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We investigate the formation of stripes in 7r 36 Hubbard ladders with 4r holes doped away from half filling
using the density-matrix renormalization groupsDMRGd method. A parallelized code allows us to keep enough
density-matrix eigenstatessup tom=8000d and to study sufficiently large systemsswith up to 7r =21 rungsd to
extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders.
Our work gives strong evidence that stripes exist in the ground state for strong couplingsU=12td but that the
structures found in the hole density at weaker couplingsU=3td are an artifact of the DMRG approach.
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Two-dimensional lattice models for correlated electrons
are often used to describe the properties of layered cuprate
compounds.1 Despite numerous studies there is an ongoing
controversy about the existence of stripes in these systems.
In a hole doped system a stripe is a domain wall ordering of
holes and spins. The wall is made of a narrow hole-rich
region. The spins are antiferromagnetically ordered between
the walls and are correlated with ap phase shift across a
wall. The formation of stripes in the ground state has been
demonstrated numerically for thet-J model on snarrowd
ladders2,3 using the density-matrix renormalization group
sDMRGd method.4 For square lattices, however, the presence
of stripes remains controversial5–8 because a reliable investi-
gation of the ground state in the thermodynamic limit is not
possible with the methods currently available.

Recently, attention has turned to the two-dimensional
Hubbard model with a local electron-electron repulsionU
and an electron hopping termt. For U=0 this model de-
scribes a Fermi gas, which obviously has no stripes in the
ground state. Moreover, no instability toward the formation
of stripes has been found in the weak-coupling limitU! t
using renormalization group techniques.9 In the strong-
coupling limit U@ t, however, the Hubbard model can be
mapped onto at-J model withJ=4t2/U! t, which does have
stripes in the ground state, at least on narrow ladders with
J<0.35t.2,3 Therefore, investigating the formation of stripes
in the Hubbard model at finite couplingU / t could signifi-
cantly improve our understanding of these structures. More-
over, such investigations should reveal the true capability of
the various methods used to study stripes much better than
calculations for thet-J model alone.

An early DMRG investigation of three-leg Hubbard
ladders10 found that stripes formed in the ground state only
for Uù6t. In a recent DMRG calculation White and
Scalapino2 have shown that a narrow stripe appears in the
ground state of six-leg Hubbard ladderssmore precisely, 7
36-site clustersd for Uù6t. For weaker couplings the hole
and spin densities show structures which are interpreted as a

broad stripe. In both works, however, no finite-size scaling
has been performed and the amplitude of the hole density
modulation has not been investigated systematically as a
function of DMRG truncation errors. Thus it is not clear if
the observed structures are really the signature of a striped
ground state in the limit of infinitely long ladders; they could
be finite-size effects or an artifact of the DMRG method.

Here, we report on a DMRG investigation of stripes in
six-leg Hubbard ladders with up to 28 rungs. Keeping up to
m=8000 density-matrix eigenstates the amplitude of the hole
density modulation can be extrapolated to the limit of van-
ishing DMRG truncation errors for systems with up to 21
rungs. This allows us to perform a reliable finite-size scaling
analysis of the hole density modulation. Calculations for sys-
tems of that size are made possible by a parallelized shared-
memory DMRG code which runs efficiently on current su-
percomputer architectures.11 We show that the stripes found
by White and Scalapino2 are stable in the limit of an infi-
nitely long ladder for strong couplingU=12t. For weak cou-
pling sU=3td, however, the hole density fluctuations found in
Ref. 2 are an artifact of truncation errors and boundary con-
ditions.

The two-dimensional Hubbard model on aR3L ladder is
defined by the Hamilton operator

Ĥ = − t o
x,y,s

sĉx,y,s
† ĉx,y+1,s + ĉx,y,s

† ĉx+1,y,s + H.c.d

+ Uo
x,y

n̂x,y,↑n̂x,y,↓, s1d

wherex=1, . . . ,R is the rung index andy=1, . . . ,L is the leg
index, ĉx,y,s

† and ĉx,y,s are creation and annihilation operators
for an electron with spins= ↑ ,↓ at site sx,yd, and n̂x,y,s

= ĉx,y,s
† ĉx,y,s is the corresponding density operator. Here we

exclusively consider the Hubbard model on six-leg ladders
sL=6d with R=7r rungs for r =1, . . . ,4. Cylindrical bound-
ary conditions were usedsclosed in the rungfyg direction
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and open in the legfxg directiond, because they are the most
favorable ones for DMRG simulations. Moreover, open
boundaries break the translational invariance of the system,
allowing spin and charge structures to appear as local density
variations in a finite ladder. If periodic boundary conditions
were used, one would have to analyze correlation functions
to detect stripes in finite ladders. Since we are interested in
the ground state of the hole-doped regime, we consider a
system withN=4r holes doped in the half-filled band, cor-
responding toRL−N=38r electrons. The average hole den-
sity is n=N/RL=4/42<0.095 for all cases, as in Ref. 2.

