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We present electronic structure and total energy calculations for SiC in a variety of polytype structures using
the NRL nonorthogonal tight-binding method. We develop one set of parameters optimized for a combination
of electronic and energetic properties using asp basis, and one optimized for electronic properties using aspd
basis. We compute the energies of polytypes with up to 62 atoms per unit cell, and find that the hexagonal
wurtzite structure is highest in energy, the 4H structure is lowest in energy, and the cubic zinc-blende structure
is in between, in agreement with our linear augmented plane-wave and other calculations. For thespmodel we
find that the electronic structure of the cubic and hexagonal structures are in good agreement with density-
functional theory calculations only for the occupied bands. Thespd parametrization optimized for the elec-
tronic structure of the zinc-blende and wurtzite structures at the equilibrium volume reproduces nearly per-
fectly both the valence and conduction bands. Thesp tight-binding model also yields elastic constants, phonon
frequencies, stacking fault energies, and vacancy formation energies for the cubic structure in good agreement
with available experimental and theoretical calculations. Using molecular dynamics simulations we compute
the finite-temperature thermal expansion coefficient and atomic mean-square displacements in good agreement
with available first-principles calculations.
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I. INTRODUCTION

Silicon carbide is an interesting material in three impor-
tant respects. From a theoretical point of view, it appears to
be the prototype polytypic substance1 with endless permuta-
tions of stacking sequences theoretically possible. The poly-
types are characterized by a stacking sequence with a long
repeat unit along the stacking axis and therefore are natural
superlattices. It is also the most attractive alternative to sili-
con for high-temperature, high-power device applications be-
cause of several inherent material advantages.2–5 These ad-
vantages are a large energy band gap, large thermal
conductivity sclose to that of copperd, high hardness, and
high saturation value of electron drift velocity. Finally, there
is body of data6 regarding electronic, optical, transport, and
structural properties, against which theory and calculations
can be assessed.

The polytypes of SiC differ in the stacking order of
double layers of Si and C atoms. More than 200 polytypes
have been reported to date. Luckily, only a few of them have
practical importance. These include the cubic zinc-blende
szbd structure or 3C, and the 4H and 6H hexagonal forms,
which appear to have the lowest energy. The 2H formsalso
known as wurtzited, although rare in SiC, is of interest as the
extreme hexagonal case. One distinguishes three different
layers, denoted by A, B, and C, corresponding to different
positions of the atoms in planes perpendicular to thec axis,
which is the stacking direction. In this notation, the simplest
polytypes are the 3C with a stacking order ABC and the 2H
with AB. One of the most stable polytypes, 6H SiC, contains
six SiC pairs per unit cell and has stacking sequence AB-
CACB. Noting that an ACB block is nothing but an ABC
block rotated by 60° about the stacking axis, the 6H structure
can be regarded as an alternating sequence of unrotated and

rotated ABC blocks. All other polytypes can be built up in a
similar way. The basic physics of the polytypes’ energetics
can be modeled by an axial-next-nearest-neighbor Ising
sANNNI d model,7,8 which associates a pseudospin with each
stacking sequences+1 for cubic, −1 for hexagonald. The
ANNNI model is a good approximation, but it cannot give
insight into the factors that determine the effective coupling
parameters, and, as noted in Ref. 8, the mechanism by which
short-range bare interactions combine to produce effective
long-range ANNNI interactions is implausible, at least for
SiC. Early first-principles computational work addressing the
polytype stability question is reviewed in Refs. 9 and 10.

The ground state properties of cubic SiC have been cal-
culated using density-functional theorysDFTd with the
plane-wave pseudopotential method.11,12 The calculated
properties, such as equilibrium lattice constant, bulk modu-
lus, and its pressure derivative, agree with the available ex-
perimental data to within a few percent. Similar calculations
have been done for the 2H form of SiC,13 and the calculated
lattice parameters and bulk modulus are also in agreement
with experiment. The structural and electronic properties of
cubic, 2H, 4H, and 6H SiC have been calculated by theab
initio pseudopotential method.14 The lattice constants, bulk
moduli, and their pressure derivatives are found to be similar
for all the polytypes, independently of the structure of the
polytype. The wurtzite structure has the highest energy,
whereas the 4H phase is the most stable. The charge asym-
metry of a Si–C bond, on the boundary separating the zb
from the wurtzite phase, together with the closeness of the
total energies between the cubic and hexagonal polytypes
swithin 4.3 meV/atomd, should be related to the polytypism
of SiC. In the hexagonal polytypes, theM conduction band
energy increases, while that of theK point decreases as the
degree of hexagonal nature becomes more prominent. Thus,
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the conduction band minimum state located at theX point for
cubic SiC changes to theM point and then to theK point for
the 2H structure.

