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Creep motion of the charge-density wavesCDWd and its change through optical excitation in the low-
temperature plastic state of K0.3MoO3 is analyzed in terms of a local pinning theory. The nonlinearI-V curve
below the sliding threshold field can be well reproduced with a numerical calculation, and it is shown that
photoexcitation increases the transition probability of phase slips, which promotes the creep motion, and also
leads to a relaxation of the phase strain. Photoexcitation can offer an effective method to control the dynamics
of CDW through this deformation manipulation.
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I. INTRODUCTION

Many sliding charge-density wavesCDWd materials,1–5

including fully gapped K0.3MoO3, TaS3, and partially gapped
NbSe3, show dramatic changes in their transport properties at
low temperatures, such as freezing out of relaxation time and
appearance of a second sliding threshold, indicating a quali-
tative modification of the pinned state of the CDW6–9 ssee
Ref. 10 for a reviewd. These changes in the CDW
dynamics11,12 are characterized by interactions between col-
lective pinning, local pinning, Coulomb interaction,13 and
thermal fluctuation.14 A typical CDW conductor K0.3MoO3
shows a Peierls transition atTp,183 K and becomes semi-
conducting due to nearly perfect nesting of its Fermi surface.
Slightly below Tp, the current is carried by thermally acti-
vated normal carriers and also by the collective motion of the
CDW. Ohmic conduction can be observed above,50 K
with small bias voltage, and the current follows a power law
with respect to voltage down to,30 K.15 A second threshold
in the I-V curve appears below,25 K, sometimes accompa-
nied by a discontinuityscalled switchingd with hysteresis,
and becomes pronounced with decreasing temperature. Be-
tween two thresholds, the current increases nearly exponen-
tially with applied voltage, and is temperature activated with
an activation energy comparable to the Peierls gap. These
dynamics have also been discussed in terms of the dynamic
phase transitions from the analogue of vortex lattices.16 Al-
though the origin of the switching is not clearly understood
at this moment, the low-temperature phase have been as-
cribed to the plasticsor glass-liked state of the CDW,11 domi-
nated by localsstrongd pinnings after the freezing out of
normal carriers that screen the CDW deformations at higher
temperatures. The local pinning is characterized by a rela-
tively small barrier height that can be overcome even at low
temperatures, while the collectivesweakd elastic pinning in-
duces a large barrier heightf ,103kBTp sRef. 10dg and domi-
nates the high-temperature elastic regime. The relaxation of
these two processes shows a crossover around 23 K,11 and
the first threshold disappears because it is inversely propor-
tional to the CDW elastic constant,17 whose longitudinal
componentCi ,1/rn diverges with the disappearance of nor-
mal carrier densityrn,exps−D /Td.

Recently, Lemayet al. reported that the creep motion of
the CDW in NbSe3 can be monitored through narrow-band
noise,18 indicating its temporally ordered collective motion,
and the creep current can be expressed as

JcsE,Td = s0sE − ETdexpS−
Tpin

T
DexpSa

E

T
D , s1d

whereET is a threshold field,Tpin is pinning strength,E is an
external electric field, anda is a constant. Equations1d
shows a thermally assisted flux creep19 and resembles the
field-assisted hopping conduction,20 although the prefactor
linear to the electric field is added phenomenologically. Al-
thoughI-V curves in the creep regime of K0.3MoO3 can also
be fitted with Eq.s1d,21 the conclusive theory for the trans-
port properties in the low-temperature phase has been
awaited.

A local pinning approach to the time-dependent properties
of plastic sliding density waves, in terms of local metastable
states created by pinning-induced solitons or dislocation
loops ssee Ref. 22 for a reviewd, has been developed
recently,14 in which the CDW is considered as an elastic
periodic medium with topological defects interacting with
impurities.23 This theory can describe anomalous peaks in
temperature and frequency-dependent dielectric susceptibil-
ity esT,wd, and the appearance of the second threshold ob-
served at low temperatures.11,24At these temperatures, CDW
is assumed to advance with phase slips and breaking of the
phase coherence.

