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We calculate the conductance through a Gaussian impurity potential in a quantum wire using the Lippmann-
Schwinger equation. The impurity has a decay lengthd along the propagation direction while it is localized
along the transverse direction. In the case of a repulsive Gaussian impurity it is shown that the conductance
quantization is strongly affected by the decay length. In particular, increasingd causes gradual suppression of
backscattering and smaller contribution of evanescent modes, leading to progressively sharper conductance
steps. The dependence of the conductance on the impurity position is also examined. In the case of an attractive
Gaussian impurity it is shown that multiple quasibound states are formed due to the finite size of the impurity.
By varying the size of the impurity these quasibound states may evolve into highly localized states with greatly
enhanced lifetime. It is also shownsfor a model impurity potential very similar to the Gaussiand that the
transmission exhibits asymmetric Fano line shape. Under certain circumstances the Fano line shape may appear
“inverted” or evolve into a Breit-Wigner dip. We consider also the effects of the cross-sectional shape of the
wire on the quantum transmission. It is shown that varying the cross-sectional shape causes shifting of the
positions of the conductance stepsswhich is due to the rearrangement of the transverse energy levelsd and
influences the character of conductance quantization.
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I. INTRODUCTION

Since the discovery of the quantized conductance,1,2 of
electron transport through narrow wires, much effort has
been devoted to the description of electron scattering from
impurities in such systems.3–23 In most of these scattering
calculations the impurity potential is taken to be the idealized
model of the Diracd function. The model of thed-function
scatterer is used mainly for two reasons. First, it allows in
most cases for an analytical solution of the scattering prob-
lem with a relatively small amount of effort, and second, it
captures the basic physics of the problem under consider-
ation.

Although sometimes useful, the use of ad function scat-
terer in an infinite rectilinear quantum wire causes some
problems. One such problem is the divergence of the quasi-
bound states20,24 as the number of transverse modes in-
creases. Moreover, it has been proved22,23 that ad-function
impurity in a quantum wire scatters no electrons if the num-
ber of evanescent modes is extended towards infinity. This
leads to perfect transmission for all values of the Fermi en-
ergy and not just at channel thresholdswhich occurs when a
finite number of modes is keptd. In addition thed-function
potential is quite rough and irregular, whereas any realistic
model of an impurity should have a smoother potential and
finite range.

Several works8,12,18,24have discussed the case of an im-
purity that has a lateral extension but is ad function along
the propagation direction of a rectilinear quantum wire. For
this slightly more realistic and analytically solvable model of
an impurity potentialsfor which the problem of the diver-
gence of the quasibound states is removedd the conductance
shows no drastic change24 compared to the conductance
through a pured-function impurity in the wire. The case

where the impurity is represented by a rectangular barrier or
attractive square well along the propagation direction has
been examined in Refs. 6 and 19. However, a more realistic
model for the potential of an impurity in a quantum wire
should have a finite range with some decay lengthsthat is, an
impurity with a smooth potential profiled along the propaga-
tion direction. One important issue therefore is how an im-
purity of this type affects the conductance of a rectilinear
quantum wire. In this case an analytical solution to the scat-
tering problem is not possible and a numerical approach is
required.

Another important issue related to electron transmission
through an impurity in a three-dimensionals3Dd quantum
wire is how the geometry of the wiresthat is, the shape of the
transverse cross sectiond affects the conductance. This issue
has been investigated in the case of 3D quantum constric-
tions without impurities in the presence25 and absence16,26of
a magnetic field. In addition it has also been discussed in the
case of a quantum wire with ad function impurity in the
presence23 and absence27 of a magnetic field. One of the
main results of these investigations is that the conductance of
a quantum constriction16,25,26as well as the conductance of a
quantum wire with ad function impurity23,27 is determined
not only by the cross-sectional area but also by the shape of
the cross section.

The purpose of this paper is twofold. The first objective is
to present a brief description of our numerical method for
solving the Lippmann-Schwinger equation28 sLSEd for a
general finite-size impurity in a rectilinear quantum wire. We
then apply this method in the case of a Gaussian impurity
potential with a decay lengthd along the propagation direc-
tion. For the shake of clarity we make the simplifying as-
sumption that the impurity is localized along the transverse
direction. We find that asd increases the contribution of the
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evanescentstunnelingd modes becomes negligible and the
backscattering is suppressed resulting to conductance with
progressively sharper quantum steps. We also show that
varying the transverse position of the impurity leads to shift-
ing of the energy subbandssin the scattering regiond and may
strongly affect the quantization of the conductance steps. In
the case of an attractive Gaussian impurity we show that
there exist multiple resonance dips in the conductance which
are due to the formation of discrete levels in the continuum
and their interaction with the continuum states. We examine
the behavior of a resonance dip locationEres sat which the
conductance drops to zerod and also the behavior of the reso-
nance half widthG with increasing values of the decay
length of the impurity. We show thatEres as a function of the
decay length decreases and for some appropriate values ofd
the half widthG shrinks to infinitesimally small value which
corresponds to a very stable state with greatly enhanced life-
time. We also examine the transmission through a second-
type attractive impurity potential which is very similar to the
Gaussian but having also a lateral extension. We find that an
asymmetric Fano resonance appears in the transmission ver-
sus Fermi energy whichsfor large enough values of the de-
cay lengthd transforms into a Breit-Wigner dip. For certain
values of the decay length and the intrasubband coupling
matrix element the resonance energy coincides with the en-
ergy of the transmission zero, leading to a completely sym-
metric dip. Also for certain ranges of the above parameters
the Fano resonance is “inverted.”

The second objective is to extend our previous
calculations23,27 and investigate shape effects of the cross
section of a 3D quantum wire on the conductance through a
Gaussian impurity. We find that increasing the cross-
sectional shape anisotropyskeeping the cross-sectional area
fixedd causes shifting of the positions of the conductance
steps, which is due to the rearrangement of the transverse
energy levels. Further, by varying the shape of the cross sec-
tion, symmetry or accidental degeneracies may cause the dis-
appearance of some steps, resulting in step heights of
2s2e2/hd.

For an arbitrary shape of the impurity potential an analyti-
cal solution of the LSE is not possible. The simple numerical
method we developed in order to solve the LSE can be used
for calculating the conductance of a quantum wire with an
arbitrary impurity potential. It can also be used in the case of
multiple scattering centers of arbitrary shape by treating
them as a large composite scatterer.

The paper is organized as follows. In Sec. II we describe
the theoretical method and the numerical solution of the LSE
for obtaining the transmission amplitudes and conductance
of the wire. In Sec. III we investigate the effects of the im-
purity on the conductance. In Sec. IV we analyze the effects
of the shape of the cross section of the quantum wire on
electron transmission through the impurity and we present a
brief summary of our results in Sec. V.

II. THEORETICAL FORMULATION

We consider an infinitely long two-dimensionals2Dd rec-
tilinear quantum wire in which electrons are confined along

the y direction stransverse directiond but are free to move
along thex direction spropagation directiond. The cross sec-
tion is uniform along the wire. The Hamiltonian can be writ-
ten as

H = H0 + Vi , s1d

whereVi =Visx,yd is the scattering potential of any defects or
impurities in the wire. The unperturbed HamiltonianH0 is
given as the sum of the kinetic energy plus the confining
potentialVcsyd, i.e.,

H0 =
p2

2m* + Vcsyd, s2d

wherem* is the effective mass of the electron.
The energy eigenstates of the unperturbed wire—i.e., of

H0—are given as

cp
s0dsx,yd =

1
Î2p"

eipxx/"fnsyd, s3d

where fnsyd are the normal confinement modessquantum
channelsd of the wire. The energy eigenvalues ofH0 are E
=spx

2/2m*d+En, wherepx="kx has a continuous spectrum,n
are subband indices, andEn are the subband energies.

In the presence of the scattering potentialVi we must
solve the following Schrödinger equation:

sH0 + Viducl = Eucl. s4d

Equations4d has the solution

ucp
s+dl = ucp

s0dl +
1

E − H0 + i«
Viucp

s+dl, s5d

which is the LSE of scattering theory. This solution corre-
sponds to the incident wave on the scatterer plus an outgoing
wave traveling away from the scatterer. Assuming a finite-
range and local scattering potential, Eq.s5d can be written in
the position basis as an integral equation for scattering,

cp
s+dsx,yd = cp

s0dsx,yd +
2m

"2 E
−`

`

dx8E
−`

`

dy8Gs0dsx,y;x8,y8d

3Visx8,y8dcp
s+dsx8,y8d, s6d

where Gs0dsx,y;x8 ,y8d is the retarded Green’s function
swhich is energy dependentd of the unperturbed wire and
takes the form29

Gs0dsx,y;x8,y8d = o
n8=1

`

fn8sydfn8
* sy8d

eikn8ux−x8u

2ikn8
. s7d

The wave vectors for the propagating modes arekn8
=f2m*sE−En8dg

1/2/". The wave vectors for the evanescent
modes are obtained by settingkn8= ikn8. The scattered modes
n8 in the Green’s function of Eq.s7d are propagating or eva-
nescent depending on whetherEn8 is less or greater than the
Fermi energyE.

