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Rashba spin-orbit coupling and spin relaxation in silicon quantum wells
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Silicon is a leading candidate material for spin-based devices, and two-dimensional electrof2 D&ses
formed in silicon heterostructures have been proposed for both spin transport and quantum dot quantum
computing applications. The key parameter for these applications is the spin relaxation time. Here we apply the
theory of D’yakonov and Pere{DP) to calculate the electron spin resonance linewidth of a silicon 2DEG due
to structural inversion asymmetry for arbitrary static magnetic field direction at low temperatures. We estimate
the Rashba spin-orbit coupling coefficient in silicon quantum wells and find {tend T, times of the spins
from this mechanism as a function of momentum scattering time, magnetic field, and device-specific param-
eters. We obtain agreement with existing data for the angular dependence of the relaxation times and show that
the magnitudes are consistent with the DP mechanism. We suggest how to increase the relaxation times by
appropriate device design.
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I. INTRODUCTION most relevant for our purposes. These authors found that

Electron spins in silicon have been proposed as an attradluctuating effective magnetic field due to momentum scat-
tive architecture for spintronics and quantum information defering in the presence of SOC is the dominant spin relaxation
vices. The inherently low and tunable spin-orbit couplingMechanism in semiconductor 2DEGs for low temperatures.
(SOQ in silicon heterostructures and the possibility of elimi- Here, we start with this assumption and use a general spin-
nating hyperfine couplings by isotopic purification bodesdensity matrix approach to calculate the relaxation times of a
well for quantum coherent spin-based qubits and spin trans2DEG in the presence of a static magnetic field, including
port. Early experiments together with theory have shown thagxplicitly the angular dependence. Understanding the angular
coherence times can be upwards of three orders of magnitudiependence of the linewidth is important for comparison

longer than in GaA$™ with ESR experiments and the extraction of physically rel-
Energy relaxation of localized spin states has attracted
theoretical attention® and experimental effotf for de- ¢  Schottky gates |
cades, and this activity has recently revived in the context of;f— SCap TScm N
quantum computation. The idea is to store quantum informa- st 1ed SO - —
. . . . . . . ep graae 1Ge ep graae 1Ge
tion in the spin of a single electron confined in a semicon- o
ductor structure, either attached to a donor atom or confinec™ / o
electrostatically in a quantum dot. Spin transport, also of clectron °
great interest, encodes information in the spin states of ar | Doped SiGe donor layer \ qubit
ensemble of electrons. In both cases, electron spin resonand | (P orsSb) s K @
(ESR measurements of spin relaxation provide a key and I i I ) Strained STQW\emety) | 3
available measure of spin coherence properties of electron o | SiGe &rrier/sﬁlcer ¢ / . . A
in silicon quantum wells, though not a one-to-one correspon-; E 4 SiGe barrier/sp ‘Eer 3
dence. Our aim in this paper is to explain some existing ESR« - . 3
results for silicon two-gingensional eﬁectron gazéé@EG% + | Strained Si 2DEG \Stramed Si2DEG backgate | =
at low temperatures and to make predictions for future ex- | SiGe virtual substrate \ — o
periments. \ SiGe barrier/spacer I:h::ge
The structures that concern us here are layered semicor
ductor devices of Si and SiGe. The active layer is the quan- / i Ve
tum well (QW) that confines the electrons in the growth di- / SiGe virtual substrate
rection. This layer will be assumed to be composed of pure, - -
Device 1 (D1) Device 2 (D2)

[001] strained silicon. We shall also neglect any roughness ol
miscut at the the Si/SiGe interfaces. Devices made in this g 1 (color onling Strong, internal electric fields are com-
way are commonly referred to in the semiconductor industryyon in silicon quantum well devices. D1: A typical, high-mobility
as modulation-doped field-effect transistd#ODFETS and  sjGe heterostructure uses a donor layer to populate a high-density
are dESigned to maximize m0b|l|w Figure 1 introduces tWOZDEG The charge separation results m@ploﬁ V/m. D2: A
example structures. proposed quantum dot quantum compuiRef. 13 which utilizes a

