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We calculate the conductance through a Gaussian impurity potential in a quantum wire using the Lippmann-
Schwinger equation. The impurity has a decay lerdyélong the propagation direction while it is localized
along the transverse direction. In the case of a repulsive Gaussian impurity it is shown that the conductance
quantization is strongly affected by the decay length. In particular, incredsiagses gradual suppression of
backscattering and smaller contribution of evanescent modes, leading to progressively sharper conductance
steps. The dependence of the conductance on the impurity position is also examined. In the case of an attractive
Gaussian impurity it is shown that multiple quasibound states are formed due to the finite size of the impurity.
By varying the size of the impurity these quasibound states may evolve into highly localized states with greatly
enhanced lifetime. It is also show(fior a model impurity potential very similar to the Gaussidhat the
transmission exhibits asymmetric Fano line shape. Under certain circumstances the Fano line shape may appear
“inverted” or evolve into a Breit-Wigner dip. We consider also the effects of the cross-sectional shape of the
wire on the quantum transmission. It is shown that varying the cross-sectional shape causes shifting of the
positions of the conductance stefghich is due to the rearrangement of the transverse energy )eueds
influences the character of conductance quantization.
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[. INTRODUCTION where the impurity is represented by a rectangular barrier or
attractive square well along the propagation direction has
Since the discovery of the quantized conductarcef  been examined in Refs. 6 and 19. However, a more realistic
electron transport through narrow wires, much effort hasmodel for the potential of an impurity in a quantum wire
been devoted to the description of electron scattering fronshould have a finite range with some decay ler{ffiht is, an
impurities in such systenis?® In most of these scattering impurity with a smooth potential profilealong the propaga-
calculations the impurity potential is taken to be the idealizedion direction. One important issue therefore is how an im-
model of the Diracé function. The model of the-function  purity of this type affects the conductance of a rectilinear
scatterer is used mainly for two reasons. First, it allows inquantum wire. In this case an analytical solution to the scat-
most cases for an analytical solution of the scattering probtering problem is not possible and a numerical approach is
lem with a relatively small amount of effort, and second, itrequired.
captures the basic physics of the problem under consider- Another important issue related to electron transmission
ation. through an impurity in a three-dimension@D) quantum
Although sometimes useful, the use oBdunction scat- wire is how the geometry of the wilghat is, the shape of the
terer in an infinite rectilinear quantum wire causes someransverse cross sectjoaffects the conductance. This issue
problems. One such problem is the divergence of the quashas been investigated in the case of 3D quantum constric-
bound stated?* as the number of transverse modes in-tions without impurities in the preserf®and absendé?6 of
creases. Moreover, it has been prai#ed that a s-function  a magnetic field. In addition it has also been discussed in the
impurity in a quantum wire scatters no electrons if the num-case of a quantum wire with & function impurity in the
ber of evanescent modes is extended towards infinity. Thipresenc® and absencé’ of a magnetic field. One of the
leads to perfect transmission for all values of the Fermi enmain results of these investigations is that the conductance of
ergy and not just at channel thresh@which occurs when a  a quantum constrictidfi?>2%as well as the conductance of a
finite number of modes is keptin addition thes-function  quantum wire with as function impurity?®2” is determined
potential is quite rough and irregular, whereas any realisticot only by the cross-sectional area but also by the shape of
model of an impurity should have a smoother potential andhe cross section.
finite range. The purpose of this paper is twofold. The first objective is
Several work3'?1824have discussed the case of an im-to present a brief description of our numerical method for
purity that has a lateral extension but issdunction along  solving the Lippmann-Schwinger equatf8n(LSE) for a
the propagation direction of a rectilinear quantum wire. Forgeneral finite-size impurity in a rectilinear quantum wire. We
this slightly more realistic and analytically solvable model ofthen apply this method in the case of a Gaussian impurity
an impurity potential(for which the problem of the diver- potential with a decay lengtti along the propagation direc-
gence of the quasibound states is remowhd conductance tion. For the shake of clarity we make the simplifying as-
shows no drastic chanffecompared to the conductance sumption that the impurity is localized along the transverse
through a puredé-function impurity in the wire. The case direction. We find that ad increases the contribution of the
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evanescenftunneling modes becomes negligible and the the y direction (transverse directionbut are free to move
backscattering is suppressed resulting to conductance witllong thex direction (propagation direction The cross sec-
progressively sharper quantum steps. We also show thaibn is uniform along the wire. The Hamiltonian can be writ-
varying the transverse position of the impurity leads to shift-ten as
ing of the energy subband® the scattering regiorand may

strongly affect the quantization of the conductance steps. In H=Ho+Vi, @)
the case of an attractive Gaussian impurity we show thalvhereV,=V;(x,y) is the scattering potential of any defects or
there exist multiple resonance dips in the conductance whichnpurities in the wire. The unperturbed Hamiltonigy is

are due to the formation of discrete levels in the continuunyjiven as the sum of the kinetic energy plus the confining
and their interaction with the continuum states. We examingotentialV,(y), i.e.,
the behavior of a resonance dip locatiBps (at which the

conductance drops to zgrand also the behavior of the reso- Ho = IO_2 V() 2
nance half widthI' with increasing values of the decay 0T oy T Ve )

length of the impurity. We show th#,. as a function of the .. ,
decay length decreases and for some appropriate values ofvherem is the effective mass of the electron.

the half widthI" shrinks to infinitesimally small value which  The energy eigenstates of the unperturbed wire—i.e., of
corresponds to a very stable state with greatly enhanced lifddo—are given as

time. We also examine the transmission through a second- 1
type attractive impurity potential which is very similar to the zﬂéo)(x,y) =T
Gaussian but having also a lateral extension. We find that an V2mh
asymmetl’iC Fano resonance appears in the transmission V%ere d)n(y) are the normal confinement mod@]antum
sus Fermi energy whictfor large enough values of the de- channels of the wire. The energy eigenvalues idf, are E
cay length transforms into a Breit-Wigner dip. For certain =(p2/2m’)+E,,, wherep,=#k, has a continuous spectrum
values of the decay length and the intrasubband coupling,e’subband indices, ari), are the subband energies.
matrix element the resonance energy coincides with the en- |, he presence of the scattering potentialwe must

ergy of the transmission zero, leading to a completely symgg e the following Schrédinger equation:
metric dip. Also for certain ranges of the above parameters

the Fano resonance is “inverted.” (Ho+ V) |y) = E|4). (4)
The second objective is to extend our previous
calculationd®>?” and investigate shape effects of the cross
section of a 3D quantum wire on the conductance through a ) © )
Gaussian impurity. We find that increasing the cross- |¢p )= |¢p )+ mvﬂ% ), (5
sectional shape anisotrogigeeping the cross-sectional area 0
fixed) causes shifting of the positions of the conductancewhich is the LSE of scattering theory. This solution corre-
steps, which is due to the rearrangement of the transverssponds to the incident wave on the scatterer plus an outgoing
energy levels. Further, by varying the shape of the cross seavave traveling away from the scatterer. Assuming a finite-
tion, symmetry or accidental degeneracies may cause the digange and local scattering potential, E8). can be written in
appearance of some steps, resulting in step heights d¢he position basis as an integral equation for scattering,

P (y), 3

Equation(4) has the solution

2(2€?/h). - oo
, . . . . N 2m o
For an arbitrary shape of the impurity potential an analyti- - y(9(x,y) = y{”(x,y) + w2 dx’f dy' GO(x,y;x",y")
cal solution of the LSE is not possible. The simple numerical - —o0

method we developed in order to solve the LSE can be used VX Y)Y (6)

for calculating the conductance of a quantum wire with an (XY (XY,

arbitrary impurity potential. It can also be used in the case ofvhere G9(x,y;x’,y’) is the retarded Green’s function

multiple scattering centers of arbitrary shape by treatingwhich is energy dependeéntf the unperturbed wire and

them as a large composite scatterer. takes the forrf?
The paper is organized as follows. In Sec. Il we describe .

the theoretical method and the numerical solution of the LSE s _

for obtaining the transmission amplitudes and conductance GOxy:xy) = 2 $n (V) by (Y') 2ik, @

of the wire. In Sec. lll we investigate the effects of the im- n'=t1 "

purity on the conductance. In Sec. IV we analyze the effecthe wave vectors for the propagating modes &g

of the shape of the cross section of the quantum wire or[2m"(E-E,/)]¥%/#%. The wave vectors for the evanescent

electron transmission through the impurity and we present ghodes are obtained by settikg =i«,. The scattered modes

eiknr\x—x’|

brief summary of our results in Sec. V. n’ in the Green'’s function of Eq7) are propagating or eva-
nescent depending on whetHgy is less or greater than the
Il. THEORETICAL FORMULATION Fermi energyE.

