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We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the
limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-
energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization
group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to
several semi-infinite one-dimensional wires. The main difference between the single node geometry and a
regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so
that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We
therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should
exhibit power-law suppression of the conductivity at low temperaturesEF / skFad!kBT!EF, wherea is the
lattice spacing andkFa@1. At lower temperaturesfkBT!EF / skFadg, a regular network is generally a coherent
conductor, but with a much lower Fermi velocity than for a noninteracting electron gas. Some fully insulating
ground states are expected only for a discrete set of integer filling factors for the electronic system. A detailed
discussion of the scattering matrix flow and its implication for the low energy band structure is given on the
example of a square lattice.
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I. INTRODUCTION

For the past two decades, transport properties of quantum
wires have received a lot of attention.1,2 Besides metallic
systems, two-dimensional electron gases induced in
GaAs/AlGaAs heterostructures have displayed a rich variety
of quantum effects such as Aharonov-Bohm resistance oscil-
lations in a ring geometry,3,4 and persistent currents.5,6 Since
the electronic transport mean free path in such artificial
nanostructures can be as large as several micrometers, most
scattering processes for electronic quasiparticles occur at the
nodes between several conducting wires. Their influence has
been extensively studied in the context of the breakdown of
the quantum Hall effect in narrow channels. Experiments
have revealed that the Hall resistance measured in a four
probe geometry disappears at low magnetic fields.7,8 Theo-
retical studies have emphasized the role of quantum me-
chanical resonances in the scattering amplitudes of electrons
at the junctions between the main channel and voltage
probes.9,10 In experimental systems, confining potentials re-
main smooth in the vicinity of such junctions, and this in-
duces a rather robust collimation mechanism for incoming
electrons.11,12 This semiclassical picture has been confirmed
by spectacular experiments involving junctions with various
shapes.13 More recently, coherent Aharonov-Bohm oscilla-
tions have been measured in ballistic arrays with the dice
lattice geometry,14 in agreement with the predictions of
simple models for noninteracting electrons.15,16

In parallel to this mostly single electron physics, dramatic
electron-electron interaction effects have been demonstrated
in transport measurements on various ballistic conductors
with very few transverse conduction channels. For instance,
tunneling into edges of a two-dimensional electronic droplet
in the fractional quantum hall effectsFQHEd regime has
shown current versus voltage curves with power law

behavior17 in qualitative sthough not really quantitatived
agreement with theoretical models based on the chiral Lut-
tinger liquid picture.18 Measurements of shot noise associ-
ated to tunneling processes from one edge to another through
a quantum point contact have also provided a convincing
demonstration of the presence of fractionally charged quasi-
particles in the FQHE phase.19–21 Another family of one-
dimensional quantum conductors are carbon nanotubes. In
particular, single wall nanotubes have shown a strong reduc-
tion of the single particle density of states at low
energies,22,23compatible with the Luttinger liquid model.24,25

These two main lines of research just outlined can be
naturally combined and lead us to consider the subject of
networks of interconnected quantum wires, each of them be-
ing described as a Luttinger liquid. As a first step in this
direction, several systems with nanotube crossings have been
synthesized.26–29 On the theoretical side, many studies of
Luttinger liquids crossing at one node are now available,30–34

including extensions to more complex geometries.35 In this
paper, we consider a regular network of Luttinger liquids. As
already mentioned, the main source of electron scattering in
ballistic structures arises from the nodes of the network. For
noninteracting electrons, these nodes are simply described by
a scattering matrix,36–38 and the full band structuresin the
absence of disorderd can be retrieved from the knowledge of
this matrix. However, as first shown by Kane and Fisher for
a single impurity in a Luttinger liquid, interaction effects
induce a variation of the dressed scattering matrix as a func-
tion of the incoming electron energy.39,40 One way to inter-
pret this in physical terms is via the notion of Anderson’s
orthogonality catastrophe: in the limit of a tunnel barrier, an
electron jumping across the barrier leaves a dipolar charged
excitation which is very far from any eigenstate of the inter-
acting system. A rather complicated collective relaxation
process follows any single electron tunneling event. A re-
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markable prediction made in these works is a dramatic quali-
tative difference between repulsive and attractive interac-
tions. In the former case, the effective impurity potential
grows as the typical energy becomes closer to the chemical
potential. So a single impurity is sufficient to disconnect
completely an infinite Luttinger liquid atT=0 for repulsive
interactions. Conversely, any static impurity becomes trans-
parent in the low energy limit in the case of attractive inter-
actions.

An appealing picture for these effects has been proposed
by Yue, Glazman, and Matveev.41 They have shown that
renormalization of the transmission amplitude may be attrib-
uted to scattering of an incoming electron on Friedel density
oscillations induced by the scatterer. From this picture, they
have developed an alternative renormalization approach,
which is perturbative in the electron-electron interaction, but
nonperturbative in the strength of the impurity potential. This
framework has been used later in references,32,35 and we
shall adopt a similar procedure here. Note that a third type of
renormalization scheme, involving the full momentum de-
pendence of the electronic self-energy, has been imple-
mented in a series of papers.42–44

The main novel feature in regular arrays in comparison to
simpler geometries as a few connected wires is the existence
of commensurability effects between the Fermi wavelength
of electrons and the lattice period. In a noninteracting elec-
tron picture, we expect an energy gap in the spectrum when
the average electron number in each unit cell of the lattice is
an integer. As we shall see later, the band structure for a
two-dimensional network yields a gapped excitation spec-
trum whenever some integer numbers of bands are filled. For
interacting electrons, commensurability effects may also be
understood by considering the pattern of Friedel density os-
cillations. In a one-dimensional geometry, these oscillations
exhibit a dominant wave vector equal to 2kF, wherekF is the
Fermi wave vector for a noninteracting one-dimensional wire
with the same electronic density. Let us denote bya the
distance between two nodes. Friedel oscillations originating
from different nodes share the same global phase if 2kFa is
an integer times 2p, which simply means that the average
number of electrons along a segment of lengtha is integer.
Therefore, in the case of repulsive interactions, we expect an
insulating ground state in the commensurate case, where the
Kane-Fisher mechanism will disconnect all the wires incom-
ing at the same node. For incommensurate fillings, we pre-
dict a strongly renormalized Fermi liquid, where the partially
filled band crossing the Fermi level becomes much less dis-
persive than for the original noninteracting band structure.
We suggest that these effects should be in principle observ-
able in networks of ballistic wires where the electronic den-
sity could be controlled by an uniform gate potential. By
changing the gate voltage, these systems are expected to un-
dergo a succession of metal-insulator transitions. The differ-
ence between an interacting system and a non-interacting
one will be manifested by power-law dependences for the
conductance as a function of temperature at fixed bias volt-
age, or as a function ofV at fixedT,39,40 provided bothkBT
and eV remain higher than an energy scaleD which is the
renormalized band splitting in the incommensurate case, or
the single particle gap in the commensurate one.