We employ a recently developed parallelized DMRG
code11 to determine the ground-state properties of this Hub-
bard model. Our DMRG program implements the standard
finite-system algorithm4 for two-dimensional lattices. Paral-
lelization of the most time-consuming tasks allows us to
carry out calculations of unprecedented magnitude. For the
calculations presented here we have kept up tom=8000
density-matrix eigenstates per block for systems with up to
R3L=168 sites. This requires up to four weeks walltime
and 100 GB of memory per run on eight processors of an
IBM p690 node. For comparison, it takes about 6 h to repro-
duce the results of Ref. 2 for 736 clusters withm=3600.
DMRG calculations have already been performed for the
Hubbard model on larger systemsssquare lattices or laddersd
than our 2836-site clusters but for a significantly smaller
number of density matrix eigenstatessmø2000d.6,12 The
computational cost of these simulations was at least an order
of magnitude lower than in the present work.

For our six-leg Hubbard ladders, the standard DMRG
method yields the ground-state energies and various expec-
tation values for the ground state of the system investigated.
Here, we focus on the hole density

hsx,yd = 1 − kn̂x,y,↑ + n̂x,y,↓l s2d

and the staggered spin density

ssx,yd = s− 1dx+ykn̂x,y,↑ − n̂x,y,↓l, s3d

wherek¯l represents thesDMRGd ground-state expectation
value. In the first few lattice sweeps of our DMRG calcula-
tions or for a small numberm of density-matrix eigenstates
per block sm&1000d, the DMRG wave function reaches a
“metastable” state,6,10 which depends essentially on the ini-
tial conditions, i.e., on the detail of the method used to con-
struct the lattice in the first sweepsfor more detail about the
DMRG method, see Ref. 4d. The hole and staggered spin
densities show irregular fluctuations in both the rung and the
leg directions at that point of the DMRG calculation.

For all system sizes and coupling strengths investigated,
the DMRG wave function “tunnels” to a stable state after
several sweeps and for sufficiently largem, as reported in
Ref. 2 for 736 clusters. We have observed that the larger the
system lengthR, the larger mustm be to reach the stable
state, ranging, e.g., fromm<600 atR=7 to m<2200 atR
=21 in theU=12t case. This state is then essentially inde-
pendent of the initial conditions, but it is nevertheless essen-
tial to makem as large as feasible in order to get sufficient
data for a reliable extrapolation of observablesssee belowd.
The tunneling occurs for smallerm when it is possible to

utilize the block reflection techniquessee Fig. 1d. Note, how-
ever, that the combination of spin and charge density fluc-
tuations can easily break the symmetry between left and right
DMRG blocks and that the block reflection technique should
not be used in that case as it can lead to incorrect results.

For the 736 case, it is interesting to note that the transi-
tion occurs at a significantly smallerm with our algorithm
than in Ref. 2. This may also be attributed to a more favor-
able choice of initial conditions. Our results for largem are
in full agreement with those presented in Ref. 2. The “tun-
neling” is marked by a sharp drop in energy, while the spin
and hole densities become more regular. In particular, the
hole density and the staggered spin density are almost con-
stant in the rung direction. The stability of this DMRG
“ground state” is demonstrated by the systematic behavior of
the energysfor all system sizesd and expectation valuessfor
systems with up to 21 rungsd as a function of the discarded
weight ssee the discussion belowd. Some of our results for
2836 ladders are inconclusive because an insufficient num-
ber of sweeps has been performed for the charge and spin
density profiles to reach convergence.

On the 7r 36 ladders with 4r holes investigated here,r
stripes with four holes each appear in the DMRG ground
state. These stripes are clearly seen in the hole density modu-
lation in the leg direction

hsxd = o
y=1

L

hsx,yd, s4d

which is shown in Fig. 2 for a 2136 ladder withU=12t. In
the same figure, one sees that the staggered spin density in
the leg direction

ssxd = o
y=1

L

ssx,yd s5d

is finite and changes sign exactly where the hole densityhsxd
is maximal. Therefore, the specific features of stripes are
clearly observed in the DMRG ground state densities. Note,

FIG. 1. sColor onlined DMRG ground-state energy per site ver-
susm for the 2136 ladder atU=12t, usingscirclesd and not using
ssquaresd block reflection in the middle of the lattice. Every data
point corresponds to one sweep of the DMRG procedure.
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however, that the finite staggered spin density is an artifact of
our DMRG method,2 which does not use the full spin sym-
metry. In the true ground state of a finite ladder one expects
ssx,yd=0. In Fig. 2 the results forU=3t appear qualitatively
similar to those obtained forU=12t although the amplitudes
of the density fluctuations are smaller for the weaker cou-
pling. Nevertheless, one notices that the hole and spin den-
sity profiles forU=3t are less regular than forU=12t.