The above procedure applies to a general finite-range
We consider an infinitely long two-dimension@D) rec-  scattering potentiaV;. For a particular form of the potential
tilinear quantum wire in which electrons are confined alongyV;, the solution to the integral equati¢6) for the unknown
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wave functlonzp“ (x,y) will enable us to extract the current means that the number of intervals should satisfy
transm|33|on amplltudes However, since the unknown wavé> 20xo|/d. Replacing now the integral by a sum and setting
function zp '(x,y) appears also under the integral the solu-y=Yi in Eq. (10) we obtain

tion to Eq (6) (valid throughout the whole wijerequires s

first finding the wave function in the scattering region, i.e., in ¢E’+)(_ Xo+rb,y;) = 1/,5)@(_ Xo+ b,y + ¥b >, GO(=x,

the region wher&/;(x,y) # 0. q=0
We consider now electron scattering from an impurity po- . _ )
tential of the form 10,y = X0+ ab,y) = X0 + qb)
X(=Xo+ab,y;). (12)
Vilxy) = X, (8)  Equation(11) represents a set af equations(one for each

value ofr) for the s unknown values of the wave function
where(x) is an arbitrary function of the coordinasey; is 4™ and can be writtefiafter some manipulatiohsn matrix
the transversal position of the impurity, and the magnitude ofotation as
v sets the magnitude of the impurity potential, which may be <
repulsive(y>0) or attractive(y<0). For the calculation of 2 ) _ 1 0 12
the wave function in the scattering region we will need to rqtq = yb'/’f ' (12)
know the transverse energy levélg, (which define the bot-
toms of the subbangsn this region. These levels are ob- where
tained from

q=0

1
qu = G<O)(_ Xo t fb,yi Xt qb'Yi)v(— Xot qb) - %dq
sin(aw) = = sm(ay.)sm[a(y. w)] 9

(13
direction, wherea= (sz)m/ﬁ andw is the width of the  gjectron energyalthough this is not shown explicitly in Eq.
wire. For the impurity potential of Eq8) we can write the (13)]. In Eq. (12) ¢(+ represents the unknown values of the

LSE Eq.(6) as wave funct|onzp (- x0+qb y,) in the scattering region and is

%")(x,y) = %0)()('3,) a column vector S|m|larly¢ is a column vecto_r ar)1d rep-
" resents the known values of the wave functm)ﬁ? (%o
+ 7f dXIG(O)(X,y;X,,yi)v(xf)d,g)(xr,yi). +rb,yi? of the |pC|dent wave in the region of the scatterlng
—o potential. Inverting the matrigV ] whose elements are given

(10) in Eqg. (13) allows us to solve Eq(12) for ¢(+) and find the
wave function in the scattering reg|c(wh|cci1 was our pri-
We note that the scattered wave functiq)ﬁ)(x,y) of EQ.  mary goa). This solution is written formally as
(10) is expressed as the sum of the wave function for the
incident wavez// )(x,y) plus a term that represents the effect [yi)]=~ i[l\/l]_l[lﬁﬁo)]- (14
of scattering. In order to be able to solve Ef0) and find b
the wave funct|0n¢//<+)(x y) thro(ughout the entire wire we Having found the values of the wave functiqﬂ{f)(x,yi)
must know the wave function\”(x',y;) in the scattering that we needed we can proceed and perform the integral in
region—i.e., in the region where(x’)# 0. Thus, our first Eq. (10) by discretization(in line with the above discussipn
goal is to find the wave functiorrx/:;)(x’,yi) in the region and thus determine the wave function to the rigittleft) of
where all the scattering takes place. the scattering potentidthat is, for|x| > xg). The wave func-
We assume that the scattering potential of @jextends tion transmission amplitudes are then extracted from that
from —xg to X, that isu(x’) # 0 for |[x'| <X, andu(x’)=0 for  part of the wave function valid fax> X, and given formally
[X'| >Xq. In the case where(x’) has a Gaussian shape—i.e., as

ux)=eX where d is the decay length of the

scatterer—we can alw_ays choobg| far away s'uch that to (E) = Sy + 2kb V2 b (y.)E gk (xg+aD) (=
u(+X,) becomes essentially zero. For the numerical calcula- g=0
tions of the next section we choosg|=5d. For this value of +qb) 'ﬁf;)(— X0+ qb,y:) (15)

[%o| it is clear thatu(+x,) is very nearly zero. We divide the

interval [-xg,X%,] into s equal subintervals of widthb ~ wheren andn’ are the incident and scattered modes respec-
=2|xo|/s and the coordinates’ and x of Eq. (10) are dis- tively, and zp( (=Xo*+gb,y;) are the values of the wave func-
cretized according to’'=-Xy+qgb, x=—-xg+rb, whereq,r  tion in the scattermg region found from E(.4). By setting
=0,1,2,...s. The numbers of subintervals can be chosen k., =i« in Eq. (15 we obtain the wave function amplitude
sufficiently large such that the results converge. In the casfor the case in which mode’ is an evanescent mode. The
of a Gaussian impurity potential we found that convergenceurrent transmission coefficien®,, through the impurity

is obtained when the inequality<0.1d is satisfied, which are obtained as
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=
d

Ky .

k_ntnnrtnn, .

Tnn' = (16)
Equation(16) gives the probability that an electron incident
from moden on the left will emerge in mode’ on the right.

In order to calculate the conductance we use Landauer’s
formula30-31

Conductance ( 2¢2 /h)
)
]

2¢? 0.0
- = 4
G= h E,T””” (17) (a) Fermi energy E
n,n
wheren andn’ run only over the propagating modes of the .
wire. =
=)
2
2
I11. CONDUCTANCE OF A QUANTUM WIRE WITH A 2
GAUSSIAN IMPURITY E’
. . g
In this section we present results for the effects of a £
Gaussian impurity potential on the conductance of a 2D rec- =
tilinear quantum wire. In particular for the impurity potential
we will employ the model (b) d/w
ﬁz?’ _2/02 FIG. 1. (8 Conductances (in units of 22/h) as a function of
Vilxy) = m Ay -yie ' (18) Fermi energ\E (over the first subbanahrough a Gaussian impu-

o ) o rity of strengthy=2.5x 1f cm™ in a 2D rectilinear quantum wire
which is extremely localized along thedirection but has a  of width w. E is given in units ofE; (whereE, is the bottom of the
decay lengttd along the propagation direction. The laterally first subband in the clean wireResults are shown for various sizes
confining potential of the wire is that of an infinite square of the impurity(specified by the parametdfw). Note that increas-
well. The cross sectiofwidth w) is uniform along the wire. ingd results to sharper rise of the conductar(t® Tunneling prob-
The electron mass is taken to be the effective mass for GaAsbility vs d/w, for two values of the Fermi energy. The solid line
which is 0.067 of the free-electron mass. In the followingcorresponds tdE=0.95; s while the dashed line t&€=0.8¢,
numerical calculations we include a total of eight modeswhereE, ¢ is the bottom of the first subband in the scattering region.
Including higher modes does not affect the results especially
as the size of the impurity increases. In the clean part of thepening of the subbarig, ; and a corresponding suppression
wire (i.e., outside the scattering regjothe infinite square of the conductance belov, . For E;<E<E, ¢ the first
well confining potentialV (y) gives rise to the transverse channel is not propagating and therefore transport occurs via
energy levelsE,=#2m?n?/2m'w?. We will express all dis- tunneling for this particular channel. While the first channel
tances in units of the wire widtlv and all energies will be of propagation opens up &, the subbands above the
measured in units of;. Fermi level contribute to some extent by tunneling. Thus at a
particular value ofl the effect of the evanescent states above
the Fermi level is to give rise to electron transmission prior
to the opening of the subbarigl .. The suppression of the

We analyze now the influence of the Gaussian impurityconductancéfor E; <E < E. ¢ with increasingd can be un-
potential on the conductance. The transverse location of thgerstood simply in terms of the progressively smaller contri-
impurity is at y;=(5/12w. As mentioned in Sec. Il the bution of evanescent modes. We illustrate this gradual de-
choice |xo| =5d is sufficient to guarantee thaf(+x,,y)=0.  crease of tunneling in Fig.() for two values of the energy
The energy subbands in the scattering redishich we will  E=0.9; s and 0.8&, ¢, i.e., well below the bottom of the
denote askE,¢ are shifted upwards due to the transversefirst subbancE, s. As it is clear from Fig. (b) the tunneling
potential of the impurity. The first subband in this region probability (which is smaller for lower energigslecreases
opens atE;=1.85%; while the second opens &E,s exponentially and for large enough valuesddf will vanish.
=4.3%,. Immediately after the opening of the subbaagd; and with