The above procedure applies to a general finite-range
scattering potentialVi. For a particular form of the potential
Vi, the solution to the integral equations6d for the unknown
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wave functioncp
s+dsx,yd will enable us to extract the current

transmission amplitudes. However, since the unknown wave
function cp

s+dsx,yd appears also under the integral the solu-
tion to Eq. s6d svalid throughout the whole wired requires
first finding the wave function in the scattering region, i.e., in
the region whereVisx,ydÞ0.

We consider now electron scattering from an impurity po-
tential of the form

Visx,yd =
"2g

2m* dsy − yidysxd, s8d

whereysxd is an arbitrary function of the coordinatex, yi is
the transversal position of the impurity, and the magnitude of
g sets the magnitude of the impurity potential, which may be
repulsivesg.0d or attractivesg,0d. For the calculation of
the wave function in the scattering region we will need to
know the transverse energy levelsEn,s swhich define the bot-
toms of the subbandsd in this region. These levels are ob-
tained from

sinsawd =
g

a
sinsayidsinfasyi − wdg s9d

as derived from the Schrödinger equation in the transverse
direction, wherea=s2mEd1/2/" and w is the width of the
wire. For the impurity potential of Eq.s8d we can write the
LSE Eq.s6d as

cp
s+dsx,yd = cp

s0dsx,yd

+ gE
−`

`

dx8Gs0dsx,y;x8,yidysx8dcp
s+dsx8,yid.

s10d

We note that the scattered wave functioncp
s+dsx,yd of Eq.

s10d is expressed as the sum of the wave function for the
incident wavecp

s0dsx,yd plus a term that represents the effect
of scattering. In order to be able to solve Eq.s10d and find
the wave functioncp

s+dsx,yd throughout the entire wire we
must know the wave functioncp

s+dsx8 ,yid in the scattering
region—i.e., in the region whereysx8dÞ0. Thus, our first
goal is to find the wave functioncp

s+dsx8 ,yid in the region
where all the scattering takes place.

We assume that the scattering potential of Eq.s8d extends
from −x0 to x0, that isysx8dÞ0 for ux8uøx0 andysx8d=0 for
ux8u.x0. In the case whereysx8d has a Gaussian shape—i.e.,

ysx8d=e−x82/d2
, where d is the decay length of the

scatterer—we can always chooseux0u far away such that
ys±x0d becomes essentially zero. For the numerical calcula-
tions of the next section we chooseux0u=5d. For this value of
ux0u it is clear thatys±x0d is very nearly zero. We divide the
interval f−x0,x0g into s equal subintervals of widthb
=2ux0u /s and the coordinatesx8 and x of Eq. s10d are dis-
cretized according tox8=−x0+qb, x=−x0+rb, where q,r
=0,1,2, . . . ,s. The numbers of subintervals can be chosen
sufficiently large such that the results converge. In the case
of a Gaussian impurity potential we found that convergence
is obtained when the inequalityb,0.1d is satisfied, which

means that the number of intervalss should satisfy
s.20ux0u /d. Replacing now the integral by a sum and setting
y=yi in Eq. s10d we obtain

cp
s+ds− x0 + rb,yid = cp

s0ds− x0 + rb,yid + gbo
q=0

s

Gs0ds− x0

+ rb,yi ;− x0 + qb,yidys− x0 + qbdcp
s+d

3s− x0 + qb,yid. s11d

Equations11d represents a set ofs equationssone for each
value of rd for the s unknown values of the wave function
cp

s+d and can be writtensafter some manipulationsd in matrix
notation as

o
q=0

s

Mrqcq
s+d = −

1

gb
cr

s0d, s12d

where

Mrq = Gs0ds− x0 + rb,yi ;− x0 + qb,yidys− x0 + qbd −
1

gb
drq

s13d

are the entries of ans3s matrix, which depend also on the
electron energyfalthough this is not shown explicitly in Eq.
s13dg. In Eq. s12d cq

s+d represents the unknown values of the
wave functioncp

s+ds−x0+qb,yid in the scattering region and is
a column vector. Similarly,cr

s0d is a column vector and rep-
resents the known values of the wave functioncp

s0ds−x0

+rb ,yid of the incident wave in the region of the scattering
potential. Inverting the matrixfM g whose elements are given
in Eq. s13d allows us to solve Eq.s12d for cq

s+d and find the
wave function in the scattering regionswhich was our pri-
mary goald. This solution is written formally as

fcq
s+dg = −

1

gb
fM g−1fcr

s0dg. s14d

Having found the values of the wave functioncp
s+dsx,yid

that we needed we can proceed and perform the integral in
Eq. s10d by discretizationsin line with the above discussiond
and thus determine the wave function to the rightsor leftd of
the scattering potentialsthat is, for uxu.x0d. The wave func-
tion transmission amplitudes are then extracted from that
part of the wave function valid forx.x0 and given formally
as

tnn8sEd = dnn8 +
gb

2ikn8

Î2pfn8syido
q=0

s

e−ikn8s−x0+qbdys− x0

+ qbdcp
s+ds− x0 + qb,yid, s15d

wheren andn8 are the incident and scattered modes respec-
tively, andcp

s+ds−x0+qb,yid are the values of the wave func-
tion in the scattering region found from Eq.s14d. By setting
kn8= ikn8 in Eq. s15d we obtain the wave function amplitude
for the case in which moden8 is an evanescent mode. The
current transmission coefficientsTnn8 through the impurity
are obtained as
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Tnn8 =
kn8

kn
tnn8tnn8

* . s16d

Equations16d gives the probability that an electron incident
from moden on the left will emerge in moden8 on the right.
In order to calculate the conductance we use Landauer’s
formula:30,31

G =
2e2

h
o
n,n8

Tnn8, s17d

wheren andn8 run only over the propagating modes of the
wire.

III. CONDUCTANCE OF A QUANTUM WIRE WITH A
GAUSSIAN IMPURITY

In this section we present results for the effects of a
Gaussian impurity potential on the conductance of a 2D rec-
tilinear quantum wire. In particular for the impurity potential
we will employ the model

Visx,yd =
"2g

2m* dsy − yide−x2/d2
, s18d

which is extremely localized along they direction but has a
decay lengthd along the propagation direction. The laterally
confining potential of the wire is that of an infinite square
well. The cross sectionswidth wd is uniform along the wire.
The electron mass is taken to be the effective mass for GaAs
which is 0.067 of the free-electron mass. In the following
numerical calculations we include a total of eight modes.
Including higher modes does not affect the results especially
as the size of the impurity increases. In the clean part of the
wire si.e., outside the scattering regiond the infinite square
well confining potentialVcsyd gives rise to the transverse
energy levelsEn="2p2n2/2m*w2. We will express all dis-
tances in units of the wire widthw and all energies will be
measured in units ofE1.

A. Conductance through a repulsive Gaussian impurity

We analyze now the influence of the Gaussian impurity
potential on the conductance. The transverse location of the
impurity is at yi =s5/12dw. As mentioned in Sec. II the
choice ux0u=5d is sufficient to guarantee thatVis±x0,yd=0.
The energy subbands in the scattering regionswhich we will
denote asEn,sd are shifted upwards due to the transverse
potential of the impurity. The first subband in this region
opens at E1,s=1.85E1 while the second opens atE2,s
=4.35E1.