Extensive theoretical work has been done on spin relaxtunnel-coupled back gate to populate the quantum well without the
ation in GaAs and other IlI-V materials. The developmentsneed for a nearby donor layer. HeEg>10° V/m due to the image
that began with the theory of D’yakonov and Pef®f2are  potential formed on the back gate.
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evant parameters such as the momentum relaxation time. We In these silicon heterostructures, SOC is dominated by
also calculate separately irkap formalism the Rashba spin- inversion asymmetry within the device. The spin-or80)
orbit coupling parameter in silicon quantum wells. This is aHamiltonian to first order in momentum is given in an arbi-
key parameter in our calculation as well as for other spintrary electrostatic potential by

control considerations, both negative and positive.

In the next section we discuss the origin and magnitude of Hso= —55
the SOC in realistic heterostructures. The section following amre
that presents our calculation. Lastly, we compare with ex
periment and discuss the implications for device design.

Ezé)"(2>< p),

whereo; are the Pauli matrices. Note that the effective mag-
netic field that acts on the spin is in the plane of the layer. In
Si heterostructures, the macroscopic fields, which do not av-
Il. SPIN-ORBIT COUPLING erage out, are more important than the atomic electric fields.
In the noncentrosymmetric IlI-V materials such as GaAs,
The strong macroscopic electric fields inside heterostructhis is not necessarily the case and the resulting Dresselhaus
ture QWs are important for understanding SOC, especially ir bulkinversion asymmetry fields are usually dominant. The
silicon. These fields are also device-specific, so we carry ouisymmetry considered here, due to either an interface, charge
our calculations on the two representative structures in Figdistribution, or external potential, is usually called Rashba or
1. Both devices have square QWs, with equal barriers on thetructural inversion asymmetry.
top and bottom interfaces. The first is typical of MODFETS  The Rashba term comes directly from the SO Hamiltonian
and employs a donor layer above the QW in order to popuif we assume one dominant symmetry-breaking electric field
late it. This charge separation produces an electric field ben the structure and average over a momentum state. In a
tween the two layergacross the barrier or spacer layer Qw, as we have pointed out above, the electric field is in the
which can be approximated by growth (z) direction and thus the component of the above
en dot product is selected and we obtain

E,~—=-6x10° V/m, 1 B,

e W HR = a(p,oy = pyoy) = Ef( X p),, (3
where ng=4x 10> m™2 is the density of electrons in the which is then the Rashba-Bychkov Hamiltonn.

2DEG for device 1gis the charge of an electron, aledare Strictly speaking, as de Andrade e Siktal. point out!’

the dielectric constants. We assume tiwat QW is populated the conduction-band-edge profile. and the space charge
only by donor-layer electrondeaving an equal amount of separatior(or applied electrostatic fieJdE, contribute sepa-
positive charge behind. The second structure is one that haately and sometimes dissimilarly to the SOC. For example,
been proposed for use in a quantum computer devide. the wave function discontinuitgband offset across a mate-
utilizes a near-lying, tunnel-coupled back gate 2DEGrial interface can cause Rashba spin splitting itself. However,
(<30 nm away together with Schottky top gates to populate in devices of the type considered here, the macroscopic field
the QW selectively. This situation also results in a strongshould be the main contribution. These same authors have
electric field due to the image potential on the back gate. Foderived an expression far in the Kane model for GaAs. We

one qubit, this can be estimated as have adapted their work for Si, using a five-parameter eight-
band Kane model. This is eight bands including spin, which

E ~ _ & _ 3% 10° V/m 2) means just the lowest conduction band and the three highest

Amregegd? ’ valence bands. By calculating the breaking of the degeneracy

whered=20 nm is the distance from the QW to the back gatebetween the spin-up and spin-down states of the lowest con-
. . duction band, we find
for device 2. Schottky top gates and other device parameters

can augment or reduce this growth-direction electric field 2PP,Ay < 1 1

E—vl+E—vz>e(Ez>, (4)

nominally up to the breakdown field of silicon, 3 a= >HE .E
X 107 V/m, or the ionization energy of the electréhin- Va2
deed, this field can actually be smaller than that due to thevhere we have taken the average of the electric field irzthe
top gates in certain dot configurations. direction. Here P=A(X|pS/im, P,=A(Z|p|S/im, A4