Figure Xa) shows the behavior of the conductanceincreasing values ofl the conductance approaches progres-
through a Gaussian impurity in the 2D rectilinear quantumsively faster the quantum unie2 h and equals €/h over a
wire plotted versus the Fermi energy over the first subbandarger part of the subband. This is due to the suppression of
for several different values of the parametdw. For the  backscattering as the impurity potential becomes smoother.
smallest value ofl chosen in the calculatiofi.e., d=0.3v  Thus the simultaneous suppression of tunneling and back-
which corresponds to the solid lineve see thaG increases scattering effects with increasirdyresults in a sharper con-
almost linearly in the beginning and finally approaches theductance step. In the extreme case in whidhecomes very
quantum unit 2°/h. However increasing the value dfieads  large (i.e., the impurity potential becomes almost Xlitis
to a progressively sharper rise of the conductance at theeasonable to expect that the impurity will cause very little or

A. Conductance through a repulsive Gaussian impurity
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no reflection since the quantum wavelength becomes small 2
compared with the characteristic distance over which the po-
tential varies appreciably. In this case quantum tunneling will
also be absent resulting to zero transmission prior to the
opening ofE, .. Accordingly we will obtain perfectly sharp
step structure an@=2€e?/h over the entire subband. In the
opposite limit of very smalld the conductance of a point
scatterer is recovered. It is worth mentioning here that in the
case of a point scatterer there is only one set of subbands in ot
the wire and the first two channels become propagating ex- 1
actly atE=E; andE=E,, respectively.

The above points can also be discussed in a perturbation £ 2 conductance (in units of 22/h) vs Fermi energyE

picture. In particular, the reflection coefficients due to they,oygh a Gaussian impurity of strenggke2.5x 166 cm L in a 2D
backscattering can easily be calculated in the first-order Borpectilinear quantum wire of width, for three values of the param-

Conductance (292 /h)
i
\

Fermi energy E

approximatior?? obtaining eter d/w. Note the sharper rise of the second conductance step
> 2 (compared to the first st¢pvhich is due to the smaller distance
R (E)= an' md = (ky + k) 20212 19 betweenE, ; and E,, whereE, ¢ is the bottom of the second sub-
an (E) = 4k K. € ! (19 band in the scattering region akd is the corresponding subband in

the clean part of the wire.

wheren andn’ are the incigent and reflected modes, respec-
tively, while I'y = yén(yi) ¢, (y;) are constants that are pro- =(5/12w] the coupling of the first mode at the impurity is
portional to the coupling of the incident and reflected transstronger than the corresponding coupling of the second
verse modes at the impurity. It is clear from E@9) that  mode. Consequently scattering of the first mode is enhanced
backscattering reduces very fast with increaginfpading to  while scattering of the second mode is suppressed, giving
gradual enhancement of transmission and improving theéise to smoother and sharper steps, respectively. This can
quantized conductance step. In fact in the limit in whith also be understood from the perturbation result of @q).
becomes very largéwhile keeping all other parameters in We must note that when we consider transport in the second
Eq. (19) fixed], R, approaches zero, as can be verified fromsubband there is intrasubband reflection throRgh R, in
the above equation. For later analysis we also note that thaddition toR;;. However, the dominant contribution comes
above reflection coefficients also depend on the coupling ofrom the backscattering within the second channel, i.e., from
the transverse modes at the impurity position through théR,,, which has the smallest wave vector as can be seen from
constantd’,,. Eqg. (19). Now when we consider transport in the first sub-

As mentioned above the subbands that lie above théand the magnitude oF,; is large resulting to enhanced
Fermi level can contribute to the conductance by tunnelingreflection. When we consider transport in the second sub-
The most important contribution comes from the first sub-band the coupling constaiit,, (corresponding to the domi-
band that lies immediately above the Fermi leg@hce the nant reflection coefficienR,,) is small leading to reduced
contribution of the higher ones decreases with increasing emeflection. Placing the impurity on the central axis of the wire
ergy). However, this contribution is different for different would result in a maximum scattering of the first mode while
conductance steps. This effect is illustrated in Fig. 2 wherehe second will suffer no scattering, leading to almost perfect
we plot the conductance versus the Fermi energy over thguantization of the second step. These points will become
first two subbands, for several different values of the decaynore clear in the next section where we examine the influ-
length d. It is seen that the first conductance step risesnce of the impurity position on the conductance.
smoother in the vicinity oE; s than the corresponding rise of
the second step in the vicinity &, . This can be understood
if we examine the distance between the subbands in the scat-
tering region and those in the clean wire. The distahE€’ Several interesting effects are observed when we vary the
betweenE; andE; ¢ is 0.8, which is much larger than the transverse position of the impurity. In Fig(e8 we show the
distanceAE® betweenE, and E,, which is 0.3%,. Even  conductance through a Gaussian impurity with0.7w in a
though the larger distanc®E®Y leads to smaller tunneling 2D rectilinear quantum wire plotted versus the Fermi energy,
probability for E; <E<E;, the tunneling regiolMEY of  for three different impurity positiong. It can be seen that as
the first step is much greater than the tunneling regi&f?  the impurity is displaced away from the central axis of the
of the second step by a factor of 2.42. Thus in the seconwire the position of the first conductance step is systemati-
step there is a larger amount of tunneling in a smaller tuncally shifted towards lower energy values while it rises pro-
neling region and this leads to rapid enhancement of thgressively sharper at the opening of the subliangd Note in
conductance values in this region. particular that when the impurity is placedyat (1/12)w the

The smoother and sharper rise of the first and secondonductance grows rapidly with energy and very soon ap-
steps, respectively, is also due to the different strength of thproaches values very close to the quantum uedt 2 How-
interaction of the respective modes with the impurity. For theever, the shifting of the position of the second conductance
particular position of the impurity that we considee., y; step can be either towards lower or higher energy values

B. Effects of the impurity position on the conductance
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N
=

0.25w) and then to a downward shifting of the position of the
second quantum step, as it is in fact observed in Fig). 3
Thus the greater the coupling of a particular transverse mode
at the impurity the greater the shifting of the corresponding
subband. Note also that for an impurity on the central axis of
the wire E; s=E,.

The sharper or smoother rise of the conductance steps for
different impurity positions observed in Fig(e3 can be ex-
3 3 7 plained in terms of the structure of the subbands. The three
Fermi energy E impurity positionsy;=(5/12w, (3/12w, and (1/12w for
which we calculated the conductance are shown in Fig). 3
Eas as three spikes in their respective positions. The gradually
sharper rise of the first conductance stap the impurity is
displaced away from the central axis of the wiig partly
due to the progressively shorter tunneling regisimce the
distance betweel;  and E; continuously decreasesind
also due to the progressively weaker coupling of the trans-
verse wave function at the impurity position. When the im-

; purity is located at5/12w (i.e., close to the central axis of
0 03 0.6 1 the wire the interaction of the first mode with the impurity is
() Impurity position (y;/w) strongest leading to enhanced scattering effects and smooth
first conductance step. However, when the impurity is placed
at (1/12w the interaction of the first mode with the impurity
becomes much weakgas can be seen from Fig(8], lead-
ing to suppression of scattering effects and sharper conduc-

Conductance ( 2¢2 /h)
o
>

e
=

—_
&

E;

El,s

Subband bottoms

FIG. 3. (a) Conductances (in units of 2?/h) vs Fermi energy
E through a Gaussian impurity of strengif¥2.5x 10° cmi’t and
d=0.7v in a 2D quantum wire of widtlw, for three different im-
purity positions(specified by the parametgi/w). Note the shifting
of the positions of the conductance steps which is due to the shiftin{ANC€ Step. .
of the subbandg,,  in the scattering regiorib) The bottoms of the Similarly by examining the structure df,s we can ex-
first two subbands vs impurity position/w. The two straight hori- ~ Plain the characteristics of the second conductance steps.
zontal lines represent the subbariis E, of the clean wire while ~ When the impurity is placed #8/12w it is seen in Fig. &)
E: s Eas are the subbands in the scattering region which follow thethat the slope of the rise of the second quantum step becomes
structure of the transverse wave functiges(y)|%. smaller which is partly due to the wider tunneling region

