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Silicon is a leading candidate material for spin-based devices, and two-dimensional electron gasess2DEGsd
formed in silicon heterostructures have been proposed for both spin transport and quantum dot quantum
computing applications. The key parameter for these applications is the spin relaxation time. Here we apply the
theory of D’yakonov and Perel’sDPd to calculate the electron spin resonance linewidth of a silicon 2DEG due
to structural inversion asymmetry for arbitrary static magnetic field direction at low temperatures. We estimate
the Rashba spin-orbit coupling coefficient in silicon quantum wells and find theT1 andT2 times of the spins
from this mechanism as a function of momentum scattering time, magnetic field, and device-specific param-
eters. We obtain agreement with existing data for the angular dependence of the relaxation times and show that
the magnitudes are consistent with the DP mechanism. We suggest how to increase the relaxation times by
appropriate device design.
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I. INTRODUCTION

Electron spins in silicon have been proposed as an attrac-
tive architecture for spintronics and quantum information de-
vices. The inherently low and tunable spin-orbit coupling
sSOCd in silicon heterostructures and the possibility of elimi-
nating hyperfine couplings by isotopic purification bodes
well for quantum coherent spin-based qubits and spin trans-
port. Early experiments together with theory have shown that
coherence times can be upwards of three orders of magnitude
longer than in GaAs.1–4

Energy relaxation of localized spin states has attracted
theoretical attention5–8 and experimental effort3,9 for de-
cades, and this activity has recently revived in the context of
quantum computation. The idea is to store quantum informa-
tion in the spin of a single electron confined in a semicon-
ductor structure, either attached to a donor atom or confined
electrostatically in a quantum dot. Spin transport, also of
great interest, encodes information in the spin states of an
ensemble of electrons. In both cases, electron spin resonance
sESRd measurements of spin relaxation provide a key and
available measure of spin coherence properties of electrons
in silicon quantum wells, though not a one-to-one correspon-
dence. Our aim in this paper is to explain some existing ESR
results for silicon two-dimensional electron gasess2DEGsd
at low temperatures and to make predictions for future ex-
periments.

The structures that concern us here are layered semicon-
ductor devices of Si and SiGe. The active layer is the quan-
tum well sQWd that confines the electrons in the growth di-
rection. This layer will be assumed to be composed of pure,
f001g strained silicon. We shall also neglect any roughness or
miscut at the the Si/SiGe interfaces. Devices made in this
way are commonly referred to in the semiconductor industry
as modulation-doped field-effect transistorssMODFETsd and
are designed to maximize mobility. Figure 1 introduces two
example structures.

Extensive theoretical work has been done on spin relax-
ation in GaAs and other III-V materials. The developments
that began with the theory of D’yakonov and Perel’10–12 are

most relevant for our purposes. These authors found that
fluctuating effective magnetic field due to momentum scat-
tering in the presence of SOC is the dominant spin relaxation
mechanism in semiconductor 2DEGs for low temperatures.
Here, we start with this assumption and use a general spin-
density matrix approach to calculate the relaxation times of a
2DEG in the presence of a static magnetic field, including
explicitly the angular dependence. Understanding the angular
dependence of the linewidth is important for comparison
with ESR experiments and the extraction of physically rel-

FIG. 1. sColor onlined Strong, internal electric fields are com-
mon in silicon quantum well devices. D1: A typical, high-mobility
SiGe heterostructure uses a donor layer to populate a high-density
2DEG. The charge separation results in anEz,106 V/m. D2: A
proposed quantum dot quantum computersRef. 13d which utilizes a
tunnel-coupled back gate to populate the quantum well without the
need for a nearby donor layer. Here,Ez.105 V/m due to the image
potential formed on the back gate.
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evant parameters such as the momentum relaxation time. We
also calculate separately in ak·p formalism the Rashba spin-
orbit coupling parameter in silicon quantum wells. This is a
key parameter in our calculation as well as for other spin
control considerations, both negative and positive.

In the next section we discuss the origin and magnitude of
the SOC in realistic heterostructures. The section following
that presents our calculation. Lastly, we compare with ex-
periment and discuss the implications for device design.