The shift of the electrorg factor from its free-electron =0.044 eV is the spin-orbit splitting of the two highest con-
valueg,=2.002 32 is one measure of SOC in a system. It iduction bandsE,;=3.1 eV is the direct gap of the strained
quite small in bulk silicon and depends on the magnetic fieldssample, ancE,,=7 eV is the gap between the conduction-
direction in the (elliptical) conduction band minimdAg; band minimum and the lowest of the three valence bands.
~-0.003,Ag, =-0.004.° However, it is difficult to reliably  (These are the five parameters mentioned abaveis the
extract the SOC strength in a 2DEG frakg. Many param-  bare electron mass. The matrix elements that définadP,
eters[e.g., strain, barrier penetration, Ge contemf.=1.4), are to be taken between the cell-periodic functions of the
nonparabolicity of the band minim@fluence the magnitude indicated symmetry at the position of the conduction-band
and sign ofAg and it may show considerable sample depen-minimum. Unfortunately, these are not well known in Si,
dence. The nonparabolicity effects are especially sensitive tsince other bands contribute. We may note thand P, are
the electron density within the QW and can hide the magniexamples of momentum matrix elements that do not vary too
tude of SOC within a systen?. much in 1lI-V materials and G& and are given approxi-
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mately by ZnP(ZZ)/ﬁzzZZ eV. With these values we find that is the Fermi energy. This corresponds to a random switching

for devices of type 1 in Fhe direction of the effectiv_e magnetic field that acts on the
. spin degree of freedom. This is the D’yakonov-Pe(BIP)
a=1.66X 10%Ey) m/s. (5 mechanism of spin relaxatidf:!* The measured quantity in

he continuous-wave experiments carried out on 2DEGs is
», the transverse relaxation time, while pulsed experiments

can also measurk,, the longitudinal relaxation time. For our

purposes, a density matrix approach is the natural one, since

Wilamowski et al.,'® using conduction-electron spin reso- we will eventually want to perform an ensemble average

nance (CESR, have measureda~5.94 m/s (aelh over all possible scattering sequences. Since the physical
=0.55/2 101’2 eVem  in their 'unit$ in a model of spins in a random time-dependent magnetic field is

Siy 658, 25/ Si/ Sb 156 s QW where the strained silicon the same as that for relaxation of nuclear spins in liquids, the

layer was roughly 12—20 nif.Carrier concentrations were Re\(/j\';'eld tt(iChnt'ﬂue rT:ayI bt? usedl. briefly. si the detail
ne=~ 4 X 10*> m 2. These numbers correspond to our device 1 ''¢ OLIII Ilnte ﬂf Cg‘. culation on yt ”g y& Stg]?((igh EZXeZa' S
parameters. Our equations then give, using (BY. are parallel o the discussion in standar e

density matrixp allows us to compute the expectation values
aPl=5.1 m/s for(E,) = 3 X 1¢° V/m. (6)  of the spin by(a;)=Tr {o;p}. For a single system described

The theory compares in order of magnitude and we believgz /é?i(ivz)n[];l:t(l)ﬂ?al‘r?m ev(\/:ZSZa(;/fe the equation of motion

that our estimation has some utility as a guide for device
deSign. H= Ho + Hl(t), (7)
For device 2,aP?~0.25 m/s for(E,)=1.5X10° V/m. _ o . . .
. . . . , whereH, is small, it is convenient to go to the interaction
This device remains to be built. For device 1, we can also .
. g : ol - representation
predict the zero-magnetic-field spin splitting in a silicon

Previous Kane models for GaAs involve matrix elements a
k=0. Our theory is different since it takes into account the
proper symmetry of silicon with its minima well away from
the zone center.