Figure 1sad shows the behavior of the conductance
through a Gaussian impurity in the 2D rectilinear quantum
wire plotted versus the Fermi energy over the first subband,
for several different values of the parameterd/w. For the
smallest value ofd chosen in the calculationsi.e., d=0.3w
which corresponds to the solid lined we see thatG increases
almost linearly in the beginning and finally approaches the
quantum unit 2e2/h. However increasing the value ofd leads
to a progressively sharper rise of the conductance at the

opening of the subbandE1,s and a corresponding suppression
of the conductance belowE1,s. For E1,E,E1,s the first
channel is not propagating and therefore transport occurs via
tunneling for this particular channel. While the first channel
of propagation opens up atE1,s, the subbands above the
Fermi level contribute to some extent by tunneling. Thus at a
particular value ofd the effect of the evanescent states above
the Fermi level is to give rise to electron transmission prior
to the opening of the subbandE1,s. The suppression of the
conductancesfor E1,E,E1,sd with increasingd can be un-
derstood simply in terms of the progressively smaller contri-
bution of evanescent modes. We illustrate this gradual de-
crease of tunneling in Fig. 1sbd for two values of the energy
E=0.9E1,s and 0.88E1,s, i.e., well below the bottom of the
first subbandE1,s. As it is clear from Fig. 1sbd the tunneling
probability swhich is smaller for lower energiesd decreases
exponentially and for large enough values ofd it will vanish.
Immediately after the opening of the subbandE1,s and with
increasing values ofd the conductance approaches progres-
sively faster the quantum unit 2e2/h and equals 2e2/h over a
larger part of the subband. This is due to the suppression of
backscattering as the impurity potential becomes smoother.
Thus the simultaneous suppression of tunneling and back-
scattering effects with increasingd results in a sharper con-
ductance step. In the extreme case in whichd becomes very
large si.e., the impurity potential becomes almost flatd it is
reasonable to expect that the impurity will cause very little or

FIG. 1. sad ConductanceG sin units of 2e2/hd as a function of
Fermi energyE sover the first subbandd through a Gaussian impu-
rity of strengthg=2.53106 cm−1 in a 2D rectilinear quantum wire
of width w. E is given in units ofE1 swhereE1 is the bottom of the
first subband in the clean wired. Results are shown for various sizes
of the impuritysspecified by the parameterd/wd. Note that increas-
ing d results to sharper rise of the conductance.sbd Tunneling prob-
ability vs d/w, for two values of the Fermi energy. The solid line
corresponds toE=0.9E1,s while the dashed line toE=0.88E1,s,
whereE1,s is the bottom of the first subband in the scattering region.
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no reflection since the quantum wavelength becomes small
compared with the characteristic distance over which the po-
tential varies appreciably. In this case quantum tunneling will
also be absent resulting to zero transmission prior to the
opening ofE1,s. Accordingly we will obtain perfectly sharp
step structure andG=2e2/h over the entire subband. In the
opposite limit of very smalld the conductance of a point
scatterer is recovered. It is worth mentioning here that in the
case of a point scatterer there is only one set of subbands in
the wire and the first two channels become propagating ex-
actly atE=E1 andE=E2, respectively.

The above points can also be discussed in a perturbation
picture. In particular, the reflection coefficients due to the
backscattering can easily be calculated in the first-order Born
approximation,22 obtaining

Rnn8sEd =
Gnn8

2
pd2

4knkn8
e−skn + kn8d

2d2/2, s19d

wheren andn8 are the incident and reflected modes, respec-
tively, while Gnn8=gfnsyidfn8

* syid are constants that are pro-
portional to the coupling of the incident and reflected trans-
verse modes at the impurity. It is clear from Eq.s19d that
backscattering reduces very fast with increasingd, leading to
gradual enhancement of transmission and improving the
quantized conductance step. In fact in the limit in whichd
becomes very largefwhile keeping all other parameters in
Eq. s19d fixedg, Rnn8 approaches zero, as can be verified from
the above equation. For later analysis we also note that the
above reflection coefficients also depend on the coupling of
the transverse modes at the impurity position through the
constantsGnn8.

As mentioned above the subbands that lie above the
Fermi level can contribute to the conductance by tunneling.
The most important contribution comes from the first sub-
band that lies immediately above the Fermi levelssince the
contribution of the higher ones decreases with increasing en-
ergyd. However, this contribution is different for different
conductance steps. This effect is illustrated in Fig. 2 where
we plot the conductance versus the Fermi energy over the
first two subbands, for several different values of the decay
length d. It is seen that the first conductance step rises
smoother in the vicinity ofE1,s than the corresponding rise of
the second step in the vicinity ofE2,s. This can be understood
if we examine the distance between the subbands in the scat-
tering region and those in the clean wire. The distanceDEs1d

betweenE1 andE1,s is 0.85E1, which is much larger than the
distanceDEs2d betweenE2 and E2,s, which is 0.35E1. Even
though the larger distanceDEs1d leads to smaller tunneling
probability for E1,E,E1,s, the tunneling regionDEs1d of
the first step is much greater than the tunneling regionDEs2d

of the second step by a factor of 2.42. Thus in the second
step there is a larger amount of tunneling in a smaller tun-
neling region and this leads to rapid enhancement of the
conductance values in this region.

The smoother and sharper rise of the first and second
steps, respectively, is also due to the different strength of the
interaction of the respective modes with the impurity. For the
particular position of the impurity that we considerfi.e., yi

=s5/12dwg the coupling of the first mode at the impurity is
stronger than the corresponding coupling of the second
mode. Consequently scattering of the first mode is enhanced
while scattering of the second mode is suppressed, giving
rise to smoother and sharper steps, respectively. This can
also be understood from the perturbation result of Eq.s19d.
We must note that when we consider transport in the second
subband there is intrasubband reflection throughR12, R21 in
addition toR11. However, the dominant contribution comes
from the backscattering within the second channel, i.e., from
R22, which has the smallest wave vector as can be seen from
Eq. s19d. Now when we consider transport in the first sub-
band the magnitude ofG11 is large resulting to enhanced
reflection. When we consider transport in the second sub-
band the coupling constantG22 scorresponding to the domi-
nant reflection coefficientR22d is small leading to reduced
reflection. Placing the impurity on the central axis of the wire
would result in a maximum scattering of the first mode while
the second will suffer no scattering, leading to almost perfect
quantization of the second step. These points will become
more clear in the next section where we examine the influ-
ence of the impurity position on the conductance.

B. Effects of the impurity position on the conductance

Several interesting effects are observed when we vary the
transverse position of the impurity. In Fig. 3sad we show the
conductance through a Gaussian impurity withd=0.7w in a
2D rectilinear quantum wire plotted versus the Fermi energy,
for three different impurity positionsyi. It can be seen that as
the impurity is displaced away from the central axis of the
wire the position of the first conductance step is systemati-
cally shifted towards lower energy values while it rises pro-
gressively sharper at the opening of the subbandE1,s. Note in
particular that when the impurity is placed atyi =s1/12dw the
conductance grows rapidly with energy and very soon ap-
proaches values very close to the quantum unit 2e2/h. How-
ever, the shifting of the position of the second conductance
step can be either towards lower or higher energy values

FIG. 2. ConductanceG sin units of 2e2/hd vs Fermi energyE
through a Gaussian impurity of strengthg=2.53106 cm−1 in a 2D
rectilinear quantum wire of widthw, for three values of the param-
eter d/w. Note the sharper rise of the second conductance step
scompared to the first stepd which is due to the smaller distance
betweenE2,s and E2, whereE2,s is the bottom of the second sub-
band in the scattering region andE2 is the corresponding subband in
the clean part of the wire.
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sdepending onyid while the rise of this step may be smoother
or sharper.

These effects can be understood simply by examining the
behavior of thestransversed energy levelsE1,s andE2,s as a
function of the impurity position which is illustrated in Fig.
3sbd. While E1 and E2 sshown by the straight horizontal
linesd assume constant valuessindependent ofyid, E1,s and
E2,s are functions of the impurity position. In fact the energy
levelsEn,s versus the impurity positionyi follow the structure
of the squared modulus of the transverse wave functions
si.e., the structure ofufnsydu2d. The physical origin for the
shifting of the bottoms of the subbandsEn,s can be under-
stood simply in a perturbation picture where the first order
corrections"2g /2mdufnsyidu2 to the unperturbed levelsEn is
proportional to the interaction of the transverse wave func-
tions at the impurity position. The structure of the subband
E1,s is identical to the squared modulus of the first mode
f1syd while that of the second subbandE2,s is identical to the
squared modulus of the second modef2syd. Higher subbands
also exhibit analogous behavior. Now as the impurity is
moved from 0.5w to 0 the first subbandE1,s gradually shifts
towards lower energiesfsee Fig. 3sbdg, leading to a corre-
sponding shifting of the position of the first conductance step
observed in Fig. 3sad. However, the second subbandE2,s first
increases, reaches its maximum value atyi =0.25w, and then
decreases untilE2,s=E2 at yi =0. Consequently displacing the
impurity from 0.5w to 0 leads first to an upwardsuntil

0.25wd and then to a downward shifting of the position of the
second quantum step, as it is in fact observed in Fig. 3sad.
Thus the greater the coupling of a particular transverse mode
at the impurity the greater the shifting of the corresponding
subband. Note also that for an impurity on the central axis of
the wireE2,s=E2.

The sharper or smoother rise of the conductance steps for
different impurity positions observed in Fig. 3sad can be ex-
plained in terms of the structure of the subbands. The three
impurity positionsyi =s5/12dw, s3/12dw, and s1/12dw for
which we calculated the conductance are shown in Fig. 3sbd
as three spikes in their respective positions. The gradually
sharper rise of the first conductance stepsas the impurity is
displaced away from the central axis of the wired is partly
due to the progressively shorter tunneling regionssince the
distance betweenE1,s and E1 continuously decreasesd and
also due to the progressively weaker coupling of the trans-
verse wave function at the impurity position. When the im-
purity is located ats5/12dw si.e., close to the central axis of
the wired the interaction of the first mode with the impurity is
strongest leading to enhanced scattering effects and smooth
first conductance step. However, when the impurity is placed
at s1/12dw the interaction of the first mode with the impurity
becomes much weakerfas can be seen from Fig. 3sbdg, lead-
ing to suppression of scattering effects and sharper conduc-
tance step.