II. SPIN-ORBIT COUPLING

The strong macroscopic electric fields inside heterostruc-
ture QWs are important for understanding SOC, especially in
silicon. These fields are also device-specific, so we carry out
our calculations on the two representative structures in Fig.
1. Both devices have square QWs, with equal barriers on the
top and bottom interfaces. The first is typical of MODFETs
and employs a donor layer above the QW in order to popu-
late it. This charge separation produces an electric field be-
tween the two layerssacross the barrier or spacer layerd
which can be approximated by

Ez <
ens

e0eSi
= − 63 106 V/m, s1d

where ns=431015 m−2 is the density of electrons in the
2DEG for device 1,e is the charge of an electron, andei are
the dielectric constants. We assume thatthe QW is populated
only by donor-layer electrons, leaving an equal amount of
positive charge behind. The second structure is one that has
been proposed for use in a quantum computer device.13 It
utilizes a near-lying, tunnel-coupled back gate 2DEG
s,30 nm awayd together with Schottky top gates to populate
the QW selectively. This situation also results in a strong
electric field due to the image potential on the back gate. For
one qubit, this can be estimated as

Ez <
e

4pe0eSid
2 = 3 3 105 V/m, s2d

whered=20 nm is the distance from the QW to the back gate
for device 2. Schottky top gates and other device parameters
can augment or reduce this growth-direction electric field
nominally up to the breakdown field of silicon, 3
3107 V/m, or the ionization energy of the electron.14 In-
deed, this field can actually be smaller than that due to the
top gates in certain dot configurations.

The shift of the electrong factor from its free-electron
valueg0=2.002 32 is one measure of SOC in a system. It is
quite small in bulk silicon and depends on the magnetic field
direction in the sellipticald conduction band minimasDgi

<−0.003,Dg'<−0.004d.9 However, it is difficult to reliably
extract the SOC strength in a 2DEG fromDg. Many param-
etersfe.g., strain, barrier penetration, Ge contentsgGe=1.4d,
nonparabolicity of the band minimag influence the magnitude
and sign ofDg and it may show considerable sample depen-
dence. The nonparabolicity effects are especially sensitive to
the electron density within the QW and can hide the magni-
tude of SOC within a system.15

In these silicon heterostructures, SOC is dominated by
inversion asymmetry within the device. The spin-orbitsSOd
Hamiltonian to first order in momentum is given in an arbi-
trary electrostatic potentialV by

HSO=
"

4m2c2EzsW · sẑ3 pd,

wheresi are the Pauli matrices. Note that the effective mag-
netic field that acts on the spin is in the plane of the layer. In
Si heterostructures, the macroscopic fields, which do not av-
erage out, are more important than the atomic electric fields.
In the noncentrosymmetric III-V materials such as GaAs,
this is not necessarily the case and the resulting Dresselhaus
or bulk inversion asymmetry fields are usually dominant. The
asymmetry considered here, due to either an interface, charge
distribution, or external potential, is usually called Rashba or
structural inversion asymmetry.

The Rashba term comes directly from the SO Hamiltonian
if we assume one dominant symmetry-breaking electric field
in the structure and average over a momentum state. In a
QW, as we have pointed out above, the electric field is in the
growth szd direction and thus thez component of the above
dot product is selected and we obtain

HR
2D = aspxsy − pysxd ~ EzssW 3 pdz, s3d

which is then the Rashba-Bychkov Hamiltonian.16

Strictly speaking, as de Andrade e Silvaet al. point out,17

the conduction-band-edge profileEc and the space charge
separationsor applied electrostatic fieldd Ez contribute sepa-
rately and sometimes dissimilarly to the SOC. For example,
the wave function discontinuitysband offsetd across a mate-
rial interface can cause Rashba spin splitting itself. However,
in devices of the type considered here, the macroscopic field
should be the main contribution. These same authors have
derived an expression fora in the Kane model for GaAs. We
have adapted their work for Si, using a five-parameter eight-
band Kane model. This is eight bands including spin, which
means just the lowest conduction band and the three highest
valence bands. By calculating the breaking of the degeneracy
between the spin-up and spin-down states of the lowest con-
duction band, we find

a =
2PPzDd

Î2"Ev1Ev2
S 1

Ev1
+

1

Ev2
DekEzl, s4d

where we have taken the average of the electric field in thez
direction. Here P="kXupxuSl / im, Pz="kZupzuSl / im, Dd