The ab initio pseudopotential method has been used in
calculations of ground state properties of cubic and hexago-
nal SiC polytypes.15 Internal relaxations of the atomic posi-
tions result in small changes in the calculated ground state
properties. Overall agreement of the theoretical values with
the experimental data is reasonable whether or not atomic
relaxations are included. The main effects of the relaxations
are on the volume per Si–C pair and the ordering of the
polytypes. Experimentally a slight decrease of the unit cell
volume with hexagonality is found. Theoretically, this is only
observed by inclusion of atomic relaxations. Inclusion of
atomic relaxations changes the energetic ordering of the
polytypes and, hence, the conclusions with respect to the
polytype stability. Without atomic relaxations these calcula-
tions predict the cubic structure to be stable with respect to
the wurtzite one by about 8 meV/atom. The zb structure
seems to be also lower in energy than the other hexagonal
polytypes 6H and 4H. However, their energy differences are
smaller than 1 meV and, therefore, approach the accuracy of
the calculations. Taking into account the relaxations of the
cell geometries, the principal ordering of the polytypes is
changed. However, the difference in the cohesive energies of
the stable 4H polytype and the most unfavorable wurtzite
structure approaches 3 meV/atom.

The atomic structures of the hexagonal 6H and 4H poly-
types of SiC have been determined by a combination of high
precision x-ray diffraction measurements andab initio
pseudopotential calculations.16 The lattice parametersc and
a are determined by means of the x-ray diffraction bond
method using Cu Ka1 radiation. The measured fluctuations
are smaller than 5310−6 with respect to the average value of
the parameter. The calculated lattice constants are smaller
than the experimental values as is usually the case in the
local density approximationsLDA d. Nevertheless, the ten-
dency for a better agreement after inclusion of the internal
degrees of freedom clearly shows the importance of the
atomic relaxations. Both in theory and experiment, the lattice
parametera decreases with increasing hexagonality. On the
other handc/n, n being the number of bilayers per unit cell,
increases with rising hexagonality. The ratioc/ snad deviates
from its ideal value in 3C SiCc/ snad=Î2/3.0.816 with
increasing hexagonality, indicating a stronger distortion of
the bonding tetrahedra. Forc/ snad, the agreement between
theory and experiment is almost perfect when including the
internal relaxations in the calculation. The atomic relaxations
within the unit cell are derived by means of two different
kinds of pseudopotentials for 6H and 4H SiC. Structure fac-
tors, bilayer thickness fluctuations and bond length fluctua-
tions have been compared with the experimental findings.
They conclude excellent predictions from the first-principles
calculations. This holds especially for the significant dis-
placements in the hexagonal bilayers, which give important
contributions to the elongation of the bonding tetrahedron
parallel to thec axis. The full potential linear muffin-tin or-
bital sFP-LMTOd method has been used to calculate equilib-
rium, phonon, and elastic properties of 3C SiC.17 Their result
for the equilibrium lattice constant is 1% smaller than the

measured value, as is usually the case in LDA, whereas the
bulk modulus is in excellent agreement with experiment. The
calculated elastic constants are in good agreement with the
experimental values derived from the sound velocities of
Feldmanet al.18

The FP-LMTO method has also been used to carefully
compare the energetics of different polytypes.19 Using a well
tested density functional and taking care to converge with
respect to all relevant calculation parameters, Limpijumnong
et al.19 found that the 4H, 6H, and 15R structures were
nearly degenerate. The 15R structure was lowest in energy
and 4H was lower in energy than 6H, but all were essentially
within the estimated accuracy. The 3C structure was signifi-
cantly higher in energysabout 1 meV/atomd, and 2H almost
3 meV/atom higher than 3C. The overall ordering is the
samesfor the structures in common, namely, 2H, 3C, 4H,
and 6Hd as that of older work in Refs. 14 and 20, although
the energy differences do not agree. The results of Ref. 19
are in better agreement with the energy differences from the
DFT calculations of Chenget al.,21 although the ordering of
the polytypes is different. More recent results using DFT
with pseudopotentials and a plane-wave basis22 also show
good agreement with the FP-LMTO calculations in Ref. 19.

