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Stripe formation in doped Hubbard ladders
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We investigate the formation of stripes in 6 Hubbard ladders withrdholes doped away from half filling
using the density-matrix renormalization gro@VRG) method. A parallelized code allows us to keep enough
density-matrix eigenstatéap tom=8000 and to study sufficiently large systertwith up to =21 rungs to
extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders.
Our work gives strong evidence that stripes exist in the ground state for strong coiptirigt) but that the
structures found in the hole density at weaker couplidg 3t) are an artifact of the DMRG approach.
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Two-dimensional lattice models for correlated electronsbroad stripe. In both works, however, no finite-size scaling
are often used to describe the properties of layered cuprateas been performed and the amplitude of the hole density
compounds. Despite numerous studies there is an ongoingmodulation has not been investigated systematically as a
controversy about the existence of stripes in these systemginction of DMRG truncation errors. Thus it is not clear if
In a hole doped system a stripe is a domain wall ordering othe observed structures are really the signature of a striped
holes and spins. The wall is made of a narrow hole-richyround state in the limit of infinitely long ladders; they could
region. The spins are antiferromagnetically ordered betweepe finite-size effects or an artifact of the DMRG method.
the walls and are correlated with 7a phase shift across a Here, we report on a DMRG investigation of stripes in
$ix-leg Hubbard ladders with up to 28 rungs. Keeping up to

g%rggpgsérit;ﬂgm,[‘rrlgerc;%anlzt;_c’r:];{:a] rrennoodr?riaﬁga(tri]grzrog\],\rboup m=38000 density-matrix eigenstates the amplitude of the hole
(DMRG) method For square lattices, however, the presencedenS'ty modulation can be extrapolated to the limit of van-

of stripes remains controversiaf because a reliable investi- ishing DMRG truncation errors for systems with up to 21

gation of the ground state in the thermodynamic limit is notrungs._This allows us to perform a rgliable finite-gize scaling
possible with the methods currently available analysis of the hole density modulation. Calculations for sys-

Recently, attention has turned to the two-dimensionafeéms of that size are mad_e possible t_)y_ a parallelized shared-
Hubbard model with a local electron-electron repulsian Memory DMRG code which runs efficiently on current su-
and an electron hopping tertn For U=0 this model de- Percomputer architecturésWe show that the stripes found
scribes a Fermi gas, which obviously has no stripes in th®y White and Scalapirfoare stable in the limit of an infi-
ground state. Moreover, no instability toward the formationnitely long ladder for strong coupling =12t. For weak cou-
of stripes has been found in the weak-coupling litditct ~ Pling (U=3t), however, the hole density fluctuations found in
using renormalization group techniqifedn the strong- Ref. 2 are an artifact of truncation errors and boundary con-
coupling limit U>t, however, the Hubbard model can be ditions.
mapped onto &J model withJ=4t?/U <t, which does have The two-dimensional Hubbard model orR& L ladder is
stripes in the ground state, at least on narrow ladders witdefined by the Hamilton operator
J=0.3%.22 Therefore, investigating the formation of stripes

in the Hubbard model at finite couplind/t could signifi- H==t 2 (&, Ceyrio+ Cryolrriy,e + H-C)
cantly improve our understanding of these structures. More- xy.x
over, such investigations should reveal the true capability of +US Ay 1Py, 1)

the various methods used to study stripes much better than
calculations for thé-J model alone.