This paper is organized as follows: In Sec. II, we consider
a simpler problem, namely a one-dimensional chain of regu-
larly spaced impurities. We set up a renormalization group
method for weakly interacting electrons which is closely re-
lated to those developed in Refs. 32 and 41, but where the
periodicity of the system is explicitly taken into account.
Section III generalizes this approach to any lattice composed
of links of the same length, assumed to be large compared to
the Fermi wavelength. We show explicitly that the scattering
matrices at each node of such lattices is renormalized exactly
in the same way as for a single node connecting semi-infinite
wires.32,41This is the central result of the present work. As an
illustration with possible experimental relevance, Sec. IV
considers a two-dimensional square lattice of Luttinger liq-
uids. We show that although the evolution of the scattering
matrix of the nodes as the typical energy scale is reduced
yields a rather trivial low-energy fixed point where all the
links become disconnected, some interesting qualitative
changes in the quasiparticle band structure take place along
this renormalization group flow.

II. ONE-DIMENSIONAL WIRE WITH A PERIODIC
IMPURITY POTENTIAL

The goal of this section is to adapt the simple renormal-
ization group procedure initiated in Refs. 32 and 41 to the
case of a periodic potential. The main idea developed in
these works is to dress the bare scattering amplitude by a
correction due to the interaction of an incoming electron with
the Friedel density oscillation induced by the impurity. This
approach treats the electron-electron interaction as the per-
turbation. Because the continuous spectrum of particle-hole
excitations in the metallic wire exhibits a finite density of
states down to arbitrary low energy, the first order correction
to the scattering amplitude diverges as lnsuk−kFudd, wherek
is the incoming electron’s wave vector, andd is the spacial
range of the bare impurity potential. This type of infrared
divergence is very similar to those encountered in the Kondo
problem, and Yueet al. proposed to treat them with a renor-
malization group method inspired by Anderson’s “poor
man’s scaling” approach.45 The idea is to integrate out gradu-
ally single particle-hole excitations which participate in the
Friedel oscillation, starting from those furthest from the
Fermi level. As the electron bandwidthD is continuously
reduced, the bare impurity potential is renormalized so that
the low energy physical properties of the system are kept
unchanged. The renormalization procedure stops at a low
energy scale with is the larger scale among the thermal
broadeningkBT, the bias voltage eV, or the incoming electron
energy"uk−kFuvF.

As already stated in the Introduction, the presence of an
array of scattering centersssuch as nodes in a wire networkd
brings qualitatively new features. In the low energy regime,
Friedel oscillations originating from different centers are ex-
pected to interfere, so we cannot follow the renormalization
flow obtained in Refs. 32 and 41 for a single scatterer down
to arbitrary low energies. Furthermore, commensuration ef-
fects between the average electronic density and the super-
lattice structure play a crucial role. By contrast to the single
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impurity case, we expect an insulating ground-state only for
an integer average filling of each supercell. For incommen-
surate filling factors, we expect a crossover from the one-
dimensional behavior following Kane and Fisher’s predic-
tions at high energy, towards a strongly renormalized
coherent conductor at low energy with finite conductance.
The formation of these conducting states in a regular array is
analogous to transmission resonances of a single wire in the
presence of a finite number of impurities.40 Whereas the
resonant energies form a discrete set in the latter case, they
accumulate along finite energy intervalssthe Bloch energy
bandsd for an infinite regular array of impurities.

In a periodic system, the natural way to implement this
“poor man’s scaling” approach is to integrate out energy
bands one after the other, starting from those most remote
from the Fermi level. In the incommensurate case, the last
band, which crosses the Fermi level is partially filled, so it is
natural to stop the procedure after the last fully occupied
band has been integrated out. In any renormalization method,
we have to decide which low-energy quantities will be re-
quired to remain constant as high energy modes are elimi-
nated. In the presence of a periodic potential, it is natural to
prescribe that single quasiparticle energies should not change
under the renormalization group flowsRGFd.

A. Band structure for a periodic array of point scatterers

Let us first consider a noninteracting problem along an
infinite one-dimensional wire with a periodic potential. The
corresponding Hamiltonian is

Ĥ =
p̂2

2m
+ o

n=0

N−1

Vsx − nad, s1d

wherea denotes the spacial period of the potential, namely
the distance between two succesive impurities.Vsxd is a lo-
calized potential, so for instance we impose thatVsxd=0
when uxu is larger than a ranged, d!a. The effect of each

scatterer is described by a scattering matrixŜ. Suppose first
we have only one of them, centered at the originx=0. Let us
consider scattering states with the energyE0skd="2k2/ s2md,
k being positive. Away from the impurity, that is foruxu.d,
we may represent the corresponding wave function as a su-
perposition of plane-waves, see Fig. 1:

csxd = H Aeikx + Be−ikx for x , − d

A8eikx + B8e−ikx for x . d.
J s2d

Since Schrödinger’s equation is linear and of second or-
der, we may express the outgoing amplitudesA8 andB lin-
early as a function of the incoming onesA andB8

SA8

B
D = S t r8

r t8
DS A

B8
D ; ŜS A

B8
D , s3d

wherehr ,t ,r8 ,t8j are two pairs of reflection and transmission
coefficients for left and right sides of the node. In principle,
these four coefficients do depend on the energy of the par-
ticle or equivalently on its wave vectork. In this paper, we
shall neglect this variation, since the dominant contribution

processes involve virtual excitation of particle-hole pairs in
the vicinity of the Fermi level. A more complete approach

would consider the Taylor expansion ofŜ in powers ofk
−kF, but all terms beyond the 0th order one are irrelevant
according to the classification of perturbations around a non-
interacting one-dimensional fermion system. At least for not
too large interactions, they are not supposed to change the

qualitative picture of the system behavior. As usual, thisŜ
matrix is unitary. Assuming time reversal invariance of the
Hamiltonian impliest= t8 and if Vsxd is an even function of

x, we have alsor =r8. In this case, we may parametrizeŜ by
two angless0øføp /2, 0øc,2pd

Ŝ= eicS cosf ± i sinf

± i sinf cosf
D . s4d

For a periodic array of identical scatterers, eigenstates
may be obtained as Bloch functions, namely we may impose
the condition

csx + ad = eik8acsxd,

wherek8 is chosen in the first Brillouin zonef−p /a,p /ag.
On eachx interval fna+d,sn+1da−dg, we write the eigen-
state with energyE0skd as

csxd = Ane
ikx + Bne

−ikx.

The above periodicity condition implies

An = eisk8−kdanA0,

Bn = eisk8+kdanB0.

Equation s3d can now be written for each impurity site,
which gives

FIG. 1. Localized impurity potential may be represented by anŜ
matrix that connects amplitudes of incomingsA,B8d and outgoing
sA8 ,Bd plane waves outside the impurity.
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SAn+1e
ikasn+1d

Bne
−ikasn+1d D = S t r8

r t8
DS Ane

ikasn+1d

Bn+1e
−ikasn+1d D . s5d

ReplacingAn andBn by their expressions in terms ofA0 and
B0, we get the following secular equation:

Uteisk−k8da − 1 r8

rei2ka t8eisk+k8da − 1
U = 0 s6d

which determines the dispersion relation implicitly viak, the
energy beingE0skd, the lattice momentumk8 behaving as an
external parameter. Using a normalization condition on the

wave function, we could getsA0,B0d as functions ofsk8 ,Ŝd.
In the particular case of spacially even and time-reversal

invariant potentials, we may use the above parametrization

for Ŝ in Eq. s6d, which yields

cosska+ cd = cosf cossk8ad. s7d

For a given value of the lattice momentumk8, the possible
values ofka appear in two equally spaced families, with a
period 2p for each of them. The allowed values ofka+c
belong to the intervalsf−p+f+2pn,−f+2png and ff
+2pn,p−f+2png, wheren is an integer. We recall thatk
should bepositive, in order not to count each eigenstate
twice. The values ofka+c lying in intervals f−f+2pn,f
+2png, andfp−f+2pn,p+f+2png correspond then to en-
ergy gaps. These gaps are of course larger when the reflexion
coefficient is larger, see Fig. 2.