We now discuss previous tight-bindingsTBd calculations
for SiC. A semi-empirical TB Hamiltonian has been used in
an electronic structure calculation of cubic SiC.23 A set of
semi-empirical expressions for the two-center integrals is
constructed for SiC, with an explicit dependence on the
atomic characteristics. The merits of these semi-empirical
expressions are demonstrated by the reproduction of the elec-
tronic energy bands of cubic SiC and by the application to
defect problems. A claim of a self-consistent TB method has
been made in calculations of binding energy, bulk modulus,
and effective charge of Si and SiC.24 This calculation incor-
rectly predicts the wurtzite structure as the stable structure. A
second-neighbor TB scheme has been employed in electronic
structure calculations of cubic SiC as well as in the numeri-
cal evaluation of the bound electronic states of isolated and
complex defects in zb SiC.25 This scheme predicts reason-
ably well the electronic energy bands of cubic SiC. Further-
more, comparison of the important optical gaps with experi-
mental and theoretical data shows reasonably good
agreement. The electronic and optical properties of 3C SiC
have also been studied by a combination of first-principles
and TB electronic structure calculations.26 For the evaluation
of the electronic properties, a pseudopotential DFT method is
used, with appropriate corrections to the eigenvalues of con-
duction states to obtain the correct band gap. The calculated
band-structure energies at points of high symmetry are in
excellent agreement with experimental data. The second
computational approach is the empirical TB model with a
three-center orthogonalsp basis Hamiltonian fitted to repro-
duce the band structure calculated by the LDA method. This
TB parametrization allowed this group to calculate the di-
electric function and reflectivity. Further work27 of this group
using TB focused on free-floating and epitaxially strained
Si1−yCy alloys.

The above TB scheme fits only the band structure and has
no total energy capability, in contrast to the work we present
here. We use the NRL-TB method,28 a nonorthogonal tight-
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binding method in the two-center representation that uses
environmentally dependent parameters that fit both the band
structure and total energy. This method produces good struc-
tural energy differences, elastic constants, phonon frequen-
cies, vacancy formation energies, and surface energies for a
large variety of materials.28 Hamiltonians using the NRL-TB
method have been developed for C, Si, and Ge,29–31 and
applied to systems such as amorphous solids and grain
boundaries that require large unit cells that are difficult to
simulate directly using first-principles methods.

The remainder of the article is organized as follows. In
Sec. II we describe the functional form of our TB parametri-
zation and the fitting data set. In Sec. III we discuss applica-
tions of the TB model to a range of properties such as the
ground state electronic structure of the various polytypes of
SiC, band structure, density of states, and elastic constants.
In addition, for cubic SiC, we performed molecular dynam-
ics sMDd simulations at various temperatures to obtain the
temperature dependence of the mean-square displacement
and of the pressure. In the last section, we summarize the
results.

II. FUNCTIONAL FORM AND FITTING

In this paper we present electronic structure and total en-
ergy results for a TB parametrization using asp basis. We
also present electronic structure results for a parametrization
using aspd basis. Since the functional forms of the param-
eters used in the NRL scheme have already been presented,28

we will only give a brief summary here. The total energy of
the system is written as the sum of the energies of the occu-
pied electronic eigenstates. The onsite Hamiltonian matrix
elements vary with the local density associated with each
atom, allowing the NRL-TB method to use, in the fit, linear
augmented plane-wavesLAPWd eigenvalues that have been
shifted so that the LAPW total energy is equal to the eigen-
value sum. Therefore, all of the contributions to the total
energy are accounted for in the eigenvalue sum, and the ad-
dition of a sum of pair potentials, a feature common to most
TB models, is not needed.

The energies of the electronic states and the correspond-
ing eigenvectors are the solutions of a generalized eigen-
value equation with Hamiltonian and overlap matrix ele-
ments parametrized as follows: the basis used to describe the
Hamiltonian and overlap matrices is a set of ones and three
p orbitals around each atom, with all interactions between
atoms assumed to be in the two-center approximation.32 A
local atomic density at atomi contributed by atoms of typeJ
is defined as

riJ = o
j

e−lJ
2uRj−RiufsuRj − Riud, s1d

where j enumerates atoms of typeJ, Ri is the position of
atomi, lJ is a fitting parameter, andfsRd is a cutoff function
that is used to limit the range of the parameters. The onsite
matrix element on atomi of type I is given in terms of the
local atomic density as

hil = aIIl + o
J

bIJlriJ
2/3 + gIJlriJ

4/3 + xIJlriJ
2 , s2d

wherel is the orbital type indexss or pd, andaIIl , bIJl, gIJl,
and xIJl are fitting parameters. The distance dependence of
the two-center hopping matrix elements is given by

Hll8msRd = sall8m + bll8mR+ cll8mR2dexps− gll8m
2 RdfsRd,

s3d

wherel and l8 are orbital type indices,m is an index for the
type of interaction between orbitalsss, p, or dd, and the
parametersall8m, bll8m, cll8m, andgll8m are fitting parameters.
The overlap matrix elements are given by

Sll8msRd = sdll8 + tll8mR+ qll8mR2 + r ll8mR3d

3 exps− ull8m
2 RdfsRd s4d

for pairs of atoms of the same type, and by

Sll8msRd = stll8m + qll8mR+ r ll8mR2d 3 exps− ull8m
2 RdfsRd

s5d

for pairs of atoms of different types, wheretll8m, qll8m, r ll8m,
andull8m are fitting parameters.