A phase slip process occurs in many condensed matters
with complex order parameters.25 In the sliding CDW sys-
tems, when the external field is increased, strongly pinned
domains are not dislodged; instead, the elastic cost of the
phase deformation drives the CDW amplitude toward zero.
In the optical conductivity measurement, a decrease in the
spectral weight for the amplitude mode under the sliding
motion has been reported.26 Phase slips generate topological
defects in the CDW, as 2p solitons in one dimension and
dislocation loops in higher dimensions, which climb in the
crystal and allow the CDW to progress.27 These phase slip

PHYSICAL REVIEW B 71, 075118s2005d

1098-0121/2005/71s7d/075118s8d/$23.00 ©2005 The American Physical Society075118-1



processes are indispensable in the conversion between col-
lective and normal carriers at the contacts, the temperature
variation of the CDW wave vector, and the depinning of the
localized regions in large samples. In the latter case, the
shear deformation of the CDW phase also plays a crucial
role.28 Thus, the sliding state in the samples with a large
cross section is essentially inhomogeneous,29–31 although
highly correlated motion has been predicted from the view-
point of the dynamic phase transition, and there are some
experiments showing the increase of in-chain correlation in
the sliding state.32 The interaction between topological de-
fects with plastic and elastic deformations makes it difficult
to picture the sliding state of the CDW in real space.

In this paper, we combineI-V measurements of K0.3MoO3
with optical excitation and try to explain the creep motion
and its illumination intensity dependence using the local pin-
ning theory.14 Since the CDW is a condensation of electron-
hole pairs, one can expect excitation of the quasiparticles
above the Peierls gap through photoillumination. This pro-
cess causes a temporary reduction of the CDW amplitude
and also leads to the amplitude- and phase-mode collective
excitation, which may result in the redistribution of the
CDW phase. Consequently, photoexcitation can effectively
induce a relaxation of phase strain.33 Furthermore, the light
illumination can also control the CDW motion because it
shows sensitive dependence on the phase deformation. Note
that this effect is distinct from the modulation of the CDW
creep motion by the presence of free carriers, e.g., screening
and back flow. One might suspect that it is difficult to differ-
entiate the effect by thermally generated normal carriers
from that by the optically generated quasiparticles. However,
the lifetime of the photoexcited single particles is too short
s,1 psd to make a significant contribution as free carriers.34

A detailed discussion about the photoeffect on the dynamics
of CDW is reported elsewhere.35 That the photocurrent is
indeed very small, reflecting the short lifetime, has been re-
ported recently in TaS3.

36

We note that optical effects can also be discussed in terms
of the solitons—nonlinear deformations of the CDW result-
ing from self-trapping of electronsssee Ref. 37 for a reviewd.
It is particularly important that relaxed particles do not stay
near gap edges ±D as semiconductor-like electrons and
holes. Instead, they acquire a form of the amplitude soliton
sASd ,tanhsx/j0d, j0="vF /D, with a smaller energy
2D /p.38,39 With the amplitude passing through zero, the AS
becomes a static phase slip center, thus playing a key role in
effects of depinning. As well registered in conducting
polymers,40 the solitons in the optical measurements have
been searched in CDWs,41 while still without conclusive
results.42 There is some indirect evidence, such as mysterious
activation energies at about 0.65D,34,43 which is close to the
theoretical value 2D /p, and the appearance of hopping-like
conduction at low temperatures. The fast relaxation of opti-
cally injected carriers can be partly explained by the self-
trapping of electrons into solitons.