=0.044 eV is the spin-orbit splitting of the two highest con-
duction bands,Ev1=3.1 eV is the direct gap of the strained
sample, andEv2=7 eV is the gap between the conduction-
band minimum and the lowest of the three valence bands.
sThese are the five parameters mentioned above.d m is the
bare electron mass. The matrix elements that defineP andPz
are to be taken between the cell-periodic functions of the
indicated symmetry at the position of the conduction-band
minimum. Unfortunately, these are not well known in Si,
since other bands contribute. We may note thatP andPz are
examples of momentum matrix elements that do not vary too
much in III-V materials and Ge,18 and are given approxi-
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mately by 2mPszd
2 /"2<22 eV. With these values we find that

for devices of type 1

a < 1.663 10−6kEzl m/s. s5d

Previous Kane models for GaAs involve matrix elements at
k=0. Our theory is different since it takes into account the
proper symmetry of silicon with its minima well away from
the zone center.

Wilamowskiet al.,19 using conduction-electron spin reso-
nance sCESRd, have measureda<5.94 m/s sae/"
=0.55/Î2310−12 eV cm in their unitsd in a
Si0.75Ge0.25/Si/Si0.75Ge0.25 QW where the strained silicon
layer was roughly 12–20 nm.34 Carrier concentrations were
ns<431015 m−2. These numbers correspond to our device 1
parameters. Our equations then give, using Eq.s5d,

aD1 < 5.1 m/s forkEzl = 3 3 106 V/m. s6d

The theory compares in order of magnitude and we believe
that our estimation has some utility as a guide for device
design.

For device 2,aD2<0.25 m/s for kEzl=1.53105 V/m.
This device remains to be built. For device 1, we can also
predict the zero-magnetic-field spin splitting in a silicon
2DEG usingue+−e−uø2apF,

2apF = 2a"Î4pns

4
< 0.75meV,

where 4 is the degeneracy factor in siliconsspin+valleyd.
This has not yet been directly measured to our knowledge.
Taking a Zeeman splitting ofgmBB=0.75meV with a g fac-
tor of 2, this implies an internal, in-plane, effective magnetic
field—the so-calledRashba field—of roughly 62 G, which is
the direct result of SOC in the silicon 2DEG of device 1.

Let us consider the relevance of our silicon SOC results to
QC and spintronics. We note that the magnitude of the
Rashba coefficient is much smaller than for GaAs. For the
same electric field and 2DEG density as device 1, a similar
kW ·pW theory for GaAs arrives ataGaAs<230 m/s.17 But GaAs
itself is not a high-Rashba III-V semiconductor and is
thought to be be dominated by Dresselhaus SOCsbGaAs

<1000 m/sd.20 InAs-based heterojuctions, for example, may
have orders of magnitude higher Rashba values.21 This
means that SOC effects in silicon devices will be much
smaller, including decoherence and gating errors that are
SOC based.

III. SPIN RELAXATION

We wish to consider the combined effects of the SO
Hamiltonian

HR
2D = aspxsy − pysxd

and the scattering Hamiltonian. The scattering may be from
phonons or from static disorder. We take the semiclassical
approach, in which the effect of scattering is to cause transi-
tions at random intervals from one wave packet centered atpW
with «pW =«F to another centered atpW8 with «pW8=«F, where«F

is the Fermi energy. This corresponds to a random switching
in the direction of the effective magnetic field that acts on the
spin degree of freedom. This is the D’yakonov-Perel’sDPd
mechanism of spin relaxation.10,11 The measured quantity in
the continuous-wave experiments carried out on 2DEGs is
T2, the transverse relaxation time, while pulsed experiments
can also measureT1, the longitudinal relaxation time. For our
purposes, a density matrix approach is the natural one, since
we will eventually want to perform an ensemble average
over all possible scattering sequences. Since the physical
model of spins in a random time-dependent magnetic field is
the same as that for relaxation of nuclear spins in liquids, the
Redfield technique may be used.