The 134 parameters used by the functional form for thesp
basis parametrization are fit to three high-symmetry crystal
structures.33 The fitting data set includes both the total energy
and band structure for the zb and wurtzite lattices for SiC
and the diamond lattice for elemental Si and C. In addition,
elemental C and Si configurations with a frozen-inG-point
optical phonon were included. The data for each lattice are
for a wide range of volumes around the energy minimum.
The total energy and eigenvalues of each crystal were com-
puted by the LAPW method34,35 ab initio DFT calculations.
For the exchange-correlation potential, we used the LDA
functional of Perdew and Wang.36 The wurtzite lattice data
included the widest range of volumes, from 29.64 to
53.35 Å3, and the zb lattice from 16.91 to 26.11 Å3. The
diamond lattice structures ranged from 31.78 to 45.39 Å3 for
elemental Si and from 8.00 to 13.83 Å3 for elemental C. The
spdparametrization was fitted to only two structures: 3C at a
volume of 20.43 Å3 and 2H at a volume of 40.75 Å3.33 Since
the spd parametrization is intended for electronic structure
calculations, we fit only to a corrected LAPW band structure,
which has been adjusted to match the experimental band gap
by shifting the conduction band states rigidly by 0.079 Ry.

We performed these LAPW calculations for the purpose
of generating the database for the TB fit. However, we wish
to point out that while there are several pseudopotential and
LMTO calculations for SiC in the literature, there are no
comprehensive LAPW results except for a study of Ti impu-
rities in SiC.37

III. RESULTS

A. Structures

The LAPW results described in the previous section were
used as a database to construct the TB Hamiltonian. The
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overall rms fitting error for the total energies of all the fitted
structures is 2.0 mRy. The TB ground state total energies as
a function of volume per SiC pair for a range of structures
are shown in Fig. 1. Convergence of the relaxed energy with
respect tok-point sampling is about 5meV per SiC formula
unit, much smaller than the polytype energy differences. The
minimum energies for each structure are listed in Table I,
along with our LAPW calculations and recent literature DFT
calculation values.14,19,22,38It is clear from the table that the
energy differences between polytypes are quite small, and
that first-principles calculations disagree on the quantitative
values. Even the ordering in energy and the ground state
structure are not consistent among the different DFT calcu-

lations. However, it is clear that the 4H or 6Hsmoderately
hexagonald structures are lowest in energy, 2Hsfully hexago-
nald is probably highest, and 3Csno hexagonal stackingd is
in the middle. It is remarkable that the TB model can capture
the correct ordering by fitting only the cubic 3C and fully
hexagonal 2H phases, given that the energy varies nonmono-
tonically with the degree of hexagonal stacking.

This model correctly predicts the lowest energy state to be
the 4H structure. The highest total energy was obtained for
2H SiC, which may be one explanation as to why this poly-
type, of the ones studied here, is the most difficult to grow.
We have included the hypothetical rhombohedral 9R poly-
type because of its high degree of hexagonal naturesit is
66% hexagonald. Our TB model correctly predicts the energy
of the 9R structure to be lower than wurtzite, although in
contradiction with previous work, we find that it is also
lower in energy than zb. This small discrepancy may be
caused by a tendency of our TB model to overestimate the
energy gains from alternating cubic and hexagonal stacking,
also seen in the low energy of the 4H structure relative to the
cubic zb.

The TB calculations predict the equilibrium lattice param-
etersa and c in excellent agreement with the experimental
ones. The results are shown in Table II. From Table II we
observe that both in theory and experiment, the lattice pa-
rametera of the hexagonal polytypes increases with decreas-
ing hexagonality. This trend is in agreement with recent ex-
perimental and theoretical work.16 Lattice parameters of 3C,
2H, 4H, and 6H SiC, calculated with the pseudopotential
density-functional method, have been collected in Table II.
As Table II shows, our results are comparable in accuracy
with the pseudopotential calculation of Ref. 14. The lattice
constants, bulk moduli, and Raman mode frequencies of Si
and C in the diamond structure, which are also in the fitting
database, are described reasonably well.