An early DMRG investigation of three-leg Hubbard Wherex=1,... Ris the rung index angi=1, ... L is the leg
ladderd? found that stripes formed in the ground state onlyindex, &} , andg,, , are creation and annihilation operators
for U=6t. In a recent DMRG calculation White and for an electron with spino=1,| at site (x,y), and n,y,
Scalapind have shown that a narrow stripe appears in th@élyyygéxyyyg is the corresponding density operator. Here we
ground state of six-leg Hubbard ladddraore precisely, 7 exclusively consider the Hubbard model on six-leg ladders
X 6-site clustersfor U=6t. For weaker couplings the hole (L=6) with R=7r rungs forr=1,...,4. Cylindrical bound-
and spin densities show structures which are interpreted asaay conditions were useftlosed in the rundy] direction
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and open in the lefx] direction, because they are the most osil ] ]
favorable ones for DMRG simulations. Moreover, open |
boundaries break the translational invariance of the system s,|g
allowing spin and charge structures to appear as local densit
variations in a finite ladder. If periodic boundary conditions  -0.53
were used, one would have to analyze correlation functions
to detect stripes in finite ladders. Since we are interested irg -0.54
the ground state of the hole-doped regime, we consider ¢
system withN=4r holes doped in the half-filled band, cor- 03[
responding taARL—N=38 electrons. The average hole den- I
sity is n=N/RL=4/42~0.095 for all cases, as in Ref. 2. I
We employ a recently developed parallelized DMRG 5,1
codé! to determine the ground-state properties of this Hub- 1(')0 TR -1-0005 S S e300
bard model. Our DMRG program implements the standard m
finite-system algorithrhfor two-dimensional lattices. Paral-
lelization of the most time-consuming tasks allows us to F!G. 1. (Color onling DMRG ground-state energy per site ver-
carry out calculations of unprecedented magnitude. For th&Usm for the 21x6 ladder atU=12, using(circles and not using
calculations presented here we have kept upmte8000 (square}s block reflection in the middle of the lattice. Every data
density-matrix eigenstates per block for systems with up td°nt corresponds to one sweep of the DMRG procedure.
RXL=168 sites. This requires up to four weeks walltime
and 100 GB of memory per run on eight processors of antilize the block reflection techniqt(eee Fig. 1 Note, how-
IBM p690 node. For comparison, it takes about 6 h to repro€ver, that the combination of spin and charge density fluc-
duce the results of Ref. 2 forX6 clusters withm=3600. tuations can easily break the symmetry between left and right
DMRG calculations have already been performed for thePMRG blocks and that the block reflection technique should
Hubbard model on larger systertsjuare lattices or laddgrs Nnot be used in that case as it can lead to incorrect results.
than our 28< 6-site clusters but for a significantly smaller ~ For the 76 case, it is interesting to note that the transi-
number of density matrix eigenstatési=<2000.512 The tion occurs at a significantly smallen with our algorithm
computational cost of these simulations was at least an ordéfan in Ref. 2. This may also be attributed to a more favor-
of magnitude lower than in the present work. able choice of initial conditions. Our results for Iargeare
For our six-leg Hubbard ladders, the standard DMRGIN full agreement with those presented in Ref. 2. The “tun-
method yields the ground-state energies and various expeBeling” is marked by a sharp drop in energy, while the spin
tation values for the ground state of the system investigatedtnd hole densities become more regular. In particular, the

tunneling points

-0.56

Here, we focus on the hole density hole density and the staggered spin density are almost con-
. . stant in the rung direction. The stability of this DMRG
h(x,y) =1 =(Pyy 1 + Ny, ) ) “ground state” is demonstrated by the systematic behavior of
and the staggered spin density the energy(for all system sizesand expectation valueor
Yy ~ systems with up to 21 rungss a function of the discarded
S(x,y) = (= DAy = Ny 1), (3 weight (see the discussion belpwSome of our results for

where(- --) represents théODMRG) ground-state expectation 28X 6 ladders are inconclusive because an insufficient num-
value. In the first few lattice sweeps of our DMRG calcula-Per Of sweeps has been performed for the charge and spin
tions or for a small numbem of density-matrix eigenstates density profiles to reach convergence. ,

per block (m= 1000, the DMRG wave function reaches a _ On the 76 ladders with 4 holes investigated here,
“metastable” stat&1% which depends essentially on the ini- SfiPes with four holes each appear in the DMRG ground
tial conditions, i.e., on the detail of the method used to conState- These stripes are clearly seen in the hole density modu-

struct the lattice in the first swedfor more detail about the ation in the leg direction
DMRG method, see Ref.)4The hole and staggered spin L
densities show irregular fluctuations in both the rung and the h(x) = >, h(x,y), (4)
leg directions at that point of the DMRG calculation. y=1