Similarly by examining the structure ofE2,s we can ex-
plain the characteristics of the second conductance steps.
When the impurity is placed ats3/12dw it is seen in Fig. 3sad
that the slope of the rise of the second quantum step becomes
smaller which is partly due to the wider tunneling region
fi.e., the distance betweenE2,s and E2 becomes large, as
shown in Fig. 3sbdg and also due to the stronger interaction
of the second mode with the impurity. It is also worth men-
tioning that the impurity positionss5/12dw ands1/12dw are
entirely equivalent as far as the second mode is concerned.
This means that for those two impurity positions the opening
of the second subband occurs at exactly the same energy and
the couplingG22 of the second mode at the impurity is also
exactly the same. However, foryi =s1/12dw the second step
is slightly sharper. This is due to the fact that while we con-
sider transport at the second subband the first mode still con-
tributes to the conductance and the coupling of this mode
with the impurity is weaker foryi =s1/12dw fsee Fig. 3sbdg,
resulting in reduced scattering and slightly enhanced trans-
mission.

To this end, we emphasize that the effects of the impurity
position just discussed are particularly important in the de-
tailed structure of the conductance and they have also been
examined in various other systems with different types of
impurities.8,16,22,32Comparing the above results with the re-
sults for a point scatterer in the wire we note some differ-
ences. First, the Gaussian impurity model employed in this
paper causes a delay in the opening of a new channel which
is due to the presence of a second set of subbandsEn,s in the
scattering region. In contrast, when a point impurity is
present in the quantum wire the opening of a channel occurs
precisely at the subband bottomsEn of the unperturbed wire.
Second, the transverse position of the Gaussian impurity has

FIG. 3. sad ConductanceG sin units of 2e2/hd vs Fermi energy
E through a Gaussian impurity of strengthg=2.53106 cm−1 and
d=0.7w in a 2D quantum wire of widthw, for three different im-
purity positionssspecified by the parameteryi /wd. Note the shifting
of the positions of the conductance steps which is due to the shifting
of the subbandsEn,s in the scattering region.sbd The bottoms of the
first two subbands vs impurity positionyi /w. The two straight hori-
zontal lines represent the subbandsE1, E2 of the clean wire while
E1,s, E2,s are the subbands in the scattering region which follow the
structure of the transverse wave functionsufnsydu2.
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a greater influence on the conductance of the wire because of
the possible shifting of the subbandssin the scattering re-
giond as the impurity is displaced. For some impurity posi-
tions the subbands in the scattering region are far apart from
those of the unperturbed wire while for other positions they
coincide resulting in significant changes in the appearance of
the conductance. This effect is absent from the point impu-
rity model where only one set of subbands exists. We next
turn to the case where the impurity is attractive.

C. Attractive Gaussian impurity

We examine now the influence of an attractive Gaussian
impurity on the conductance of a 2D rectilinear quantum
wire. We show that in this case there exist multiple dips in
the conductance that are due to the formation of quasibound
sresonantd states in the continuum and their interaction with
the continuum states. In the subsequent analysis we confine
our attention to the behavior of these dips as a function of the
decay length of the impurity. The first subband in the scat-
tering region opens atE1,s=−0.51E1, the second atE2,s
=3.15E1, and the third atE3,s=6.92E1.

In Fig. 4sad we show the conductance plotted versus the
Fermi energy, for three different values of the decay lengthd
and the upper two curvesscorresponding tod/w=0.48 and
0.56d are vertically offset by an amount 1.1s2e2/hd and
2.2s2e2/hd, respectively, for clarity. We note that asd in-
creases multiple resonance dips appear in the first and the
second subbands. The number of these dips increases with
increasingd. As mentioned above the dips in the conduc-
tance are explained in terms of the formation of quasibound
states—at special energies—in the impurity region. Electrons
at those energies spend enhanced periods of time in the im-
purity region si.e., they become temporarily trapped in the
quasibound statesd, and destructive interference of these
states with the continuum states causes the conductance to
drop resulting in a complete interference blockade of the
electron transport atEres.

Two important quantities related to resonant scattering are
Eres and the sharpness of the resonance which is quantified
by the half widthG. In fact, since the resonances are only
possible at positive collision energiesEres, the corresponding
quasibound state energiesEqb are situated below the positive
real axis of the complexE plane:

Eqb = Eres− i
G

2
. s20d

The half widthG determines the lifetimet of the quasibound
state through the relationt=" /G. In Fig. 4sbd we show the
location of the first dipEres in the first subband plotted versus
the decay lengthd. The corresponding evolution of the half
width sdenoted by HWd of this resonant dip versusd is
shown in Fig. 4scd. We note that increasing the value ofd
causes shifting of the dip locationEres toward lower energies
while the half width shows a decaying oscillatory behavior.
The decrease ofEres is due to the increasingly larger inte-
grated strength of the impurity,gd, which results in a pro-
gressively larger perturbation to the unperturbed electron
transport and thus to a larger binding energyswhich is the

energy difference between the quasibound state and the first
subband from which it is split offd. A similar effect occurs in
the case of an attractived-function impurity in a quantum
wire,23 where the dip can move lower in energy when the
strength of the impurity increases. This last observation im-
plies thatEres in the conductance through a Gaussian impu-
rity can decrease when either the strengthg or the decay
lengthd increases. The occurrence of the dips is also closely
related to the position of the impurity. We verified that plac-
ing the impurity on the central axis of the wire causes the
disappearance of the dips in the first subband. This is similar
to the case of ad-function scatterer,6,22–24where the binding
energy besides being proportional to the strength of the im-
purity is also proportional to the coupling of the next higher
mode at the impurity position. In analogy with thed-function

FIG. 4. sad ConductanceG sin units of 2e2/hd vs Fermi energy
E through an attractive Gaussian impurity of strengthg=−2
3106 cm−1 in a 2D quantum wire of widthw, for three values of
the parameterd/w. The multiple dips in the conductance are due to
the formation of quasibound states. The upper two curvesscorre-
sponding tod/w=0.48 and 0.56d are vertically offset by an amount
1.1s2e2/hd and 2.2s2e2/hd respectively.sbd Location of the first dip
Eres sin units of E1d in the first subband vs the size of the impurity
sspecified by the parameterd/wd. scd Half width G sin units of E1d
vs d/w. The two minima in the HW correspond to highly localized
states with enhanced lifetime.
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scatterer we argue that the disappearance of the dipsswhen
the impurity is on the axisd is caused by the vanishing cou-
pling of the second mode at the impurity.

In Fig. 4scd it is seen that the half width as a function ofd
first increases, reaches a maximum atd=0.325w swhere
Gmax=0.1246E1d, and then decreases to a minimum atd
=0.4352w swhere Gmin<2310−6E1d after which it grows
again. This situation can be repeated a few timessdepending
on the properties of the impurity, such as its strength as well
as its transverse positiond. The extremely narrow half width
of the resonant dip atd=0.4352w corresponds to a very
stable state—a state with greatly enhanced lifetime. Physi-
cally this highly localized state is stable since at the particu-
lar value ofd its interaction with the continuum is minimized
and therefore it decays extremely slowlysi.e., the decay rate
of the localized state into a propagating state is lowestd. Thus
at this special value ofd transformation of the quasibound
state to a highly localized state occurs. The dips in the sec-
ond subband also exhibit similar behavior.

The increase of the degree of localization of the quasi-
bound states asG→0 can be explained in terms of the co-
herent interaction of interfering channels in the impurity re-
gion. This can be understood if we consider the energy
intervalE2,s,E,E2 where there are two propagating modes
n=1,2 in theimpurity region, while outside this region and
for the same energy interval only moden=1 is propagating
while moden=2 turns into an evanescent wave. Accordingly
the coherent resonant interaction of these channels leads to
an increase of the charge density in the region of localization
and the electron escape rate is minimum.

Long-living electron states were also predicted for a rect-
angular well model for the impurity potential in a straight
quantum waveguide,19 and the subsequent collapse of the
Fano resonance was studied in detail. The coherent resonant
phenomena in the impurity region is also the physical origin
of the effects studied in Ref. 19.