For a noninteracting electron system, the Fermi sea con-
tains an integer numbern of filled bands whenever the aver-
age electronic density corresponds exactly ton electrons per
unit cell. For generic filling factors, the Fermi level crosses a
partially filled band for a lattice momentumkF8. The corre-
sponding Fermi group velocity is then

vF
* s0d = vF

dk

dk8
skF8d = vF

cosfusinskF8adu
Î1 − cos2 f cos2skF8ad

, s8d

wherevF="kF /m is the Fermi velocity of a uniform nonin-
teracting gas with the same density.

B. Switching on electron-electron interactions

In a Luttinger liquid, the effective interaction becomes
non-local in the low-energy limit. To show this, it is conve-
nient to decompose the electron creation operatorsCs

+sxd
swheresP h↑ , ↓ j denotes the spin component along a fixed
directiond into a right moving partCRs

+ sxd and a left-moving
part CLs

+ sxd, whereCRs
+ sCLs

+ d involves the Fourier modesk
close tokF s−kFd. With this decomposition, the local electron
densityrsxd is written as follows:

rsxd = o
s=↑,↓

Cs
+sxdCssxd

= o
s=↑,↓

fCRs
+ sxdCRssxd + CLs

+ sxdCLssxdg

+ o
s=↑,↓

fCRs
+ sxdCLssxd + CLs

+ sxdCRssxdg. s9d

The first two terms are smooth fields, meaning that their
Fourier transforms involve only small wave vectors com-
pared tokF. But the last two terms are centered around the
wave vectors ±2kF so they are rapidly oscillating. For a spin-
rotation invariant Hamiltonian, the effective low energy de-
scription of a Luttinger liquid involves three independent
parameters: the velocitiesvc andvs of collective charge and
spin excitations, and a dimensionless constantK which de-
pends on the strength of electron-electron interactions and
controls the exponents entering the correlation functions.
Since transport properties are mostly affected by the value of
K,39 we shall not consider here the renormalizations ofvc
andvs away from their common valuevF for a noninteract-
ing system. Therefore, it is sufficient to consider the follow-
ing interaction:

Hint =
U0

2
E

−L/2

L/2

dxr0sxd2, s10d

wherer0sxd is the long wavelength part of the total density:

r0sxd = o
s=↑,↓

fCRs
+ sxdCRssxd + CLs

+ sxdCLssxdg.

HereL denotes the total length of the system. Later, we shall
assume periodic boundary conditions, and thatL encloses an
integer numberN of periodic cells, soL=Na. With this
choice of interaction, we have

vc = vFS1 +
2U0

p"vF
D1/2

,

vs = vF,

K = S1 +
2U0

p"vF
D−1/2

.

So K=1 for a noninteracting system,K.1 for attractive in-
teractions, andK,1 for repulsive interactions. For our pur-
pose, it is convenient to view this effective interaction as
deriving from anonlocalpotentialUsx−yd such that its Fou-

rier transformŨskd vanishes outside a finite window cen-

FIG. 2. Band structure for 1D wire of noninteracting electrons
with periodic impurities. BS is 2p periodic in k. A set of gaps
s−f+2pn,f+2pnd and sp−f+2pn,p+f+2pnd is present for

any value of theŜ matrix.
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tered aroundk=0 and whose width is smaller than 2kF. The

interaction strengthU0 is defined asŨsk=0d. With this nota-
tion, we have

Hint =
1

2
E

−L/2

L/2

dxE
−L/2

L/2

dyr0sxdUsx − ydr0syd. s11d

In this section, we are considering the combined effect of
impurity scattering and interactions. Renormalizations of the

effective scattering matrixS̃ are naturally detected via the
electron self-energySsk,k8 ,vd. But since our system exhib-
its only a discrete translation symmetry, we may only con-
clude thatk8−k should be an integer multiple of the basic
reciprocal lattice vector 2p /a. This self-energy is then a rela-
tively complicated object. More information on its real-space
structure for a single impurity may be found in Refs. 42 and
43. To analyze it in a simple way we shall compute the first
order correctionE1skd with respect toU0 to the single elec-
tron energyE0skd="2k2/ s2md. Here k stands for a single
particle level, close to the Fermi energy, and labelled by the
combination of a Bloch quasi-momentumk8 and a band in-
dex. This correctionE1skd is given by the sum of a Hartree
term and of an exchange term. In the case of an unpolarized
electron system, we have

E1skd =E
−L/2

L/2

dxE
−L/2

L/2

dy o
q,kF

ck
*sxdcq

*sydUsx − yd

3f2cqsydcksxd − cqsxdcksydg. s12d

For local potentials, the Hartree and the exchange contribu-
tions cancel each other, when the spins of the two electrons
involved are parallel. But as we have recalled before, our
two-body effective potential is in fact nonlocal, so we have
to analyze both terms in more detail. Our expression for
E1skd involves integrals of the form:

IUsf,gd =E
−L/2

L/2

dxE
−L/2

L/2

dyf*sxdUsx − ydgsyd

where fsxd andgsyd are Bloch functions satisfying

fsx + ad
fsxd

=
gsy + ad

gsyd
= eiu, 0 , u ø 2p.

Since U is short-ranged in spacesthough it is not a delta
functiond, we may take safely the thermodynamic limit

L→`. Writing fsxd=onf̃ne
is2pn+udx/a and an analogous series

for gsyd, we obtain

IUsf,gd = Lo
n

f̃ n
*ŨS2pn + u

a
Dg̃n . LU0 o

unu!kFa

f̃ n
* g̃n.

s13d

Let us first consider the Hartree term. Because we chose
single particle eigenstates of the Bloch form, the correspond-
ing local particle density is periodic with perioda. A little
elementary algebra shows that

ucksxdu2 =
1

Na

sinska+ cd ± sinsfdcosF2kSx −
a

2
DG

sinska+ cd ± sinsfdsinskad/skad
s14d

for 0,x,a. As expected, the amplitude of the local density
oscillation is stronger when the bare reflexion coefficient is
larger, or equivalently whenusinsfdu is larger. Thenth Fou-
rier amplitude of this local density is equalsfor nÞ0d to:

Ak

2Na
Ssinska− pnd

ka− pn
+

sinska+ pnd
ka+ pn

D ,

where the numerical coefficientAk is close to unity. As
shown in Eq.s13d above, we are interested in the case where
unu!kFa, and sincek is close tokF, this amplitude is small
by a factor 1/skFad. A similar conclusion holds for the Fou-
rier amplitudes ofuCqsxdu2 if we assume that the most im-
portant effects come from filled states whereq is close tokF.
Therefore, we do not expect strong renormalizations coming
from the Hartree term.

