  mathematical point of view, the reasoning becomes much
t4 in Eq. (14) also belong tal_ (or T,). Due to the property more straightforward. Consider a generak 3 block trian-
(b), V'(t3,t))=0, and thereforeG'_=G._ and G},=G},. gular matrix[e.g., Eq.(16)]:

SinceG is known already, these blocks do not need any new
computation. Second, for the blo€_, t;,t, € T, and there-

. A 0O O
fore tg,t,e T, in Eq. (14). As a result, Eq(14) becomes a 1
closedequation forG', which can be solved by matrix in- A=l Az A 0 |, (18
version. Third, consider the block3, and G!_. For block Az Az Ass
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whose inversion must also be &3 block triangular matrix

B, 0 O .
B= 821 822 0 % J—
BSl B32 BSS
()

Hence AB=I implies B;=A7}, B,,=A}, Bss=A3, By =
—B11A21B11,  B3p=—B3AgBy,  and Bz =—BsiAsgiBig
+B33A3,B,,A,1B11. Notice that only three matrix inversions
appear in the expressions Bf blocks (By1, Byy, and Bsy),
while other blocks are obtained by multiplications of known
matrices. Now, recall that the solution of the Dyson equation
can be expressed & =(I-G'>")"1G', solving integral Eq.
(14) is therefore equivalent to inverting a huge mattix

-G'S") followed by a matrix multiplication in the time do- 0 5 10 16 20
main. Specially in the pulse case, the huge matrix can be time

N ; ; r N1 —
S#bd'v'ded 'nlgo 3.33 bIo((j:k rtr)1atr|x andSll—i%TO dug to ¢ FIG. 2. I(t) curves(solid ling) of the 1D atomic chain in re-
the property(b) ISCUSSG. above. Hence,' t_e Inversions 0sponse to a rectangular bias voltage putdetted ling. The pulse
B;, and Bss lead to nothlr!g b_ut the equilibrium or steady- has an amplitudé\, =~Ag=1.5 and duratior,.=10. (a) is ob-
state Green’s function which is already known; only one in-5ined using the WBL with parameterg=4, v, =vg=0.5, due to
version is necessary to derii, With this mathematical \hich the bandwidth isV=16 and the coupling strength &
argument, identifying the corresponding matrix blocks be=0.25. (b) is obtained with TDD for a finite bandwidth, with pa-
tween Eq.(16) and Eq.(18), it is not surprising to find the  rametersyy=0.5, v, =vg=0.25 and, henceV=2 andl,=0.5. The
same result for the blocks ifL6), in matrix form: (i) GL_ inset of(a) schematically shows the 1D atomic chain under consid-
=G'_ and G:—+:é:—+' (i) G, SatiSfieSGrfr:érw"'érwvrﬁerw eration; the inset ofb) plots the real and imaginary part of the

which can be solved by direct matrix |nvers|0ﬁ1”) G';‘_ retarded Self'energ)(.c) and (d) illustrate the energy diagl’ams in

and G'_ can be rcilated t@". by G:._:é;jﬁs GrTTVqsé;— case of WBL and finite bandwidth, respectively.
and G| =G| +3; GV, G, respectively. (iv) G,_ can

tsUsr T -

be related to G, by G, =G| +3 G V.Gl

+351 GV, GL VL GL_. Finally, we point out that this numeri- «T_class.” It turns out that solving the Dyson equation in the
cal method to deal with the pulse signal can be easily genpresence of periodic field is equivalent to invert a T-class
eralized to investigate the transition between two steadynatrix plus a T-class matrix multiplication. It is easy to see

current

()

