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We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the
limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-
energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization
group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to
several semi-infinite one-dimensional wires. The main difference between the single node geometry and a
regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so
that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We
therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should
exhibit power-law suppression of the conductivity at low temperati&gsk-a) <kgT<Eg, wherea is the
lattice spacing an#ira> 1. At lower temperaturelkgT<Eg/(kza)], a regular network is generally a coherent
conductor, but with a much lower Fermi velocity than for a noninteracting electron gas. Some fully insulating
ground states are expected only for a discrete set of integer filling factors for the electronic system. A detailed
discussion of the scattering matrix flow and its implication for the low energy band structure is given on the
example of a square lattice.
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[. INTRODUCTION behaviot’ in qualitative (though not really quantitatiye

For the past two decades, transport properties of quantugreement with the%retlcal models based on the chiral Lut-
wires have received a lot of attentié.Besides metallic tnger liquid picture'® Measurements of shot noise associ-
systems, two-dimensional electron gases induced ifted t0 tunneling processes from one edge to another through
GaAs/AlGaAs heterostructures have displayed a rich variet{ quantum point contact have also prOVIded a convincing
of quantum effects such as Aharonov-Bohm resistance oscifiémonstration of the presence of fractionally charged quasi-
lations in a ring geometry? and persistent current$.Since  Particles |n|the FQHE phgéé. Another fgmlly of ont()e- |
the electronic transport mean free path in such artificiafiMensional quantum conductors are carbon nanotubes. In

nanostructures can be as large as several micrometers, m@@ ticular, single wall nanotubes have shown a strong reduc-
scattering processes for electronic quasiparticles occur at e (.)f the smgle_ partlcle dens_lty Of. states  at low
nodes between several conducting wires. Their influence haesnerg|e§,2’23compauble with the Luttinger liquid modef:*®

9 ' These two main lines of research just outlined can be

been extensively studied in the context of the breakdown Oﬁaturally combined and lead us to consider the subject of

the quantum Hall effect in narrow channels. Experiments,qqyorks of interconnected quantum wires, each of them be-
have revealed that the Hall resistance measured in a foyfy described as a Luttinger liquid. As a first step in this
probe geometry disappears at low magnetic fiéfi¥heo-  direction, several systems with nanotube crossings have been
retical studies have emphasized the role of quantum mesynthesized®2° On the theoretical side, many studies of
chanical resonances in the scattering amplitudes of electrongttinger liquids crossing at one node are now avail&bié#
at the junctions between the main channel and voltagéncluding extensions to more complex geometffe this
probes!? In experimental systems, confining potentials re-paper, we consider a regular network of Luttinger liquids. As
main smooth in the vicinity of such junctions, and this in- already mentioned, the main source of electron scattering in
duces a rather robust collimation mechanism for incomingoallistic structures arises from the nodes of the network. For
electronst:12 This semiclassical picture has been confirmednoninteracting electrons, these nodes are simply described by
by spectacular experiments involving junctions with variousa scattering matrix6-3 and the full band structurén the
shapes$? More recently, coherent Aharonov-Bohm oscilla- absence of disordecan be retrieved from the knowledge of
tions have been measured in ballistic arrays with the dicghis matrix. However, as first shown by Kane and Fisher for
lattice geometry* in agreement with the predictions of a single impurity in a Luttinger liquid, interaction effects
simple models for noninteracting electrofig® induce a variation of the dressed scattering matrix as a func-
In parallel to this mostly single electron physics, dramatiction of the incoming electron enerd$*° One way to inter-
electron-electron interaction effects have been demonstratetet this in physical terms is via the notion of Anderson’s
in transport measurements on various ballistic conductorsrthogonality catastrophe: in the limit of a tunnel barrier, an
with very few transverse conduction channels. For instanceglectron jumping across the barrier leaves a dipolar charged
tunneling into edges of a two-dimensional electronic dropleexcitation which is very far from any eigenstate of the inter-
in the fractional quantum hall effedQHE) regime has acting system. A rather complicated collective relaxation
shown current versus voltage curves with power lawprocess follows any single electron tunneling event. A re-
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markable prediction made in these works is a dramatic quali- This paper is organized as follows: In Sec. I, we consider
tative difference between repulsive and attractive interaca simpler problem, namely a one-dimensional chain of regu-
tions. In the former case, the effective impurity potentiallarly spaced impurities. We set up a renormalization group
grows as the typical energy becomes closer to the chemicahethod for weakly interacting electrons which is closely re-
potential. So a single impurity is sufficient to disconnect|ated to those developed in Refs. 32 and 41, but where the
completely an infinite Luttinger liquid af=0 for repulsive  periodicity of the system is explicitly taken into account.
interactions. Conversely, any static impurity becomes transsection 11l generalizes this approach to any lattice composed
parent in the low energy limit in the case of attractive inter- s inks of the same length, assumed to be large compared to

actions. the Fermi wavelength. We show explicitly that the scattering

b A\Rj :p%ﬁglz'g? ﬁ'cwrzg f&r F[Cezs 1e_;fectsh h\:;\s b(re]en p“t)hpotsel‘ii\atrices at each node of such lattices is renormalized exactly
y ’ an, a atvecv. 'hey nave shown hat i, e same way as for a single node connecting semi-infinite

renormalization of the transmission amplitude may be attrib- .~ 2541 . -
uted to scattering of an incoming electron on Friedel densit yvires**“This is the central result of the present work. As an

oscillations induced by the scatterer. From this picture, theilylustr.anon with p955|b|9 experimental (elevance,_Sec. .'V
have developed an alternative renormalization approac ,9n5|ders a two-dimensional square Iatpce of Luttinger I!q—
which is perturbative in the electron-electron interaction, but/ids- We show that although the evolution of the scattering
nonperturbative in the strength of the impurity potential. Thismatrix of the nodes as the typical energy scale is reduced
framework has been used later in referente§,and we Yields a rather trivial low-energy fixed point where all the
shall adopt a similar procedure here. Note that a third type ofinks become disconnected, some interesting qualitative
renormalization scheme, involving the full momentum de-changes in the quasiparticle band structure take place along
pendence of the electronic self-energy, has been impldhis renormalization group flow.

mented in a series of papefs?