Notice that we define solitons or their pairs as locally
stable finite perturbations of one chain with respect to its
neighbors. This definition is appropriate to incommensurate
CDWs and corresponds to a more general notion of disloca-
tion loops: the 2p soliton is just the elementary loop embrac-

ing one chain. This definition differs from a more traditional
view of solitons as walls between distinctly different do-
mains, which is appropriate to commensurate CDWs. In ad-
dition, our definition of phase slips is somehow broader than
the most common one, while it keeps the most important
ingredients. Namely, the phase slip is the instantaneous pro-
cess of changing the on-chain configuration of the CDW
when it gains or skips one period, ±2p. We allow for phase
slips to take place locally, at the pinning site with a distribu-
tion over some interval terminated by divergent solitons; this
process conserves the number of particles. Usually, the phase
slip is interpreted more narrowly: the gain of 2p is distrib-
uted over the whole chain, which changes the total number
of periods in the ground state by one, hence, the number of
particles is changed by 2.

II. MEASUREMENTS AND FITTINGS

A. Experimental setup

Sample crystals were synthesized by means of the elec-
trolytic reduction of KMoO4-MoO3 melt.44 Typical sample
size is 1.33130.2 mm3 after the cleavage. The samples
were glued to sapphire plates and indium electrodes sepa-
rated by 50mm were evaporated onto the surfacesFig. 1
insetd. The measurements have been performed with two-
probe geometry in the crystallineb direction at low tempera-
turess,25 Kd.

We used a cw laser of 2.33eVsl=532 nmd as a light
source, whose penetration depth is about 100 nmsRef. 45d—
much smaller than the sample thickness. However, consider-
ing the large anisotropy of conductivity and electrode geom-
etry, the creep and sliding motion should start near the
sample surface, assuring the effectiveness of the photoexci-
tation sdetails on the distributions of current are given in the
Appendixd. The light spot covers the whole sample surface,
including the electrodes. The electrodes are opaque and light

FIG. 1. Temperature and illumination intensity dependence of
the I-V curves at low temperatures. Illumination intensity was in-
creased as 0, 6.12, 25, and 100 mW/cm2. Dashed arrow indicates
the recovery of switching transition through illumination. Inset
shows the contact arrangement.
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focused on them shows no effect in the transport. We note
that the photoeffects could be observed only with the inci-
dent photons with their energy exceeding the Peierls gap, and
are qualitatively similar for photons with energy in the vis-
ible and near-infrared range.21

B. I -V characteristics

Figure 1 shows the temperature and illumination intensity
dependence ofI-V curves. In the dark at 6.2 K, the current
starts nearly linearly with applied voltage, shows exponential
increase between 0.2 and 0.5 V, and finally reaches the sec-
ond threshold voltageVs. As discussed above, the first
threshold cannot be well defined at these temperatures. With
light illumination, the creep current and the sliding threshold
Vs increase in response to light intensity. The rounding of the
I-V curve at Vs in the dark could be due to the size
effects.28,46The photoinduced recovery of the clear switching
transitionsat 6.2 K in Fig. 1d is one of the obvious features
of the photoexcitation.35 When temperature is increased, the
photoinduced growth of the creep current and also the shift
of Vs become small. At 18 K, the photoeffect becomes barely
discernible, and seen only at low bias. The temperature range
in which clear sliding transition and large photoeffects can be
observed, well coincides with that in which the glass-like
behavior dominates, as observed, e.g., in dielectric suscepti-
bility measurements.47 We have interpreted the above effects
as follows: incident photons excite the electrons in the CDW
above the Peierls gap. Excited quasiparticles instantly recon-
dense into a less deformed phase configuration, accompanied
by effective phase slips and annealing of phase defects. In
the former case, the photoexcitation enhances a creep mo-
tion, and in the latter, it shifts the breaking transition of the
CDW to a higher bias voltage by partially recovering the
phase coherence. The persistence of the photoexcitation
effect48 augments this picture. Since CDW motion starts near
the surface in our geometry, photocontrol of the CDW within
the penetration depth has an impact on the entire CDW mo-
tion through shear deformation28 and gliding of phase dislo-
cations, although it is difficult to say how deep in the sample
the CDW moves at this moment.