We outline the calculation only briefly, since the details
are parallel to the discussion in standard texts.22 The 232
density matrixr allows us to compute the expectation values
of the spin byksil=Tr hsirj. For a single system described
by the HamiltonianH, we have the equation of motion
dr /dt=si /"dfr ,Hg In the case of

H = H0 + H1std, s7d

whereH1 is small, it is convenient to go to the interaction
representation

rint = exps− iH0t/"dr expsiH0t/"d, s8d

and then we get

drint

dt
=

i

"
frint,H1

intstdg, s9d

where

H1
intstd = expsiH0t/"dH1exps− iH0t/"d. s10d

This equation can be integrated to give

rintstd = rints0d +
i

"
E

0

t

frintst8d,H1
intst8dgdt8, s11d

and this can be solved interatively, which in second order
gives

drintstd
dt

=
i

"
frints0d,H1

intstdg

+ S i

"
D2E

0

t

dt8†frints0d,H1
intst8dg,H1

intstd‡. s12d

For example, let the steady field be in thez direction, so
that H0="vcsz/2. The fluctuating field fH1

intstdgss9
=oi=x,y histdsss9

i is in the transverse direction. The first order
matrix element vanishes and we are left, in second order,
with

S i

"
D−2Sdrss8

int

dt
D

2

= o
s9s9

rss-s0dfH
int

st8dgs9s-fH
int

stds-s8e
iss9−s-dt8eiss-−s8dt

+ o
s9s-

fH
int

stdgss9e
iss−s9dtfH

int
stdgs9s-eiss9−s-dt8rs-s8s0d
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− o
s9s-

fH
int

st8dgss9e
iss−s9dt8r

s9s-
s0dfH

int
stdgs9s8e

iss-−s8dt

− o
s9s-

fH
int

stdgss9e
iss−s9dtr

s9s-
s0deiss-−s8dt8fH

int
st8dgs-s8,

s13d

where we defineest=eest. Averaging the random field, we
find

fH
int

stdgss9fH
int

st8dgs-s- = o
i j

histdhjst8dsss9
i

ss9s-
j

= o
i=x,y,z

xist − t8dsss9
i

ss9s-
i , s14d

wheret= t− t8 and we definexistd=histdhist8d. In the geom-
etry with a nonzero component of the external field parallel
to the layer, the relaxation tensor can be nondiagonal as far
as symmetry is concerned, and there can be three relaxation
times.23 In the case under consideration, where the Dressel-
haus cubic term is absent, the only fluctuating field is the
Rashba field. As long as the scattering iss wave and cyclo-
tron motion effects are ignored, as we assume, the off-
diagonalse.g., x-yd components of the correlation function
vanish, in a coordinate system that is fixed in the frame of
the sample. In this frame the relaxation tensor is diagonal
and there are only two experimentally accessible relaxation
times at any fixedu, whereu is the angle of the field with
respect to the growth axis.

We now substitute expressions14d into Eq. s13d and do
the matrix algebra. Equations13d can then be integrated in
the limit wheret is large. We neglect the oscillating terms,
which then yield

S i

"
D−2Kdr++

dt
L = fxxsvLd + xysvLdgfr++s0d − r−−s0dg

and

S i

"
D−2Kdr+−

dt
L = r+−s0dfxxsvLd + xysvLd + 2xzs0dg.

To obtain the relaxation times we must consider the equation
for the spin:

dkszl
dt

=
dfTrsszrdg

dt

=
d

dt
sr++ − r−−d

=2S i

"
D2

fxxsvLd + xysvLdgfr++s0d − r−−s0dg

=− 2S1

"
D2

fxxsvLd + xysvLdgkszl s15d

and so

1/T1 = 2fxxsvLd + xysvLdg/"2.

Also

dksxl
dt

=
d Trssxrd

dt

=
d

dt
sr+− + r−+d

=− fr+−s0d + r+−s0dgfxxsvLd + xysvLd + 2xzs0dg/"2

=− fxxsvLd + xysvLd + 2xzs0dgksxl/"2,

which gives

1/T2 = fxxsvLd + xysvLd + 2xzs0dg/"2.