[i.e., the distance betweel,s and E, becomes large, as

(depending ory;) while the rise of this step may be smoother shown in Fig. 8b)] and also due to the stronger interaction
or sharper. of the second mode with the impurity. It is also worth men-

These effects can be understood simply by examining théoning that the impurity positioné5/12w and(1/12w are
behavior of the(transversgenergy levelsE; s andE,s as a  entirely equivalent as far as the second mode is concerned.
function of the impurity position which is illustrated in Fig. This means that for those two impurity positions the opening
3(b). While E; and E, (shown by the straight horizontal of the second subband occurs at exactly the same energy and
lines) assume constant valu¢mdependent ofy;), E; s and  the couplingl',, of the second mode at the impurity is also
E, s are functions of the impurity position. In fact the energy exactly the same. However, fgr=(1/12w the second step
levelsE, s versus the impurity positiop follow the structure s slightly sharper. This is due to the fact that while we con-
of the squared modulus of the transverse wave functionsider transport at the second subband the first mode still con-
(i.e., the structure ofey(y)|). The physical origin for the triputes to the conductance and the coupling of this mode
shifting of the bottoms of the subbanég s can be under- with the impurity is weaker foy;=(1/12w [see Fig. 8)],
stood simply in a perturbation picture where the first ordefresulting in reduced scattering and slightly enhanced trans-
correction(f2y/ 2m)| ¢, (y;)|? to the unperturbed leveE, is  mission.
proportional to the interaction of the transverse wave func- To this end, we emphasize that the effects of the impurity
tions at the impurity position. The structure of the subbandposition just discussed are particularly important in the de-
E, s is identical to the squared modulus of the first modetailed structure of the conductance and they have also been
¢1(y) while that of the second subbafg is identical to the  examined in various other systems with different types of
squared modulus of the second masigy). Higher subbands  impurities®162232Comparing the above results with the re-
also exhibit analogous behavior. Now as the impurity issults for a point scatterer in the wire we note some differ-
moved from 0.9 to O the first subbané, s gradually shifts ences. First, the Gaussian impurity model employed in this
towards lower energiegsee Fig. &)], leading to a corre- paper causes a delay in the opening of a new channel which
sponding shifting of the position of the first conductance steps due to the presence of a second set of subbBpds the
observed in Fig. @). However, the second subbalg first  scattering region. In contrast, when a point impurity is
increases, reaches its maximum valug;at0.25v, and then  present in the quantum wire the opening of a channel occurs
decreases unti, ;=E, aty;=0. Consequently displacing the precisely at the subband bottors of the unperturbed wire.
impurity from 0.5v to O leads first to an upwarduntil Second, the transverse position of the Gaussian impurity has
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a greater influence on the conductance of the wire because of d/w:
the possible shifting of the subbanda the scattering re- - 2
gion) as the impurity is displaced. For some impurity posi- o 0.56
tions the subbands in the scattering region are far apart from S 1 Ty
those of the unperturbed wire while for other positions they g o ’ Y T_
coincide resulting in significant changes in the appearance of *§ 0.3
the conductance. This effect is absent from the point impu- E 0
rity model where only one set of subbands exists. We next S
turn to the case where the impurity is attractive. 1 3 5 7 9
(a) Fermi energy E
C. Attractive Gaussian impurity 3.75

We examine now the influence of an attractive Gaussian
impurity on the conductance of a 2D rectilinear quantum 3.65
wire. We show that in this case there exist multiple dips in
the conductance that are due to the formation of quasibound
(resonant states in the continuum and their interaction with 358
the continuum states. In the subsequent analysis we confine
our attention to the behavior of these dips as a function of the

Eres

decay length of the impurity. The first subband in the scat- 3'4503 0.4 0.5 0.6 0.7
tering region opens ak,; ;=-0.51E;, the second at,g (b) d/w
=3.15%,, and the third aE3 ;=6.92%;.

In Fig. 4a) we show the conductance plotted versus the 0.12
Fermi energy, for three different values of the decay lemgth
and the upper two curvegorresponding tal/w=0.48 and
0.56 are vertically offset by an amount 12e?/h) and 5 00

-

2.2(2€?/h), respectively, for clarity. We note that akin-
creases multiple resonance dips appear in the first and the 0.04
second subbands. The number of these dips increases with
increasingd. As mentioned above the dips in the conduc- 0.0
tance are explained in terms of the formation of quasibound 0.3 0.4 0.5 0.6 0.7
states—at special energies—in the impurity region. Electrons (c) d/w

at those energies spend enhanced periods of time in the im-
purity region (i.e., they become temporarily trapped in the ¢ s :
quasibound statgs and destructive interference of these E through an attractive Gaussian impurity of strengik -2

_l . . .
states with the continuum states causes the conductance Jor% €M in a 2D quantum wire of widttw, for three values of

drop resulting in a complete interference blockade of thé e parameted/w. The multiple dips in the conductance are due to
electron transport & the formation of quasibound states. The upper two cufeesre-
res

Two important quantities related to resonant scatterin arsponding tad/w=0.48 and 0.56are vertically offset by an amount
P q garg 1(2€?/h) and 2.22€?/h) respectively(b) Location of the first dip

Eres and the sharpness of the resonance which is quantifil ", units of ,) in the first subband vs the size of the impurity
by the half widthT". In fact, since the resonances are only gpecified by the parametefw). (c) Half width T (in units of E;)
possible at positive collision energi&s the corresponding s 4/w. The two minima in the HW correspond to highly localized
quasibound state energikg, are situated below the positive giates with enhanced lifetime.

real axis of the complek plane:

FIG. 4. (a) Conductances (in units of 2%/h) vs Fermi energy

) energy difference between the quasibound state and the first
Eqb=Eres— i (200 subband from which it is split off A similar effect occurs in
the case of an attractivé-function impurity in a quantum
The half widthI" determines the lifetime of the quasibound wire,?® where the dip can move lower in energy when the
state through the relation=7%/I". In Fig. 4b) we show the strength of the impurity increases. This last observation im-
location of the first difE,.s in the first subband plotted versus plies thatE,s in the conductance through a Gaussian impu-
the decay lengtll. The corresponding evolution of the half rity can decrease when either the strengtlor the decay
width (denoted by HW of this resonant dip versud is  lengthd increases. The occurrence of the dips is also closely
shown in Fig. 4c). We note that increasing the value @f related to the position of the impurity. We verified that plac-
causes shifting of the dip locatidf). toward lower energies ing the impurity on the central axis of the wire causes the
while the half width shows a decaying oscillatory behavior.disappearance of the dips in the first subband. This is similar
The decrease OF, is due to the increasingly larger inte- to the case of @-function scattere¥??>->*where the binding
grated strength of the impurity yd, which results in a pro- energy besides being proportional to the strength of the im-
gressively larger perturbation to the unperturbed electrompurity is also proportional to the coupling of the next higher
transport and thus to a larger binding enefghich is the  mode at the impurity position. In analogy with t@dunction
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scatterer we argue that the disappearance of the(dipsn
the impurity is on the axisis caused by the vanishing cou-
pling of the second mode at the impurity.

In Fig. 4(c) it is seen that the half width as a functionaf
first increases, reaches a maximum dat0.325v (where
I'ma=0.124€,), and then decreases to a minimum dat
=0.4352v (where I',j,=2 X 10°°E;) after which it grows
again. This situation can be repeated a few tifiepending
on the properties of the impurity, such as its strength as well
as its transverse positipriThe extremely narrow half width
of the resonant dip atl=0.4352v corresponds to a very
stable state—a state with greatly enhanced lifetime. Physi-
cally this highly localized state is stable since at the particu-
lar value ofd its interaction with the continuum is minimized
and therefore it decays extremely slowiye., the decay rate
of the localized state into a propagating state is loydstus
at this special value ofl transformation of the quasibound i —xp
state to a highly localized state occurs. The dips in the sec- () x
ond subband also exhibit similar behavior.

The increase of the degree of localization of the quasi-
bound states ak— 0 can be explained in terms of the co-
herent interaction of interfering channels in the impurity re-
gion. This can be understood if we consider the energy
interval E, ;< E<<E, where there are two propagating modes
n=1,2 in theimpurity region, while outside this region and
for the same energy interval only mode1 is propagating
while moden=2 turns into an evanescent wave. Accordingly ©)
the coherent resonant interaction of these channels leads to
an increase of the charge density in the region of localization FIG. 5. Three-dimensional plots of the squared modulus of the
and the electron escape rate is minimum. wave fUnCti0n|l/f:j+)(X,y)‘2 vs x andy. (a) corresponds to the con-

Long-living electron states were also predicted for a rectductance minimum in the subband of the lower curve in Fig) 4
angular well model for the impurity potential in a straight which occurs a€,s=3.736F, while (b) corresponds to the mini-
quantum waveguid® and the subsequent collapse of themum in the first subband of the middle curve in Figa)4and occurs
Fano resonance was studied in detail. The coherent resonaitEes=3.580%;. (c) corresponds to the stable state with infinitesi-
phenomena in the impurity region is also the physical originmally small half width[i.e., the first minimum in Fig. &)] which
of the effects studied in Ref. 19. corresponds tal=0.4353v and Ees=3.626F;.