C. Local pinning approach

The Hamiltonian for the elastic density waves interacting
with randomly distributed pinning potential can be expressed
as

H =E
D

ddxXC

2
f¹wsxdg2 + o

i

Vpin,ih1 − cosfQ ·x + wsxdgj

3dsx − xidC , s2d

whereD represents a volume covering the collective pinning
domain,C is an elastic constant of the density wave, andQ is
a wave vector. The first term in Eq.s2d represents the elastic
energy, which cannot grow unlimitedly for a moving CDW.
Considering a very strong point impurity and a periodic na-
ture of the density wave, the large elastic deformation should

be released by nucleation of phase defects as phase solitons
or dislocation loops,49 yielding a large number of metastable
states. This process starts with a phase slip and repeats peri-
odically; the CDW deformation at a pinning site exceeds a
critical value, which leads to local suppression of the order
parameter, and finally to destruction of the CDW phase co-
herence and removal of the accumulated phase difference by
2p fFig. 2sadg.

Let us consider a single pinning site located atxi. The
deformation energyfthe first term in Eq.s2dg can be obtained
by minimizing it for a given phase at the pinning site,wsxid,
when the deformation is small. A realistic calculation, how-
ever, is difficult for a large deformation, in which the cre-
ation of solitons has to be taken into account. The minimal
model,14 taking into account a periodicity of the interchain
interaction, yields for the deformation energy

Wscid = Esf1 − cossci/2dg, s3d

whereci =wsxid−w̄ is the mismatch between the local phase
wsxid and the phasew̄ far away from the pinning site, repre-
senting the overall advance of the CDWswhen staticw̄
=const and slidingw̄=−vtd. Equations3d satisfies minimal
conditions thatWscd should satisfy:s1d quadratic with re-
spect toc for a smallc, s2d periodic in c, and s3d always
positive. Considering a single pinning site and definingui
=−Q·xi −w̄, one arrives at an effective Hamiltonian,

FIG. 2. sad Phase slip process and growing dislocations in the
CDW. The crests of the wave fronts are marked by the solid lines. If
the CDW phase deformation exceedsp with respect to its original
configuration, the system becomes bistable, and then a phase slip
occurs. This process repeats periodically.sbd Definition of the local
variables. The filled circle shows a pinning potential and the dotted
line represents a pinning domain.
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Hsc,ud = Wscd + Vpinsc − ud, s4d

which replaces Eq.s2d, showing the competition between the
cost of soliton generation and elastic deformation. The index
i is omitted hereafter. Now, 2Es equals the energy absorbed
in the nucleation of the pair of solitons each time whenc
acquires the integer increment of 2p, and Vsc−ud=Vpinf1
−cossc−udg is the pinning potential. The definition of the
local variables is shown in Fig. 2sbd. In the presence of pin-
ning, the CDW deforms within a certain distance from the
pin scollective pinning domaind, and the domain couples
elastically or plastically with the surrounding phases.Hsc ,ud
should be minimized with respect toc at a givenu. The
minima and maxima of the variational energyHsc ,ud deter-
mine three branches of the energy trace,E+, E−, andEb. An
example of the potential landscape is shown in Fig. 3sad. For
a largeVpin, the phasec follows u closely. Whenc exceeds
p, a state with the CDW stepped ahead by one wavelength
becomes absolutely stable, and a transition occurs overcom-
ing the energy barrierEb for the phase slip or the dislocation
generation. The phase valueu at which the transition actually
takes place depends on the velocity of the CDW as will be
shown below.

If the state is monitored byu, the evolution of the state
can be traced as illustrated in Fig. 3sbd. At u=0, the system is
on theE+ branch. Whenu increases and exceedsp, the E+
branch becomes metastable, and theE− branch is now abso-
lutely stable. The system then undergoes a transition through
a local barrierEb factivation energy:Ebsud−E+sudg, releasing
the dissipation energyDEsud=E+sud−E−sud.