. The main nov'el feature in regular arrays in pomparison 0 || ONE-DIMENSIONAL WIRE WITH A PERIODIC
simpler geometries as a few connected wires is the existence IMPURITY POTENTIAL
of commensurability effects between the Fermi wavelength
of electrons and the lattice period. In a noninteracting elec- The goal of this section is to adapt the simple renormal-
tron picture, we expect an energy gap in the spectrum wheization group procedure initiated in Refs. 32 and 41 to the
the average electron number in each unit cell of the lattice isase of a periodic potential. The main idea developed in
an integer. As we shall see later, the band structure for ¢hese works is to dress the bare scattering amplitude by a
two-dimensional network yields a gapped excitation speccorrection due to the interaction of an incoming electron with
trum whenever some integer numbers of bands are filled. Fdhe Friedel density oscillation induced by the impurity. This
interacting electrons, commensurability effects may also b@pproach treats the electron-electron interaction as the per-
understood by considering the pattern of Friedel density osturbation. Because the continuous spectrum of particle-hole
cillations. In a one-dimensional geometry, these oscillationgxcitations in the metallic wire exhibits a finite density of
exhibit a dominant wave vector equal tk2wherekg is the  states down to arbitrary low energy, the first order correction
Fermi wave vector for a noninteracting one-dimensional wireto the scattering amplitude diverges agkakg|d), wherek
with the same electronic density. Let us denoteeyhe is the incoming electron’s wave vector, adds the spacial
distance between two nodes. Friedel oscillations originatingange of the bare impurity potential. This type of infrared
from different nodes share the same global phasddf2s  divergence is very similar to those encountered in the Kondo
an integer times 2, which simply means that the average problem, and Yueet al. proposed to treat them with a renor-
number of electrons along a segment of lengtis integer.  malization group method inspired by Anderson’pobr
Therefore, in the case of repulsive interactions, we expect aman’s scaling approach® The idea is to integrate out gradu-
insulating ground state in the commensurate case, where tladly single particle-hole excitations which participate in the
Kane-Fisher mechanism will disconnect all the wires incom-Friedel oscillation, starting from those furthest from the
ing at the same node. For incommensurate fillings, we preFermi level. As the electron bandwidid is continuously
dict a strongly renormalized Fermi liquid, where the partially reduced, the bare impurity potential is renormalized so that
filled band crossing the Fermi level becomes much less dighe low energy physical properties of the system are kept
persive than for the original noninteracting band structureunchanged. The renormalization procedure stops at a low
We suggest that these effects should be in principle obsenenergy scale with is the larger scale among the thermal
able in networks of ballistic wires where the electronic den-broadenindgT, the bias voltage eV, or the incoming electron
sity could be controlled by an uniform gate potential. By energy7i|k—Kkg|ve.

changing the gate voltage, these systems are expected to un-As already stated in the Introduction, the presence of an
dergo a succession of metal-insulator transitions. The differarray of scattering centefsuch as nodes in a wire network
ence between an interacting system and a non-interactifgrings qualitatively new features. In the low energy regime,
one will be manifested by power-law dependences for thd-riedel oscillations originating from different centers are ex-
conductance as a function of temperature at fixed bias voltpected to interfere, so we cannot follow the renormalization
age, or as a function of at fixed T,3%4% provided bothkgT  flow obtained in Refs. 32 and 41 for a single scatterer down
and eV remain higher than an energy scalevhich is the to arbitrary low energies. Furthermore, commensuration ef-
renormalized band splitting in the incommensurate case, dects between the average electronic density and the super-
the single particle gap in the commensurate one. lattice structure play a crucial role. By contrast to the single
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impurity case, we expect an insulating ground-state only for

an integer average filling of each supercell. For incommen-

surate filling factors, we expect a crossover from the one- .
dimensional behavior following Kane and Fisher’s predic- A A
tions at high energy, towards a strongly renormalized —— _—

coherent conductor at low energy with finite conductance.
The formation of these conducting states in a regular array is
analogous to transmission resonances of a single wire in the
presence of a finite number of impuriti&sWhereas the
resonant energies form a discrete set in the latter case, they
accumulate along finite energy intervdihe Bloch energy B B ’
bands for an infinite regular array of impurities.

In a periodic system, the natural way to implement this
“poor man’s scalinj approach is to integrate out energy
bands one after the other, starting from those most remote
from the Fermi level. In the incommensurate case, the last
band, which crosses the Fermi level is partially filled, so it is
natural to stop the procedure after the last fully occupied
band has been integrated out. In any renormalization method,
we have to decide which low-energy quantities will be re- R
quired to remain constant as high energy modes are elimi- FIG. 1. Localized impurity potential may be represented bjan
nated. In the presence of a periodic potential, it is natural tgnatrix that connects amplitudes of incomit#y,B") and outgoing
prescribe that single quasiparticle energies should not chandg&’.B) plane waves outside the impurity.
under the renormalization group flolRGF).

processes involve virtual excitation of particle-hole pairs in
the vicinity of the Fermi level. A more complete approach

L f id . . bl | would consider the Taylor expansion 8fin powers ofk
et us first consider a noninteracting problem along an_kF, but all terms beyond the Oth order one are irrelevant

infinite ont(aj—ldlmHensKinaI'wwg with a periodic potential. The according to the classification of perturbations around a non-
corresponding Hamiltonian is interacting one-dimensional fermion system. At least for not

A. Band structure for a periodic array of point scatterers

. N-1 too large interactions, they are not supposed to change the
H= om? > V(x-na), (1)  qualitative picture of the system behavior. As usual, ®is
n=0

matrix is unitary. Assuming time reversal invariance of the
wherea denotes the spacial period of the potential, namelyHamiltonian impliest=t’ and if V(x) is an even function of
the distance between two succesive impurit) is a lo-  x, we have als@=r’. In this case, we may parametrisdy
calized potential, so for instance we impose tN4k)=0  two angles(0<¢<m/2, 0<y<27)
when|x| is larger than a rangd, d<a. The effect of each o

. . . o . ~ [ CcOS¢ =*ising
scatterer is described by a scattering magiSuppose first =d’ .
we have only one of them, centered at the origirD. Let us tising cose
consider scattering states with the enegyk) =#k*/(2m), For a periodic array of identical scatterers, eigenstates

k being positive. Away from the impurity, that is fx >d,  may be obtained as Bloch functions, namely we may impose
we may represent the corresponding wave function as a Sthe condition

perposition of plane-waves, see Fig. 1: -
A+ Be®  for x< —d P(x+a) = Xy x),
P(x) =

(4)

A+ B'e R for x> d. 2 wherek’ is chosen in the first Brillouin zong-#/a,w/a].

_ _ S On eachx interval [na+d,(n+1)a—d], we write the eigen-
Since Schrddinger’s equation is linear and of second Orstate with energyEy(k) as

der, we may express the outgoing amplituédésand B lin-

early as a function of the incoming onésand B’ P(X) = A+ Be kx,
A’ t r'\[A ~ A The above periodicity condition implies
B = ’ ! = r ] (3)
r t'/\B B A, = ei(k’—k)anAm

where{r,t,r’,t’} are two pairs of reflection and transmission

coefficients for left and right sides of the node. In principle, B = d(K'+kang

these four coefficients do depend on the energy of the par- " o

ticle or equivalently on its wave vectde In this paper, we Equation (3) can now be written for each impurity site,
shall neglect this variation, since the dominant contributionwhich gives
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(D) 2TE—¢ B. Switching on electron-electron interactions

In a Luttinger liquid, the effective interaction becomes
non-local in the low-energy limit. To show this, it is conve-
nient to decompose the electron creation operat}éx)
(whereo {7, |} denotes the spin component along a fixed
direction into a right moving partVs (x) and a left-moving
+7—0 part W, (x), whereW_ (¥ ) involves the Fourier modds
close tokg (—kg). With this decomposition, the local electron
densityp(x) is written as follows:

-+ T+

p(x) = 2 W)W, (x)
—TiA ¢ T/ o=1.1
= E [\I,E(T(X)\I,RO'(X) + WEU(X)WLU(X)]
FIG. 2. Band structure for 1D wire of noninteracting electrons =11
with periodic impurities. BS is 2 periodic in k. A set of gaps
(=¢p+27mn,p+27n) and (7— ¢+27n, m+ p+2mn) is present for + 2 [Vr, 0P ,(X) + P! (PR, ()]  (9)
o=T,1

any value of theS matrix.
The first two terms are smooth fields, meaning that their
A, 64D t r! A gkant) Fourier transforms involve only small wave vectors com-
( B g kain) ) :( )(B okane) ) (5)  pared toke. But the last two terms are centered around the
n n+1 wave vectors +R- so they are rapidly oscillating. For a spin-
ReplacingA,, andB,, by their expressions in terms 8§ and  rotation invariant Hamiltonian, the effective low energy de-
Bo, we get the following secular equation: scription of a Luttinger liquid involves three independent
parameters: the velocities andv, of collective charge and
spin excitations, and a dimensionless constanwhich de-
pends on the strength of electron-electron interactions and
controls the exponents entering the correlation functions.
which determines the dispersion relation implicitly Wiathe  Since transport properties are mostly affected by the value of
energy beind=y(k), the lattice momenturk’ behaving as an  K,3° we shall not consider here the renormalizationsy of
external parameter. Using a normalization condition on thenduvg away from their common valueg for a noninteract-

rot’

tei(k—k’)a_ 1 rI

reizka  pr(keka_ q =0 )

wave function, we could geftho,Bo) as functions ofk’,S).  ing system. Therefore, it is sufficient to consider the follow-
In the particular case of spacially even and time-reversald Interaction:
invariant potentials, we may use the above parametrization Us L2
for Sin Eq. (6), which yields Hine =~ f dxpo(X)?, (10)
-Li2
cogka+ ) =cos¢ cogk'a). (7

wherepy(x) is the long wavelength part of the total density:
For a given value of the lattice momentuth the possible

values ofka appear in two equally spaced families, with a po(X) = > [V R, (X)Wro(X) + W, (X)WL (X)].
period 27 for each of them. The allowed values ké+ o=1,

belong to the intervald-m+¢+2m,-¢+2m] and [¢ ol genotes the total length of the system. Later, we shall

+2mn, m-¢+27n], wheren is an integer. We recall thdt  ,55me periodic boundary conditions, and thahcloses an
should bepositive in order not to count each eigenstate integer numberN of periodic cells, soL=Na. With this

twice. The values oka+y lying in intervals[-¢+27n,¢  hoice of interaction, we have

+2mn], and[ 7= ¢+ 27N, 7+ P+ 27n] correspond then to en-

ergy gaps. These gaps are of course larger when the reflexion _ (1 + 2Ug )1/2

coefficient is larger, see Fig. 2. Ve UF mhog)
For a noninteracting electron system, the Fermi sea con-

tains an integer number of filled bands whenever the aver-

s X Us=Ug,
age electronic density corresponds exactly lectrons per
unit cell. For generic filling factors, the Fermi level crosses a oU. \-12
partially filled band for a lattice momentukf. The corre- K= (1 +—20 ) }
sponding Fermi group velocity is then UF
dk cos|sin(kra)| SoK=1 for a noninteracting syster,>1 for attractive in-
*(0) — Ry — F . ; . X
Vg = dek,(kF) = UE— —, (8)  teractions, andk <1 for repulsive interactions. For our pur-
V1 - co ¢ cos(kra) pose, it is convenient to view this effective interaction as
wherevg=fike/m is the Fermi velocity of a uniform nonin- deriving from anonlocalpotentialU(x-y) such that its Fou-
teracting gas with the same density. rier transformU(k) vanishes outside a finite window cen-
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tered arounck=0 and whose width is smaller thakg2 The ) _ a
interaction strengtiy, is defined adJ(k=0). With this nota- , 1 sinka+ ¢) £ sin(¢)cog 2K| x— 2
tion, we have [ = Na sin(ka+ ¢) £ sin(¢)sin(ka)/(ka)
1 (L2 L2 (14
Hin == dx J dypo(X)U(x - . 11
n ZI_L/Z -2 YrolU(x=Y)poly) @D for 0<x<a. As expected, the amplitude of the local density

) ) o ) oscillation is stronger when the bare reflexion coefficient is
. In §h|s section, we are consujermg the compmgd effect Oiarger, or equivalently whefsin(#)| is larger. Thenth Fou-
impurity scattering and interactions. Renormalizations of therier amplitude of this local density is equébr n+ 0) to:
effective scattering matriXs are naturally detected via the ) )
electron self-energ¥.(k,k’, w). But since our system exhib- Ay (sm(ka— ) + sin(ka+ Wn))
its only a discrete translation symmetry, we may only con- 2Na\ ka-mn ka+ mn
clude thatk’ —k should be an integer multiple of the basic
reciprocal lattice vector/a. This self-energy is then a rela- . : )
tively complicated obj_ect. More information on its real—spacefnwiwkn ;n Er?d(ls?zlfg(oi\,;eavgseeatrgklmfr:iessfrﬂI;Ethhdeecizs:mvgl]lere
structure for a s.|n_gle impurity may be found in Refs. 42 and a f;c’tor 1(k-a). A similar con?:,lusion holds for the Fou-
43. To analyze it in a simple way we shall compute the flrslby Fe-

order correctiorE; (k) with respect tdJ, to the single elec- '

where the numerical coefficient, is close to unity. As

rier amplitudes 011\Ifq(x)|2 if we assume that the most im-

tron energyEq(K)=h2k2/(2m). Here k stands for a single portant effects come from filled states thris'clo'se toke. _
particle level. close to the Fermi energy, and labelled by the €refore, we do not expect strong renormalizations coming

combination of a Bloch quasi-momentukh and a band in- rom the Hartree term.

dex. This correctiorkE; (k) is given by the sum of a Hartree *Let us now lurn fo the exchange term. The pr'oduct
term and of an exchange term. In the case of an unpolarize q(y)\Ifk(y) is the sum of four oscillating terms proportional
electron system, we have to et'k-9Y gnd et &Y, The last two terms are fast oscilla-

tions which will be filtered out by the nonlocal potential, as

L2 L2 in Eq. (13). Keeping only the first two oscillations, we can
E. (k) :f dxf dy 2 X (UX-Y) cast the exchange contribution Eg(k) as follows:
-2 J-l2 g<ke
U !
X[20(y) ) = () V)] (12) Ea(k) = 0~ 2(ke + Nem)