Let us now turn to the exchange term. The product
Cq

*sydCksyd is the sum of four oscillating terms proportional
to e±isk−qdy and e±isk+qdy. The last two terms are fast oscilla-
tions which will be filtered out by the nonlocal potential, as
in Eq. s13d. Keeping only the first two oscillations, we can
cast the exchange contribution toE1skd as follows:

E1skd = c
U0

a
skF8 + NFpd

−
U0

2pa
sin2 fE dq8

sinsk + cdsinfqsq8d + cg

3
sinfqsq8d − kg

qsq8d − k
. s15d

In this equation, we have replaced combinations such aska,
qa, by new dimensionless variablesk, q. The integral symbol
stands for a summation over all theNF completely filled
bands, including possibly a last partially filled band with a
dimensionless momentumkF8 such that 0økF8 ,p. For each
completely filled band, the integration variableq8 runs from
0 to p, andq in Eq. s15d is a function of the lattice momen-
tum q8 solution of the dispersion relations7d. For the last
partially filled bandsincommensurate cased, the q8 integral
runs from 0 tokF8. As already mentioned, we have assumed
that parameterssc ,fd are not depending on the incoming
energy. Note that contributions from the Hartree term will
modify only the numerical coefficientc whose precise value
is not important here.

C. Renormalization approach

Let us introduce the notationL0=pNF, which plays the
role of a large momentum cut-off. As in all schemes inspired
by Anderson’s “poor man’s scaling,” we shall assume it is
possible to construct a sequence of models where filled
bands are eliminated one after the other, starting from the
most remote from the Fermi level. When the firstn bands
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have been eliminated, the new value ofL is set equal to
L0−pn. At each step, we require that the quasiparticle en-
ergy fEtotskd=E0skd+E1skd;E0skd+U0E1skdg for k close to
the Fermi wave vector should remain unchanged. To com-
pensate for the reduction of the cut-off fromL0 to L, we

have to adjustŜ-matrix parametershc ,fj so they become
functions of running cutoffL. This is expressed by the fol-
lowing prescription:

Etotsc0,f0,kd = E0„csLd,fsLd,k… + U0E1„csLd,fsLd,k,L….

s16d

Since for U0=0, this condition implies E0sc0,f0,kd
=E0(csLd ,fsLd ,k), we see that in this casesc0,f0d
=(csLd ,fsLd) for any L, so we may write the following
Taylor series:

csL,U0,c0,f0,L0d ; c0 + U0c̄sL,c0,f0,L0d + OsU0
2d,

fsL,U0,c0,f0,L0d ; f0 + U0f̄sL,c0,f0,L0d + OsU0
2d.

We now try to keep band structures16d unchanged for anyk

E0sc0,f0,kd + U0E1sc0,f0,k,L0d

= E0„c0 + U0c̄sLd,f0 + U0f̄sLd,k…

+ U0E1„c0 + U0c̄sLd,f0 + U0f̄sLd,k,L….

Keeping the first order terms inU0 gives

U ]E0

]c
U

c0

c̄sLd + U ]E0

]f
U

f0

f̄sLd = E1sc0,f0,k,L0d

− E1sc0,f0,k,Ld. s17d

This is a nontrivial constraint, sinceu]E0/]cuc0
and

u]E0/]fuf0
depend onk but do not depend onL. On the

contrary,c̄ andf̄ depend onL but not onk. The possibility
to enforce this requirement is not obviousa priori, and when
it occurs, we may call our modelrenormalizablesat least to
this lowest orderd.

Let us now evaluate the right-hand side of this equation.
Suppose we integrate out just one band, thenL0−L=p,
which is assumed to be much smaller thanL. While com-
puting E1sc0,f0,k,L0d−E1sc0,f0,k,Ld in Eq. s15d, the in-
tegral involves only one band far from the Fermi level.
Therefore, we may further approximateqsq8d−k by −L. This
yields

E1sc0,f0,k,L0d − E1sc0,f0,k,Ld .
csL0 − Ld

a

+
1

L

1

2pa

sin2 f0

sinsk + c0dE0

p

dq8
sinfqsq8d − kg
sinfqsq8d + c0g

. s18d

From s7d the derivatives involved in the left-hand side of Eq.
s17d are

U ]E0

]c
U

f,k=const
< −

"vF

a
,

U ]E0

]f
U

c,k=const
<

"vF

a
tanf cotsk + cd.

We have linearized the bare dispersion relation:E0skd
="2k2/ s2ma2d<const+s"vF /adk. The notation “k=const”
means more precisely that the Bloch crystal momentumk8
and the band index have to be maintained constant while
varyingf or c. Introducing these expressions for the deriva-
tives and the results18d in Eq. s17d shows that indeed thek
dependencies on both sides can be made to match, which
expresses the renormalizability of our model to first order in
interaction strength. This fixes the form of the functions

c̄sLd and f̄sLd:

c̄sL,c0,L0d =
1

"vF
ScsL − L0d

−
sin2 f0

2p
ln

L

L0
E

0

p

dq8 cotfqsq8d + f0 + c0gD ,

f̄sL,f0,L0d = −
1

4p"vF
sins2f0dln

L

L0
.

Finally we construct the RGF equation:

]c

]L
=

U0

p"vF
Sc +

sin2 f

2p

1

L
E

0

p

dq8 cotfqsq8d + cgD ,

s19d

]f

] ln L
= −

U0

4p"vF
sin 2f. s20d

We see from Eq.s4d that the parameterc is a global phase in
the scattering matrix, which does not affect any physical
property of the system besides an overall shift of the single
particle spectrum. In particular, it does not generate any den-
sity oscillation. Moreover the associated RGF equation ex-
plicitly involves the running cut-offL, and the notion of
fixed point loses its meaning here.

Therefore, we now turn tofsLd, for which a simple RGF
equation arises, and which solution is given by

tanf = sL0/Lda tanf0, s21d

wherea=U0/ s2p"vFd. The corresponding transmission co-
efficient TsLd on a given impurity is

TsLd = cos2ffsLdg =
T0sL/L0d2a

R0 + T0sL/L0d2a , s22d

whereT0 is the transmission coefficient for a single impurity
in absence of interaction, andR0=1−T0. This result agrees
with the expression obtained for a single impurity41 in the

absence of spin backscattering, namely whenŨs2kFd=0.
Again, this approach assumes small electron-electron inter-
actions. In the case of strong interactions, whereK is no
longer close to 1, the bosonization method shows that for the
single impurity problem, a should be replaced by
s1−Kd /2.40 These two expressions for the exponent coincide
at smallU0 if terms of orderU0

2 or higher are neglected.
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For a commensurate systemskFa=pn, n integerd, the non-
interacting ground-state is already gapped, so we expect a
true insulator as well in the presence of repulsive interac-
tions. The difference between a traditional band insulator and
the one obtained here in the presence of interactions is the
nontrivial energy dependence of the impurity scattering ma-
trix and the corresponding behavior of the Landauer conduc-
tance, Eq.s22d. For an incommensurate system, we have a
partially filled band crossing the Fermi level in the absence
of interaction. Since our renormalization procedure assumed
a gradual elimination of fully occupied bands, it has to break
down after the last of those bands has been integrated out.
Treating the remaining partially occupied band in a heuristic
way, we simply assume that it corresponds to a strongly
renormalized Luttinger liquid, whose effective Fermi veloc-
ity vF

* is much reduced compared to the Fermi velocityvF
="kF /m of a uniform noninteracting gas with the same den-
sity. More precisely, we have, according to Eq.s8d:

vF
* . vF cosfS sinskF8ad,

wherefS.p /2 is the value off when the renormalization
procedure stops, which corresponds to

L0

L
=

kFa

p
.