Let us consider a density wave moving at a constant phase

velocity v= u̇ and evaluate the external forcefsvd necessary
to maintain the motion. When the density wave is deformed
to u, the fractional force exerted by the constant upward
motion over the potential hill is the slopeFsudf=dDEsud /
dug times the probability that the systemdoes notswitch to
theE− branch before reachingu. For a stationary motion, the
occupation number of each branchhn±= 1

2f1±nsu ,tdg, with
]n/]t=0j obeys the kinetic equation

dn

dt
= v

]n

]u
=

neq− n

tsud
, s5d

whereneq is the value ofn in thermal equilibrium.fsvd is
thus expressed as

fsvd , E
p

2p

duFsudnsud , E
p

2p

duFsudexpS−E
p

u du1

vtsu1dD ,

s6d

tsud = t0 expSEgsud − E+sud
kBT

D , s7d

wheretsud is the rate of internal relaxation atu, andt0
−1 is an

attempt rate. The activated behavior usually seen in the ex-
periments is incorporated, as can be seen in Eq.s7d. The
creep-to-slide transition occurs when the shortest lifetime of
the system is achieved with increasing the phase velocityv
= u̇. More details on this derivation and on various regimes
are found in Ref. 22.

Here we shall underline only the most important regimes.
The initial linear lawf ,v corresponds to velocities so low
that only small displacementsdu=u−p,tpv!1 are effec-
tively allowed after the branch has changed its character to
become metastable. At higherv we arrive at the regimef
, lnsvd, when a wider, while still restricted, region ofdu is
explored and the metastable branch starts to feel the decrease
of the barriersFig. 3, there is a minimal barrier pointum,
even if unreachable yet at these moderatevd. These two re-
gimes are covered qualitatively by the empirical formula Eq.
s1d. Moreover, at even higherv, the above calculations lead
us to the third regime: the saturation of the pinning force at
fmax approached asf < fmax−const/v. It is seen as a sharp
upturn of vsfd at higher f. At these highv, the metastable
branch is followed as a whole, with a negligible probability
to relax before the full 2p circle is complete. The cost is to
create each time a pair of solitons which, being trapped or
aggregated into growing dislocation loops, provide the long-
est relaxation time and can be an origin of the hysteresis. The
photoassisted relaxation of the states created only in the high
v regime can explain the observed optical memory effects.

D. Comparison with experiments

With appropriate scalings, we can evaluate Eq.s6d and
compare it with the experimentally measuredI-V character-
istics. The result is shown in Fig. 4sthe lowest open circlesd.
The absolute value oft0 is closely related toVpin andv. We

FIG. 3. sad An example of the potential landscape. Arrows ex-
press the trajectory of the system.sbd Projection of the energy land-
scape in thec direction. When the system climbs the slope onE+

branch with a constant velocityu̇, the potential energy increases and
the energy gap decreases gradually. A transition to theE− branch
then occurs.
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assumeVpin=2 meV s,23 K, crossover temperature11d in
the following andt0=0.02 s so as to reproduce the tempera-
ture dependence of theI-V curves, which defines the unit of
v. The numerical calculation compares well with the experi-
mental data in the current range of 4 orders of magnitude
covering three different regimes of sliding: linear, exponen-
tial, and the final nearly critical upturn. The deduced value of
Es s1 meV,12 Kd in the dark at 6.2 K is comparable to the
estimated energy of dislocation multiplication,51 and v
,0.24 Hz at the current of 10−10 A in Fig. 4 is on the same
order of the experimentally observed creep speed of the
CDW at these temperatures and is also comparable to the
creep motion reported in Ref. 18.

The effect of the optical excitation can be incorporated by
adding another relaxation rate, as

1

tsud
→ 1

tsud
+

1

t1
, s8d

where 1/t1 represents an optically induced phase slip or
stress relaxation in the same scale witht0. The t1 depen-
dence of theI-V curve is also shown in Fig. 4. The nearly
linear offsets of theI-V curves with illumination intensity in
logarithmic scalefFig. 1sadg are well reproduced. The illumi-
nation intensityswhich should be proportional to 1/t1d de-
pendence of the creep currentsat 0.3 V in Fig. 4d is also
evaluated, as shown in Fig. 5sbd. The current increases

linearly with 1/t1, which is in good agreement with the ex-
perimental data, as shown in Fig. 5sad. At illumination inten-
sity of 100 mW/cm2, which corresponds to 1.6 photons/s /
sMo sited, the velocity of the CDW increases about 13 times
over that in the dark.