For local potentials, the Hartree and the exchange contribu- U dq’
tions cancel each other, when the spins of the two electrons - —2 sir? (;bf - - -
involved are parallel. But as we have recalled before, our 2ma sin(k+ ¢)sina(q’) + 4]
two-body effective potential is in fact nonlocal, so we have sinqg(q’) - k]
to analyze both terms in more detail. Our expression for —q(q’)—k . (15)

E,(k) involves integrals of the form:
In this equation, we have replaced combinations sudkeas
L/2 L2 ga, by new dimensionless variablksqg. The integral symbol
'U(f'g):J dxf dyf (U(x-y)g(y) stands for a summation over all tié- completely filled
bands, including possibly a last partially filled band with a
dimensionless momentui} such that G k< 7. For each
completely filled band, the integration varialgéruns from
f(x+a) gly+a) . 0 to 7, andq in Eq. (15) is a function of the lattice momen-
= =€’ 0<é@=<2m. tum g’ solution of the dispersion relatiof¥). For the last
Y 9(y) partially filled band(incommensurate cagethe g’ integral
Since U is short-ranged in spacghough it isnot a delta  runs from 0 tokr. As already mentioned, we have assumed
function), we may take safely the thermodynamic limit that parametersy, ¢) are not depending on the incoming
L — o0, Writing f(x) =2, f,2™#¥2 and an analogous series €Nergy. Note that contributions from the Hartree term will
for g(y), we obtain modify only the numerical coefficient whose precise value
is not important here.

-L/2 -L/2

wheref(x) andg(y) are Bloch functions satisfying

O =LUo E f 1Gn- C. Renormalization approach
[n|<kga

Iu(f,g):LEfnU( )
n
Let us introduce the notationg=mNg, which plays the
(13 : > T
role of a large momentum cut-off. As in all schemes inspired
Let us first consider the Hartree term. Because we chosBy Anderson’s poor man’s scaling we shall assume it is
single particle eigenstates of the Bloch form, the correspondpossible to construct a sequence of models where filled
ing local particle density is periodic with perical A little bands are eliminated one after the other, starting from the
elementary algebra shows that most remote from the Fermi level. When the firsbands
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have been eliminated, the new value &fis set equal to JEq hog

Ao— 7. At each step, we require that the quasiparticle en- s ~——tang cotk+ ¢).

ergy [Epi(K) =Eq(K) +E1(K) = Eq(k) +UyE1(K)] for k close to Prk=const

the Fermi wave vector should remain unchanged. To comWe have linearized the bare dispersion relatidgy(k)
pensate for the reduction of the cut-off frofy to A, we  =7%%k?/(2ma’) =constHfve/a)k. The notation k=const”

have to adjusgmatrix parametergy, ¢} so they become Means more precisely that the Bloch crystal momenkim
functions of running cutoffA. This is expressed by the fol- @nd the band index have to be maintained constant while

lowing prescription: varying ¢ or . Introducing these expressions for the deriva-
tives and the resultl8) in Eq. (17) shows that indeed thie

Etol( 0, 0, K) = Eo(f(A), (A),K) + UgE1((A), (A) K, A). dependencies on both sides can be made to match, which

(16) expresses the renormalizability of our model to first order in

interaction strength. This fixes the form of the functions

Since for Uy=0, this condition _|mpI|§s Eo(tg, do,K) WUA) and S(A):

=Eo((A),p(A),k), we see that in this caséiy, dg)

=((A), d(A)) for any A, so we may write the following

Taylor series: YA, o, No) = ﬁ—<C(A - Ao)

1
UF

= U 2 ifdo, A (7
(A, Uo, tho, o, Ao) = 1o + Ul A, tho, o, Ag) + O(Up), _ 3'27T¢0 In _f dq’ cofq(q’) + o+ %J) ,
0J0
B(A,Uo, g, b0, Ao) = o+ Ug(A, g, o, Ag) + O(U7). . N
We now try to keep band structu(®&6) unchanged for ank E(A,¢O,AO) =- - sin(2¢p)In v
Uk 0
Eoltho, b + Uoil(%’ ok, o) Finally we construct the RGF equation:
= Eo(ho + Ug(A), o + Ugp(A),K) 9 U Sitb1l (™
— _ —"[’:—0( + ¢—J do’ cot[q(q’)w]),
+Uo&1 (o + Ugih(A), o + Ugh(A) K, A). oA mhug 2m Ao
Keeping the first order terms id, gives (19
JEq| — JEq| — ) Up .
— AN+ — A) = E1(g, o,k A =- 20. 2
0 %lﬂ( ) o0 %(ﬁ( ) = E1(tho, o, K, Ao) TnA " dmfion sin 2¢ (20)
= E1(o, o, K, A). 17 We see from Eq(4) that the parametef is a global phase in

. . ) ) the scattering matrix, which does not affect any physical
This is a nontrivial constraint, sincedEq/ 3, and property of the system besides an overall shift of the single
JEql |4, depend ork but do not depend om. On the  particle spectrum. In particular, it does not generate any den-
contrary,» and ¢ depend om\ but not onk. The possibility  sity oscillation. Moreover the associated RGF equation ex-
to enforce this requirement is not obvicaipriori, and when  plicitly involves the running cut-offA, and the notion of

it occurs, we may call our modetnormalizable(at least to ~ fixed point loses its meaning here.

this lowest ordex: Therefore, we now turn tgp(A), for which a simple RGF
Let us now evaluate the right-hand side of this equationequation arises, and which solution is given by
Suppose we integrate out just one band, thep A=, tand = (Ag/A)® tan o, (21)

which is assumed to be much smaller thanWhile com-
puting £1(g, do. K, Ag) —E1(ho, o, K, A) in Eq. (15), the in-  where a=Uy/(27hvg). The corresponding transmission co-
tegral involves only one band far from the Fermi level. efficient T(A) on a given impurity is

Therefore, we may further approximaiéy’) —k by —A. This

i To(AIA)?®
ields T(A) = coF[ p(A)] = — 22 22
y (W)= cosTpA]= o2 (22
Ag—A
Eq1(thg, o, K, Ag) — E1(tho, Do K, A) = C(Ofa) whereT is the transmission coefficient for a single impurity

in absence of interaction, arRy=1-T,. This result agrees
11 sifgy [T ~sinq(q’) - k] with the expression obtained for a single impufityn the
+Xﬁlsin(k+ o) Jo da sinfa(q’) + ¢l (18 apsence of spin backscattering, namely whé(®@kg)=0.