(see also the Appendix matrix. Explicitly, let C=AB whereA andB are T-class ma-
trices, C is also a T-class matrix witlﬁ:sz!‘:OAin_i. The
B. Periodic field inversion of a T-class matrix is still a T-class matrix. Explic-

itly, let B=A"1 whereA is a T-class matrixB is also a T-class

For a periodic field Ag(t+T)=A4(t) where T is the pe-  matrix with By=Ag* andB,=-B,S'A,_1B; for k=1. Again,
riod. Here we will not repeat the complicated analysis on theye see that the scale of the matrix needs to be inverted is no
integral Dyson equation. Instead, let us look at the Green'snore thanT rather than the cutoffi/T. In practice, if#/T
function matrix in the time domain where the characteristics< T, one solves the Dyson equation direcﬂy by matrix inver-
of time dependence is clearly exposed. It is straightforwardsjon. On the other hand, #/I">T, one first derivess}, (the
to observe that in the presence of a periodic field, the Green’;qO block) by matrix inversion, then compute§|(n=1)
functions have the propert(t; +T,t,+T)=G(ty,tp). In the  pocks by matrix multiplication untihT>7#/T.
time domain, the retarded quantities suchGisV', and G’
share the same matrix structure

C. Numerical example: One-dimensional atomic chain
t\t, T 2T 3T 4T ---

T A O 0 0 - We now apply the TDD Eqg16) and(19) to investigate
2T AL Ay O 0 .- a simple one-dimensiondllD) tight binding model of an
3T A, A A O (19 infinitely long chain of atoms, shown in the inset of Figa2
2 M In this chain, one atom has a different energy level than the
AT A3 A2 At Ay - rest, and this atom provides the scattering region, the entire
. . system mimics an open structure in the MMM configuration.
The Hamiltonian of the chain, Eq(2), is specified as
We name the ensemble of matrices with the structligeas  follows:
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Ho= > Hg+Hc+Hr,
B=LR

— T
H.B_ E anﬁlaﬁj + HC,

<ij> -E
[
HC = EocTC, 3
Hr= 2 vghahc+H.c., (20)
B=LR

where(ij) refer to the index pair of adjacent neighbors in the ~ 8
1D chain,agO is the creation operator for the outmost site of
pth lead toward the central atom, and the time-dependen
field has been transformed to the hopping paranjsts Eq.
@]

0.4 ..

t
vlg(t)=vﬁexp{—if dt’AB(t’)]. o

HereH, is nondiagonal which differs from E¢3). Although
the difference can be formally eliminated by diagonalization,
it is more convenient to work with this nondiagonal formso  _,, , , .
that one can use the surface Green’s function technique tc 0 2 4 6
construct self-energy for the semi-infinite lekd? time

Due to the simplicity of the model, the equilibrium self-
energy of the lead to the scattering region can be obtainegJ

current

FIG. 3. I(t) curves(solid line) of the 1D atomic chain in re-
onse to a sinusoidal bias sigriebtted ling. The ac signal has

analytically’® amplitudeA, =—Ar=5 and frequency»=2, imposed on a dc volt-
202 ageV, =-Vg=5. (a) is obtained using the WBL, with parameters

—% le < 2vg vo=9, v, =vg=1.5, due to which the bandwidth /=36 and the
S (0= e+iV4vg - coupling strength id’y=1. (b) is obtained using TDD for the case

B vaa ! of finite bandwidth, with parameterngy=2.5, v, =vg=1.5, due to

, €>2v which W=10 andI'y=3.6.
e+sgr‘(e)\’e2—4v% o 0 °

. . ._Figures 2Zb) and 3b), in contrast, correspond to the case of
where € is the electron energy. Clearly, this self-energy iSfinite bandwidth, and the behavior oft) curves isqualita-
beyond the wide-band limit and we plot it in Fig(k: the tively different from the WBL result.
imaginary part oB;(e) indicates a finite bandwidthvg. The In Fig. 2(b), we set the amplitude of the rectangular pulse
effective total coupling strength can be estimatedIas larger than the bandwidth of the leads. It is interesting to
=4v%/vo. We Fourier transforni’ﬁ(s) back to time which ?bservle that the ‘;ﬁ"enrt] ‘iﬁ” g? tem;)lorarlly ?r'lvt(larmega'-t'
can be analytically accomplished Iveé vajues even though the Ddias puise IS Strictly positive.
y y P This is a direct consequence of a finite bandwidth. For leads
in the wide-band limit, the current is always positive and
exhibits damping oscillation around its steady state value. On
the other hand, in the zero-band limit the system reduces to
three quantum levels and a perturbation on these levels will