Figure 6 shows the temperature dependence of the exter-
nal force necessary to keep the CDW moving at a constant
velocity of 10−10 A, which is in the f , lnsvd regime for all
the temperatures shown in the figure. In the numerical cal-
culation, the same scale factor as in Fig. 4 has been used.
The calculation compares well with the experimental data at
low temperatures and begins to deviate around 12 Ks,Esd,
probably due to the appearance of metastable states from the
collective pinning, whose contribution should increase at
higher T following the onset of screening, and also to the
decrease in the sliding volume.50

In Fig. 7, we show the illumination intensity dependence
of the external force at a constant CDW velocity of 10−10 A
normalized with the voltage in the dark at each temperature.
The data below 12 K trace the same curve, indicating that
the photoeffects can be separated from the temperature ef-
fects, as is implied in the additivity rulefEq. s8dg. Thus, the
optical excitation induces anadditional relaxation of the
phase deformation, and the local pinning model can be ap-
plied at relatively low temperatures.

FIG. 4. Fitting of theI-V curve measured at 6.2 K in the dark
with numerical integrations of Eq.s6d sthe lowest trace of circles,
labeled as “t1=`” d, and itst1 dependence. Filled triangles show the
effect of Es on the threshold field.

FIG. 5. sad Illumination intensity dependence of the creep cur-
rent at 6.2 K with bias voltage of 0.3 V, andsbd increase of the
creep current through the optically induced transition rate 1/t1 s~
illumination intensityd.

FIG. 6. Temperature dependence of the voltage to push the
CDW at a constant velocity of 10−10 A in comparison with the
numerical data of Eq.s6d. The experimental data were measured in
the darkst1=`d and numerical data are scaled with the same factor
as in Fig. 4.

FIG. 7. Illumination intensity dependence of the voltage neces-
sary to push the CDW at a constant velocity of 10−10 A normalized
with the voltage in the dark.
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In the local pinning model, the creep-to-slide threshold
voltage is determined by the nucleation energyEs. The
photoinduced increase of the sliding threshold can be simu-
lated by increasingEs, as can be seen in Fig. 4. We interpret
this result as the continuous repair of the partly ruptured
CDW through optical removal of the phase deformation,
which increases the threshold of defect nucleation. Although
the numericalI-V curves can express the creep current fairly
well, the switching transition is absent, because Eq.s6d has

no singularity with increasingu̇. This indicates that the
switching is not a “local” effect; it rather results from much
larger coherence of the CDW. In addition, the interactions of
phase defects are not implemented in this model, such as
annihilation of solitons and antisolitons produced at neigh-
boring pinning centers, aggregation of solitons into growing
dislocation loops, and change in viscous damping through
the existence of a large number of dislocations. These should
play important roles in the dynamics of CDW and would also
be able to explain the absence of the switching transition at
the threshold and the existence of substantial damping in the
sliding regime of small-electrode-gap samples.35

III. CONCLUSION

In conclusion, the nonlinearI-V characteristics in the
creep phase have been well expressed with a plastic motion
of the CDW interacting with strong local impurity potentials.
When the CDW moves, the phase defects are continuously
nucleated, leading to a local metastable states and substantial
dissipation. Optical excitation leads to the relaxation of these
metastable states, and prevents the rupturing of the CDW
phase, thus increasing both the transition probability of phase
slips and the nucleation energy for the phase defects. Photo-
excitation is therefore an effective method to control the in-
ternal degrees of freedom of the CDW and can elucidate the
dynamics in the plastic state of the CDW after the freezing
out of normal carriers.
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APPENDIX: THE DISTRIBUTION OF CURRENT AND
FIELD

Here we consider the distribution of current and field in
our experimental geometry. At present, we study the regime
of the rigid CDW considering only normal current. However,
it will give us an understanding about when and where the
CDW starts to slide. The results are extendable also to the
first slow currentd sliding regime, where theI-V curve is
linear even for the collective conduction. We shall concen-
trate on the distributions around the slit between two elec-
trodes sseparation l =2a,50 mmd. In comparison, the

sample thickness ist,0.2 mm and the width of the contacts
is 2L,1 mm.