B. Electronic structure

The TB band structure of 3C SiC along directions of high
crystal symmetry is shown in Fig. 2. In comparison with the
LAPW band structure, shown on the same graph, our calcu-
lation correctly predicts the valence band maximum at theG
point sslightly displaced towardSd and the conduction band
minimum at theX point of the Brillouin zone. While our TB
fit produces nearly perfect agreement with the LAPW va-
lence bands, there are serious discrepancies in the conduction
band. This is reflected in the rms fitting error for the seven
volumes that we have fitted of 20 mRy for the valence bands
and 69 mRy for the conduction bands. This is expected since
the conduction band has significantd character that is ne-
glected in oursp TB basis. The TB gap is 1.33 eV, in good
agreement with the LAPW gap of 1.31 eV. Both gaps are
much smaller than the experimental value of 2.39 eV,40 due
to the use of the LDA in LAPW theory. The TB band struc-
ture is very similar to previous ones,41–44all of them have the
same shape with a strong parabolic behavior around the con-
duction band minimum. The indirect energy gaps vary from
1.20 eV in the LMTO calculation42 to 2.59 eV in the quasi-

TABLE I. Relative energiessmeV/SiCd of SiC polytypes com-
puted with the TB model, our LAPW calculations, and published
plane-wave pseudopotentialsPPd DFT values.

Struct. PP LAPW TB

4H −2.5,a −0.93,b −2.4,c −2.4d −1.7 −4.2

6H −1.8,a −0.63,b −2.1,c −2.2d −3.2

93R −3.2

8H −2.5

24R −2.5

9R 2.0c −0.9

12R −0.9

15R −3.0c −3.6

5H −0.7

3C 0.0 0.0 0.0

2H 1.8,a −0.65,b 5.4,c 6.0d 4.6 4.6

aFrom Ref. 14.
bFrom Fig. 3 in Ref. 38.
cFrom Ref. 19.
dFrom Ref. 22.

FIG. 1. Total energy vs. volume per SiC pair for a number of
polytypes, computed using the TB model.
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particle one.43 In the pseudopotential calculations of Käckell
et al.45 and Parket al.14 the 3C SiC bands are presented in a
hexagonal cell, with indirect gaps 1.27 and 1.24 eV, respec-
tively.

The comparison between the TB density of statessDOSd
and the LAPW DOS is demonstrated in Fig. 3. The TB
model correctly describes the valence band: positions and
heights of peaks are in very good agreement with the corre-
sponding peaks in the LAPW valence band. However, in the
conduction band, there are differences due to unoccupied
orbitals with strongd character. The partial DOS functions
show that the strongest contribution to the total DOS comes
from Si s and Cp bands.

The comparison between the TB DOS and the LAPW
DOS of the hexagonal polytype of SiCs2Hd is shown in Fig.
4, and the corresponding band structures are shown in Fig. 2.
In the TB valence band the positions and the heights of the
peaks are in excellent agreement with the corresponding
peaks in the LAPW valence band. However, in the conduc-
tion band, peak heights are only in fair agreement. In con-
trast to previous calculations,14,43–46 the conduction band

minimum is predicted at theM point of the Brillouin zone
and this accounts for the discrepancies near the Fermi level.
The TB gap is 3.07 eV, whereas the LAPW one is 2.11 eV.
Compared with the experimental value of 3.33 eV,47 the un-
derestimation of the LAPW band gap is known to result from
the use of the LDA in our calculations. The agreement of the
TB gap with experiment is fortuitous.

Most of the results in this paper depend on the occupied
states of SiC. However, there are situations such as in studies
of optical properties where there is a need to have an accu-
rate representation of the conduction band as well as the
correct value of the energy gap. We have addressed this issue
by adjusting the LAPW gap to the experimental value and
fitting a TB Hamiltonian with aspd basis. The rms fitting
errors are 12 mRy for the eight bands that we have fitted for
the 3C structure, and 12 mRy for the 16 bands we have fitted
for the 2H structure. The resulting energy bands for the 3C
and 2H structures at the fitted volumes are shown in Fig. 5.
One can see that we now have an almost perfect fit of both
the valence and conduction bands.

TABLE II. Lattice parameters for SiC polytypes, computed with thesp TB model, and comparison with available experimental,
pseudopotentialsPPd, and LAPW DFT values. The lattice parameterc is normalized byn, the number of SiC bilayers per unit cell. The
structure 3C8 indicates the zinc-blende in a rhombohedral supercell, for comparison with the other structures.