2

St - t) = —ia(tl—t»ﬁh[z%(tl—tz)],

i;(tl—tz) = iﬁ{Jl[Zvo(tl—tz)] stimulate sinusoidal oscillation of charges among them. Fi-
volt1 —t2) nally, in the case of a finite bandwidth, the current behavior
+iHq[2v0(t; - 1) ]}, is between these two limit situations: we now have a damp-

) ] ing oscillation around zero. The reason for a zero steady-
whereJ,(2) is thenth order Bessel function artd,(z) thenth  state current is because of the fact that energy bands of the
order Struve-H function. left and right leads are shifted to opposite directions: when
By numerically evaluating Eq¢16) and (19), we inves-  there is no overlap between them, current cannot flow since
tigate the time-dependent currert) in the atomic chain no states are available in the leddse Fig. 2d), and com-
driven by a rectangular pulse and by a sinusoidal signalpare Fig. 2d) with the WBL band diagram of Fig.(2)]. We
results are shown in Figs. 2 and 3, respectivily(t)  believe this effect can be exploited to measure the bandwidth
=-Ix(t)=1(1)]. In Figs. 2a) and 3a), the parameters are of leads by tuning the amplitude of the voltage pulse.
chosen such that the bandwidth of the leads is much larger In Fig. 3b), current is driven by a sinusoidal voltage sig-
than all other energy scales, and the resultifty curves nal imposed on a dc bias. Similar to the case of pulsed sig-
recover those obtained within the WBL approximatidn. nal, thel(t) curve behaves qualitatively different from that of
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the WBL: the current does not reach its minimum at theCanada, le Fonds pour la Formation de Chercheurs et I'Aide
voltage minimum, and the current is drivenrtegativeat the  a la Recherche de la Province du Québec, and NanoQuebec
voltage maximum. The behavior can be, roughly, understoo@H.G.). J.W. acknowledges support by a RGC grant from the
in an analogous way as to Fig(l2. However, the periodic SAR Government of Hong Kong under Grant No. HKU
case is more complicated because the current at tinse 7032/03P.
determined by the voltage history fram T to t, which may
cover several periods. Hence calculation based on the TDD
technique is essential to gain a complete insight to the quan-
tum ac conductance. The simple 1D atomic chain studied In this Appendix, we outline the derivation of the analyti-
here indicates that for both the bias pulse and sinusoidalal solution to the exactly solvable transport problem dis-
driving voltages, behavior emerges litt) when the ampli- cussed in Sec. Ill. The problem is described as follows: con-
tude of the time-dependent field is comparable to the bandsider a device whose scattering region has of a single energy
width of the leads. level, and the device is coupled to a single lead Witlite
Generalization of the 1D model to a real three-band width W(Lorentzian shape The retarded self-energy
dimensional(3D) molecular device in the MMM configura- of such a lead can be obtained as in E). At time t=0, the
tion is possible. In the 3D situation, the equilibrium or energy level abruptly jumps frorg,; to E, due to some ex-

steady-state Green’s functid®l itself becomes a matrix in- ternal perturbation. _ _
dexed by atomic orbitals of each atom. One needs to replace T0 Solve the Green's functions of this problem exactly, we
each scalar element in ti@&(t; ,t,) matrix by a block matrix ~ Fourier transforn'(e) of Eq. (9):

with atomic orbital indexes. The matrices in 3D are therefore

APPENDIX:

larger than those of 1D: the total matrix dimension in 3D is SM(ty,ty) :f Ee_if(ﬁ_tz)E W

the atomic orbital number multiplying the time domain di- 2m 2e+iW

mension. Within the TDD approach discussed above, the ma- T

trix to be inverted is still relatively small compared with the =—i6(t; - ty) =WeWi ),

total matrix. Hence, we conclude that the TDD should be 2

equally effective for 3D situations. The retarded Green’s function of the decoupled quantum

level (without the leadl can be easily derived as
V. SUMMARY

r — _ —iEq(t1—to)
In summary, we have developed a numerical approach to gty >0t>0)=-if(ty ~t)e ™,

handle time-dependent quantum transport beyond the WBL,

based on the NEGF formalism presented in Ref. 16. This g'(t; < 0,t, < 0) = —i6(t; - t,)e Folr )
numerical approach, termed time domain decomposition, is
based on directly solving the Dyson’s equation in real time. g (t; > 0,t, < 0) = — g™ (E2rEato)