For all system sizes and coupling strengths investigated, o )
the DMRG wave function “tunnels” to a stable state afterWhich is shown in Fig. 2 for a 2% 6 ladder withU=12t. In
several sweeps and for sufficiently large as reported in the same figure, one sees that the staggered spin density in
Ref. 2 for 7x 6 clusters. We have observed that the larger thdhe leg direction
system lengthR, the larger musim be to reach the stable L
state, ranging, e.g., from=600 atR=7 to m=~2200 atR _
=21 in theU=12 case. This state is then essentially inde- s —y%s(x,y) ®
pendent of the initial conditions, but it is nevertheless essen-
tial to makem as large as feasible in order to get sufficientis finite and changes sign exactly where the hole deifity
data for a reliable extrapolation of observablese below.  is maximal. Therefore, the specific features of stripes are
The tunneling occurs for smallan when it is possible to clearly observed in the DMRG ground state densities. Note,
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FIG. 2. (Color onling Hole (circle) and staggered spisquarg FIG. 3. (Color onlin@ Normalized power spectrum of the hole

densities in the ledx] direction calculated on a 246 Hubbard (solid ba) and staggered spipen bay densities presented in Fig.
ladder with 12 holes folJ=3t (open symbolsand U=12t (solid 2 for a 21X 6 Hubbard ladder withJ=3t (upper panél and U
symbols. =12 (lower panel.

however, that the finite staggered spin density is an artifact ofities presented in Fig. 2. In both cases, the power spectrum

our DMRG method, which does not use the full spin sym- has been normalized by its total weight

metry. In the true ground state of a finite ladder one expects

s(x,y)=0. In Fig. 2 the results fod =3t appear qualitatively F2=> IF(k,, ky)|2, 7)

similar to those obtained fdd =12t although the amplitudes Kyok

of the density fluctuations are smaller for the weaker cou-

pling. Nevertheless, one notices that the hole and spin derwhich we denoteH? and § for the hole and spin power

sity profiles forU=3t are less regular than fdy=12t. spectrum, respectively. Fdy=12 one sees that both hole
To make a quantitative analysis of these structures wénd spin power spectra have a single strong peak containing

have carried out a systematic spectral analysis of the hol@ost of the spectral weigli®2 and 84 %, respectivelyFor

and staggered spin densities. The spectral transforms are dé=3t, however, we observe a broad distribution without a

fined as clearly dominant modé, in the hole power spectrum. We
find similar results for other ladder lengtfi&<21. ForR
> A =28 the power spectra are mostly inconclusive because of
F(ke,ky) = E sin(kx)€YE(x,y) (6) the nonconvergence of the hole and spin densities mentioned
LR+ D)%y previously.

For U=12 the observed positions of the dominant peaks
with k,=zm/(R+1) for integers z=1,...R and k, inthe hole and spin spectral transforms fa {1,2,3 can
=2mz,/L for integers +/2<z<L/2. Here f(x,y) and be extrapolated to thR=2 limit, yielding
F(ke,ky) represent either the hole densityx,y) and its

transformH(k,, k) or the staggered spin densix,y) and @ 2+l R 2 8
its transformS(k,, k). The transformation in the rung direc- T R+1 7 )
tion (with periodic boundary conditionss the usual Fourier

transform. In the leg directiofwith open boundary condi- and

tions) we use an expansion in particle-in-the-box eigenstates

because this is a natural basis for a finite open system. In the kf r+1 R 1

infinite-ladder limit R— o this transformation becomes ;:RTl—) 7’ 9)

equivalent to the standard Fourier transformation. As the sys-

tems considered have a reflection symmeéty-R+1-X),  respectively, which agrees perfectly with the expected values

the hole spectral transforrhi(k,,k,) always vanishes for corresponding to one stripe every seven rungs in an infinitely

even integerg, while the spin spectral transfori®(k,k,)  long ladder. FotJ=3t, the positiork, of the maximum in the

vanishes for oda, if Ris odd and for even, if Ris even. spectral transforms is not always well defir(gar instance, it

Moreover, in the converged DMRG ground state we ob-changes with the numban of density matrix eigenstates

served uniform behavior oh(x,y) and s(x,y) along the kept even for largen) and thus a quantitative analysis lof

rungs. This implies that the spectral weight is concentrated &br R—  is not possible.