Again, this approach assumes small electron-electron inter-
From (7) the derivatives involved in the left-hand side of Eq. actions. In the case of strong interactions, whirés no

(17) are longer close to 1, the bosonization method shows that for the

JE 5 single impurity problem, @ should be replaced by
7=0 ~— ﬁ, (1-K)/2.4° These two expressions for the exponent coincide
I | 4 k=const a at smallU, if terms of orderU3 or higher are neglected.
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For a commensurate systdkra=mn, n integey, the non-  equation written in some basis. Following the idea of Kottos
interacting ground-state is already gapped, so we expect @and Smilansk§f we introduce a finite dimensional Hilbert
true insulator as well in the presence of repulsive interacspace associated to the lattice links. Each links repre-
tions. The difference between a traditional band insulator andented by two orthonormal vectolig) and |ji). The dimen-
the one obtained here in the presence of interactions is th&on of this auxiliary Hilbert space is thereforbl2(N, is the
nontrivial energy dependence of the impurity scattering matotal number of links One may rewrite Eq25) in its vector
trix and the corresponding behavior of the Landauer conducform
tance, Eq.22). For an incommensurate system, we have a
partially filled band crossing the Fermi level in the absence A _ ika
of interaction. Since our renormalization procedure assumed TIAK) = e A(K)), (26)

a gradual elimination of fully occupied bands, it has to break

down after the last of those bands has been integrated Oyfhere theT operator incorporates information about the scat-
Treating the remaining partially occupied band in a heunsthering matrices of all nodes,

way, we simply assume that it corresponds to a strongly

renormalized Luttinger liquid, whose effective Fermi veloc- R ' . . R

ity vy is much reduced compared to the Fermi velogity T=2 > Wijysijm| = gL =(j[Tjm). (27
=hke/m of a uniform noninteracting gas with the same den- joim

sity. More precisely, we have, according to E§):

U*F ~ vp coS s sin(kla), As this operatoﬁ is unitary and defined in a finite Qimen-
sional Hilbert space, it could be diagonalized )
=¢e '%|a), wherea takes N, values andd, is real. So we

obtain families of eigenvalues for the single electron energy
E=#%%k?/2m,

where ¢ps= /2 is the value of¢p when the renormalization
procedure stops, which corresponds to

Ag_kea
A
. . . ak,,=6,+2mn=0. (298
Note that the denominator in E¢8) is then very close to '

unity. Using Eq.(21), we get . . - .
y 9 Ea.21) g We emphasize that this periodic structure of the single par-

- m L ticle spectrum is a special feature of constant link length
VFTUR\ ka cot o sin(kga). (23 nhetworks. A brief discussion of the more general case is
given in Appendix C. Because of this periodicity, and despite
the absence of any translational symmetry, we may still in-
troduce a notion of energy band for such lattices. More pre-
cisely, in this setting, an energy band corresponds to firing

In the previous section we introduced the main ideas weind allowing for all possible values @ Note that this no-
used to obtain the RGF equation for a 1D lattice. We Wishtion of band does not exactly coincide with the more familiar
now to show that renorma"zabi”ty of this particu'ar 1D Sys- notion from the Bloch theory of translational invariant lat-
tem is not a simple coincidence, but a general property ofices. For simple Bravais lattices, the number of states in
any network(not necessar"y periodjpprovided the two fol- each Bloch band is the number of unit cells which is equal to
lowing assumptions hold, namely all the links have the saméhe number of sitefls. If Z is the coordination number, we
length, which has to be large compared to the Fermi wavebave ZNs=2N,, so our generalized bands contafnusual
length. Let us begin to follow the same procedure as in on&loch bands for a Bravais lattice. At this stage, we have so
dimension. Suppose that we have a network of equal lengtfr @ band structure equation written in operator form. In

wires. Any junction point is described by an unitsynatrix ~ Order to obtain renormalization flow for th&matrix we
which dimension is equal to the number of wires joining atheed to compute first the electron-electron contribution as in
this node. For each link, stationary single electron states cald- (12) to the single electron energy and then the variation
be written as the sum of two plane waves, in the unperturbed energy due to an arbitré@ymatrix
%) = A ek A gkx 24 changg&EO/ﬁS_ _ ' o
v =A; I 249 As in one dimension, the main contribution to the elec-

whereAj; is the amplitude of the wave that propagates fromtronic self-energy is given by the exchange term. Let us con-
nodej to nodei, if the x coordinate is oriented fromto j.  sider a pair of single particle eigenstates labelleklayndq,
Solving Schrédinger’'s equation is equivalent to connectwhere these labels should in fact be viewed as pairs)

IIl. GENERALIZATION OF RG PROCEDURE TO A
LARGE CLASS OF LATTICES

these various amplitudes via node scattering matrices and (8,m), m and n being integers according to the above
S description of the spectrum. Stakeis close to the Fermi
=S ()akag) - . . :
Ajj = > Ve aS1<m'°‘jm- (25) level, but state is far from it, at a distance corresponding to
m

_ the current energy cut-ofh. Along a linkij, we denote by
Here= means that we sum over first neighbanof node  [W(X)W(x)]o the slowly varying component oF, (x) W ().
j. We notice that this has indeed the form of an eigenvalué\ simple computation shows that:
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1 J * [ —|ka —ika
L[ Iwi0wy0162= 4,001 @I + Ay KA @ @D+ Tielo =~ i(cgae ™4+ €79k, (39

' Applying (K| to this equation and using|T=e"*¥(k| we ob-

. sin(k - g)L tain
+[A (A (WA (@A (0) + H.c ]—)L (29
Ika<|<|0|T|k>
The first part summed over fully completed band does not dk= ae KK (36)
depend on energy:
) ) ) ) This allows us to calculate single electron energy variations
2 E A (1A (@] + A5 ([ Ay ()] due to Smatrix changes. In the particular case of global

Band i, . K P .
ae J phase transformation, the corresponding infinitesimal form

> DA RPA @ =X G kKl > oy reads:dT=iTdy. Clearly, the energy differential does not

qeBand (ij) g geBand depend on energy any more sind&=-d¢/a, so global
s (qif) = S (Kfij i K = (kK = 1. (30) phase shifts simply induce a global translation on the energy
s spectrum.

Following the same ideas as in 1D, we generalize the

RGF equation to an)Smatrlx parametrization. Equation
517) now becomes

We used the fact that botla) and|ij) form complete basis
sets in our Hilbert space. The main expression to compute i
then

K= 2 2 AnALKARLDA(@sink - ga,

geBand(jm)

G0N =BGk A - E& k). (37)

(31) The left-hand side of this equation is equalite-dk, where

dkis related to the small renormalizationi')by Eq.(36). To

where the sum ovey is just a single band sum, namatyis ; . . )
. . evaluate right-hand side, as before, we integrate just over one
fixed, and the sum is taken over th&l2values of 3. The band of width 2r for the quantityqa, i.e. dA=A—-Ag=

power of this algebraic formalism is that such sum is readily”_
performed, without having to compute any integral. Indeed,

we have A - Ug(Ag— A
fpdk= Ex(& kAo - Ex(§k,0) = 2B~ A)
1(k) =2 2% (Klij )ij [aysinl (k= a)al(aji)ji[k).  (32)
q (i U *
. . . =2 2 2 ARARRAR@AL Q)

As shown in Appendix C, we may assume that the eigenvec- & A<ga<Ag (jm)
tors|q) are normalized to unity in the auxiliary Hilbert space _
attached to link amplitudes, provided the links have the same X sin(k q)a CUOdA - i&(_ %>I(k).
length, much larger than the Fermi wavelength. Therefore, (k-ga a aA\ 2m

we have the very useful completeness relation, that is Constantc includes both the Hartree term and the part of

_ exchange term that does not depend lkprso we do not
> e *q=T. (33 precise its value since it renormalizes only the global phase

of the S-matrix.