It is also useful to discuss the dips of the conductance in
terms of the squared modulus of the wave functiaﬁ) the impurity region. The extremely small interaction of this
X (x,y)]%. In Fig. 5 we show|¢:)+)(x,y)|2 as a function ofx  very stable state with the propagating states leads to a very
andy. Figure Ra) corresponds to the conductance minimumsmall escape probability and hence to an infinitesimal reso-
in the first subband of the lower curve in Figa4 which ~ nance width.
occurs atE,.=3.736F;, while Fig. 5b) corresponds to the The formation of the long-living electron states discussed
conductance minimum in the first subband of the middleabove should be observable in high-mobility channels as for
curve in Fig. 4a), which occurs atE,..=3.580%;. The example in a narrow channel made of GaAs34d, ,As het-
Gaussian impurity extends fromxs-to X,. In Fig. 5@ we  erostructures. A finite-size impurity may artificially be cre-
note that the waves inside the impurity region decay towardgted in the quantum wire using nanotechnol&gy.
the back end of the impurity and for<-x, the incident We would like to further discuss the results shown in Fig.
waves interfere with the reflected waves to produce the pat(@). It is well known that the presence of an attractive im-
tern observed. However, in Fig(l9 |¢:)+)(x,y)|2 inside the ~ Purity in a quantum wire structure leads to the creation of
scattering region has much larger magnitude compared to tfghasibound levels in the continuum, which in turn give rise
amplitude of the interfering waves far< —x,, and this state {0 resonance line shapes in the conductance versus Fermi
is more stable, leading to a smaller half width of the corre-N€rgy:* The most general resonant line shape that appears
sponding resonant dip. Figuréch corresponds to the mini- N these systems is described by the asymmetric Fano
mum of the conductance at the critical valuedsf0.4353v  function®
with energy E,.s=3.626F, for which the half width ap- 1 (e+q)?
proaches zero. We must note that fox —x, in Fig. 5(c) f(e) = T+ 211"
there are also reflected waves which interfere with the inci- q
dent waves. However, this interference pattern is not discerrwhere e=(E—Eg)/T" is the energy from resonancE,is the
ible due to the greatly enhanced magnitudéz/rré1’>(x,y)|2 in  resonance width anglis the asymmetry parameter. In quasi-

"

"

| 2

0 X9

—2Xo =X
X

(21)
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one-dimensional systems it has been shvimat the trans-
mission coefficient can be expressed in the Fano form as
given in EQ.(21), and in this case the asymmetry parameter
g=(Er—Ey)/I', whereEg is the resonance energy akg is

the energy of the transmission zero. As mentioned in the
beginning of this section the dips in the conductance curves
of Fig. 4(a) are due to the formation of quasibound states in
the continuum and their subsequent coupling with the con-
tinuum states. However, instead of the occurrence of asym-
metric Fano resonances we observe symmetric dips. This x/w
behavior of the conductance indicates that the asymmetry
parameterq must be negligible(i.e., g<1), which means
that the distance between the energy of the transmission zeF‘(’ﬁ
E, and the resonance enery is infinitesimal. Equivalently wh
we may say that the symmetric dips in Figagare due to
the large backgrourfl (i.e., nonresonait transmission,
which leads to infinitesimal values af For the attractive .2

Gaussian impurity that we considered in this section we veri- _nvy

fied numericglly t'Er/1at the background transmission rises pro- viboy) = 2m’ secti(axuv (y), 23
gressively faster as the decay lengtincreasedi.e., as the . . . . 1.
impurity potential becomes smootheand for sufficienty Wherev(y) is an arbitrary function of the coordinaye « Lis
large d it becomes unity over the largest part of the energyt"€ decay length, ang<0. The longitudinal part of the
subband, thereby leading to symmetric dips in the conducMPUrity potential given in Eq(23) has smooth profile and is
tance curves. We fully illustrate these considerations in th/€rY Similar to the Gaussian potential as shown in Fig. 6
next section where we employ the Fesht¥capproach [where the sqhd [lne represents the Gaussian function while
(which is particularly suitable for the description of reso- the dashed line is the function sépinx)]: In fact we can
nance line shapgsn order to calculate the transmission co- Make the two potentials almost identical by forcing the
efficient and the asymmetry parameter in the case of gduare roots of the varlancé_& of the two potentials to be
second-type impurity potential which is very similamost equal to each_ other. For a given value of th_e decay ledgth
identica) to the Gaussian but having also a lateral extension®f the Gaussian potential the above condition leadst

It will also be shown that in the regime of relatively small =3"°d/ . The confining potentiaV/.(y) along they direc-

values of the decay length an asymmetric Fano resonand®n (which is taken to be an infinite square wetives rise
appears in the transmission. to mOdeS(ﬁn(y). We eXpand the wave fUnCthh(X,y) of Eq

(22) in terms of the modeg,(y):

V (arbitrary units)

1.2

FIG. 6. Impurity potential profiles versugw. The solid line
resents the Gaussian impurity potential with decay lemgth
le the dashed line represents the impurity potentik)
=sech(ax) with decay lengtha 1=33d/7 (as explained in the
text).

D. Two-channel Feshbach approach W(xy) = 2 U be(y). (24)
In this section we employ the Feshbach approach in order m

to describe the transmission resonances in a rectilinear quaBubstitution of Eq(24) into Eq.(22) in the usual way leads

tum wire with a smooth finite-size impurity to be defined to the coupled-channel equations #(x),

below. Feshbach’s theory of coupled scattering channels was

in fact reformulated and employed in quasi-one-dimensional

systems in order to describe symmettiine shapegBreit-

Wigner-type resonancgsind also to describe more general

asymmetrié® line shapes for arbitrary coupling potentials, where k:-(ﬁZ/zm*)d2/dx2 and the coupling matrix ele-

providing microscopic expressions for all line shape parammentsV,,(x) are given as

(E-En—K)gh(¥) = |Z V() ¢1(0), (25)
=1

eters.
As in Sec. Il we consider a uniform quantum wire where _

the electrons are confined along thdirection but are free to V(%) = J dygn(Y)Vi(x,y) ¢i(y). (26)

propagate along the direction. In the presence of an impu- ) ) ) o )

rity we need to solve the Schrédinger equation For the particular impurity potential given in E@®3) these
matrix elements take the form

h2y
#2 Vp(X) = —5sech(ax)vy, 2
-V VY) + Vi) [W(y) = EVXY), (22 0= o Sect@0 20

wherev,, =(¢,|v(y)|#). Far away from the impurity we have
V() =0.

whereV,(y) is the confining potential anW;(x,y) is the at- We consider the cade, <E<E, for which only the first

tractive impurity potential, which we take to be of the form channel can propagate along the wire while the second can
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contribute via tunneling. Thus only the first channell can lytical solution exists in one dimensipriThis will allow us
be in some scattering state. These scattering states are givienstudy in detail the characteristics of the resonance line

as solutions of the equation shape in the two-channel approximation. On the other hand,
. . . the LSE could also have been used to solve numerically the
(K+ V1) xi(X) = (E - Edxi (%), (28)  problem for a Gaussian impurity with an arbitrary but spe-

cific shape of the impurity in the transverse direction. How-
ever this would not permit us to vary the intra- and intersub-
band coupling matrix elements independemdy we will be
é;lble to do for the impurity of Eq(23) for which v(y) is

wherey, andy; correspond to scattering states for which the
incident wave comes fromesand +o, respectively. These
states describe the backgrourfdonresonant scattering,
which is the scattering in a hypothetical system where th . . . Lo
coupling to the bound state is abséhtS The solution to Eq. completely arbitrary which are in fact buried inside the
(28) proceeds in the same way as in a one-dimensional Sca§_cr:\1/t\';er|ng WaVE fukr:ctlon of '.50314)' f ing th .
tering problerd® with an attractive potential 9,; seci(ax), . SSHO\ItV nlaz ev\t/ eﬂ?pproxtlrrhatlon c': trunfcatmgt@ € sumin
whereU;,=—(#%y/2m")v4,;, and the asymptotic form of the g.(29) atn=2. We then get the system of equations
\t/iv:r\]/: function ax— —= is given in terms of Gamma func- (E-E; - K = Vy)da(X) = V(). (33)

ko (K )T(1 ~ K/ a2) (E=Ep =K = Va0)iho(X) = Vorth (¥). (34)