In general, normal carriers move under the gradients of
the chemical potentialm, which incorporates both the electric
potential F and the variable concentration of carriersn.
However, the carrier concentration is not perturbed at large
distances, so thatm=V sapplied voltaged. We define the an-
isotropy parameter as

sx

sy
= A = B2, s = Îsxsy, sA1d

wheresx and sy are conductivities along the chains within
the conducting layer and between layers in the depth direc-
tion, which correspond to theb and s2a−cd directions for
K0.3MoO3, respectively. The anisotropy parameterA can be
arbitrarily large at low temperature for fully gapped CDWs,
because of the different activation energies for conductance
in two directions. For example, in the case ofo-TaS3, the
anisotropy parameter was recently evaluated to be 103

around 120 K and should be larger at lower temperatures.52

The valueA=104 seems to be appropriate for K0.3MoO3 in
our experimental conditions,10 Kd. The most important pa-
rameter isB=A1/2, which is also bigs,100d. It defines the
rescaling of coordinates to make the equation isotropic
sy/x→By/xd:

= · j = − = · ss = md = 0. sA2d

In rescaled coordinates, the sample thicknesst is B times
enhanced, and the effective thicknessBt can be considered as
infinite in comparison with other scales.

Now we need to write the solution of the Laplace equa-
tion for a potentialFsx,yd in the upper half-planeyù0 with
the condition that at the boundaryy=0 the potential takes
valuesFsx.a,0d=V/2 andFsx,−a,0d=−V/2. As usual,
the solution is written for the complex potentialP=F+ iC as
a function of the complex coordinatez=x+ iBy. It is known
to be

P = F + iC =
V

p
arcsin

z

a
. sA3d

The derivativedP/dz gives the components of electric field
Ex,y according to

− Ex +
i

B
Ey =

V/p
Îa2 − sx + iByd2

. sA4d

The field and the current diverge near the contact edgesy
→0,x→ ±a. Near the contact plates away from the sloty
→0,uxu .a,

Ex, jx = 0; Ey =
j y

sy
=

±BV/p
Îx2 − a2

, sA5d

so that the currentj y emitted by distant parts,uxu @a, of
contacts decreases very slowly, as 1/uxu. The same concerns
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the current densityjx on the line above the gap centerx=0,
which decays as 1/uyu. The total currentJ given by Eq.sA5d
diverges logarithmically as

J =E
a

`

j ysx,0ddx=E
0

`

jxs0,yddy<
s

p
V ln

L

a
, sA6d

where we have introduced the cutoffL on the order of the
contact width. We see that the total current is distributed over
a semi-ellipsoid of widthx,L,1 mm and depthy,L /B
<10 mm. However, the field and the current densities are
rather low; at the characteristic ellipsoid boundary we find

jxsx = 0,y < L/Bd
jxsx = 0,y = 0d

<
a

L
, 40−1. sA7d

In summary three different scales exist:s1d larger area
L3L /B defined by contacts widthL, where most of the cur-
rent flows but at a relatively low density,s2d major active
areaa3a/B, where the coherent sliding can start as soon as
the minimal fieldV/pa of this regionsat x,y=0d exceeds the
depinning threshold; ands3d singular regions near the con-
tact edgesx= ±a,y=0. Here the CDW is depinned very early
but may not be able to slide from one region to another
unless the condition ins2d is satisfied at a higher voltage.
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