It is also useful to discuss the dips of the conductance in
terms of the squared modulus of the wave functionucp

s+d

3sx,ydu2. In Fig. 5 we showucp
s+dsx,ydu2 as a function ofx

andy. Figure 5sad corresponds to the conductance minimum
in the first subband of the lower curve in Fig. 4sad, which
occurs atEres=3.7363E1, while Fig. 5sbd corresponds to the
conductance minimum in the first subband of the middle
curve in Fig. 4sad, which occurs atEres=3.5805E1. The
Gaussian impurity extends from −x0 to x0. In Fig. 5sad we
note that the waves inside the impurity region decay towards
the back end of the impurity and forx,−x0 the incident
waves interfere with the reflected waves to produce the pat-
tern observed. However, in Fig. 5sbd ucp

s+dsx,ydu2 inside the
scattering region has much larger magnitude compared to the
amplitude of the interfering waves forx,−x0, and this state
is more stable, leading to a smaller half width of the corre-
sponding resonant dip. Figure 5scd corresponds to the mini-
mum of the conductance at the critical value ofd=0.4352w
with energy Eres=3.6263E1 for which the half width ap-
proaches zero. We must note that forx,−x0 in Fig. 5scd
there are also reflected waves which interfere with the inci-
dent waves. However, this interference pattern is not discern-
ible due to the greatly enhanced magnitude ofucp

s+dsx,ydu2 in

the impurity region. The extremely small interaction of this
very stable state with the propagating states leads to a very
small escape probability and hence to an infinitesimal reso-
nance width.

The formation of the long-living electron states discussed
above should be observable in high-mobility channels as for
example in a narrow channel made of GaAs/AlxGa1−xAs het-
erostructures. A finite-size impurity may artificially be cre-
ated in the quantum wire using nanotechnology.33

We would like to further discuss the results shown in Fig.
4sad. It is well known that the presence of an attractive im-
purity in a quantum wire structure leads to the creation of
quasibound levels in the continuum, which in turn give rise
to resonance line shapes in the conductance versus Fermi
energy.34 The most general resonant line shape that appears
in these systems is described by the asymmetric Fano
function35

fsed =
1

1 + q2

se + qd2

e2 + 1
, s21d

wheree=sE−ERd /G is the energy from resonance,G is the
resonance width andq is the asymmetry parameter. In quasi-

FIG. 5. Three-dimensional plots of the squared modulus of the
wave functionucp

s+dsx,ydu2 vs x and y. sad corresponds to the con-
ductance minimum in the subband of the lower curve in Fig. 4sad
which occurs atEres=3.7363E1 while sbd corresponds to the mini-
mum in the first subband of the middle curve in Fig. 4sad and occurs
at Eres=3.5805E1. scd corresponds to the stable state with infinitesi-
mally small half widthfi.e., the first minimum in Fig. 4scdg which
corresponds tod=0.4352w andEres=3.6263E1.
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one-dimensional systems it has been shown36 that the trans-
mission coefficient can be expressed in the Fano form as
given in Eq.s21d, and in this case the asymmetry parameter
q=sER−E0d /G, whereER is the resonance energy andE0 is
the energy of the transmission zero. As mentioned in the
beginning of this section the dips in the conductance curves
of Fig. 4sad are due to the formation of quasibound states in
the continuum and their subsequent coupling with the con-
tinuum states. However, instead of the occurrence of asym-
metric Fano resonances we observe symmetric dips. This
behavior of the conductance indicates that the asymmetry
parameterq must be negligiblesi.e., q!1d, which means
that the distance between the energy of the transmission zero
E0 and the resonance energyER is infinitesimal. Equivalently
we may say that the symmetric dips in Fig. 4sad are due to
the large background36 si.e., nonresonantd transmission,
which leads to infinitesimal values ofq. For the attractive
Gaussian impurity that we considered in this section we veri-
fied numerically that the background transmission rises pro-
gressively faster as the decay lengthd increasessi.e., as the
impurity potential becomes smootherd and for sufficiently
large d it becomes unity over the largest part of the energy
subband, thereby leading to symmetric dips in the conduc-
tance curves. We fully illustrate these considerations in the
next section where we employ the Feshbach37 approach
swhich is particularly suitable for the description of reso-
nance line shapesd in order to calculate the transmission co-
efficient and the asymmetry parameter in the case of a
second-type impurity potential which is very similarsalmost
identicald to the Gaussian but having also a lateral extension.
It will also be shown that in the regime of relatively small
values of the decay length an asymmetric Fano resonance
appears in the transmission.

D. Two-channel Feshbach approach

In this section we employ the Feshbach approach in order
to describe the transmission resonances in a rectilinear quan-
tum wire with a smooth finite-size impurity to be defined
below. Feshbach’s theory of coupled scattering channels was
in fact reformulated and employed in quasi-one-dimensional
systems in order to describe symmetric34 line shapessBreit-
Wigner-type resonancesd and also to describe more general
asymmetric36 line shapes for arbitrary coupling potentials,
providing microscopic expressions for all line shape param-
eters.

As in Sec. II we consider a uniform quantum wire where
the electrons are confined along they direction but are free to
propagate along thex direction. In the presence of an impu-
rity we need to solve the Schrödinger equation

F−
"2

2m* ¹2 + Vcsyd + Visx,ydGCsx,yd = ECsx,yd, s22d

whereVcsyd is the confining potential andVisx,yd is the at-
tractive impurity potential, which we take to be of the form

Visx,yd =
"2g

2m* sech2saxdy syd, s23d

wherevsyd is an arbitrary function of the coordinatey, a−1 is
the decay length, andg,0. The longitudinal part of the
impurity potential given in Eq.s23d has smooth profile and is
very similar to the Gaussian potential as shown in Fig. 6
fwhere the solid line represents the Gaussian function while
the dashed line is the function sech2saxdg. In fact we can
make the two potentials almost identical by forcing the
square roots of the variancesDx of the two potentials to be
equal to each other. For a given value of the decay lengthd
of the Gaussian potential the above condition leads toa−1

=31/3d/Îp. The confining potentialVcsyd along they direc-
tion swhich is taken to be an infinite square welld gives rise
to modesfnsyd. We expand the wave functionCsx,yd of Eq.
s22d in terms of the modesfnsyd:

Csx,yd = o
n=1

`

cnsxdfnsyd. s24d

Substitution of Eq.s24d into Eq. s22d in the usual way leads
to the coupled-channel equations forcnsxd,

sE − En − K̂dcnsxd = o
l=1

`

Vnlsxdclsxd, s25d

where K̂=−s"2/2m*dd2/dx2 and the coupling matrix ele-
mentsVnlsxd are given as

Vnlsxd =E dyfnsydVisx,ydflsyd. s26d

For the particular impurity potential given in Eq.s23d these
matrix elements take the form

Vnlsxd =
"2g

2m* sech2saxdynl, s27d

wherevnl=kfnuvsydufll. Far away from the impurity we have
Vnls±`d=0.

We consider the caseE1øEøE2 for which only the first
channel can propagate along the wire while the second can

FIG. 6. Impurity potential profiles versusx/w. The solid line
represents the Gaussian impurity potential with decay lengthd
while the dashed line represents the impurity potentialVsxd
=sech2saxd with decay lengtha−1=31/3d/Îp sas explained in the
textd.
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contribute via tunneling. Thus only the first channeln=1 can
be in some scattering state. These scattering states are given
as solutions of the equation

sK̂ + V11dxk
±sxd = sE − E1dxk

±sxd, s28d

wherexk
+ andxk

− correspond to scattering states for which the
incident wave comes from −̀ and +̀ , respectively. These
states describe the backgroundsnonresonantd scattering,
which is the scattering in a hypothetical system where the
coupling to the bound state is absent.12,36The solution to Eq.
s28d proceeds in the same way as in a one-dimensional scat-
tering problem38 with an attractive potential −U11 sech2saxd,
whereU11=−s"2g /2m*dv11, and the asymptotic form of the
wave function asx→−` is given in terms of Gamma func-
tions

xk
+sxd , e−ikxGsik/adGs1 − ik/ad

Gs− sdGs1 + sd

+ eikx Gs− ik/adGs1 − ik/ad
Gs− ik/a − sdGs− ik/a + s+ 1d

, s29d

where k=f2m*sE−E1dg1/2/" and s=s1/2df−1
+Î1+s8m*U11/a2"2dg. Then the scattering states can be
written in the form

xk
±sxd =Htbge±ikx sx → ± `d

e±ikx + r±
bge7ikx sx → 7 `d

h , s30d

where the upper signs correspond to incident wave from −`.
tbg and r±

bg correspond to the background transmission and
reflection amplitudes in the wire. Specifically,r+

bg is the ratio
of coefficients in the functionxk

+sxd of Eq. s29d. Due to sym-
metry r−

bg=r+
bg holds. We considerE close toE0, whereE0 is

the bound state energy of the stateF0 in the potentialV22sxd
of the uncoupled channeln=2, i.e.,

sK̂ + V22dF0sxd = sE0 − E2dF0sxd. s31d

Employing the notatione=f−2m*sE0−E2dg1/2/"a, s=s1/2d
3f−1+Î1+s8m*U22/a2"2dg, and U22=−s"2g /2m*dv22, Eq.
s31d can be brought to a form38 that has solutions the asso-
ciated Legendre polynomialsPs

esjd, wherej=tanhsaxd. The
energy levels are then determined by the conditione=s−p,
which gives

Ep = E2 −
"2a2

8m* F− s1 + 2pd +Î1 +
8m*U22

a2"2 G2

, s32d

wherep=0,1,2, . . .There is a finite number of levels deter-
mined by the conditione.0, i.e.,p,s. In the following we
assume thatU22 anda are such thatsø1, which implies that
there is only one bound state with energyE0. The normalized
bound state wave function that corresponds to this energy
level is F0sxd=sa /2d1/2sechsaxd.