2DEG using|e, - e_| < 2ap, p" = exp(— iHot/%)p expliHot/h), (8)
47 and then we get
2apg = 2ah ~0.75ueV, Ao |
P = [ Ht(t)], (©)
where 4 is the degeneracy factor in silicGspin+valley. dt 7

This has not yet been directly measured to our knowledgeyhere
Taking a Zeeman splitting ajugB=0.75 ueV with ag fac- _
tor of 2, this implies an internal, in-plane, effective magnetic HI'(t) = exp(iH ot/A)H exp(— iHot/4). (10)
field—the so-calledRashba fiele-of roughly 62 G, which is
the direct result of SOC in the silicon 2DEG of device 1. .
Let us consider the relevance of our silicon SOC results to intres i i sy 1 it 7N s
QC and spintronics. We note that the magnitude of the plm(t)_pmt(o)JrﬁJO [p™(), ()]t (L)
Rashba coefficient is much smaller than for GaAs. For the
same electric field and 2DEG density as device 1, a similagnd this can be solved interatively, which in second order
k-p theory for GaAs arrives atgaas~230 m/s'’ But GaAs  gives
itself is not a high-Rashba IlI-V semiconductor and is do™(t) i
thought to be be dominated by Dresselhaus S(@g.as T:%
~1000 m/3.2° InAs-based heterojuctions, for example, may
have orders of magnitude higher Rashba vakieShis +( i >2Jt

This equation can be integrated to give

[p"(0),H"(1)]

means that SOC effects in silicon devices will be much dt'[[p™(0), HT' ()] HT'(D]. (12
smaller, including decoherence and gating errors that are
SOC based. For example, let the steady field be in thelirection, so
that Ho=fiweo,/2. The fluctuating field [HI'(t)]se
=3y h'(t) oy is in the transverse direction. The first order
matrix element vanishes and we are left, in second order,

We wish to consider the combined effects of the SOwith

Hamiltonian N o int
(1)(%=)
HE = a(poy =~ pyoy) n) \dt /,

i i i i int int SN (Il
and the scattering Ha_m|ltpn|an. The scattering may be fr_om = pear(O[H™ (") ]erer[H (t)smsrel(s, St i8-8t
phonons or from static disorder. We take the semiclassical

0

Ill. SPIN RELAXATION

. . T X g’
approach, in which the effect of scattering is to cause transi- - T o
tions at random intervals from one wave packet centergd at + 2 [H" () ]se€ S MH" (1) ]eren€® " pgng (0)
with e5=&¢ to another centered @t with g5 =eg, whereeg 'S
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int, e int i(s"-s'
= X [H)]see ™ (OTH (O]gs e
SHS/H S,S'
int o SN int,,
- 2 H e, 0 H ()]s,
S/IS/H S,SI
(13

where we definees'=e%'. Averaging the random field, we
find

int int

[H™ (0 ]selH"(t)]erer = 2 HON () 0Lyl
ij

=D Xt-t)o ol (14)
i=x,y,z

where r=t—t’ and we definey'(7)=h'(t)h'(t’). In the geom-

PHYSICAL REVIEW B71, 075315(2005

d(c®) _d Tr(cp)
T

= d%(m_ +p_s)
==[p+-(0) + p,(O)][x(wp) + ¥ (@) + 2x(0) )1
==X () + X(w) + 2(0) Koy/h?,
which gives
1T, = X)) + X)) + 2x(0) /42
This gives a relation
1/T, = 1/2T, + 2)*(0)/A2.

We now wish to specialize to the case of a DP mechanism in

etry with a nonzero component of the external _field parallel; oDEG. The main point is that the static field may be in any
to the layer, the relaxation tensor can be nondiagonal as fgfirection, while the fluctuationg field is in the plane. Con-

as symmetry is concerned, and there can be three relaxatiQfyer first the special case that the static field is abrighen
times?23 In the case under consideration, where the Dressel-
1T, = 1/2T; = [x¥(w) + X () VA2

haus cubic term is absent, the only fluctuating field is the
Rashba field. As long as the scatteringsiwave and cyclo- ] o - S
tron motion effects are ignored, as we assume, the offNOW consider a general direction, sByalong the direction
diagonal(e.g., x-y) components of the correlation function BxX+BzZ=sin 0x+cos 6z, so thatd is the angle to the nor-
vanish, in a coordinate system that is fixed in the frame off@l- Then the longitudinal flulctuatlorpé‘! which are qua-
the sample. In this frame the relaxation tensor is diagonafiratic in the field, are proportional to $im and the trans-
and there are only two experimentally accessible relaxatiofe'se one* to cogg. Thus

times at any fixed, Wherea is the angle of the field with 1T,(60) = 2[cog Ox*(w,) + x/(w)]IH?
respect to the growth axis.