This gives a relation

1/T2 = 1/2T1 + 2xzs0d/"2.

We now wish to specialize to the case of a DP mechanism in
a 2DEG. The main point is that the static field may be in any
direction, while the fluctuationg field is in the plane. Con-
sider first the special case that the static field is alongẑ. Then

1/T2 = 1/2T1 = fxxsvLd + xysvLdg/"2.

Now consider a general direction, sayBW along the direction
Bxx̂+Bzẑ=sin ux̂+cosuẑ, so thatu is the angle to the nor-
mal. Then the longitudinal fluctuationsxi, which are qua-
dratic in the field, are proportional to sin2 u and the trans-
verse onesx' to cos2u. Thus

1/T1sud = 2fcos2 uxxsvLd + xysvLdg/"2 s16d

while

1/T2sud = fcos2 uxxsvLd + xysvLd + 2sin2 uxxs0dg/"2.

s17d

For the DP mechanism in a 2DEG the random field is con-
stant in magnitude, but random in direction. The statistics of
this field are Poisson: namely, that if thex component the
field at timet=0 is hx, then the chance of it remaining athx

decays as exps−t /tpd. Hence

his0dhistpd = khx
2le−t/t =

1

2
a2pF

2e−t/tp

and

xx,ysvd =
a2pF

2tp
2

1 + v2tp
2 .

In these formulas,tp is the momentum relaxation time. Note
that these formulas assumes-wave scattering. Finally, we are
left with

1

T1
= 2a2pF

2tFcos2sud + 1

1 + vL
2t2 GY "2

and

1

T2
= a2pF

2tFcos2sud + 1

1 + vL
2t2 + 2sin2uGY "2.

The zero-frequency limit of these formulas agrees with
the recent results of Burkovet al.24 fsee their Eq.s17dg. They

CHARLES TAHAN AND ROBERT JOYNT PHYSICAL REVIEW B71, 075315s2005d

075315-4



do not agree with the formulas in Wilamowskiet al.19 fsee,
e.g., their Eq.s3dg who state that the relaxation from the DP
mechanism should vanish whenu=0. This is not consistent
with our results.

The DP mechanism has the nice feature that it is relatively
easy to isolate experimentally. It is strongly anisotropic in the
direction of the applied field compared to other mechanisms.
To illustrate this we plot the ESR linewidths as a function of
field angle in Fig. 2. What is most striking is the opposite
dependence on angle for the rates 1/T1 and 1/T2, with 1/T2
maximized when the field is in the plane of the 2DEG, while
1/T1 is maximized when the field is perpendicular to the
plane of the 2DEG. Physically, this comes from the fact that
the electric field is perpendicular, so that the fluctuations of
the effective magnetic field are in the plane. Longitudinal

relaxation sT1d is due to fluctuations perpendicular to the
steady field, while transverse relaxationsT2d is due to fluc-
tuations both perpendicular and parallel to the steady field.
This mechanism has the characteristic that the change in
1/T1 as the field is rotated through 90° is always a factor of
2. The change in 1/T2 is frequency and lifetime dependent,
with the anisotropy increasing as the mobility increases.

The DP relaxation also has the counterintuitive inverse
dependence of the spin relaxation time on the momentum
relaxation time 1/T1,2~tp for smalltp sor zero fieldd, typical
for motional narrowing. We plot the dependence ofT2 on the
mobility in Fig. 3. At high mobilities and high frequencies
v@1/tp, we find 1/T1,2~1/tp.

IV. DISCUSSION

We have calculated the transverse and longitudinal relax-
ation times of a silicon 2DEG in an arbitrary static magnetic
field. To test our calculations, we compare them to known
ESR data.1,2,19,25,26We limit ourselves to low temperatures,
eF,10–15 K, and realistic material parameters for state-of-
the-art heterostructures.