At this point it becomes clear that the reason we em-
ployed the impurity potential of Eq.s23d in this section is
that it allows us to find analytical solutions to Eqs.s28d and
s31d for the scattering and bound states whereas this would
not be possible for the Gaussian potentialsfor which no ana-

lytical solution exists in one dimensiond. This will allow us
to study in detail the characteristics of the resonance line
shape in the two-channel approximation. On the other hand,
the LSE could also have been used to solve numerically the
problem for a Gaussian impurity with an arbitrary but spe-
cific shape of the impurity in the transverse direction. How-
ever this would not permit us to vary the intra- and intersub-
band coupling matrix elements independentlyfas we will be
able to do for the impurity of Eq.s23d for which vsyd is
completely arbitraryg, which are in fact buried inside the
scattering wave function of Eq.s14d.

We now make the approximation of truncating the sum in
Eq. s25d at n=2. We then get the system of equations

sE − E1 − K̂ − V11dc1sxd = V12c2sxd, s33d

sE − E2 − K̂ − V22dc2sxd = V21c1sxd. s34d

The coupled-channel equationss33d and s34d are solved in
general in Refs. 34 and 36 with the ansatzc2sxd=AF0sxd and
employing the retarded Green’s operator for Eq.s33d. In the
Appendix we calculate the wave functionc1sxd in the quan-
tum wire for x→` with the impurity potential of Eq.s23d
and extract the transmission coefficient

T = utbgu2
sE − E0d2

sE − E0 − dd2 + G2 , s35d

where d and G are given in Eqs.sA12d and sA13d of the
Appendix. Equations35d is of the Fano form in which the
real quantityd determines the asymmetry parameterq of the
line shape by the relation

q =
ER − E0

G
=

d

G
= −

cosfsp/2dÎ1 + s8m*U11/"
2a2dg

sinhspk/ad
.

s36d

An important feature of Eq.s36d is that q→0 as the decay
length a−1 increasesssince the denominator grows progres-
sively faster while the numerator is restricted between the
values of −1 and 1d. This effect is more pronounced when
the wave vectork is largersi.e., when the asymmetric reso-
nance line shape occurs closer to the second subband thresh-
oldd. A second important feature of Eq.s36d is that for suit-
able values ofU11/a2 the quantity d can be positive,
negative or zerosi.e., the resonance energy may occur be-
fore, after or be equal to the energy of the transmission zerod.
It can be shown that forU11/a2=s"2/8m*dfs2n+1d2−1g
wheren=1,2, . . ., wehaveER=E0 and in this case the trans-
mission exhibits symmetric Breit-Wigner dips. For 0
,U11/a2,"2/m* we have ER.E0 and the transmission
resonance is of the 0→1 typesi.e., the peak follows the dipd.
For "2/m* ,U11/a2,3"2/m* we haveER,E0 and the reso-
nance line shape is of the 1→0 typesi.e., the location of the
pole is switched with the zero energyd. Thus after the value
U11/a2="2/m* swhere the transmission exhibits a symmetric
dipd the Fano resonance is “inverted.” Similar inversion of
the resonance level has also been observed in Ref. 19.

The transmission coefficientT given in Eq.s35d is plotted
versus the Fermi energy in Fig. 7 for progressively decreas-
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ing values of the inverse decay lengtha.39 In Figs. 7sad–7scd
the intrasubband matrix elementv11 is kept fixed to the value
v11=−1.5, while a=1.7, 1.4, and 1, respectively. All three
resonance line shapes are of the 0→1 type sinceU11/a2

=0.52, 0.77, and 1.5, respectively, which lie in the range 0
,U11/a2,2 sor equivalently 0,U11/a2,"2/m*d. In Fig.
7sad we use the valuesv22=−1.2,v12=0.08. The dashed line
represents the directsnonresonantd transmission which oc-
curs in the decoupling limitv12=0 sfor which d=G=0d. In
this limit there are two scattering mechanisms: a directsnon-
resonantd scattering from the first subband and a resonant
scattering from the quasibound state. When the coupling to
the quasibound level is nonzero the interference between di-
rect and resonant transmissionsthrough the quasibound stated

produces the asymmetric Fano line shape, which has also
been noted previously.12,36,40

In Fig. 7sbd, where the value of the inverse decay length is
smaller sa=1.4d, we note that the Fano resonance distorts
while the transmission below the bound state is enhanced. In
Fig. 7sbd we use the valuesv22=−0.8 andv12=0.08 in order
for the transmission zero to occur closer to the bottom of the
second subband so that we can make contact with the nu-
merical results of Fig. 4sad. In Fig. 7scd the inverse decay
length has been further decreased to the valuea=1 while
v22=−0.5 andv12=0.13. We notice that the transmission is
greatly enhanced and exhibits an almost symmetric dip. As
mentioned above this behavior of the transmission is due to
the fact thatq decreases asa decreasesfwhich is what Eq.
s36d suggestsg. This is a consequence of the fact that the
distance between the resonance energy and the zero energy
gradually decreases leading to the progressive disappearance
of the asymmetric resonance. Finally when the value ofa
becomes low enough such thatU11/a2=2 thenER=E0 and
the transmission exhibits only a symmetric dipfas will be
discussed in the context of Fig. 8sadg. This is precisely what
happens in the lower curve of Fig. 4sad which is very similar
to Fig. 7scd. However in the numerical calculationsfpre-
sented in Fig. 4sadg the strength of the intra- and intersub-
band coupling matrix elements could not be varied indepen-
dently for the transversed-function potentialsin fact these

FIG. 7. Transmission coefficientT vs Fermi energyE through
an attractive impurity potentialVisx,yd=s"2g /2m*dsech2saxdysyd in
a 2D quantum wire, for three values of the inverse decay lengtha
while y11 is kept fixed at the valuey11=−1.5. sad The solid line,
which corresponds toa=1.7 with y22=−1.4 andy12=0.08, shows
an asymmetric Fano line shape while the dashed line represents the
direct transmission.sbd Corresponds toa=1.4, y22=−0.8, y12

=0.08 and shows a distortion of the Fano resonance.scd Corre-
sponds toa=1, y22=−0.5,y12=0.12 and the transmissionswhich is
generally enhancedd exhibits only a dip.

FIG. 8. Transmission coefficientT vs Fermi energyE through
an attractive impurity potentialVisx,yd=s"2g /2m*dsech2saxdysyd in
a 2D quantum wire.sad Both solid and dashed lines correspond to
y11=−2 anda=1 so thatER−E0=0. The solid line corresponds to
y22=−0.8 and y12=0.1 while the dashed line corresponds to
y22=−0.95 andy12=0.14. Notice that for the larger value ofuy22u the
antiresonance moves lower in energy while its width increasessdue
to the larger value ofy12d. sbd Corresponds to appropriate values
sgiven in the textd such thatER,E0 si.e., the resonance level is
“inverted” with respect to Fig. 7d.
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matrix elements were buried inside the scattering wave func-
tion cp

s+dd and did not allow the full Fano structure to show
up even for smaller values of the decay lengthd. Thus for
large enough value of the decay length the conductance will
only exhibit dips regardless of the shape of the transverse
impurity potential or the values of the coupling matrix ele-
ments. To this end, we point out that if we kept the value of
v22 fixed in Figs. 7sad–7scd the shape of the Fano resonance
would remain exactly the same except that the transmission
zero would occur at lower energies.

It was shown above that for certain values of the quantity
U11/a2 the resonance energy coincides with the zero energy
and in this case the transmission versus Fermi energy exhib-
its symmetric Breit-Wigner dips. We illustrate this result in
Fig. 8sad where both solid and dashed lines correspond to
v11=−2 anda=1 so thatU11/a2=2. Further for the trans-
mission represented by the solid line we used the values
v22=−0.8, v12=0.1 while the dashed line corresponds to
v22=−0.95,v12=0.13. The only effect ofv22 on the transmis-
sion is to displace the location of the transmission zero. Thus
increasinguv22u sdashed lined causes the displacement of the
dip toward lower energy values. We also notice that the
width of the antiresonance increases whenv12 increases
which is due to the larger coupling of the bound state with
the continuum.