Note that the denominator in Eq.s8d is then very close to
unity. Using Eq.s21d, we get

vF
* = vFS p

kFa
Da

cotf0 sinskF8ad. s23d

III. GENERALIZATION OF RG PROCEDURE TO A
LARGE CLASS OF LATTICES

In the previous section we introduced the main ideas we
used to obtain the RGF equation for a 1D lattice. We wish
now to show that renormalizability of this particular 1D sys-
tem is not a simple coincidence, but a general property of
any networksnot necessarily periodicd, provided the two fol-
lowing assumptions hold, namely all the links have the same
length, which has to be large compared to the Fermi wave-
length. Let us begin to follow the same procedure as in one
dimension. Suppose that we have a network of equal length

wires. Any junction point is described by an unitaryŜmatrix
which dimension is equal to the number of wires joining at
this node. For each link, stationary single electron states can
be written as the sum of two plane waves,

csxd = Aije
−ikx + Ajie

ikx, s24d

whereAij is the amplitude of the wave that propagates from
node j to nodei, if the x coordinate is oriented fromi to j .
Solving Schrödinger’s equation is equivalent to connect
these various amplitudes via node scattering matrices

Aij = o
m

s jdeikaSim
s jdAjm. s25d

Hereom
s jd means that we sum over first neighborsm of node

j . We notice that this has indeed the form of an eigenvalue

equation written in some basis. Following the idea of Kottos
and Smilansky46 we introduce a finite dimensional Hilbert
space associated to the lattice links. Each linki j is repre-
sented by two orthonormal vectorsui j l and u ji l. The dimen-
sion of this auxiliary Hilbert space is therefore 2NL sNL is the
total number of linksd. One may rewrite Eq.s25d in its vector
form

T̂uAskdl = e−ikauAskdl, s26d

where theT̂ operator incorporates information about the scat-
tering matrices of all nodes,

T̂ = o
j

o
i,m

s jdui j lSim
s jdk jmu ⇔ Sim

s jd = ki j uT̂u jml. s27d

As this operatorT̂ is unitary and defined in a finite dimen-

sional Hilbert space, it could be diagonalized asT̂ual
=e−iuaual, wherea takes 2NL values andua is real. So we
obtain families of eigenvalues for the single electron energy
E="2k2/2m,

aka,n = ua + 2pn ù 0. s28d

We emphasize that this periodic structure of the single par-
ticle spectrum is a special feature of constant link length
networks. A brief discussion of the more general case is
given in Appendix C. Because of this periodicity, and despite
the absence of any translational symmetry, we may still in-
troduce a notion of energy band for such lattices. More pre-
cisely, in this setting, an energy band corresponds to fixingn
and allowing for all possible values ofu. Note that this no-
tion of band does not exactly coincide with the more familiar
notion from the Bloch theory of translational invariant lat-
tices. For simple Bravais lattices, the number of states in
each Bloch band is the number of unit cells which is equal to
the number of sitesNS. If Z is the coordination number, we
have ZNS=2NL, so our generalized bands containZ usual
Bloch bands for a Bravais lattice. At this stage, we have so
far a band structure equation written in operator form. In

order to obtain renormalization flow for theŜ-matrix we
need to compute first the electron-electron contribution as in
Eq. s12d to the single electron energy and then the variation

in the unperturbed energy due to an arbitraryŜ-matrix

change]E0/]Ŝ.
As in one dimension, the main contribution to the elec-

tronic self-energy is given by the exchange term. Let us con-
sider a pair of single particle eigenstates labelled byk andq,
where these labels should in fact be viewed as pairssa ,nd
and sb ,md, m and n being integers according to the above
description of the spectrum. Statek is close to the Fermi
level, but stateq is far from it, at a distance corresponding to
the current energy cut-offL. Along a link i j , we denote by
fCk

*sxdCqsxdg0 the slowly varying component ofCk
*sxdCqsxd.

A simple computation shows that:
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1

L
E

i

j

ufCk
*sxdCqsxdg0u2 = uAijskdu2uAijsqdu2 + uAjiskdu2uAjisqdu2

+ fAji
* skdAijskdAjisqdAij

* sqd + H.c.g
sinsk − qdL

sk − qdL
. s29d

The first part summed over fully completed band does not
depend on energy:

o
qPBand

o
i,j

uAijskdu2uAijsqdu2 + uAjiskdu2uAjisqdu2

= o
qPBand

o
ki j l

uAijskdu2uAijsqdu2 = o
ki j l

ki j uklkkui j lki j u o
qPBand

uql

3kqui j l = o
ki j l

kkui j lki j ukl = kkukl = 1. s30d

We used the fact that bothuql and ui j l form complete basis
sets in our Hilbert space. The main expression to compute is
then

Iskd = o
qPBand

o
k jml

Ajm
* skdAmjskdAjmsqdAmj

* sqdsinsk − qda,

s31d

where the sum overq is just a single band sum, namelym is
fixed, and the sum is taken over the 2NL values ofb. The
power of this algebraic formalism is that such sum is readily
performed, without having to compute any integral. Indeed,
we have

Iskd = o
q

o
ki j l

kkui j lki j uqlsinfsk − qdagkqu ji lk ji ukl. s32d

As shown in Appendix C, we may assume that the eigenvec-
tors uql are normalized to unity in the auxiliary Hilbert space
attached to link amplitudes, provided the links have the same
length, much larger than the Fermi wavelength. Therefore,
we have the very useful completeness relation, that is

o
q

uqle−iqakqu = T̂. s33d

After some simple algebra, we may castIskd into the form

Iskd = eika i

a
kkuo

j
o
l,m

s jdul j lVlm
s jdk jmukl = eika i

a
kkuV̂ ukl,

s34d

where the single node operatorsV̂s jd are defined by

V̂s jd = F̂s jd − Ŝs jdF̂s jd†Ŝs jd

and the diagonal matrixF̂s jd by

Fii
s jd = − 1

2aSii
s jd.

We have introduced as before the dimensionless parameter
a=U0/ s2p"vFd.

To get the first order variation of the single electron en-
ergy under small changes in the node scattering matrix pa-
rameters we differentiate Eq.s26d:

sdT̂dukl + T̂udkl = − isdkdae−ikaukl + e−ikaudkl. s35d

Applying kku to this equation and usingkkuT̂=e−ikakku we ob-
tain

dk=
i

a
eikakkudT̂ukl

kkukl
. s36d

This allows us to calculate single electron energy variations

due to Ŝ-matrix changes. In the particular case of global
phase transformation, the corresponding infinitesimal form

reads:dT̂= iT̂dc. Clearly, the energy differential does not
depend on energy any more sincedk=−dc /a, so global
phase shifts simply induce a global translation on the energy
spectrum.