TDD is numerically feasible for transport problems in MMM
devices mainly owing to the fact that the time degree of (< 0t>0) =0
freedom can be truncated in an open system fortthe» gty ;>0)=0.

limit. The computational cost of the TDD technique can beTnhe total Green’s function of this quantum level coupled

roughly estimated by the number of time poilt, which is  ith the lead satisfies the integral Dyson equation
determined by the cutoff [see Eq.(8)] and time interval

At. For the numerical examples illustrated in Figs. 2 and 3, . . . . .

we have used=200 andN=50, respectively. Generally Gl(ty,tp) =g'(ty,tp) + f f dtzdtg'(t1,t5) X (3, ta) G'(tart).

of the order of 18-10° should be sufficient to derive smooth

[(t) curves. The computational memory requirement scale§or simplicity, this integral equation can be written in a ma-
with N2, and the computational time requirement scales withtrix notation

N* for the pulsed signal case and wil? for the periodic

signal case. We have shown that in both pulse and periodic G'=g'+g2'G". (A1)

cases, the matrix operations can be further reduced to e Green’s function and the self-energy of B4L) can be

inversion _of a small triangular matrix plqs several_ matrix subdivided into a & 2 block matrix according to>0 and
multiplications, and the latter can be easily parallelized for’

distributed computation. This is an exploration to numeri—t<0’ so that the Dyson EqA1) has the form(+ for t>0

cally solve nonequilibrium Green’s functions in real time and = fort<0):
domain as opposed to Fourier transformed energy domain. /qr 0 g. 0 g. 0\/3_ o
We believe TDD will be useful as it provides a simple but ( C )—( .. >+< C )( Lo )
efficient solution to time-dependent transport problems. G, G G- Gus O O/ \2i Xy

G._ 0
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ence and Engineering Research Coun@SERQ of  This matrix equation can be solved as
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| Al ro\—14r € €
C-=lmgx)e Gi(Ih= Jdtae(ts)f dt,6(— t4)J d 1fd .

GEr+ (I_g++2:-+) g++1

xe |el(t1—t3)—( )
€1 -2(ey)
r _ r r r r r r r r
G+— - (l + G++2++)g+—(I + 2——6——) + G++E+—G——: « FWe Wiy~ t4) |62<t4_,[2 1 .
2 -E-3(e)
G.,=0. (A2) (Ad)
We emphasize that the right-hand side of expressiongjsing the identity
(A2) are the matrix form of time integrals. The remaining .
task is to evaluate them. F&'_ andG,, we obtain f dw(ﬂ)eiftzﬁ,
TE€
(tyty) = f —|etl—t2 1 one can evaluate the time integrals and energy integrals in
(tuto -3'(e)’ expressiongA3) and (A4). The results are given in Egs.
(10—(13).
Finally, the time-dependent current can be expressed in
Gl (tyty) = f de eieltity) 1 terms of the Green’s functions as
+4+ ] - _ _ r ]
€ Ez 2 (6) I(t) = 9('[)2 RG[GL+EE+ + G:——E—<+ + Gf+23+ + Gf—2§+]ttv
in which the energy integrals on the right hand side can b&vhere
easily evaluated by residual summation. G =G 3G +G 3G
Next, G'_ has two terms denoted b, (1) andG',_(Il), =062 GG 2 G0
which can be explicitly expressed as G =G\ 355G, +G 3G, +G 3" G, +G. S~ G?,.
de; [ de, . Notice that all the time dependence@h are in the exponen-
GL_(h)= f dtz6(ts) f dt,6(-ty) f — f 2—We_'51(t1_t3) tial form. After further tedious but straightforward algebra,

these time integrals in the last two equations can be evalu-
ated analytically, and the currehtt) can be written in the

3'(e) i i
_ i\ ari(Eatg=Eqty) arienltyty) ! )
X[l Tz (-i)eres et form of a single integral over energyot shown. We then

-3'(e)

. use this exactly solvetlt) to compare with the numerical
X{1+&] (A3) results obtained by TDD. Because the results are indistin-
&—E1-3(e) guishable, in Fig. 1 only the curve from TDD is shown.
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