TB Exp.a PP LAPW

Struct. asÅd c/nsÅd asÅd c/nsÅd asÅd csÅd asÅd csÅd

Zinc-blendes3Cd 4.3432 4.3581 4.365b 4.343

4.323c

4.358d

4.291e

Zinc-blendes3C8d 3.0711 2.5070 3.0816 2.5162 3.087b 2.520b 3.071 2.507

3.057c 2.496c

3.082d 2.516d

3.034e 2.477e

Wurtzite s2Hd 3.0568 2.5106 3.0760 2.5240 3.120f 2.515f 3.057 2.511

3.072d 2.521d

3.031e 2.480e

9R 3.0611 2.5088

12R 3.0635 2.5084

15R 3.0647 2.5088

24R 3.0671 2.5076

93R 3.0659 2.5076

4H 3.0632 2.5078 3.0805 2.5212 3.069d 2.526d 3.063 2.507

3.032e 2.482e

5H 3.0650 2.5083

6H 3.0658 2.5076 3.0807 2.5196 3.077d 2.518d

3.033e 2.480e

8H 3.0671 2.5076

aReference 39, except 4H from Ref. 16.
bReference 11.
cReference 12.
dReference 14.
eReference 15.
fReference 13.
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C. Elastic constants and phonons

The elastic constantscij contain some of the most impor-
tant information that can be obtained from ground state total
energy calculations. A given crystal structure cannot exist in
a stable or metastable phase unless its elastic constants obey
certain relationships. Thecij also determine the response of
the crystal to external forces and thus play an important part
in determining the strength of a material. The procedure for
calculating elastic constants from first-principles calculations
is described by Mehlet al.49 The same procedure is used in
our TB calculations. Briefly, one imposes an external strain
on the crystal and calculates the energy as a function of
strain. Our method correctly gives the experimental value for
the bulk modulus and elastic constants for 3C SiC, as shown
in Table III. The agreement between our calculated values
and the experimental data for 3C SiC is quite good given that
these are not fitted quantities. As Table III shows, our results
are comparable in accuracy to the LDA calculations of Ref.
17. For 4H SiC the agreement with experiment is excellent
as well. We also present as a prediction the elastic constants
for the 2H structure.

The phonon spectrum for the 3C structure along the high-
symmetryG-L direction was computed using the frozen pho-

non method. The results, in comparison with experiment,18

are plotted in Fig. 6. Results for the acoustic modes are in
very good agreement with experiment. Zone-edge frequen-
cies for the optical modes are also in good agreement with
experiment, although about 150 cm−1 low. The splitting be-
tween the transverse and longitudinal optical modes is not
captured by the TB model. This is expected, given that the
splitting is caused by charge redistribution effects that can
only be described by explicit Coulomb terms in the Hamil-
tonian. The transverse optical mode at theG point is in very
good agreement with experiment18 and with previous first-
principles phonon frequency calculation for SiC.17,50,51

D. Stacking faults

The interesting energetic properties of the polytypes of
SiC are directly related to the stacking faultsSFd energetics.
A SF in an otherwise cubic structure is equivalent to a locally
hexagonal structure, and vice versa. Therefore, the overall
energy ordering of the polytypes, where some hexagonality
is favored over perfect cubic stackingse.g., 4H is lower in
energy than 3Cd, can be explained if the SF energy in the
cubic structure is negative, favoring the spontaneous forma-
tion of some hexagonal stacking. The status of 4H as the
lowest energy polytype should be associated with positive
energy SFs. We used our TB model, which was fitted to only

FIG. 2. Band structure along high-symmetry directions in the
Brillouin zone for 3C SiCstopd and 2H SiCsbottomd. Solid lines
are TBsp results, dashed lines are LAPW-LDA results. All energies
are referenced to the valence band maximum.

FIG. 3. Total and partial TB densities of states for 3C SiC. The
top panel shows TBsp results, and the bottom panel shows LAPW
results.
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the perfect 3C and 2H structures, to calculate SF energies in
the 3C and 4H structures. Unit cells composed of 12 bilayers
with and without a SF are relaxed with respect to atomic
positions and lattice constant normal to the SF plane using
the conjugate gradient method.52 The results are shown in
Table IV, together with DFT calculation results. There is
significant variation in the calculated magnitude of the intrin-
sic SF formation energy in 3C SiC, as shown in Table II of
Ref. 53. Our TB calculations show a small negative forma-
tion energy, in agreement with direct calculations using DFT
methods.53,54 The 4H polytype shows positive formation en-
ergy for both geometrically inequivalent SFs, in agreement
with direct DFT calculations, although the magnitude of the
energy is somewhat large. Even the ordering between the
two inequivalent SFs, which involves very small energy dif-
ferences, is in agreement with DFT calculations. Overall, the
agreement between our TB calculations and DFT results is
quite good, especially considering the fact that there was no
information about isolated stacking faults in the fitting data-
base.