Finally, we get the resultT/dI=-V that agrees com-
pletely with Lal, Rao, and Seff,obtained for a single node

After some simple algebra, we may c&dt) into the form

i o i
1(k) = €*a—(k| > >, DIjHViD(m|k) = e<a—(Kk|V k), connecting an arbitrary number of semi-infinite 1D wires. In
@ jim @ coordinate way of writing, it gives
(34 4
» SV _ Sipirtei - Bo)
where the single node operatdrd are defined by di SPRDISY -, (38)
vi) = g0 - SDEOTED where we just chose the usual cutoff parametrizatian:
:Aoe_l.

and the diagonal matrig?) by

I:i(ij) =" %aiij). IV. TWO-DIMENSIONAL SQUARE LATTICE

We have introduced as before the dimensionless parameter We would like to illustrate the result of the previous sec-
a=Uy/ (27hvg). tion on one more example. This part could be interesting
To get the first order variation of the single electron en-from an experimental viewpoint, since present nanofabrica-
ergy under small changes in the node scattering matrix paion techniques are now available to prepare networks of
rameters we differentiate E¢R6): quantum wires with a very small number of transverse con-
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AO,

Metal

7
__Insulator |

/ ator
%

FIG. 3. Two-dimensional periodic grid of electron liquids with
impurities. Each impurity could be represented by 3 complex pa-
rametersr, reflection;t,, forward transmissiont,, perpendicular
transmission coefficients.

Vo

duction channels etched on a two-dimensional electron gas FIG. 4. Phase diagram for a noninteracting electron wire square
with high mobility, as illustrated for instance in Ref. 14. Let grid. Contrary to the one-dimensional case, there are metallic states
us now consider an infinite regular square lattice of perfectt integer filling factors for some values of t&ematrix. In these
Luttinger wires. These one-dimensional conductors are onlyegions of the phase diagram, the single electron spectrum is
coupled at the lattice nodes which are described by a singlgapless.

4 X 4 scattering matrdS. To keep a simple model, we shall
restrict ourselves to the case of a single conduction channel du=¢,01t, =0 (1D case. (41
in each wire, although the case of several channels would
clearly be of interest, both on the theoretical side, and with
respect to possible experimental realizations. As mentioned
in the Introduction, we shall not take into account any energy
dependence of the scattering matrix, although detailed stud- The derivation of the band structure is standard, so it is
ies of the Schrodinger equation for a cross of wires with aoutlined in Appendix B. This band structure is given by an
finite width have exhibited a rich pattern of resonarfdeé$. implicit equation:
The main motivation for this simplified treatment is that in a

A. Band structure

renormalization group picture, smooth energy dependencies x(k k') +y(k k') = B = _Zcﬂy (42)
in the scattering matrix as a function Bf E¢ correspond to sin(¢, = ¢,)
irrelevant operators, which should not alter drastically th here
way interactions drive the system to its low-energy fixed
point. Labeling the four directions joining at a node as in Fig. (kK') sin(ka+ i) 43
3, we shall consider a scattering matrix of the following KKK = osd cogk'a) — codkat U+ b))’
> ¢, coska) - cogkat g+ )
rot t,t sin(ka+
oty ykk') = ,n( ¥ 4
o tor ot ot (39 CoSd, coe(kya)—cos{ka+ U+ )
Lt ry As usual, the energy of these states is given by the free
t,ot,t o electron dispersiorEy(k) =A2k?/(2m). Here,k’ is the two-

which corresponds to the most general form obeying timeﬂlmensmnal lattice  wave vector, such thak(r+R)

. .
inversion and spacidD, dihedral symmetry, in combination —e>_<[:(|k -R)W(r) for any ron the wire network and any
with unitarity. The previous expressions involves three comP€rodR of the square lattice. ,

plex parameters, but as shown in Appendix A, unitarity As we found some interesting features in the band struc-

leaves only three independent real variables. We have chos&i€ Of noninteracting electrons in a two-dimensional square
the following parametrization: grid we will describe it more precisely. Contrary to one di-

mension, there are values of the scattering matrix, for which

r=e¥e?n+e’% -2)4, the single electron spectrum is no longer gapped, and these
o _ are located in Fig. 4. More precisely, in the clear regions of
ty= ¥ +e? % +2)/4, (400 Fig. 4, the single particle spectrum is gapless. In the dark
S . regions, it is gapped, leading to an insulator if the electronic
t, =¥ -e? )4, density corresponds to filing apven integemumber of

bands. Finally, in the dashed regions, we obtain an insulator
for anodd integemumber of bands.

We still have a 2r periodic structure irka, but the band-
¢y=7ml20 t, =t, (Symmetric case structure consists of two types of foils: normal and abnormal.

where ¢, , € [0, 7] and ¢ e[0,2#]. Note that two lines in
the (¢, @,) plane are especially interesting:
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a) s
\ 4 /
,1:_2¢v *
F~ 0, ——t— 2
F—20,
r X M r
b)
)
FIG. 6. RGF for the 2D square grid of wire. The only attractor is
in the picture center fofe,, ¢,}=(7/2,7/2).
single electron energy and then establish the equivalent of
Eq. (17) or Eq. (37) for two dimensions and finally get the
RGF equation. The main difference with the 1D case is that

- _ ) we have now three real parameters for @®enatrix and
FIG. 5. Trjree characteristic band structure pictures for different, | -tron-electron interactions should be evaluated along two
values of theS matrix: (&) Insulator, 0< ¢, ¢, < /2 (dark in Fig.  perpendicular threads that form our grid. The condition to
4); (b) insulator, O<¢p,<m/2,72<p,<,|dy—d,| <2 satisfy now reads:
(dashed line in Fig. # (c) conductor, K ¢ ,<m/2,7/2< ¢,

<r,|¢py— b,|> /2 (clear line in Fig. 4. The band structure is/2 JE— = JEq—-

periodic ink, and has four foils: two normal and two abnormal. C;_,p"[’(A) * ?%(ﬁ“(A) * ?%QSU(A)