Following the same ideas as in 1D, we generalize the

RGF equation to anyŜ-matrix parametrization. Equation
s17d now becomes

]E0

]S
sŜ0,kddSsLd = E1sŜ0,k,L0d − E1sŜ0,k,Ld. s37d

The left-hand side of this equation is equal to"vFdk, where

dk is related to the small renormalization ofT̂ by Eq.s36d. To
evaluate right-hand side, as before, we integrate just over one
band of width 2p for the quantityqb,ma, i.e. dL=L−L0=
−2p,

"vFdk= E1sŜ0,k,L0d − E1sŜ0,k,Ld =
cU0sL0 − Ld

a

−
U0

a
o

L,qa,L0

o
k jml

Ajm
* skdAmjskdAjmsqdAmj

* sqd

3
sinsk − qda

sk − qda
= −

cU0dL

a
−

U0

a

1

L
S−

dL

2p
DIskd.

Constantc includes both the Hartree term and the part of
exchange term that does not depend onk, so we do not
precise its value since it renormalizes only the global phase

of the Ŝ-matrix.

Finally, we get the resultdT̂/dl=−V̂ that agrees com-
pletely with Lal, Rao, and Sen,32 obtained for a single node
connecting an arbitrary number of semi-infinite 1D wires. In
coordinate way of writing, it gives

dŜs jd

dl
= Ŝs jdF̂s jd†Ŝs jd − F̂s jd, s38d

where we just chose the usual cutoff parametrization:L
=L0e

−l.

IV. TWO-DIMENSIONAL SQUARE LATTICE

We would like to illustrate the result of the previous sec-
tion on one more example. This part could be interesting
from an experimental viewpoint, since present nanofabrica-
tion techniques are now available to prepare networks of
quantum wires with a very small number of transverse con-
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duction channels etched on a two-dimensional electron gas
with high mobility, as illustrated for instance in Ref. 14. Let
us now consider an infinite regular square lattice of perfect
Luttinger wires. These one-dimensional conductors are only
coupled at the lattice nodes which are described by a single

434 scattering matrixŜ. To keep a simple model, we shall
restrict ourselves to the case of a single conduction channel
in each wire, although the case of several channels would
clearly be of interest, both on the theoretical side, and with
respect to possible experimental realizations. As mentioned
in the Introduction, we shall not take into account any energy
dependence of the scattering matrix, although detailed stud-
ies of the Schrödinger equation for a cross of wires with a
finite width have exhibited a rich pattern of resonances.47,48

The main motivation for this simplified treatment is that in a
renormalization group picture, smooth energy dependencies
in the scattering matrix as a function ofE−EF correspond to
irrelevant operators, which should not alter drastically the
way interactions drive the system to its low-energy fixed
point. Labeling the four directions joining at a node as in Fig.
3, we shall consider a scattering matrix of the following
form:

Ŝ=1
r t i t' t'

ti r t' t'

t' t' r t i

t' t' ti r
2 s39d

which corresponds to the most general form obeying time
inversion and spacialD4 dihedral symmetry, in combination
with unitarity. The previous expressions involves three com-
plex parameters, but as shown in Appendix A, unitarity
leaves only three independent real variables. We have chosen
the following parametrization:

r = eicse2ifu + e2ifv − 2d/4,

ti = eicse2ifv + e2ifu + 2d/4, s40d

t' = eicse2ifv − e2ifud/4,

where fu,vP f0,pf and cP f0,2pf. Note that two lines in
the sfu,fvd plane are especially interesting:

fu = p/2 ⇒ t' = ti ssymmetric cased

fu = fv ⇒ t' = 0 s1D cased. s41d

A. Band structure

The derivation of the band structure is standard, so it is
outlined in Appendix B. This band structure is given by an
implicit equation:

xsk,k8d + ysk,k8d = b ;
2 cosfv

sinsfu − fvd
, s42d

where

xsk,k8d ;
sinska+ cd

cosfu cosskx8ad − cosska+ c + fud
, s43d

ysk,k8d ;
sinska+ cd

cosfu cossky8ad − cosska+ c + fud
. s44d

As usual, the energy of these states is given by the free
electron dispersionE0skd="2k2/ s2md. Here, k8 is the two-
dimensional lattice wave vector, such thatCsr +Rd
=expsik8 .RdCsr d for any r on the wire network and any
periodR of the square lattice.

As we found some interesting features in the band struc-
ture of noninteracting electrons in a two-dimensional square
grid we will describe it more precisely. Contrary to one di-
mension, there are values of the scattering matrix, for which
the single electron spectrum is no longer gapped, and these
are located in Fig. 4. More precisely, in the clear regions of
Fig. 4, the single particle spectrum is gapless. In the dark
regions, it is gapped, leading to an insulator if the electronic
density corresponds to filling aneven integernumber of
bands. Finally, in the dashed regions, we obtain an insulator
for an odd integernumber of bands.

We still have a 2p periodic structure inka, but the band-
structure consists of two types of foils: normal and abnormal.

FIG. 3. Two-dimensional periodic grid of electron liquids with
impurities. Each impurity could be represented by 3 complex pa-
rameters:r, reflection; ti, forward transmission;t', perpendicular
transmission coefficients.

FIG. 4. Phase diagram for a noninteracting electron wire square
grid. Contrary to the one-dimensional case, there are metallic states

at integer filling factors for some values of theŜ matrix. In these
regions of the phase diagram, the single electron spectrum is
gapless.
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Normal bands resemble an ordinary band of a tight-binding
model of square lattice crystalsa sort of deformed parabo-
loidd. Abnormal bands are so called for their strange curva-
ture. To get an idea of their form one could imagine a square
rubber foil, attach its four extremities and then put inside a
heavy cross. For a complete description, we give sections of
the band structure in several directions for three characteris-
tic values of the scattering matrix. Because of some impor-
tant symmetries, we may restrict the domain of variation of
hfu,fvj, and still get all the possible different physical pic-
tures:

s1d ksfu,fvd=ksfv ,fud,
s2d ksp−fv ,p−fud=−ksfu,fvd.
These may be easily seen from form II of the dispersion

relation, given in Appendix B. Both of them are reflection
symmetries. Given the band structure forkP f0,pg and using
the following symmetry:kskx8 ,ky8d+p=kskx8+p ,ky8+pd, we
easily expand it to the full intervalkP f0,2pg by replotting
the same band originating from pointM instead ofG ssee
Fig. 5d.