The most robust prediction of the theory is the anisotropy,
particularly that ofT1, which is completely independent of
all parameters. The only measurement, in Ref. 3, gives sat-
isfactory agreement forT1: T1

Biz/T1
B'z=0.67 as opposed to

the prediction 0.5. Furthermore, the anisotropy of 1/T2 goes
in the opposite direction, as it should. The magnitude of this
anisotropy is measured to beT2

Biz/T2
B'z=12.5 which is about

a factor of 6 larger than the theory predicts for the quoted
mobility. The relaxation times, as far as can be determined
by the range set by the uncertainty in silicon band param-
eters, are in rough agreement with what one gets from esti-
mates assuming that this well is a device of type 1. The
anisotropy of the 2DEG ESR linewidth is independent ofa
and is indeed only dependent on one free variable: the mo-

FIG. 2. sColor onlined Spin relaxation times as a function of
static magnetic field directionswhereu=0 is perpendicular to the
2DEG planed for specific values of 2DEG density and Rashba
asymmetry. The quantum well is assumed to be completely donor-
layer populated and as such,a is calculated directly with Eq.s5d as
a function of the 2DEG density.

FIG. 3. ESR linewidth lifetimeT2 from Eq. s17d for constant
asymmetry coefficienta=1 m/s, as a function of 2DEG mobilitym
and densityns. For donor-layer populated quantum wells, divide the
times listed bya2: T2sad=T2sa=1d /a2. The magnetic field is as-
sumed to beB=0.33 T, perpendicular to the plane of the 2DEG.
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mentum relaxation timetp, which we assume is directly pro-
portional to the mobility. The magnitude of the relaxation
time, on the other hand, is set by the Rashba coefficient
together with the Fermi momentum.

Table I details results for four other samples as well, also

nominally of type 1 for which measurements ofT2 have been
performed. Agreement is good for the sample of Ref. 19,
particularly for the anisotropy ofT2. This is a donor-layer-
populated sample measured with cw ESR. Reference 26,
measured via electrically detected ESRsED ESRd, also is in
good agreement with the anisotropy predicted by the theory.
Comparison with the sample of Ref. 25 also seems to be very
good. This is an IBM 2DEG with a density of roughly 4
31015 m−2 and a quantum well thickness of 10 nm, fully
donor-layer populated. Agreement is considerably less good
for the sample in Ref. 1. Here the mobility is not well
known, and the sample is partially populated by illumination.
So we are led to believe that there is some difference be-
tween the two sets of samples that causes one set to have a
largerT2 anisotropy than our theory predicts, even for very
similar material parameterssdensity and mobilityd. Further
experimental work along the lines of measuring the density,
mobility, T1, andT2 on the same samples is needed.

The magnitude of the predicted relaxation times is in gen-
eral well predicted by the theory, but there is a range of error.
The position of the ionized centers that populate the well is
important for the calculation of the electric field which is
thus hard to characterize. Photoelectrons created with light at
the band gap energy may also have symmetry-changing ef-
fects. This may explain why the Rashba coefficient derived
from varying the 2DEG density by light in Ref. 19 appears to
be independent of density. It is also important to point out
that parallel conductivityscurrent paths through both the
2DEG and the donor layer for exampled is a common prob-
lem in today’s SiGe quantum wells and may affect the trans-
port measurements of density and especially mobility, mak-
ing comparison with theory difficult.

Other mechanisms may become important as we leave the
parameter range considered in this paper. Electron-electron
collisions, which do not greatly affect the mobility at low
temperatures, may start to contribute at higher temperatures
and mobilities, as they appear to do in GaAs quantum
wells.28 These collisions will also relax the spin, but the re-
lation between momentum relaxation and spin relaxation is
not expected to be the same as for the elastic collisions con-
sidered here. At higher magnetic fields, the cyclotron motion
of the electrons is important. In the semiclassical picture,
whenvctpù1, the average value of the momentum perpen-
dicular to the magnetic field shrinks, reducing or even elimi-
nating DP spin relaxation, as has been considered for III-V
semiconductors in the fixed magnetic field case.12,29This ef-
fect may become important at high mobilities and would be
dependent on magnetic field angle, increasing the anisotropy
predicted here while also increasing the relaxation times.
Quantum effects may become important in this regime, how-
ever. The wave vector dependence of the conduction band
electrong factor may also lead to relaxation, as has been
pointed out recently,30 but has not been considered here. Fi-
nally, the addition of details related to the presence of two
conduction-band valleys may differentiate further the case of
Si from that of GaAs. Golub and Ivchenko31 have considered
spin relaxation in symmetricalsa=0d SiGe QWs, where val-
ley domainsseven or odd monolayer regions of the QWd
may have influence over spin dynamics. Random spin-orbit
coupling due to variations in the donor-layer charge distribu-