Xe(x) ~ e
F(=9rd+s) The coupled-channel equatiof®3) and (34) are solved in
il I'(-ik/a)I'(1 -ik/a) 29 general in Refs. 34 and 36 with the ans#gzx) =Ady(x) and
I(-ikla =9 (-ikla+s+1)’ (29) employing the retarded Green’s operator for BRf). In the
Appendix we calculate the wave functign(x) in the quan-

where § k:[Zan*gE—El)]l’Z/ﬁ and s=(1/2[-1  tym wire for x— o with the impurity potential of Eq(23)
+1+(8m'Uyy/a?4?)]. Then the scattering states can beang extract the transmission coefficient

written in the form

E - Ep)?
PO (s x) T= I e @)
0= N . (30 °
gtikx 4 Pl Tikx (x . T o) where § andI' are given in Egqs(Al12) and (A13) of the

Appendix. Equation(35) is of the Fano form in which the
eal quantitys determines the asymmetry paramejesf the
ine shape by the relation

where the upper signs correspond to incident wave frem —
t?9 and rgg correspond to the background transmission an
reflection amplitudes in the wire. Specificaltﬁ,g is the ratio

of coefficients in the function;(x) of Eq.(29). Due to sym- Er-Eo & cod(m/2)V1+(8m Uy /hi2a?)]

metry r?%=r9 holds. We consideE close toE,, whereE, is =" T sinh(7k/a)
the bound state energy of the stdtgin the potentialV,,(X)

of the uncoupled channel=2, i.e., (36)
N An important feature of Eq(36) is thatq— 0 as the decay
(K+ V) ®o(x) = (Eg = Ex)Po(X). (3D length ! increasegsince the denominator grows progres-

Employing the notatione=[-2m' (Ey—E,)]¥?/ia, s=(1/2) sively faster while the numerator is restricted between the
X[~1+\1+(8m Uyl a2?)], and Ugy=—(h2y/2m )vg,, Eq. values of —1 and )1 This effect is more pronounced when
(31) can be brought to a forffithat has solutions the asso- the wave vectok is larger(i.e., when the asymmetric reso-

ciated Legendre polynomiaR<(¢), whereé=tanHax). The nance line shape occurs closer to the second subband thresh-
S\S/ .

: e old). A second important feature of E(B6) is that for suit-
a%?crgyglis\éils are then determined by the conditiers-p, able values ofU;;/a? the quantity § can be positive,

negative or zerdi.e., the resonance energy may occur be-
5202 8m'U,, 2 fore, after or be equal to the energy of the transmission)zero
Ep=E- e |~ (1+2p)++/1+ 22 | (32) |t can be shown that folUy,/e?=(%#2/8m")[(2n+1)2-1]
wheren=1,2,..., wehaveEg=E, and in this case the trans-
wherep=0,1,2,...There is a finite number of levels deter- mission exhibits symmetric Breit-Wigner dips. For 0
mined by the conditior>0, i.e.,p<s. In the following we  <U,,/a?<#?/m" we have Eg>E, and the transmission
assume thdt),, anda are such thas=<1, which implies that resonance is of the-8 1 type(i.e., the peak follows the djp
there is only one bound state with enefyy The normalized  For#2/m" <U,,/ &®< 3#?/m" we haveEg< E, and the reso-
bound state wave function that corresponds to this energgance line shape is of the-10 type(i.e., the location of the
level is ®o(x) =(a/2)Y*seciax). pole is switched with the zero enelgyrhus after the value
At this point it becomes clear that the reason we em-U,,/a®=#?/m" (where the transmission exhibits a symmetric
ployed the impurity potential of Eq.23) in this section is  dip) the Fano resonance is “inverted.” Similar inversion of
that it allows us to find analytical solutions to Eq28) and  the resonance level has also been observed in Ref. 19.
(31) for the scattering and bound states whereas this would The transmission coefficiefitgiven in Eq.(35) is plotted
not be possible for the Gaussian potentfat which no ana-  versus the Fermi energy in Fig. 7 for progressively decreas-
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FIG. 7. Transmission coefficier vs Fermi energ)E through
an attractive impurity potentiali(x,y) = (f%y/2m")secR(ax)uy) in
a 2D quantum wire, for three values of the inverse decay leagth
while vy, is kept fixed at the valuey;=-1.5. (a) The solid line,
which corresponds ta=1.7 with »,=-1.4 andv;,=0.08, shows
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FIG. 8. Transmission coefficierft vs Fermi energye through
an attractive impurity potential;(x,y) = (%2y/2m")secR(ax)u(y) in
a 2D quantum wire(a) Both solid and dashed lines correspond to
v11=—2 anda=1 so thatEr—Ey=0. The solid line corresponds to
v1»,=-0.8 and v;,=0.1 while the dashed line corresponds to
15,=—0.95 andv;,=0.14. Notice that for the larger value |o,| the
antiresonance moves lower in energy while its width increédes
to the larger value ofby,). (b) Corresponds to appropriate values
(given in the text such thatEg<Ej (i.e., the resonance level is
“inverted” with respect to Fig. )7

produces the asymmetric Fano line shape, which has also
been noted previoushf:36:40

In Fig. 7(b), where the value of the inverse decay length is
smaller (a«=1.4), we note that the Fano resonance distorts
while the transmission below the bound state is enhanced. In

an asymmetric Fano line shape while the dashed line represents thdd: 7(b) we use the valuesy,=-0.8 andv;,=0.08 in order

direct transmission.(b) Corresponds toa=1.4, v,,=-0.8, v},
=0.08 and shows a distortion of the Fano resonaice Corre-
sponds tax=1, 1,=-0.5,v;,=0.12 and the transmissidwhich is
generally enhancedxhibits only a dip.

ing values of the inverse decay lengtt?° In Figs. 7a)-7(c)
the intrasubband matrix elemeany; is kept fixed to the value
v11=—1.5, while«a=1.7, 1.4, and 1, respectively. All three
resonance line shapes are of thesQ type sinceU;;/a?

for the transmission zero to occur closer to the bottom of the
second subband so that we can make contact with the nu-
merical results of Fig. @). In Fig. 7(c) the inverse decay
length has been further decreased to the valgd while
v2»,=-0.5 andv,,=0.13. We notice that the transmission is
greatly enhanced and exhibits an almost symmetric dip. As
mentioned above this behavior of the transmission is due to
the fact thatq decreases as decreasefwhich is what Eq.

(36) suggestk This is a consequence of the fact that the
distance between the resonance energy and the zero energy

=0.52, 0.77, and 1.5, respectively, which lie in the range Ogradually decreases leading to the progressive disappearance

< U,/ a?<2 (or equivalently G<U;,/a?<#A?/m’). In Fig.
7(a) we use the values,,=-1.2,v,,=0.08. The dashed line
represents the dire¢honresonanttransmission which oc-
curs in the decoupling limiv,,=0 (for which §=I"'=0). In
this limit there are two scattering mechanisms: a difeoh-

of the asymmetric resonance. Finally when the valuexof
becomes low enough such thdt,/a?=2 thenEgr=E, and
the transmission exhibits only a symmetric das will be
discussed in the context of Fig(e8]. This is precisely what
happens in the lower curve of Fig(@ which is very similar

resonant scattering from the first subband and a resonanto Fig. 7(c). However in the numerical calculationgre-
scattering from the quasibound state. When the coupling teented in Fig. @] the strength of the intra- and intersub-
the quasibound level is nonzero the interference between dand coupling matrix elements could not be varied indepen-

rect and resonant transmissi@hrough the quasibound state

dently for the transversé-function potential(in fact these
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matrix elements were buried inside the scattering wave funcdue to theé function, giving rise to a phase shift. The dis-
tion ,pé*)) and did not allow the full Fano structure to show continuity of the wave function depends critically on the
up even for smaller values of the decay lendthThus for ~ shape of the cross section of the wire; increasing the aniso-
large enough value of the decay length the conductance witropy of the cross section leads to a progressively larger dis-
only exhibit dips regardless of the shape of the transverseontinuity in the derivative of the wave function resulting in
impurity potential or the values of the coupling matrix ele- a larger phase shift and increased reflection. This and other
ments. To this end, we point out that if we kept the value ofrelated effectgdiscussed in the references mentioned apove
v, fixed in Figs. Ta)-7(c) the shape of the Fano resonanceimply that the shape of the cross section can strongly affect
would remain exactly the same except that the transmissiothe transport properties of a 3D quantum wire with an impu-
zero would occur at lower energies. rity.