B. RGF equation for a two-dimensional grid

Following the same procedure as in the one-dimensional
case, we first calculate Hartree and exchange contributions to

single electron energy and then establish the equivalent of
Eq. s17d or Eq. s37d for two dimensions and finally get the
RGF equation. The main difference with the 1D case is that

we have now three real parameters for theŜ-matrix and
electron-electron interactions should be evaluated along two
perpendicular threads that form our grid. The condition to
satisfy now reads:

]E0

]c
c̄sLd +

]E0

]fu
f̄usLd +

]E0

]fv
f̄vsLd

= E1sŜ0,k8,L0d − E1sŜ0,k8,Ld. s45d

As was proven in the previous section all networks with
links of equal length are renormalizable, i.e., there is a set of

functions f̄u, f̄v, and c̄ depending only onL. Indeed the
decomposition of the rhs of Eq.s45d on a basis of three
functions depending onk8 is possible. The corresponding
renormalization group flow equations are

dfu

dl
=

a

8
fsin 2fv + 3 sin 2fu + sin 2sfv − fudg, s46d

dfv

dl
=

a

8
fsin 2fu + 3 sin 2fv + sin 2sfu − fvdg, s47d

where a=U0/ s2p"vFd. The only fixed points arefu,v
=0,p /2, among which there is only one attractor for
hfu,fvj=hp /2 ,p /2j. The global behavior of this flow is il-
lustrated in Fig. 6. These properties of the RGF for a single
node connecting four semi-infinite wires have already been
described by Lalet al.32 and Daset al.35 As for the one-
dimensional example of Sec. II above, the new feature asso-
ciated to a regular lattice is the presence of commensurability
effects. We have to stop the renormalization procedure when
all the completely filled bands have been eliminated. From
Fig. 5, we expect to obtain one or two partially filled bands
crossing the Fermi level. These bands are only very weakly

dispersive, since the effectiveŜ matrix for the nodes is then
very close to its value at the vanishing transmission fixed
point. Suppose now that this fixed point is approached from

FIG. 5. Three characteristic band structure pictures for different

values of theŜ matrix: sad Insulator, 0,fu,fv,p /2 sdark in Fig.
4d; sbd insulator, 0,fu,p /2 ,p /2,fv,p , ufu−fvu,p /2
sdashed line in Fig. 4d; scd conductor, 0,fu,p /2 ,p /2,fv
,p , ufu−fvu.p /2 sclear line in Fig. 4d. The band structure is 2p
periodic in k, and has four foils: two normal and two abnormal.
Some foils are described as “abnormal” because of their strange
curvature, revealed here by the flat part of these bands. Given the
energy interval 0,k,p one could obtain thep,k,2p interval
by exchangingG andM points.

FIG. 6. RGF for the 2D square grid of wire. The only attractor is
in the picture center forhfu,fvj=sp /2 ,p /2d.
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the dark regions of the phase diagram shown in Fig. 4. If the
filling factor corresponds to aneven integer, the Fermi level
lies in a gap of the renormalized band structure. Therefore,
we may eliminate the remaining pair of filled bands, and the
system is an insulator. Similarly, a true insulator is obtained
for an odd integer filling factor, in the case where the
sp /2 ,p /2d fixed point is approached from the dashed re-
gions in Fig. 4. Experimentally, one expects transitions be-
tween these commensurate insulators and strongly renormal-
ized “heavy electron” metals at generic filling factors if the
electronic density is controlled by a uniform external gate
voltage.

Another interesting feature of this geometry is the fact
that the flow may induce metal-insulator transitions for some
commensurate filling factors at afinite energy scale. Indeed,
for initial parameters lying in the clear regions of Fig. 4,
corresponding to a gapless single electron spectrum, Fig. 6
shows that the system always reaches either the dashed or
dark regions in a finite RG time. Experimentally, these RG
flows may be visualized by gradually lowering the tempera-
ture, since at least qualitatively, the energy scale set by tem-
perature plays the role of the moving cut-offL.

V. CONCLUSION

In this paper, we have studied a particular class of net-
works of Luttinger liquids, with nodes connected by links of
a constant length. In the limit of long links, compared to the
Fermi wavelength, we studied the evolution of the scattering
matrix at the nodes, as the typical energy scale for the occu-
pied states contributing to Friedel oscillations is getting
closer to the Fermi level. The corresponding renormalization
group flow turns to be identical to the one already found for
a single node coupled to several semi-infinite 1D Luttinger
liquids.32 This result is physically reasonable, since we have
considered the limit of long links. However, we emphasize
that these renormalization effects come from quasiparticle
scattering on Friedel oscillations induced by the nodes,
which are a rather complicated function of the lattice geom-
etry. For instance, even in the limit of very long links, the
amplitudesAij which determine the value of energy eigen-
functions along the links are obtained from a 2NL32NL ei-
genvalue problem whose solution has a strongly nonlocal
character.

The main difference between a regular lattice and a
simple node coupled to infinite wires is that in the former
case, we have to stop the renormalization procedure when
the last occupied band has been integrated out. So instead of
having completely disconnected wires in the low-energy
limit, we expect in general a strongly renormalized conduct-
ing system with an effective Fermi velocity much reduced in
comparison to a noninteracting system with the same density.
These effects should be visible as a power-law behavior of
the network conductance as a function of temperature. Insu-
lating ground states are expected when the electronic density
corresponds to filling some integer numbers of bands.

Of course, this work leaves many open questions. It
would be interesting to generalize the present renormaliza-
tion approach to lattices containing links with several differ-

ent lengths. In such situations, the spectrum no longer exhib-
its a simple periodic structure, and some signatures of
quantum chaos, already manifested in the single particle den-
sity of states,46 may also appear in the temperature depen-
dence of the conductivity of an interacting system. Another
open question is the influence of an external magnetic field,
which also drastically modifies the single-particle spectrum.
Finally, the limit of strong electron-electron interaction de-
serves further investigation, and in particular the possibility
to develop some new metal-insulator transitions for noninte-
ger but rational filling factors, generalizing the notion of a
Wigner crystal. Such insulating states would naturally be
pinned by the nodes of the lattice.
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APPENDIX A: PARAMETRIZATION OF THE Ŝ MATRIX

In this appendix we will show that time-inversion, spacial
D4 dihedral symmetry combined with unitarity imply a pa-
rameterization of scattering matrix in terms of three real vari-
ables. For a two-dimensional square lattice, the most general

form of the Ŝ matrix is given by a 434 matrix:

1
A8

B8

C8

D8
2 =1

rA tBA tCA tDA

tAB rB tCB tDB

tAC tBC rC tDC

tAD tBD tCD rD

21
A

B

C

D
2 , sA1d

where A, B, C, D are the coefficients of incoming plane
waves. Primed values denote coefficients of outgoing waves.
At this stage, one has 16 complex parameters for this

Ŝ-matrix.

Unitarity condition sŜ†Ŝ= Id combined with time-

inversion symmetrysŜ−1=Ŝ*d gives Ŝt=Ŝ snotice thatŜt is
the transposed matrix, not the conjugated. It leaves 10 com-
plex parameters. Using four reflections of two typess1d
A↔B, ands2d A↔C, B↔D that generate the dihedral sym-
metry groupD4 consequently reduces this number to three

complex variables. We obtain theŜ-matrix in the forms39d.
Unitarity allows finally to express the scattering matrix with
only 3 real parameters:

ur u2 + 2ut'u2 + utiu2 = 1,

rt'
* + r* t' + t'

* ti + ti
* t' = 0,

rt i
* + r* ti + 2ut'u2 = 0.

Subtracting the third equation from the first one allows us to
define a first real parameterc:

ur − tiu = 1 ⇒ r = ti − eic.