We now substitute expressidi4) into Eq. (13) and do
the matrix algebra. Equatiof13) can then be integrated in
the limit wheret is large. We neglect the oscillating terms,
which then yield

Okt

(16)
while

1T,(0) =[coF Oy (wy) + x!(w) + 2sir? Ox*(0) /2.
(17)

For the DP mechanism in a 2DEG the random field is con-
stant in magnitude, but random in direction. The statistics of
this field are Poisson: namely, that if trecomponent the

d,D++
dt

> =X () + X (0)][p++(0) = p-(0)]

and field at timet=0 is h*, then the chance of it remaining lat
( i )_2< do > decays as eXpt/7,). Hence
— {7 ) = PO (wp) + X¥(wp) + 2x%0)]. _ 1
h dt + hI(O)hI(Tp) - <h)2(>e—t/7: 5CKZF_)'ZZe—t/Tp
To obtain the relaxation times we must consider the equation
for the spin: and
oPp2r
d(a* _ d[Tr(c’p)] V()= X PFT
= XY () 22
dt dt 1+,
d In these formulasr, is the momentum relaxation time. Note
= d_t(p++ -p--) that these formulas assuragvave scattering. Finally, we are
L left with
[
=2| - + )V ++(0) —p__(0
(ﬁ) [X(w0) + X () ][p++(0) = p--(0)] l:2a2p,2:7' C052(0)2+1 42
== 2(%) X () + X (w) Koy (15 and
and so 1. azpﬁr{&e);l + Zsirﬁe} h2.
) T2 1+ (,()L'T2
1T,=2 + ) /he.
1= 2 ) +x)] The zero-frequency limit of these formulas agrees with
Also the recent results of Burkost al?*[see their Eq(17)]. They

075315-4



RASHBA SPIN-ORBIT COUPLING AND SPIN. PHYSICAL REVIEW B 71, 075315(2005

-7
5x10 .
Nng=
—9x10"%m?
45} 30
4t —_
8 20
T “
J ~—
2 35 o 8
[ '/7
10 /6
3 3
4
153 =3
ns=3x10 m ~\2
2.5¢ p=9 m/Vs 0 1
E=2.3 MV/m 0 10 20 30 40 50
0=3.8 m/s Mobility, u (m*/Vs)
0 20 40 60 80 0 20 40 60 80 ) . .
(@) Magnetic field angle, 6 (b) Magnetic field angle, 6 FIG. 3. ESR linewidth lifetimeT, from Eq. (17) for constant

asymmetry coefficient=1 m/s, as a function of 2DEG mobility
<107 x107 and densityng. For donor-layer populated quantum wells, divide the
' ' ' ' ' ' times listed bya? T,(a)=T,(a=1)/a?. The magnetic field is as-
sumed to beéB=0.33 T, perpendicular to the plane of the 2DEG.

15 .
n=4x10" m 2
=20 m?Vvs
E=3.1 MV/m
a=5.1 m/s

relaxation (T,) is due to fluctuations perpendicular to the
steady field, while transverse relaxatiffy) is due to fluc-

3 tuations both perpendicular and parallel to the steady field.

5 @ 10 m2 This mechar_1ism_ has the Characteristi(_: that the change in
e e 08 s 1/T, as the field is rotated through 90° is always a factor of
= F e e, 2. The change in 1, is frequency and lifetime dependent,
i 0.6/ 0=6.4 m/s ] with the anisotropy increasing as the mobility increases.
The DP relaxation also has the counterintuitive inverse
0.4 dependence of the spin relaxation time on the momentum
relaxation time 1T, , 7, for small 7, (or zero field, typical
021 for motional narrowing. We plot the dependencelgion the
05 , , , , 0 ‘ , ‘ ‘ mobility in Fig. 3. At high mobilities and high frequencies
0 20 40 60 80 0 20 40 60 80 w>1/7, we find 1/T; y1/7,.
(c) Magpnetic field angle, 6 (d) Magpnetic field angle, 6