It was shown above that for certain values of the quantity Our objective in this section is to extend our previous
U,4/ o the resonance energy coincides with the zero energgalculationd®?” and to investigate the influence of the cross-
and in this case the transmission versus Fermi energy exhilsectional shape of a 3D rectilinear quantum wire on the con-
its symmetric Breit-Wigner dips. We illustrate this result in ductance through a repulsive Gaussian impurity potential of
Fig. 8@ where both solid and dashed lines correspond tdhe form
v11=—-2 anda=1 so thatU,,/a?=2. Further for the trans-
mission represented by the solid line we used the values
v9,=-0.8, v1,=0.1 while the dashed line corresponds to
v2,=-0.95,0,,=0.13. The only effect of,, on the transmis-
sion is to displace the location of the transmission zero. Thuwhere (y;,z) is the impurity position along the transverse
increasingv,, (dashed ling causes the displacement of the directionsy andz and all other symbols have the same mean-
dip toward lower energy values. We also notice that theng as in the 2D casksee Eq(8)]. The transverse position of
width of the antiresonance increases whep increases the impurity is taken to be dv;,z)=((5/12w,(5/12)). The
which is due to the larger coupling of the bound state withcross section is chosen to be rectangular and uniform along
the continuum. the wire with cross-sectional ared=600 nnt, wherew and

In Fig. 8b) we show the transmission as a function of | are the dimensions of the cross section algrandz. We
Fermi energy for the values,;=-5.95, v,,=-0.94, v;,  assume an infinite square well confinement giving rise to the
=0.068, anda=1.26. For these value¥,,/a?=3.75 and transverse energy level,,=(#%272/2m")[(n/w)%+(m/1)?]
therefore the resonance line shape is of thed type. The  which define the bottoms of the subbands in the clean wire.
inversion of the resonance level indicates that the roles ofll energies will be measured in units &;. In the scatter-
destructive and constructive interference between the dire¢tg region the corresponding energy levels will be denoted
and resonant channels have been reversed. Thus when thg E, ... The shape of the confining potenti@efining the
spatial extensioriquantified by the decay leng®) of the  cross-sectional shapeds determined by the parametey
impurity as well as the intrasubband matrix elemdpthave  wheres=I/w. We will consider three different shapes corre-
appropriate values the Fano resonance appears inverted. Ofjgonding to the parameter valuss1.02, 2.5 and 4.1. We
could argue that by keeping the value 0f; fixed while  emphasize that the strength, decay length, transverse position
continuously decreasing the value @fthe quantityU;./a®  of the impurity, and cross-sectional area remain fixed to their
will reach the desirable values for which inversion of theinitial values ass is varied. Thus the coupling of any particu-
Fano resonance occurs. However, it is not enough thdtr transverse mode at the impurity position remains constant
U141/ o? be in the appropriate range. By makingvery small  as the cross section is varied.

(say a~0.5 the denominator of Eq(36) becomes large In Fig. %@ we show the conductance versus Fermi en-
enough so thagj< 1. Consequently the transmission will ex- ergy through a Gaussian impurity in a 3D quantum wire, for
hibit a dip while the peak will hardly be discernibldue to  three different shapes of the cross seciisn1.02, 2.5, and

the enhancement of the transmisgion 4.1). We first note that varying the cross-sectional shape
causes shifting of the positions of the conductance steps and
influences the character of conductance quantization. The po-
sition of a particular quantum step may shift toward higher
or lower energy(depending on the cross-sectional shape an-

As mentioned in the Introduction, an important issue re-isotropy. In particular fors=2.5 while the first and third
lated to electronic transport through quantum wires is howmodes open at higher energies than the corresponding modes
the geometry of the wire6.e., the shape of their transverse of the almost symmetric wir¢s=1.02, the opening of the
cross sectioninfluences the conductance. This issue hasecond mode occurs at a lower energy. However, increasing
been investigated in the case of transport in 3D quantunthe anisotropy tes=4.1 forces all the conductance steps to
constriction$®2>2641and in 3D rectilinear quantum wires open at higher energies. The shifting of the conductance
with a 5-function impurity®2” and several interesting effects steps originates from the rearrangement of ¢tnansversg
have been discussed. In the case of a 3D quantum wire witblectron energy levels with increasing anisotrgms shown
a o-function impurity, the solution of the scattering problem in Fig. 9b). The solid lines in Fig. &) denote the levelg,,
is known to be obtainable from the characteristic discontinuof the clean wire while the dashed lines denote the levels
ity of the derivative of the propagating wave functiéd” E,.s in the scattering region of the wire. Note that the sec-

2

hey _ — o\ Xd?
2nf&y Yi)8(z—z)e™ ', (37)

Vi(x,y,2) =

IV. EFFECTS OF THE CROSS-SECTIONAL SHAPE ON
THE CONDUCTANCE
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difference Exs—E,; is slightly smaller than the difference
' E1>s—Ej, since the coupling of mod@, 2) at the impurity is
el Y even weaker. Placing the impurity at(y;,z)
/ =((1/2)w,(1/2)1) will result to zero coupling of model,

, 2), (2, 1), and(2, 2) at the impurity(since these modes have
7 nodes at the impurity positionThis will cause the corre-
/ { sponding subbandg;,s, E;;s and Eyys in the scattering
0 region to coincide with the subbanés,, E,;, andE,, of the
clean wire, for any value o$. We also note that the mini-
mum energy of a particular mode, m) occurs ats=m/n.

When the cross section becomes almost symmetric the
distance between the second and third energy levels becomes
extremely smalli.e., these two levels become almost degen-
eratg giving rise to a plateau of a very small sifgee the
curve fors=1.02 in Fig. 9a)]. The small size of the plateau
inevitably forces the second step to rise sharply. In this case
the second and third modes lie very close in energy and the
second step tends to disappear. In fact for the completely
symmetric wire withs=1, the degeneracy of the levels,

(o) Anisotropy (s) and E,; will cause the disappearance of the second plateau
and will give rise to a height of (2e°/h) for the second
conductance step. Whex 1 the first few conductance steps
have heights Gy, 2G, 1Gy 2Gq, 2Gg,..., Where Gy

Conductance ( 2¢% /h)
'S
[

(a) Fermi energy E

Energy levels

FIG. 9. (a) Conductances (in units of 2?/h) vs Fermi energy
E through a Gaussian impurity of strengjt¥ 2.3 cnt? and decay

lengthd=20 nm in 3D rectilinear quantum wires with asymmetric _ . .
cross sectiongspecified by the parametey wheres=1/w andw, | =2€?/h, reflecting the degeneracy of the electronic levels.