There remains two independent equations:
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2sutiu2 + ut'u2d = tie−ic + ti
*eic, sId

2st'
* ti + t'ti

*d = t'e−ic + t'
* eic, sII d

2uti + t'u2 = 2 Refsti + t'de−icg, sI − II d

2uti − t'u2 = 2 Refsti − t'de−icg . sI + II d.

Two more real parameters are needed to complete the param-
etrization:

ti − t' = cosfue
isfu+cd,

ti + t' = cosfve
isfv+cd.

Expressions of transmission and reflection coefficients as
functions of these three three real parameters are given in the
main text, see Eq.s40d. We remark on an interesting fact: in
the case of perfect transmissionsr =0d, only the separate
thread solutionsutiu=1,t'=0d is possible.

APPENDIX B: BAND STRUCTURE FOR A SQUARE
LATTICE OF WIRES

In this appendix we derive the band structure for a square
lattice of wires of noninteracting electrons. As in the one-
dimensional case, the wave function away from impurities
si.e., nodes hered could be written as combination of plane
waves:

cksxd = Ai
m,neikx + Bi

m,ne−ikx, sB1d

where i =hx,yj and the coefficientshAx
m,n,Ay

m,n,Bx
m,n,By

m,njm,n

are defined in Fig. 7. By definition of the scattering matrix:

1
Bx

m,n

Ax
m+1,n

Ay
m,n+1

By
m,n

2 = Ŝ1
Ax

m,n

Bx
m+1,n

By
m,n+1

Ay
m,n

2 =1
r t i t' t'

ti r t' t'

t' t' r t i

t' t' ti r
21

Ax
m,n

Bx
m+1,n

By
m,n+1

Ay
m,n

2 ,

sB2d

Bloch periodicity condition for the wave function implies

Ax
n,m = eiskx8−kdnaeiky8maAx

0,0,

Bx
n,m = eiskx8+kdnaeiky8maBx

0,0,

Ay
n,m = eisky8−kdmaeikx8naAy

0,0,

Ax
n,m = eisky8+kdmaeiky8naBy

0,0. sB3d

Using the last two expressions, we obtain the secular equa-
tion:

*
tieisk−kx8da − 1 re2ika t'eisk−kx8da t'eisky8−kx8+2kda

r tieiskx8+kda − 1 t' t'eisky8+kda

t'eisk−ky8da t'eiskx8−ky8+2kda tieisk−ky8da − 1 re2ika

t' t'eiskx8+kda r tieisky8+kda − 1
*

= 0. sB4d

Replacing scattering matrix elements by their parametriza-
tion s40d, we get the implicit band-structure equation given
in the main texts43d. Here we propose two more different
ways to write the same dispersion relation, where the com-
binations ka+c, kx8a and ky8a have been replaced, respec-
tively, by the simpler notationsk, kx8, andky8:

cossk + fudcossk + fvd + coskx8 cosky8 cosfu cosfv sId

= 1
2scoskx8 + cosky8d

3fcosfu cossk + fvd + cosfv cossk + fudg

cossk + fud − cosfu coskx8

cossk + fud − cosfu cosky8

= −
cossk + fvd − cosfv coskx8

cossk + fvd − cosfv cosky8
. sII d

The first form is useful to identify symmetries of band struc-
ture. The second form is useful to derive RGF equations
directly without using the formalism developed in Sec. III.
We remark that in the 1D casest'=0d, and in the 2D sym-
metric casest'= tid the band structure equations are the
same, namely, cosska+c+fd=cosf cossk8ad.

APPENDIX C: ANY LATTICE GENERALIZATION

In this part we will discuss particular points met in Sec.
III of this article. First of all we could obtain the dispersion
relation for any network, i.e., when the wires lengths are not
necessarily equal. In that case Eq.s25d is modified into

Aij = o
m

s jdeikLij /2Sim
s jdeikLjm/2Ajm. sC1d

We choose the origin of coordinates needed to define the
amplitudesAij at the centers of each link. This formula
means that the amplitude of the wave going from nodej to
nodei is the sum of amplitudes coming from all neighborsm
of node j , multiplied by phase factors expsikLjm/2d due to

FIG. 7. In the 2D case, each node is indexed by a pair of num-
bershm,nj. Incoming and outgoing plane waves are connected by
the 434 scattering matrix.
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propagation from the middle of linkk jml to the nodej , then
scattered on nodej with probability amplitudeSim

s jd and finally
reaching the middle of linkki j l with a new phase factor
expsikLij /2d. We will now write the same equation in vector
form. The expression will be more transparent and this per-
mits us to express the secular equation for energy eigenval-
uesk in a compact form. If we fix the energy of the system
then the stationary states are completely determined by 2NL
amplitudes, whereNL is the number of links. The factor 2
arises since each wave can propagate in two opposite direc-
tions on each link. So the set of amplitudeshAijj could be
presented as a vectoruAl in a 2NL-dimensional Hilbert space.
We choose the orthonormal basis associated with network
links kmnu i j l=dmidnj. Each link is represented by two basis
vectorui j l andu ji l, this orientation difference should be taken
into account in various summations over first neighbors. We

define the vectoruAl=oki j lAij ui j l and the length operatorL̂
=oki j lLij ui j lki j u. The vector form of Eq.sC1d reads

uAskdl = eikL̂/2T̂eikL̂/2uAskdl. sC2d

The possible values ofk are given by

detse−ikL̂ − T̂d = 0. sC3d

One remarks that the periodicity of the spectrums28d is lost
in the general case, unless there exists aDk such that

expsiDkL̂d=1. Let us be reminded that this periodicity of the
spectrum allowed us to evaluate the integralIskd in Eq. s31d:
the contribution of each band was the same and we replaced
the sum over any filled band just by sum over all the eigen-

vectors of operatorT̂.
The second point to be clarified is the spectral decompo-

sition oquqle−iqakqu=T̂. It holds only if uql vectors form an

orthonormal basis. Orthogonality is clear asuql is an eigen-
vector of a unitary operator,

kquT̂ukl = e−iqakqukl = e−ikakqukl. sC4d

Let us now evaluate the vector norm in theui j l basis:

kquql = o
ki j l

kqui j lki j uql = o
ki j l

uAijsqdu2. sC5d

But we know that the norm of wave functions24d in the
physical Hilbert space should be equal to unity.

E
network

ucsxdu2dx= 1 =ao
ki j l

SuAijsqdu2 + AijsqdAji
* sqd

sinskad
ka

D .

sC6d

So if we demandkquql=1 we are doing an approximation
neglecting the term proportional to sinskad /ka. This approxi-
mation is legitimate in our case, as we consider systems
where the typical number ef electrons along each link be-
tween two nodes is large. Clearly, it will break down for
links of the order of the Fermi wavelength. Supposing that
kquql=1 is equivalent to identifying the norm in thesinfinite
dimensionald physical Hilbert space, with the norm associ-
ated with the orthonormal basisui j l in the s2NL dimensionald
auxiliary Hilbert space. The fact that our equations are not
depending explicitly on the network scale parametera is
closely related to this approximation. So if one were to esti-
mate finite size corrections to the RGF equation, one should
take the physical normalization of theuql basis into account.
Such corrections would likely produce RGF equations where
the nodes on the lattice are no longer renormalized indepen-
dently of each other, by contrast to what we obtained in Sec.
III; see Eq.s38d.
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