FIG. 2. (Color onling Spin relaxation times as a function of
static magnetic field directiofwhere 6=0 is perpendicular to the
2DEG plang for specific values of 2DEG density and Rashba We have calculated the transverse and longitudinal relax-
asymmetry. The quantum well is assumed to be completely donoration times of a silicon 2DEG in an arbitrary static magnetic
layer populated and as suahjs calculated directly with E¢(5) as  field. To test our calculations, we compare them to known
a function of the 2DEG density. ESR data:>192526\\e limit ourselves to low temperatures,

ee~10-15 K, and realistic material parameters for state-of-
do not agree with the formulas in Wilamowséd all® [see, the-art heterostructures.
e.g., their Eq(3)] who state that the relaxation from the DP  The most robust prediction of the theory is the anisotropy,
mechanism should vanish whé=s0. This is not consistent particularly that ofT;, which is completely independent of
with our results. all parameters. The only measurement, in Ref. 3, gives sat-

The DP mechanism has the nice feature that it is relativelysfactory agreement fol;: T5'%/T$+?=0.67 as opposed to
easy to isolate experimentally. It is strongly anisotropic in thethe prediction 0.5. Furthermore, the anisotropy of 1goes
direction of the applied field compared to other mechanismsn the opposite direction, as it should. The magnitude of this
To illustrate this we plot the ESR linewidths as a function ofanisotropy is measured to B’é"Z/Tgizzlz.s which is about
field angle in Fig. 2. What is most striking is the oppositea factor of 6 larger than the theory predicts for the quoted
dependence on angle for the rate§1and 1/T,, with 1/T,  mobility. The relaxation times, as far as can be determined
maximized when the field is in the plane of the 2DEG, whileby the range set by the uncertainty in silicon band param-
1/T,; is maximized when the field is perpendicular to theeters, are in rough agreement with what one gets from esti-
plane of the 2DEG. Physically, this comes from the fact thatmates assuming that this well is a device of type 1. The
the electric field is perpendicular, so that the fluctuations ofanisotropy of the 2DEG ESR linewidth is independeninof
the effective magnetic field are in the plane. Longitudinaland is indeed only dependent on one free variable: the mo-

IV. DISCUSSION

075315-5



CHARLES TAHAN AND ROBERT JOYNT

PHYSICAL REVIEW B71, 075315(2005

TABLE I. We calculate relaxation times assuming that the QW nominally of type 1 for which measurementsTofhave been
is completely populated by the doner layer. Accurate analysis iperformed. Agreement is good for the sample of Ref. 19,
made difficult due to the lack of precise values for mobility and particularly for the anisotropy of,. This is a donor-layer-

density, which are often not measured dire¢ty reported for the

populated sample measured with cw ESR. Reference 26,

specific sample addressed with ESR. The anisotropy does not deneasured via electrically detected EEED ESR), also is in
pend on the Rashba coefficient. Note also that there is some digtood agreement with the anisotropy predicted by the theory.
agreement in the literature as to how to convert from linewidth to aComparison with the sample of Ref. 25 also seems to be very
relaxation time, we use the equations derived by Poole in Ref. 27good. This is an IBM 2DEG with a density of roughly 4
T,=2k/ (\V3gugA ng), but others may differ by a factor of up to X 10 m™2 and a quantum well thickness of 10 nm, fully

2.

Source Linewidth Anisotropy
Ref. 19 Experiment Experiment
5-30 K T82=420 ns(0.15 G  T8#/T5+2=3
u~20 IV s T5+2=140 ns(0.45 G
ng~4x 10% m=2 Prediction Prediction
cw ESR T5”=191 ns T8/ T8+2=3.2
Donor populated T542=60 ns T8 42=0.5
Experiment
TEHZ:3 us
Ref. 2 T542=0.24 us Experiment
5K To?=2 us T?T5+%=125
u~9 né/Vs T82=3 us T2/ T8r2=0.67
ng~3x 10 m=2 Prediction Prediction
Pulsed ESR T82=502 ns TSz T8 42=1.8
Light populated T842=272 ns Tz TB2=0.5
T92=251 ns
T$+?=502 ns
Ref. 1 Experiment Experiment
T52=12 us TS/ T8 +2=24
u~10 n?/V's T5+?=500 ns
ne~3x10% m2 Prediction Prediction
cw ESR T52=480 ns ToX/T8t2=1.9