TABLE I. We calculate relaxation times assuming that the QW
is completely populated by the doner layer. Accurate analysis is
made difficult due to the lack of precise values for mobility and
density, which are often not measured directlysor reportedd for the
specific sample addressed with ESR. The anisotropy does not de-
pend on the Rashba coefficient. Note also that there is some dis-
agreement in the literature as to how to convert from linewidth to a
relaxation time, we use the equations derived by Poole in Ref. 27,
T2=2" / sÎ3gmBD Hpp

0 d, but others may differ by a factor of up to
2p.

Source Linewidth Anisotropy

Ref. 19 Experiment Experiment

5–30 K T2
Biz=420 nss0.15 Gd T2

Biz/T2
B'z=3

m,20 m2/V s T2
B'z=140 nss0.45 Gd

ns,431015 m−2 Prediction Prediction

cw ESR T2
Biz=191 ns T2

Biz/T2
B'z=3.2

Donor populated T2
B'z=60 ns T1

Biz/T1
B'z=0.5

Experiment

T2
Biz=3 ms

Ref. 2 T2
B'z=0.24ms Experiment

5 K T1
Biz=2 ms T2

Biz/T2
B'z=12.5

m,9 m2/V s T1
B'z=3 ms T1

Biz/T1
B'z=0.67

ns,331015 m−2 Prediction Prediction

Pulsed ESR T2
Biz=502 ns T2

Biz/T2
B'z=1.8

Light populated T2
B'z=272 ns T1

Biz/T1
B'z=0.5

T1
Biz=251 ns

T1
B'z=502 ns

Ref. 1 Experiment Experiment

T2
Biz=12 ms T2

Bix/T2
B'z=24

m,10 m2/V s T2
B'z=500 ns

ns,331015 m−2 Prediction Prediction

cw ESR T2
Biz=480 ns T2

Bix/T2
B'z=1.9

Light or gate populated T2
B'z=193 ns T2

Bix/T2
B'z=0.5

Ref. 25 Experiment Experiment

T2
Biz=50 nss0.13 Gd T2

Bix/T2
B'z=1.65

m,5 m2/V s T2
B'z=30 nss0.215 Gd

ns,431015 m−2 Prediction Prediction

cw ESR T2
Biz=31 ns T2

Biz/T2
B'z=1.6

Donor populated T2
B'z=20 ns T2

Biz/T2
B'z=0.5

Ref. 26 Experiment Experiment

4.2 K T2
Biz=105 nss0.6 Gd T2

Biz/T2
B'z=2.2

m,9 m2/V s T2
B'z=49 nss1.3 Gd

ns,431015 m−2 Prediction Prediction

ED ESR T2
Biz=212 ns T2

Biz/T2
B'z=1.8

Donor populated T2
B'z=115 ns T1

Biz/T1
B'z=0.5
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tion may also be important in symmetric quantum wells.32,33

Long spin relaxation times on the order of hundreds of
nanoseconds to microseconds, found in presently available
SiGe quantum wells, hold great promise for both quantum
information processing and spintronics. Our results demon-
strate that decreasing the reflection asymmetry within the
device will appreciably decrease the Rashba coefficient and
the consequent spin relaxation at low temperatures. This can
be achieved by a symmetric doping profile or using an ex-
ternal electric field to cancel out the field of the ions. They
further show that the anisotropy of the ESR linewidth as a
function of angle may be a good indicator of 2DEG quality

smobilityd independent of transport measurements. As
higher-mobility and more exotic SiGe heterostructures are
grown and characterized, new physics may emerge.
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