Some foils are described as “abnormal” because of their strange . ~

curvature, revealed here by the flat part of these bands. Given the =&1(S),k" Ag) = E4(S, k", A). (45)
energy interval 8Zk< 7 one could obtain ther<k< 2 interval ) ) ) )
by exchangind” andM points. As was proven in the previous section all networks with

links of equal length are renormalizable, i.e., there is a set of

Normal bands resemble an ordinary band of a tight-bindindunctions ¢, ¢,, and ¢ depending only om\. Indeed the
model of square lattice crystgh sort of deformed parabo- decomposition of the rhs of Eq45) on a basis of three
loid). Abnormal bands are so called for their strange curvafunctions depending oi’ is possible. The corresponding
ture. To get an idea of their form one could imagine a squaréenormalization group flow equations are

rubber foil, attach its four extremities and then put inside a de, «. . _ _

heavy cross. For a complete description, we give sections of T g[Sln 2¢, + 3 sin 2p,+sin A, — dy)], (46)
the band structure in several directions for three characteris-

tic values of the scattering matrix. Because of some impor-

tant symmetries, we may restrict the domain of variation of dé, = C—Y[Sin 2¢,+3sin 2p, +sin Ady - ¢,)], (47
{&,, ¢,}, and still get all the possible different physical pic- dl 8
tures: ~ where a=Uy/(2mhvg). The only fixed points ared,,
(1) k(y, ¢y)=k(y, d0), =0,7/2, among which there is only one attractor for
(2) k(= m= ) =—k( by, P,). {¢y, d,}={ml2,7/2}. The global behavior of this flow is il-

These may be easily seen from form Il of the dispersionystrated in Fig. 6. These properties of the RGF for a single
relation, given in Appendix B. Both of them are reflection no4e connecting four semi-infinite wires have already been
symmetries. Given the band structure kaz [0, 7] and using  yescribed by Lalet al3® and Daset al3 As for the one-
the following symmetry:k(k}, ki) + m=k(ki+m,ki+m), we  dimensional example of Sec. Il above, the new feature asso-
easily expand it to the full interval e [0, 27] by replotting  ciated to a regular lattice is the presence of commensurability
the same band originating from poiM instead ofl" (see effects. We have to stop the renormalization procedure when
Fig. 5). all the completely filled bands have been eliminated. From
Fig. 5, we expect to obtain one or two partially filled bands
crossing the Fermi level. These bands are only very weakly
dispersive, since the effecti&matrix for the nodes is then

Following the same procedure as in the one-dimensionalery close to its value at the vanishing transmission fixed
case, we first calculate Hartree and exchange contributions faoint. Suppose now that this fixed point is approached from

B. RGF equation for a two-dimensional grid
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the dark regions of the phase diagram shown in Fig. 4. If theent lengths. In such situations, the spectrum no longer exhib-
filling factor corresponds to aeven integerthe Fermi level its a simple periodic structure, and some signatures of
lies in a gap of the renormalized band structure. Thereforequantum chaos, already manifested in the single particle den-
we may eliminate the remaining pair of filled bands, and thesity of states’® may also appear in the temperature depen-
system is an insulator. Similarly, a true insulator is obtaineddence of the conductivity of an interacting system. Another
for an odd integerfilling factor, in the case where the open question is the influence of an external magnetic field,
(wl2,7/2) fixed point is approached from the dashed re-which also drastically modifies the single-particle spectrum.
gions in Fig. 4. Experimentally, one expects transitions beFinally, the limit of strong electron-electron interaction de-
tween these commensurate insulators and strongly renormaderves further investigation, and in particular the possibility
ized “heavy electron” metals at generic filling factors if the to develop some new metal-insulator transitions for noninte-
electronic density is controlled by a uniform external gateger but rational filling factors, generalizing the notion of a
voltage. Wigner crystal. Such insulating states would naturally be
Another interesting feature of this geometry is the factpinned by the nodes of the lattice.
that the flow may induce metal-insulator transitions for some
commensurate filling factors atfaite energy scale. Indeed, ACKNOWLEDGMENTS
for initial parameters lying in the clear regions of Fig. 4,
corresponding to a gapless single electron spectrum, Fig. 6 We would like to thank J. Dufouleur, G. Faini, D. Mailly,
shows that the system always reaches either the dashed ©r Naud, and J. Vidal for interesting discussions on various
dark regions in a finite RG time. Experimentally, these RGaspects of conducting wire networks.
flows may be visualized by gradually lowering the tempera-
ture, since at least qualitatively, thg energy scale set by tem-AppENDIX A: PARAMETRIZATION OF THE S MATRIX
perature plays the role of the moving cut-off
In this appendix we will show that time-inversion, spacial
D, dihedral symmetry combined with unitarity imply a pa-
V. CONCLUSION rameterization of scattering matrix in terms of three real vari-
In this paper, we have studied a particular class of net@bles. For a two-dimensional square lattice, the most general
works of Luttinger liquids, with nodes connected by links of form of the S matrix is given by a &« 4 matrix:
a constant length. In the limit of long links, compared to the

!
Fermi wavelength, we studied the evolution of the scattering A o tea fca foa) [A
matrix at the nodes, as the typical energy scale for the occu- B"| [tae s tce tog || B (A1)
pied states contributing to Friedel oscillations is getting c’ tac tec e toe cl

closer to the Fermi level. The corresponding renormalization
group flow turns to be identical to the one already found for
a single node coupled to several semi-infinite 1D Luttingerwhere A, B, C, D are the coefficients of incoming plane
liquids 32 This result is physically reasonable, since we havewaves. Primed values denote coefficients of outgoing waves.
considered the limit of long links. However, we emphasizeAt this stage, one has 16 complex parameters for this
that these renormalization effects come from quasiparticlé matrix.

scattering on Friedel oscillations induced by the nodes, o . cao : . .
which are a rather complicated function of the lattice geom- Unitarity ~ condition (S'S=I) combined with ~time-
etry. For instance, even in the limit of very long links, the inversion symmetry(S=S) gives S=S (notice thatS' is
amplitudesA;; which determine the value of energy eigen- the transposed matrix, not the conjugate leaves 10 com-

D’ tap tep tep o D

functions along the links are obtained from B, 2 2N, ei-  plex parameters. Using four reflections of two typés
genvalue problem whose solution has a strongly nonlocaf« B, and(2) A~ C, B« D that generate the dihedral sym-
character. metry groupD, consequently reduces this number to three

The main difference between a regular lattice and aomplex variables. We obtain tf&matrix in the form(39).
simple node coupled to infinite wires is that in the former Unitarity allows finally to express the scattering matrix with
case, we have to stop the renormalization procedure whepnly 3 real parameters:
the last occupied band has been integrated out. So instead of

having completely disconnected wires in the low-energy r?+ 2t |2+ [y[7=1
limit, we expect in general a strongly renormalized conduct-

ing system with an effective Fermi velocity much reduced in ) +r't + L+t =0,
comparison to a noninteracting system with the same density.

These effects should be visible as a power-law behavior of rt, +r't + 2/t [2=0.

the network conductance as a function of temperature. Insu- _ . _ .
lating ground states are expected when the electronic densiubtracting the third equation from the first one allows us to
corresponds to filling some integer numbers of bands. efine a first real parameter
Of course, this work leaves many open questions. It _ _ iy
. . . . |r_t”|—1[|r—tu_el
would be interesting to generalize the present renormaliza-
tion approach to lattices containing links with several differ-There remains two independent equations:
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{m,n+1}

{m,n+1)
i B y
{m+1,n}
A,

g = —» g
1® $ * -
- {mn) (m+Ln)

B, B,

{m,n-1}

FIG. 7. In the 2D case, each node is indexed by a pair of num-
bers{m,n}. Incoming and outgoing plane waves are connected by

the 4X 4 scattering matrix.