are the transverse dimensions of the cross section glamglz). E Deviation from Symmetry Iead§ to splitting of the_ degenerate
is given in units ofE;; (whereE,; is the bottom of the first subband |€Vels and restoration of the single-steh,) behavior of the
in the clean wirg The cross-sectional area is kept constant to theconductance. It's also worth mentioning that under the influ-
valuewl=600 nn? as the shape of the cross section is varigy. €nce of a magnetic field an otherwise symmetric cross sec-
Transverse energy levels vs the cross-sectional shape anisstropytion will become effectively asymmetrié:*243 Upward or
Solid lines correspond to the levels,, of the unperturbed wire downward shifting of the(transversg energy levels of a
while the dashed lines correspond to the le&lss in the impurity ~ parabolically confined ballistic quantum wire under the in-
region. fluence of a longitudinal magnetic field has been observed
_ experimentally’®* The degenerate levels observed in Ref. 43
ond degenerate levé,y;,,) for s=1 splits to two levels€;,  explain the disappearance of the corresponding plateau in the
and E,, for s> 1. E;, shifts downward whileE,; shifts up-  experimentally measured conductance. For specific asym-
ward. Similarly the fourth degenerate leve|ysy) for s=1  metric cross-sectional shapes there might also be acciden-
splits to E;53 and E3; which shift down and upward respec- tally degenerate levels as can be seen in Fig). 9n particu-
tively. We also note that the distance in energy between théar the levelsE,; andE,, are degenerate at1.29 for which
first E;; and the secondE;, levels continuously decreases the conductance will rise byG, as are also the levels;;
with increasings, leading to the progressively smaller size of and E,; at s=1.631. These degeneracies lead to occasional
the plateau between the first and second steps. Further whitksappearance of steps in wires with asymmetric cross sec-
the first level E;; gradually shifts upward in energy with tions. Variations in the shapes of the cross section of 3D
increasings, the second levek,, first shifts downward, quantum point contacts have also been observed
reaches a minimum a=2, and then shifts upward again. experimentall§* in the past and such variations explain the
Thus ats=2.5 the second level is lower in ener@ipan the disappearance of some of the conductance steps. Effects of
corresponding level fas=1.02 giving rise to the opening of this type have no analogs in 2D quantum wires.
the second step at lower ener@pmpared to the second step  It's also worth mentioning that examining the conduc-
for s=1.02 as is observed in Fig.(8). tance as a function &fwhile keeping the Fermi energy fixed
We also note that due to the transverse potential in th&vould reveal an interesting feature of the quantum transport.
scattering region the leveB, s are slightly displaced up- Namely, increasing the anisotropy of the cross sectaira
wards with respect td&,,, However the relative distance fixed value of the Fermi energythe subbands are shifted
betweenE, s and E,,, stays constant with increasirsgWe  toward higher energies and therefore the contributing quan-
also observe that the upward displacemenEgfs with re-  tum channels decrease one by one. When the lowest subband
spect toE,, is different for different levels. For example the finally crosses the fixed Fermi level, there is no open sub-
difference Ej,—E;, is smaller than the differenc&;;;  band left and the conductance should vanish. Thus increasing
—-E;1. This is explained in terms of the weaker coupling of s leads to depopulation of subban@se., decrease in the
the second modél, 2) at the impurity position(since that number of conducting channglsesulting to a decrease and
mode is close to have a node at the impuriving rise to  eventually vanishing of the conductance. This last observa-
smaller upward shifting of the subbar],.. Similarly the tion suggests that cross-sectional shape anisotropy in 3D
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quantum wires could be detected through conductance measetry degeneracy is removed and the single-stegght
surements at a fixed value of the Fermi energy. 2€?/h) behavior of the conductance is restored. However,
accidental degeneracy may still occur for some asymmetric
cross-sectional shapes. Further we demonstrated that varying
the cross-sectional shape anisotrofeeping the cross-

In this paper we have considered the transmission of elecsectional area fixgdcauses shifting of the positions of the
trons through a Gaussian impuritwith a decay lengtid conductance stegsvhich is due to the rearrangement of the
along the propagation directiprin 2D and 3D rectilinear transverse energy leveland changes the sizes of the pla-
quantum wires with symmetric or asymmetric cross sectionsieaus between successive steps. To this end we emphasize
The confining potential is that of an infinite square well. Wethat shape effects are important in the detailed structure of
have solved the LSE numerically and investigated severdhe conductance of 3D wires and effects of this type do not
features of the conductance. show up in 2D wires.

The results for the 2D wire can be summarized as follows.
Increasing the decay lengthof a repulsive Gaussian impu-
rity leads to a progressively sharper rise of the conductance
steps at the opening of the subbaiigg, as shown in Figs. 1

and 2. The physical origin of this effect is the progressively |, this appendix we present the calculation of the trans-
smallgr contribution of tgnnellng m_odes _and the g_radual SUPmission coefficient of the quantum wire with the impurity
pression of backscattering as the impurity potential becomeﬁotential of Eq(23) by employing the formalism of Refs. 34

smoother. , o and 36. Foix— o the solution of Eq(33) for y;(x) takes the
The conductance versus the Fermi endfgy various im-

purity positiong was also examined. Displacing the impurity
away from the central axis of the wire causes shifting of the

V. SUMMARY

APPENDIX: CALCULATION OF THE TRANSMISSION
COEFFICIENT

positions of the conductance steps which is due to the corre- ;, (x) = y(x) + - Xi(X) (00" V12l P PolVarl i) ,
sponding displacement of the bottoms of the subbagdsn ikt E - Eo = (Pg|V21G1 V1] Pp)
the scattering region. A particular lev} 4 versus the impu- (A1)

rity position follows the structure of the squared modulus of

\ A .
the corresponding transverse magg(y)|*. Accordingly, de- \ areG, is the retarded Green's function which can be writ-

pending on the particular impurity position, the coupling of a;a in terms of the scattering statgi(x) as
transverse mode at the impurity may be stronger or weaker

leading to enhanced or suppressed scattering effects respec- U ,
tively (i.e., to smeared or sharp quantum sjegs shown in m X x(x)  (x>x')
Fig. 3. Gl =T X L , A2
In the case of an attractive Gaussian impurity we have Xk OXx(x) - (x<x').
shown that there exist multiple resonance dips in the conduc- e will use this representation &; in order to calculate
tance which are due to the formation of quasibound statespe matrix elements of EGAL). We then have
We examined the behavior of a dip locatiBps and the half
width I" as a function of the decay length We found that 5
increasing the value af causes shifting of,.s toward lower () V1 Do) = h—*yvlz\/g J dx(e7® + r298k) sechi(ax)
energies while the half width decays in an oscillatory manner 2m 2
(see Fig. 4. In particular the half width of the resonant dip 52 o
may shrink to an extremely small value for some critical =—*7U12\/j(|1+r99|1),
values ofd resulting to an extremely stable stégestate with 2m 2
greatly enhanced lifetime
The Feshbach approach was employed in order to analyahere
the scattering from a second type impurity potentialr
which analytical solution to the coupled-channel equations is * _ . o
possible thereby allowing us to study extensively the char- |1=f dxe** secH(ax), |1=f
acteristics of the resonance line shape. The transmission was w —
found to exhibit asymmetric Fano line shape whifidr large (A4)
values of the decay lengttevolves into a dip while for a
certain range of values of the quantitly,/ «? the Fano reso- |t turns out thatl ;=17 =[(a?+k?) m seclikmr/ 2a)]/2a°. Also,
nance is inverted.
We also demonstrated that the shape of the transverse 5
cross section of a 3D wire may strongly affect the character A A7 \/E bg
S . ‘ . (Po|Vau|xic) s yvar\ S0
of conductance quantization. In wires with a symmetric cross 2m 2
section the conductance steps have height/I2 or
2(2€?/h), depending on the degeneracy of the transverse erFor the matrix element occurring in the denominator of Eq.
ergy levels. In wires with asymmetric cross sections the sym¢Al) we have

(A3)

dxe ™™ sech(ax).

(A5)
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m* oo oo _
<‘130|V2161V12|‘1’o>:m f dx f dX’ Po(X) V1) Po(X)V1o(X') X (X) xic (X)

v | x| Va0 R0 Vs D 006) - i)

=Q;+Q,-Qs.

Inserting the explicit expressions for the bound sthiethe
potential V1, and the scattering stateg into Eq. (A6) we
obtain

[ 2\ a\ .
Q1 m ( )fﬁz(})['ﬂl"'r?g('l)z] (A7)

~ a2\ 2nt
and
m [ #2 )2 o
Q2= ﬂ(%) Vzvfz(g)[lﬁ rod 4], (A8)
where
“ . X oo
Izzf dxékxsecﬁ’(ax)f dx' e secH(ax’) (A9)
and

0 X
I3=f dxékxsecﬁ(ax)J dx €% sech(ax’)

(A10)

The calculation 0fQ; yields exactly the same expression as

Q2 SO thath_Q3:0. Then<(Do|V2161V12|CDO>=Q1. F|na”y

using Eqs(A7) and the results of the integralgand|; the

matrix element can be written as
(D|V21G1 Vi Pg) = =il (A11)

with

(A6)

W2/ uia® + K7 sechi(km/2a)

o= 3om ka®
cog (m/2)\1 + (8m' Uy /hi2a?) Jsinn(mk/ )
sinkP(mk/ @) + coF[(m/2)V1 + (8m Uy /h%a?)]
(A12)
and
e h2yPk o a? + K2)2m? sech(km/2a)
32m'ka®
« sint(mk/ @)
sint(mki ) + co[(m/2)\1 + (8m' Uy /A2a?)]
(A13)

giving the shift and width that the bound state acquires. Us-

ing Egs.(A3) and (A5) the numerator of Eq(Al) can be
written also as

*

m o .
W«Xk) V1 @oX PV xic) = 61T (Al4)
We then get forx— oo,
' -E
= oo ———>— A15
(%) E-Eo—o+i (A15)
which leads to the transmission coefficient
(E-Ep)?
T= tbg 2 , Al6
1 (E-ER?+1? (A6
whereEg=Ey+ 6 and|t®9? is given as
092 = sink(7kla) .
sint?(mkl @) + co[(7/2)\1 +(8m U, /1%a?)]
(A17)
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