Light or gate populated

T5+?=193 ns

TS/ 7542=0.5

Ref. 25 Experiment Experiment
T8?=50ns(0.13 G T5™/T8+?=1.65
u~5m?/Vs T5+2=30 ns(0.215 G
ne~4x 10 m=2 Prediction Prediction
cw ESR T52=31 ns TS84 =16
Donor populated T5+2=20 ns 52/ 1842=0.5
Ref. 26 Experiment Experiment
42K T52=105ns(0.6 G TS/ T8+2=2.2
u~9 m/Vs T842=49 ns(1.3
ng~4x 10 m=2 Prediction Prediction
ED ESR T5=212 ns TS/ T8+2=1.8

Donor populated

T8+2=115ns

TT3=05

donor-layer populated. Agreement is considerably less good
for the sample in Ref. 1. Here the mobility is not well
known, and the sample is partially populated by illumination.
So we are led to believe that there is some difference be-
tween the two sets of samples that causes one set to have a
larger T, anisotropy than our theory predicts, even for very
similar material parameter@ensity and mobility. Further
experimental work along the lines of measuring the density,
mobility, T, and T, on the same samples is needed.

The magnitude of the predicted relaxation times is in gen-
eral well predicted by the theory, but there is a range of error.
The position of the ionized centers that populate the well is
important for the calculation of the electric field which is
thus hard to characterize. Photoelectrons created with light at
the band gap energy may also have symmetry-changing ef-
fects. This may explain why the Rashba coefficient derived
from varying the 2DEG density by light in Ref. 19 appears to
be independent of density. It is also important to point out
that parallel conductivity(current paths through both the
2DEG and the donor layer for examplis a common prob-
lem in today’s SiGe quantum wells and may affect the trans-
port measurements of density and especially mobility, mak-
ing comparison with theory difficult.

Other mechanisms may become important as we leave the
parameter range considered in this paper. Electron-electron
collisions, which do not greatly affect the mobility at low
temperatures, may start to contribute at higher temperatures
and mobilities, as they appear to do in GaAs quantum
wells?® These collisions will also relax the spin, but the re-
lation between momentum relaxation and spin relaxation is
not expected to be the same as for the elastic collisions con-
sidered here. At higher magnetic fields, the cyclotron motion
of the electrons is important. In the semiclassical picture,
whenw.7,=1, the average value of the momentum perpen-
dicular to the magnetic field shrinks, reducing or even elimi-
nating DP spin relaxation, as has been considered for IlI-V
semiconductors in the fixed magnetic field c&s&.This ef-
fect may become important at high mobilities and would be
dependent on magnetic field angle, increasing the anisotropy
predicted here while also increasing the relaxation times.
Quantum effects may become important in this regime, how-
ever. The wave vector dependence of the conduction band
electrong factor may also lead to relaxation, as has been
pointed out recentl§? but has not been considered here. Fi-
nally, the addition of details related to the presence of two
conduction-band valleys may differentiate further the case of

mentum relaxation time,, which we assume is directly pro- Si from that of GaAs. Golub and IvchenKdhave considered
portional to the mobility. The magnitude of the relaxation spin relaxation in symmetricatv=0) SiGe QWs, where val-
time, on the other hand, is set by the Rashba coefficienley domains(even or odd monolayer regions of the QW
together with the Fermi momentum.

Table | details results for four other samples as well, alsacoupling due to variations in the donor-layer charge distribu-

may have influence over spin dynamics. Random spin-orbit
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tion may also be important in symmetric quantum wédl®>  (mobility) independent of transport measurements. As
Long spin relaxation times on the order of hundreds ofhigher-mobility and more exotic SiGe heterostructures are

nanoseconds to microseconds, found in presently availablgrown and characterized, new physics may emerge.

SiGe quantum wells, hold great promise for both quantum

information processing and spintronics. Our results demon- ACKNOWLEDGMENTS
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