242+t D =te+ye?, (1)

26ty +t ) =t e+t dY, ()
2t +t,[2=2 Rd(t, + t e, (1-1)
2t -t,[?=2Rd(t, -t )e]. (1+1).

Two more real parameters are needed to complete the param-

etrization:

t,—t, = cosg et

t,+t, = cosg,e®*?,

Expressions of transmission and reflection coefficients as
functions of these three three real parameters are given in the

main text, see Eq40). We remark on an interesting fact: in
the case of perfect transmissign=0), only the separate
thread solutior(|t;|=1,t, =0) is possible.

APPENDIX B: BAND STRUCTURE FOR A SQUARE
LATTICE OF WIRES

In this appendix we derive the band structure for a squar
lattice of wires of noninteracting electrons. As in the one-
dimensional case, the wave function away from impurities

(i.e., nodes hepecould be written as combination of plane
waves:

l//k(X) - Aim,neikx + Bim,ne—ikx, (Bl)

wherei={x,y} and the coefﬁcient$Axm'”,A;,“'“,BQ’*”,Bym'”}mn
are defined in Fig. 7. By definition of the scattering matrix:

BM" AN rototy ot A
A;ml’n B:Hl'n oot t B;ml'n
A;n,n+l B;n,n+1 tL tL r tH B;n,n+1 ’
B AP ot o/ \am

(B2)

Bloch periodicity condition for the wave function implies

e

PHYSICAL REVIEW B 71, 075110(2005
AQ'm — ei(k;—k)naeik;,maAg,O,
BQ‘m — ei(k;+k)naeik;,maBg,0,
Ayn’m — ei(k)',—k)maeik)'(naAS,O,
Ap™ = gl Hmaghinag.0, (B3)

Using the last two expressions, we obtain the secular equa-
tion:

gekia_g  re?ka { ela ¢ dlyaaoa
r tuei<k§+k)a -1 t, t, &lkyha
tle“k‘kQa tiei(k)'(—k)',+2k)a t”ei(k—k;)a_ 1 re?ika
t, t, elHhoa r el 1
=0. (B4)

Replacing scattering matrix elements by their parametriza-
tion (40), we get the implicit band-structure equation given
in the main text(43). Here we propose two more different
ways to write the same dispersion relation, where the com-
binationska+ ¢, ka and k;a have been replaced, respec-
tively, by the simpler notationk, ki, andk;:

cogk+ ¢,)codk + ¢,) + cosk; cosk) cos¢, cose, (1)
= 5(cosk, + cosk))
X[cos¢, cogk + ¢,) + cosep, cosk+ )]

cogk + ¢,) — coS¢h, cosk;

cogk + ¢) — cosg, cosk,
_ cogk+ ¢,) — cosg, cosk;
" cogk+ ) - COS¢h, cosk), -

(1)

The first form is useful to identify symmetries of band struc-
ture. The second form is useful to derive RGF equations
directly without using the formalism developed in Sec. III.
We remark that in the 1D cadé, =0), and in the 2D sym-
metric case(t, =t;) the band structure equations are the
same, namely, cOsa+ i+ ¢)=cos¢ cogk’a).

APPENDIX C: ANY LATTICE GENERALIZATION

In this part we will discuss particular points met in Sec.
Il of this article. First of all we could obtain the dispersion
relation for any network, i.e., when the wires lengths are not
necessarily equal. In that case EB5) is modified into

A= E (i)eikLij/ZS(ro:eiijm/ZAjm. (1)
m

We choose the origin of coordinates needed to define the
amplitudesA; at the centers of each link. This formula
means that the amplitude of the wave going from npde
nodei is the sum of amplitudes coming from all neighbars
of nodej, multiplied by phase factors e&flL;y,/2) due to
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propagation from the middle of linim) to the nodgj, then  orthonormal basis. Orthogonality is clear |gs is an eigen-

scattered on nodewith probability amplitudeS?) and finally ~ vector of a unitary operator,

reaching the middle of linkij) with a new phase factor A an i

expl(ikL;;/2). We will now write the same equation in vector (alTlk) = e™%qlk) = e™alk). (C4)
fqrm. The expression will be more transparent and thls PeM et us now evaluate the vector norm in i basis:

mits us to express the secular equation for energy eigenval-

uesk in a compact form. If we fix the energy of the system - ivGila =S A ()2 C5
then the stationary states are completely determinedNyy 2 (o %<Q| i) (,ED | ”(q)| €9
amplitudes, wheréN, is the number of links. The factor 2 ) )
arises since each wave can propagate in two opposite direBUt we know that the norm of wave functiof24) in the
tions on each link. So the set of amplitudg;} could be ~ Physical Hilbert space should be equal to unity.

presented as a vect@) in a 2N, -dimensional Hilbert space. sin(ka)
We choose the orthonormal basis associated with networl{ |L/,(x)|2dxz 1:32 <|Aij(q)|2+Aij(q)A;i(q) )
links (mnlij)=&yid,. Each link is represented by two basis 7 network (i) ka

vector|ij) and|ji), this orientation difference should be taken (C6)
into account in various summations over first neighbors. We . o
define the vectoqLA>=E<ij>Aij|ij> and the length operatdr So if we demandq|g)=1 we are doing an approximation

:E(ij)l-ij|ij><ij |. The vector form of Eq(C1) reads neg!ectmg th6_ 'Ferm pr_oportlonal to ska)/ka. Th|s.approx|-
mation is legitimate in our case, as we consider systems

— KL/27-oKL/2 where the typical number ef electrons along each link be-
[A) = EEETEHAK). (€2 tween two nodes is large. Clearly, it will break down for
The possible values df are given by links of the order of the Fermi wavelength. Supposing that
A (g|gy=1 is equivalent to identifying the norm in ttifinite
defe™™ -T)=0. (C3) dimensional physical Hilbert space, with the norm associ-

One remarks that the periodicity of the spectr(28) is lost ~ ated with the orthonormal basfi) in the (2N, dimensional
in the general case, unless there exists\la such that auxiliary Hilbert space. The fact that our equations are not

exp(iAkL):l. Let us be reminded that this periodicity of the SI?) Zi?dlrg?atz):jpigltzsog t?gxir;?:a'grr]k Ssgeillleor[\):s\/igqr:itec')sesti—
spectrum allowed us to evaluate the intedt&) in Eq. (31): y bp i

N ate finite size corrections to the RGF equation, one should
the contribution of each band was the same and we repIaCt% g

. . ) ke the physical normalization of the) basis into account.
the sum over any t'lled band just by sum over all the €198N5ych corrections would likely produce RGF equations where

vectors of operatof. o the nodes on the lattice are no longer renormalized indepen-
The second point to be clarified is the spectral decompodently of each other, by contrast to what we obtained in Sec.
sition Z/g)e™9%q|=T. It holds only if |g) vectors form an IlI; see Eq.(38).
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