E. Vacancies

The properties of materials with significant covalent
bonding such as SiC are often dominated by point defects,
which allow for lattice rearrangement during diffusion, and
can be electronically active. We simulated vacancies in 3C

SiC using a periodic supercell approach. We computed the
energies of a 216-atom cubic supercell, and the same super-
cell with one C or one Si atom removed. Each configuration
was relaxed with a conjugate-gradient energy minimization
algorithm.52 To use these energies to compute the formation
energy of a vacancyEf we assume that the SiC solid is in

TABLE III. Elastic constants and bulk moduli in GPa for 3C,
4H, and 2H SiC polytypes, computed with thesp TB model,
FP-LMTO, and experiment.

3C 4H 2H

TB FP-LMTOa Exp.b TB Exp.c TB

B 220 223 225 221 221 221

c11 386 420 390 476 507 481

c12 137 126 142 123 108 127

c13 72 52 58

c33 521 547 522

c44 220 287 256 150 159 143

c66 177 177

aReference 17.
bThe experimental data are derived by Lambrechtet al. sRef. 17d,
from the sound velocities of Feldmanet al. sRef. 18d.
cReference 48.

FIG. 4. Total and partial DOS for 2H SiC. Top panel shows TB
sp results, and bottom panel shows LAPW results.

FIG. 5. Band structure along high-symmetry directions in the
Brillouin zone for 3C SiCstopd and 2H SiCsbottomd. Solid lines
are TBspdresults, dashed lines are shifted LAPW LDA results. All
energies are referenced to the valence band maximum.
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equilibrium with reservoirs of C and Si at chemical poten-
tials mC andmSi, respectively. The vacancy formation energy
is defined as

Ef = Ev − NCmC − NSimSi, s6d

whereEv is the energy of the configuration with a vacancy,
andNC andNSi are the numbers of C and Si atoms, respec-
tively, in the vacancy configuration. Because the bulk SiC
solid is in equilibrium with respect to the two elemental res-
ervoirs, the two elemental chemical potentials are related
through

mSiC
0 = mC + mSi, s7d

wheremSiC
0 is the energy per formula unit of bulk SiC. The

elemental chemical potentials are constrained because each
reservoir must be stable with respect to the pure bulk solid,
giving

mC ø mC
0 , s8d

mSi ø mSi
0 , s9d

wheremC
0 andmSi

0 are the energies per atom of bulk diamond-
structure C and Si. Combining Eqs.s7d–s9d yields the con-
straint

mSiC
0 − mSi

0 ø mC ø mC
0 , s10d

and an equivalent expression formSi. The formation energy
can be computed in terms of eithermC or mSi ssince the two
are relatedd, over a range of physically meaningful values
limited by the stability of the C and Si reservoirs with respect
to the two pure bulk solids.

The results in Fig. 7 indicate that C vacancies are lower in
energy than Si vacancies throughout the composition range.
Formation energies vary from 3.1 to 3.6 eV for the C va-
cancy and 5.1 to 5.6 eV for the Si vacancy. These values are
in reasonable agreement with the DFT calculations of Furth-
müller et al., who found C vacancy energies of about 4 to
4.5 eV and Si vacancy energies of 8.5 to 9 eV.55 Two other
groups56,57 get similar results using DFT calculations. Both
quote only vacancy formation energies atmC=mSi, with val-
ues of 5.48 and 5.9 eV forEf

C and 6.8 and 6.64 eV forEf
Si, in

reasonable agreement with our calculations ofEf
C=3.4 eV

andEf
Si=5.3 eV.

The geometries of the relaxed vacancies show the distinct
asymmetry between the two atomic species. The Si atoms
around the C vacancy relax outward in a breathing mode,
moving by about 0.02 Å. Apparently the potential energy
gain from bonding through the dangling bonds, the mecha-
nism that leads to the Jahn-Teller distortion in Si, is not
strong large to overcome the stiffness of the Si–C back-
bonds. The C atoms around the Si vacancy relax much more,
moving outward and breaking the symmetry by forming a
triangular pyramid with 3.55 Å bonds within the base and
3.78 Å bonds to the vertex. This allows three of the C atoms
to have three nearly planar bondssbond angles of 118°d, and
the fourth to be between tetrahedral and planarsbond angles
of 113°d. Presumably this relaxation is driven by the stability
of the C atoms in planarsp2 hybridization. A full treatment
of the vacancy would require spin polarization and the ex-
amination of different charge statessbeyond the neutral va-
cancy simulated hered, but these extend beyond the scope of
this work.