k,=0 for both densities. All DMRG calculations suffer from truncation errors
In Fig. 3 we show the power spectrufequared norm of which are reduced by increasing the numbeof retained

the spectral transform®f the hole and staggered spin den- density matrix eigenstatéfor more details, see Refs).&'he
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error in the ground-state energy is proportional to the dis- [ T " I T i J
carded weighwV,,, which is defined as the total weight of the sl @ U=12t ./" 03 1 |
discarded density-matrix eigenstates: Tle U= .’./ < Fo2 i |
d 0.5k A U=3t _® 0.1 1
W= 2w (10) I e 246801
ML N A 4 i
: , . : . o = I et l
Here,d is the dimension of the density matrix andis itsith 0.3+ T 3
eigenvalue. Thus one can achieve a greater accuracy an e - _r._..——""
obtain an estimate of the error with a linear extrapolation of ~ 02F~ ____—=="7" U
the DMRG energy to the limit of vanishing truncation errors ~ F--——"" A AT
W,,— 0 (for an example of this extrapolation, see Ref).10 e 7
Using this technique we have found that the error in the 0_——7” . ) | ) . . . )
ground-state energy per site is typically about #03t (U 0 0.002 0.004 » 0.006 0.008 0.01
=12t) and 7x1073% (U=3t) for the largest number of W

density-matrix eigenstates keph=8000 andm=6000, re-

spectively and R<28. Consequently, the error in the total ~ FIG. 4. (Color onling Maximum Hay of [H(ky,0)] in a 21x 6
energy is of the order dffor the largest syster(i68 sitey. ~ System betweel/=3 (triangle) andU=12 (circle) as a function of
The energy separation between ground state and the lowdBg square root of the discarded weiddf, for various numbers of

excited states, which is of the order of a small fraction, ¢~ density-matrix eigenstates 188an=8000. Dashed lines are linear
thus significantly smaller than the error in the total energy/its- Inset: Extrapolationy, of Hpay for yWpn— 0 versusU.

Therefore, the DMRG wave functions obtained in our calcu-
lations are not accurate descriptions of the true ground stategation errors and the true ground state could be uniform in
Although the DMRG wave functions converge systemati-that case, i.e.Hn,=0 for W,,— 0. For intermediate values
cally to the true ground statéas shown by the linear scaling of U, the extrapolate#,,, Shows a monotonic increaselds
of the energy withW,,), for m=8000 they still have signifi- grows, and one sees in the inset of Fig. 4 that the transition
cant overlaps with other eigenstates. Expectation values cafitom a (probably uniform state to a striped state occurs be-
culated with such a DMRG wave functidne., for a given tweenU=3 andU=5.
m) could thus be quite inaccurate. In order to get reliable Extrapolating the maximung,, of the absolute spin
results we will in the following carefully analyze the scaling spectral transforniS(k,, 0)| to the limit W, — 0 turns out to
of observables with increasing. be more difficult than extrapolating .. Contrary toH

If a variational ground-state wave function, as used in theSyax has not reached an asymptotic regifae a function of
DMRG algorithm, is known up to an error @f the corre- W, for the largest numbem of density matrix eigenstates
sponding error in the energy is of the order &t Other  we have used. This difference is probably due to the smaller
observables, whose operators are nondiagonal in the energpergy scale of spin excitations compared to that of charge
basis, converge only witk. For DMRG we know that®  excitations, resulting in a DMRG ground state which de-
=W, (see Ref. 1)) thus expectation values of operators arescribes the charge properties of the true ground state cor-
polynomials ofyW,, for small discarded weightd/,,. For the  rectly but not its spin properties. Nevertheless, for the small-
maximum Hp., of the absolute hole spectral transform est(7X6) ladder an extrapolation ., to Wy,,— 0 using
[H(k,,0)| we find a linear scaling with/\W,,, (see Fig. 4  linear and quadratic fits suggests tlSafy vanishes folw,
Such a scaling has already been found for other density>0 and thus that the true ground state has no spin density
modulation amplitude¥® This allows us to extrapolatd,,, ~ fluctuationss(x,y)=0 as expectegdsee Fig. .
to the limit of vanishing truncation errors. We note thij,, The artificial breaking of the spin symmetry is similar for
decreases with decreasiig,. This corresponds to a dimi- all couplingsU, indicating that it does not affect the forma-
nution of the stripe amplitude with increasimg (i.e., de-  tion of stripes(i.e., the existence of a hole density modula-
creasingW,,) for sufficiently largem=2000. This diminu- tion), which is a stronglyU-dependent phenomenon as
tion can be seen directly in the hole density profilg) [for ~ shown here.
instance, in Fig(3b) of Ref. 2. For U=12t the extrapolated Typically, the discarded weight, is about 10° or
values ofH,,,, are clearly finite as shown in Fig. 4 for a smaller form=8000. Although this appears to be a small
21x 6 ladder. Thus we conclude that the hole density flucvalue, the above discussion shows that errors in the ground-
tuations found on finite ladders are not an artifact of DMRGState energy antl,, are still quite large for that numben.
truncation errors but a feature of the true ground state fofl his confirms that the absolute value of the discarded weight
U=12t. ForU=3t, Hy,x extrapolates to very small values as Wi, alone does not give a reliable estimate for errors on
W,,— 0. Typically, the range of W, over which we observe ~physical quantities.
a linear behavior in'W,, is smaller than the smallest value of A ladder with a periodic array of stripes has a modulation
VW, used in the extrapolation. This can be seen for the exof the hole densitycharge density waye
ample shown in Fig. 4. The uncertainty in the extrapolated _ - H
Hmax iS thus larger than its value fdd=3t. Therefore, the h(X) = ho sinlkx), (11
hole density fluctuations could be the result of DMRG trun-which corresponds to
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R— o, suggesting the existence of stripes in this limit for
both couplingsU. After extrapolation to the limit of vanish-
ing DMRG truncation errors, howeveH ./ VR seems to
vanish for largeR in the casdJ =3t while it still converges to
a finite value forU=12 (see Fig. & This indicates that
stripes exist in the ground state of infinitely long ladders for
sufficiently strong coupling such a$=12t but that the hole
and spin structures found in finite ladders for weak couplings
such asU=3t are artifacts of open boundaries and DMRG
truncation errors. It has already been observed in other
problemd® that DMRG truncation errors can result in an
artificial broken symmetry ground state after extrapolation to
infinite system sizes, while extrapolating first to the limit of
vanishing truncation errors restores the true ground-state
symmetry in the thermodynamic limit.