In Fig. 8sbd we show the transmission as a function of
Fermi energy for the valuesv11=−5.95, v22=−0.94, v12
=0.068, anda=1.26. For these valuesU11/a2=3.75 and
therefore the resonance line shape is of the 1→0 type. The
inversion of the resonance level indicates that the roles of
destructive and constructive interference between the direct
and resonant channels have been reversed. Thus when the
spatial extensionsquantified by the decay lengtha−1d of the
impurity as well as the intrasubband matrix elementU11 have
appropriate values the Fano resonance appears inverted. One
could argue that by keeping the value ofU11 fixed while
continuously decreasing the value ofa the quantityU11/a2

will reach the desirable values for which inversion of the
Fano resonance occurs. However, it is not enough that
U11/a2 be in the appropriate range. By makinga very small
ssay a,0.5d the denominator of Eq.s36d becomes large
enough so thatq!1. Consequently the transmission will ex-
hibit a dip while the peak will hardly be discerniblesdue to
the enhancement of the transmissiond.

IV. EFFECTS OF THE CROSS-SECTIONAL SHAPE ON
THE CONDUCTANCE

As mentioned in the Introduction, an important issue re-
lated to electronic transport through quantum wires is how
the geometry of the wiressi.e., the shape of their transverse
cross sectiond influences the conductance. This issue has
been investigated in the case of transport in 3D quantum
constrictions16,25,26,41 and in 3D rectilinear quantum wires
with a d-function impurity23,27and several interesting effects
have been discussed. In the case of a 3D quantum wire with
a d-function impurity, the solution of the scattering problem
is known to be obtainable from the characteristic discontinu-
ity of the derivative of the propagating wave function22,27

due to thed function, giving rise to a phase shift. The dis-
continuity of the wave function depends critically on the
shape of the cross section of the wire; increasing the aniso-
tropy of the cross section leads to a progressively larger dis-
continuity in the derivative of the wave function resulting in
a larger phase shift and increased reflection. This and other
related effectssdiscussed in the references mentioned aboved
imply that the shape of the cross section can strongly affect
the transport properties of a 3D quantum wire with an impu-
rity.

Our objective in this section is to extend our previous
calculations23,27 and to investigate the influence of the cross-
sectional shape of a 3D rectilinear quantum wire on the con-
ductance through a repulsive Gaussian impurity potential of
the form

Visx,y,zd =
"2g

2m* dsy − yiddsz− zide−x2/d2
, s37d

where syi ,zid is the impurity position along the transverse
directionsy andz and all other symbols have the same mean-
ing as in the 2D casefsee Eq.s8dg. The transverse position of
the impurity is taken to be atsyi ,zid=(s5/12dw,s5/12dl). The
cross section is chosen to be rectangular and uniform along
the wire with cross-sectional areawl=600 nm2, wherew and
l are the dimensions of the cross section alongy andz. We
assume an infinite square well confinement giving rise to the
transverse energy levelsEnm=s"2p2/2m*dfsn/wd2+sm/ ld2g
which define the bottoms of the subbands in the clean wire.
All energies will be measured in units ofE11. In the scatter-
ing region the corresponding energy levels will be denoted
by Enm,s. The shape of the confining potentialsdefining the
cross-sectional shaped is determined by the parameters,
wheres= l /w. We will consider three different shapes corre-
sponding to the parameter valuess=1.02, 2.5 and 4.1. We
emphasize that the strength, decay length, transverse position
of the impurity, and cross-sectional area remain fixed to their
initial values ass is varied. Thus the coupling of any particu-
lar transverse mode at the impurity position remains constant
as the cross section is varied.

In Fig. 9sad we show the conductance versus Fermi en-
ergy through a Gaussian impurity in a 3D quantum wire, for
three different shapes of the cross sectionss=1.02, 2.5, and
4.1d. We first note that varying the cross-sectional shape
causes shifting of the positions of the conductance steps and
influences the character of conductance quantization. The po-
sition of a particular quantum step may shift toward higher
or lower energysdepending on the cross-sectional shape an-
isotropyd. In particular for s=2.5 while the first and third
modes open at higher energies than the corresponding modes
of the almost symmetric wiress=1.02d, the opening of the
second mode occurs at a lower energy. However, increasing
the anisotropy tos=4.1 forces all the conductance steps to
open at higher energies. The shifting of the conductance
steps originates from the rearrangement of thestransversed
electron energy levels with increasing anisotropys as shown
in Fig. 9sbd. The solid lines in Fig. 9sbd denote the levelsEnm
of the clean wire while the dashed lines denote the levels
Enm,s in the scattering region of the wire. Note that the sec-

V. VARGIAMIDIS AND H. M. POLATOGLOU PHYSICAL REVIEW B 71, 075301s2005d

075301-12



ond degenerate levelE12s21d for s=1 splits to two levelsE12

and E21 for s.1. E12 shifts downward whileE21 shifts up-
ward. Similarly the fourth degenerate levelE13s31d for s=1
splits to E13 and E31 which shift down and upward respec-
tively. We also note that the distance in energy between the
first E11 and the secondE12 levels continuously decreases
with increasings, leading to the progressively smaller size of
the plateau between the first and second steps. Further while
the first level E11 gradually shifts upward in energy with
increasings, the second levelE12 first shifts downward,
reaches a minimum ats=2, and then shifts upward again.
Thus ats=2.5 the second level is lower in energysthan the
corresponding level fors=1.02d giving rise to the opening of
the second step at lower energyscompared to the second step
for s=1.02d as is observed in Fig. 9sad.

We also note that due to the transverse potential in the
scattering region the levelsEnm,s are slightly displaced up-
wards with respect toEnm. However the relative distance
betweenEnm,s andEnm stays constant with increasings. We
also observe that the upward displacement ofEnm,s with re-
spect toEnm is different for different levels. For example the
difference E12,s−E12 is smaller than the differenceE11,s
−E11. This is explained in terms of the weaker coupling of
the second modes1, 2d at the impurity positionssince that
mode is close to have a node at the impurityd giving rise to
smaller upward shifting of the subbandE12,s. Similarly the

differenceE22,s−E22 is slightly smaller than the difference
E12,s−E12 since the coupling of modes2, 2d at the impurity is
even weaker. Placing the impurity at syi ,zid
=(s1/2dw,s1/2dl) will result to zero coupling of modess1,
2d, s2, 1d, ands2, 2d at the impurityssince these modes have
nodes at the impurity positiond. This will cause the corre-
sponding subbandsE12,s, E21,s, and E22,s in the scattering
region to coincide with the subbandsE12, E21, andE22 of the
clean wire, for any value ofs. We also note that the mini-
mum energy of a particular modesn,md occurs ats=m/n.

When the cross section becomes almost symmetric the
distance between the second and third energy levels becomes
extremely smallsi.e., these two levels become almost degen-
erated giving rise to a plateau of a very small sizefsee the
curve fors=1.02 in Fig. 9sadg. The small size of the plateau
inevitably forces the second step to rise sharply. In this case
the second and third modes lie very close in energy and the
second step tends to disappear. In fact for the completely
symmetric wire withs=1, the degeneracy of the levelsE12
and E21 will cause the disappearance of the second plateau
and will give rise to a height of 2s2e2/hd for the second
conductance step. Whens=1 the first few conductance steps
have heights 1G0, 2G0, 1G0, 2G0, 2G0, . . ., where G0
=2e2/h, reflecting the degeneracy of the electronic levels.
Deviation from symmetry leads to splitting of the degenerate
levels and restoration of the single-stepsG0d behavior of the
conductance. It’s also worth mentioning that under the influ-
ence of a magnetic field an otherwise symmetric cross sec-
tion will become effectively asymmetric.23,42,43 Upward or
downward shifting of thestransversed energy levels of a
parabolically confined ballistic quantum wire under the in-
fluence of a longitudinal magnetic field has been observed
experimentally.43 The degenerate levels observed in Ref. 43
explain the disappearance of the corresponding plateau in the
experimentally measured conductance. For specific asym-
metric cross-sectional shapes there might also be acciden-
tally degenerate levels as can be seen in Fig. 9sbd. In particu-
lar the levelsE13 andE22 are degenerate ats=1.29 for which
the conductance will rise by 2G0 as are also the levelsE13
and E21 at s=1.631. These degeneracies lead to occasional
disappearance of steps in wires with asymmetric cross sec-
tions. Variations in the shapes of the cross section of 3D
quantum point contacts have also been observed
experimentally44 in the past and such variations explain the
disappearance of some of the conductance steps. Effects of
this type have no analogs in 2D quantum wires.