F. Molecular dynamics simulations

An important advantage of our TB approach is that we
can perform MD simulations reasonably quickly for rela-

TABLE IV. Relaxed stacking fault energiessmJ/m2d computed
using the TB model, compared with published DFT calculation
values.

SF TB DFT

3C sintrinsicd −4.44 −1.71,a −3.4b

4Hs31d 25.4 17.7a

4Hs13d 25.6 18.1a

aFrom Ref. 52.
bFrom Ref. 53.

FIG. 6. Phonon dispersion curves for the 3C structure along the
G-L direction. Solid lines indicate longitudinal modes and dashed
lines indicate transverse modes. Circles indicate TB results and dia-
monds indicate experimental results from Ref. 18.

FIG. 7. Relaxed formation energyseVd for C and Si vacancies
in 3C SiC, as a function of C chemical potentialmCseVd sor equiva-
lently, the Si chemical potentialmSid.
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tively large number of atoms and therefore obtain
temperature-dependent quantities. The standard LDA MD
calculations can only be done for very small systems and
therefore they are not reliable. We performed MD simula-
tions for the cubic polytype of SiC. In our simulations, the
system consists of an fcc supercell of 512 atoms. The equa-
tions of motion were integrated using a time step of 2 fs for
2000 steps, 1000 time steps for equilibration, and 1000 time
steps where data were gathered. We performed MD simula-
tions for several temperatures at the TB equilibrium lattice
constant,a=4.343 Å, to compute the mean-square displace-
ments of the atoms and the thermal expansion coefficient.

In Fig. 8, we show mean-square displacement as a func-
tion of temperature as derived from the simulations. The re-
sults are in good agreement with the plane-wave pseudopo-
tential DFT calculations of Karchet al.,58 who used a
quasiharmonic approximation to estimate the mean-square
displacements since MD was not practical. The agreement is
expected given the intermediate range of temperatures com-
pared, significantly above the Debye temperature but signifi-
cantly below the melting points3100 Kd.59 The results of the
thermal expansion coefficient measurements are plotted in
Fig. 9 in the form of the pressure as a function of tempera-
ture at theT=0 K equilibrium lattice constant. From the fit,
we can extract]P/]T, and from that the linear thermal ex-
pansion coefficienta=3.8310−6 K−1. A quasiharmonic ap-
proximation derived by minimizing the volume derivative of
the free energyscomputed in terms of the phonon frequen-
cies as a function of volume60d gives a very similar value for
a of 3.9310−6 K−1. Both results are in reasonable agreement
with the quasiharmonic approximation DFT high-
temperature value of about 5310−6 K−1.58

IV. CONCLUSIONS

We have applied the NRL-TB method to generate asp
basis TB model for SiC that was fitted to LAPW results of

high-symmetry crystal structures of SiC, Si, and C and the
Raman phonon mode of C and Si, and aspdbasis TB model
that was optimized for the electronic properties of the cubic
zb and hexagonal wurtzite structures. We found that the re-
sulting sp Hamiltonian is transferable to a wide range of
polytypes, capturing the nonmonotonic energy variation with
respect to hexagonal character despite being fitted only to a
fully cubic and a fully hexagonal structure. This model also
correctly describes valence band electronic propertiessband
structure and density of statesd. The spd model reproduces
both the valence and conduction bands of the cubic and
wurtzite structures, at the expense of a lack of transferability
to other properties. Thesp model reproduces experimental
measurements for elastic constants, phonon frequencies,
stacking fault energies, and vacancy formation energies. In
addition, we performed molecular dynamics simulations at
various temperatures to compute the mean-square displace-
ment and thermal expansion coefficient, both in good agree-
ment with experiment and previous simulations. It is stressed
that the NRL-TB method, because of its computational effi-
ciency, can be very useful in the study of phenomena which
require the use of large unit cells. In addition to the bulk
energetic properties of polytypes we presented here, this
method can be directly applied to surface properties that can
dominate polytype selectivity during growth. It is hoped that
with the present set of parameters, the method can be used to
study other complex structural and electronic effects that are
experimentally observed in SiC.
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FIG. 8. Mean-square displacement as a function of temperature
for 3C SiC, derived from MD simulations using our TB model.
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FIG. 9. Pressure as a function of temperature for 3C SiC at the
T=0 K equilibrium lattice constant, derived from MD simulations
using our TB model.
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