Our study shows the presence of stripes in the ground
state of infinitely long ladders folJ=12t but a uniform
ground state fokJ=3t. Therefore, there is a quantum phase

X 6 system. Dashed line: linear fit, dotted line: quadratic fit, Solidtransition at a critical Va'uwc between a uniform phaﬁ&)r
line: quadratic fit with constrain®,,,(0)=0 for W,,— 0.

[(R+1)L
Hmax:|H(k)|j!o)| = Tho

(1

U<U,) and a phase in which the translation symmetry is
broken by the formation of stripeor U>U,). The ampli-

tude hy~H ./ VR of the hole density modulation can be
seen as the order parameter of the stripe phase. The results
for finite ladder lengths show that the critical couplitg

2)

If the amplitudeh, of the hole density modulation is finite in  Probably lies betweet)=3t andU=>5t (see the data for 21

the limit of an infinitely long ladde(R— o), the maximum
Hmax Of the spectral transform must diverge @R for R
—o0, In Fig. 6 we show the finite-size scaling b,/ VR
~hy as a function of the inverse ladder length &+ 3t and
U=12. The values oH,,/ VR obtained for a fixed number

X 6 ladders in the inset of Fig,)4Extensive calculations for
various values ol and a_systematic extrapolation of the
order parameteny~ Ha/ VR to the limit of infinite ladder
length will be necessary to calculatg, more precisely and
to determine the nature of the phase transition.

Our conclusions for ladders of finite width cannot be ex-

m of density matrix eigenstates converge to finite values fotonded to a two-dimensional lattice withe R— . Nevethe-

less, combined with other results for two-dimensional

system&® our findings suggest that a similar transition be-
tween a uniform ground statpossibly with off-diagonal su-
perconducting correlationsand a stripe ground state could
occur at finite couplingJ in the two-dimensional Hubbard
model close to half filling. The existence of such a transition
in two-dimensional strongly correlated electron systems
could play a significant role in the physics of layered cuprate
compounds.

In conclusion, we have investigated the formation of
stripes in six-leg Hubbard ladders at a hole doping of 9.5%.
Using a parallelized DMRG code we have been able to de-
termine the amplitude of the hole density modulation in the
limits of vanishing DMRG truncation errors and infinitely
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FIG. 6. (Color online Amplitude H,4,/ VR hg of the hole den-
sity modulation for a fixed numb&i6000< m=8000 of density-
matrix eigenstategsquare and extrapolated to the limiV,—0
(circle) as a function of the inverse ladder lengthRlfor U=12
(solid symbol$ andU=3t (open symbols Dashed lines are linear

fits.

long ladders. Our results show that stripes exist in the ground
state of these systems for strong but not for weak couplings.
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