It’s also worth mentioning that examining the conduc-
tance as a function ofs while keeping the Fermi energy fixed
would reveal an interesting feature of the quantum transport.
Namely, increasing the anisotropy of the cross sectionsat a
fixed value of the Fermi energyd the subbands are shifted
toward higher energies and therefore the contributing quan-
tum channels decrease one by one. When the lowest subband
finally crosses the fixed Fermi level, there is no open sub-
band left and the conductance should vanish. Thus increasing
s leads to depopulation of subbandssi.e., decrease in the
number of conducting channelsd, resulting to a decrease and
eventually vanishing of the conductance. This last observa-
tion suggests that cross-sectional shape anisotropy in 3D

FIG. 9. sad ConductanceG sin units of 2e2/hd vs Fermi energy
E through a Gaussian impurity of strengthg=2.3 cm−2 and decay
lengthd=20 nm in 3D rectilinear quantum wires with asymmetric
cross sectionssspecified by the parameters, wheres= l /w andw, l
are the transverse dimensions of the cross section alongy andzd. E
is given in units ofE11 swhereE11 is the bottom of the first subband
in the clean wired. The cross-sectional area is kept constant to the
value wl=600 nm2 as the shape of the cross section is varied.sbd
Transverse energy levels vs the cross-sectional shape anisotropys.
Solid lines correspond to the levelsEnm of the unperturbed wire
while the dashed lines correspond to the levelsEnm,s in the impurity
region.
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quantum wires could be detected through conductance mea-
surements at a fixed value of the Fermi energy.

V. SUMMARY

In this paper we have considered the transmission of elec-
trons through a Gaussian impurityswith a decay lengthd
along the propagation directiond in 2D and 3D rectilinear
quantum wires with symmetric or asymmetric cross sections.
The confining potential is that of an infinite square well. We
have solved the LSE numerically and investigated several
features of the conductance.

The results for the 2D wire can be summarized as follows.
Increasing the decay lengthd of a repulsive Gaussian impu-
rity leads to a progressively sharper rise of the conductance
steps at the opening of the subbandsEn,s, as shown in Figs. 1
and 2. The physical origin of this effect is the progressively
smaller contribution of tunneling modes and the gradual sup-
pression of backscattering as the impurity potential becomes
smoother.

The conductance versus the Fermi energysfor various im-
purity positionsd was also examined. Displacing the impurity
away from the central axis of the wire causes shifting of the
positions of the conductance steps which is due to the corre-
sponding displacement of the bottoms of the subbandsEn,s in
the scattering region. A particular levelEn,s versus the impu-
rity position follows the structure of the squared modulus of
the corresponding transverse modeufnsydu2. Accordingly, de-
pending on the particular impurity position, the coupling of a
transverse mode at the impurity may be stronger or weaker
leading to enhanced or suppressed scattering effects respec-
tively si.e., to smeared or sharp quantum stepsd as shown in
Fig. 3.

In the case of an attractive Gaussian impurity we have
shown that there exist multiple resonance dips in the conduc-
tance which are due to the formation of quasibound states.
We examined the behavior of a dip locationEres and the half
width G as a function of the decay lengthd. We found that
increasing the value ofd causes shifting ofEres toward lower
energies while the half width decays in an oscillatory manner
ssee Fig. 4d. In particular the half width of the resonant dip
may shrink to an extremely small value for some critical
values ofd resulting to an extremely stable statesa state with
greatly enhanced lifetimed.

The Feshbach approach was employed in order to analyze
the scattering from a second type impurity potentialsfor
which analytical solution to the coupled-channel equations is
possibled thereby allowing us to study extensively the char-
acteristics of the resonance line shape. The transmission was
found to exhibit asymmetric Fano line shape whichsfor large
values of the decay lengthd evolves into a dip while for a
certain range of values of the quantityU11/a2 the Fano reso-
nance is inverted.

We also demonstrated that the shape of the transverse
cross section of a 3D wire may strongly affect the character
of conductance quantization. In wires with a symmetric cross
section the conductance steps have heights 2e2/h or
2s2e2/hd, depending on the degeneracy of the transverse en-
ergy levels. In wires with asymmetric cross sections the sym-

metry degeneracy is removed and the single-stepsheight
2e2/hd behavior of the conductance is restored. However,
accidental degeneracy may still occur for some asymmetric
cross-sectional shapes. Further we demonstrated that varying
the cross-sectional shape anisotropyskeeping the cross-
sectional area fixedd causes shifting of the positions of the
conductance stepsswhich is due to the rearrangement of the
transverse energy levelsd and changes the sizes of the pla-
teaus between successive steps. To this end we emphasize
that shape effects are important in the detailed structure of
the conductance of 3D wires and effects of this type do not
show up in 2D wires.

APPENDIX: CALCULATION OF THE TRANSMISSION
COEFFICIENT

In this appendix we present the calculation of the trans-
mission coefficient of the quantum wire with the impurity
potential of Eq.s23d by employing the formalism of Refs. 34
and 36. Forx→` the solution of Eq.s33d for c1sxd takes the
form

c1sxd = xk
+sxd +

m*

i"2ktbgxk
+sxd

ksxk
−d* uV12uF0lkF0uV21uxk

+l
E − E0 − kF0uV21G1V12uF0l

,

sA1d

whereG1 is the retarded Green’s function which can be writ-
ten in terms of the scattering statesxk

±sxd as

G1sx,x8d =
m*

i"2ktbg 3Hxk
+sxdxk

−sx8d sx . x8d

xk
+sx8dxk

−sxd sx , x8d.
h sA2d

We will use this representation ofG1 in order to calculate
the matrix elements of Eq.sA1d. We then have

ksxk
−d* uV12uF0l =

"2

2m* gy12Îa

2
E dxse−ikx + r−

bgeikxdsech3saxd

=
"2

2m* gy12Îa

2
sI1

* + r−
bgI1d, sA3d

where

I1 =E
−`

`

dxeikx sech3saxd, I1
* =E

−`

`

dxe−ikx sech3saxd.

sA4d

It turns out thatI1= I1
* =fsa2+k2dp sechskp /2adg /2a3. Also,

kF0uV21uxk
+l =

"2

2m* gy21Îa

2
tbgI1. sA5d

For the matrix element occurring in the denominator of Eq.
sA1d we have
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kF0uV21G1V12uF0l =
m*

i"2ktbgE
−`

`

dxE
−`

`

dx8F0sxdV12sxdF0sx8dV12sx8dxk
−sxdxk

+sx8d

+
m*

i"2ktbgE
−`

`

dxE
−`

x

dx8F0sxdV12sxdF0sx8dV12sx8dfxk
+sxdxk

−sx8d − xk
−sxdxk

+sx8dg

= Q1 + Q2 − Q3. sA6d

Inserting the explicit expressions for the bound stateF0, the
potentialV12 and the scattering statesxk

± into Eq. sA6d we
obtain

Q1 =
m*

i"2k
S "2

2m* D2

g2y12
2 Sa

2
DfI1

* I1 + r−
bgsI1d2g sA7d

and

Q2 =
m*

i"2k
S "2

2m* D2

g2y12
2 Sa

2
DfI2 + r−

bgI3g, sA8d

where

I2 =E
−`

`

dxeikx sech3saxdE
−`

x

dx8e−ikx8 sech3sax8d sA9d

and

I3 =E
−`

`

dxeikxsech3saxdE
−`

x

dx8eikx8 sech3sax8d

sA10d

The calculation ofQ3 yields exactly the same expression as
Q2 so thatQ2−Q3=0. ThenkF0uV21G1V12uF0l=Q1. Finally
using Eqs.sA7d and the results of the integralsI1 and I1

* the
matrix element can be written as

kF0uV21G1V12uF0l = d − iG sA11d

with

d = −
"2g2y12

2 sa2 + k2d2p2 sech2skp/2ad
32m*ka5

3
cosfsp/2dÎ1 + s8m*U11/"

2a2dgsinhspk/ad

sinh2spk/ad + cos2fsp/2dÎ1 + s8m*U11/"
2a2dg

sA12d

and

G =
"2g2y12

2 sa2 + k2d2p2 sech2skp/2ad
32m*ka5

3
sinh2spk/ad

sinh2spk/ad + cos2fsp/2dÎ1 + s8m*U11/"
2a2dg

sA13d

giving the shift and width that the bound state acquires. Us-
ing Eqs. sA3d and sA5d the numerator of Eq.sA1d can be
written also as

m*

i"2ktbgksxk
−d* uV12uF0lkF0uV21uxk

+l = d − iG. sA14d

We then get forx→`,

c1sxd = tbgeikx E − E0

E − E0 − d + iG
, sA15d

which leads to the transmission coefficient

T = utbgu2
sE − E0d2

sE − ERd2 + G2 , sA16d

whereER=E0+d and utbgu2 is given as

utbgu2 =
sinh2spk/ad

sinh2spk/ad + cos2fsp/2dÎ1 + s8m*U11/"
2a2dg

.

sA17d
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