To make a quantitative analysis of these structures we
have carried out a systematic spectral analysis of the hole
and staggered spin densities. The spectral transforms are de-
fined as

Fskx,kyd =Î 2

LsR+ 1dox,y
sinskxxdeikyyfsx,yd s6d

with kx=zxp / sR+1d for integers zx=1, . . . ,R and ky

=2pzy/L for integers −L /2,zyøL /2. Here fsx,yd and
Fskx,kyd represent either the hole densityhsx,yd and its
transformHskx,kyd or the staggered spin densityssx,yd and
its transformSskx,kyd. The transformation in the rung direc-
tion swith periodic boundary conditionsd is the usual Fourier
transform. In the leg directionswith open boundary condi-
tionsd we use an expansion in particle-in-the-box eigenstates
because this is a natural basis for a finite open system. In the
infinite-ladder limit R→` this transformation becomes
equivalent to the standard Fourier transformation. As the sys-
tems considered have a reflection symmetrysx→R+1−xd,
the hole spectral transformHskx,kyd always vanishes for
even integerszx while the spin spectral transformSskx,kyd
vanishes for oddzx if R is odd and for evenzx if R is even.
Moreover, in the converged DMRG ground state we ob-
served uniform behavior ofhsx,yd and ssx,yd along the
rungs. This implies that the spectral weight is concentrated at
ky=0 for both densities.

In Fig. 3 we show the power spectrumssquared norm of
the spectral transformsd of the hole and staggered spin den-

sities presented in Fig. 2. In both cases, the power spectrum
has been normalized by its total weight

F2 = o
kx,ky

uFskx,kydu2, s7d

which we denoteH2 and S2 for the hole and spin power
spectrum, respectively. ForU=12t one sees that both hole
and spin power spectra have a single strong peak containing
most of the spectral weights92 and 84 %, respectivelyd. For
U=3t, however, we observe a broad distribution without a
clearly dominant modekx in the hole power spectrum. We
find similar results for other ladder lengthsRø21. For R
=28 the power spectra are mostly inconclusive because of
the nonconvergence of the hole and spin densities mentioned
previously.

For U=12t the observed positions of the dominant peaks
in the hole and spin spectral transforms forr P h1,2,3j can
be extrapolated to theR=` limit, yielding

kx
H

p
=

2r + 1

R+ 1
——→

R→` 2

7
s8d

and

kx
S

p
=

r + 1

R+ 1
——→

R→` 1

7
, s9d

respectively, which agrees perfectly with the expected values
corresponding to one stripe every seven rungs in an infinitely
long ladder. ForU=3t, the positionkx of the maximum in the
spectral transforms is not always well definedsfor instance, it
changes with the numberm of density matrix eigenstates
kept even for largemd and thus a quantitative analysis ofkx
for R→` is not possible.

All DMRG calculations suffer from truncation errors
which are reduced by increasing the numberm of retained
density matrix eigenstatessfor more details, see Refs. 4d. The

FIG. 2. sColor onlined Hole scircled and staggered spinssquared
densities in the legfxg direction calculated on a 2136 Hubbard
ladder with 12 holes forU=3t sopen symbolsd and U=12t ssolid
symbolsd.

FIG. 3. sColor onlined Normalized power spectrum of the hole
ssolid bard and staggered spinsopen bard densities presented in Fig.
2 for a 2136 Hubbard ladder withU=3t supper paneld and U
=12t slower paneld.
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error in the ground-state energy is proportional to the dis-
carded weightWm which is defined as the total weight of the
discarded density-matrix eigenstates:

Wm = o
i=m+1

d

wi . s10d

Here,d is the dimension of the density matrix andwi is its ith
eigenvalue. Thus one can achieve a greater accuracy and
obtain an estimate of the error with a linear extrapolation of
the DMRG energy to the limit of vanishing truncation errors
Wm→0 sfor an example of this extrapolation, see Ref. 10d.
Using this technique we have found that the error in the
ground-state energy per site is typically about 4310−3t sU
=12td and 7310−3t sU=3td for the largest number of
density-matrix eigenstates keptsm=8000 andm=6000, re-
spectivelyd and Rø28. Consequently, the error in the total
energy is of the order oft for the largest systems168 sitesd.
The energy separation between ground state and the lowest
excited states, which is of the order of a small fraction oft, is
thus significantly smaller than the error in the total energy.
Therefore, the DMRG wave functions obtained in our calcu-
lations are not accurate descriptions of the true ground states.
Although the DMRG wave functions converge systemati-
cally to the true ground statessas shown by the linear scaling
of the energy withWmd, for mø8000 they still have signifi-
cant overlaps with other eigenstates. Expectation values cal-
culated with such a DMRG wave functionsi.e., for a given
md could thus be quite inaccurate. In order to get reliable
results we will in the following carefully analyze the scaling
of observables with increasingm.

If a variational ground-state wave function, as used in the
DMRG algorithm, is known up to an error of«, the corre-
sponding error in the energy is of the order of«2. Other
observables, whose operators are nondiagonal in the energy
basis, converge only with«. For DMRG we know that«2

~Wm ssee Ref. 10d, thus expectation values of operators are
polynomials ofÎWm for small discarded weightsWm. For the
maximum Hmax of the absolute hole spectral transform
uHskx,0du we find a linear scaling withÎWm ssee Fig. 4d.
Such a scaling has already been found for other density
modulation amplitudes.13 This allows us to extrapolateHmax
to the limit of vanishing truncation errors. We note thatHmax
decreases with decreasingWm. This corresponds to a dimi-
nution of the stripe amplitude with increasingm si.e., de-
creasingWmd for sufficiently largem*2000. This diminu-
tion can be seen directly in the hole density profilehsxd ffor
instance, in Fig.s3bd of Ref. 2g. For U=12t the extrapolated
values ofHmax are clearly finite as shown in Fig. 4 for a
2136 ladder. Thus we conclude that the hole density fluc-
tuations found on finite ladders are not an artifact of DMRG
truncation errors but a feature of the true ground state for
U=12t. For U=3t, Hmax extrapolates to very small values as
Wm→0. Typically, the range ofÎWm over which we observe
a linear behavior inÎWm is smaller than the smallest value of
ÎWm used in the extrapolation. This can be seen for the ex-
ample shown in Fig. 4. The uncertainty in the extrapolated
Hmax is thus larger than its value forU=3t. Therefore, the
hole density fluctuations could be the result of DMRG trun-

cation errors and the true ground state could be uniform in
that case, i.e.,Hmax=0 for Wm→0. For intermediate values
of U, the extrapolatedHmax shows a monotonic increase asU
grows, and one sees in the inset of Fig. 4 that the transition
from a sprobablyd uniform state to a striped state occurs be-
tweenU=3 andU=5.

Extrapolating the maximumSmax of the absolute spin
spectral transformuSskx,0du to the limit Wm→0 turns out to
be more difficult than extrapolatingHmax. Contrary toHmax,
Smax has not reached an asymptotic regimesas a function of
Wmd for the largest numberm of density matrix eigenstates
we have used. This difference is probably due to the smaller
energy scale of spin excitations compared to that of charge
excitations, resulting in a DMRG ground state which de-
scribes the charge properties of the true ground state cor-
rectly but not its spin properties. Nevertheless, for the small-
est s736d ladder an extrapolation ofSmax to Wm→0 using
linear and quadratic fits suggests thatSmax vanishes forWm
→0 and thus that the true ground state has no spin density
fluctuationsssx,yd=0 as expectedssee Fig. 5d.

The artificial breaking of the spin symmetry is similar for
all couplingsU, indicating that it does not affect the forma-
tion of stripessi.e., the existence of a hole density modula-
tiond, which is a stronglyU-dependent phenomenon as
shown here.

Typically, the discarded weightWm is about 10−5 or
smaller for m=8000. Although this appears to be a small
value, the above discussion shows that errors in the ground-
state energy andHmax are still quite large for that numberm.
This confirms that the absolute value of the discarded weight
Wm alone does not give a reliable estimate for errors on
physical quantities.

A ladder with a periodic array of stripes has a modulation
of the hole densityscharge density waved

hsxd = h0 sinskx
Hxd, s11d

which corresponds to

FIG. 4. sColor onlined Maximum Hmax of uHskx,0du in a 2136
system betweenU=3 striangled andU=12 scircled as a function of
the square root of the discarded weightWm for various numbers of
density-matrix eigenstates 1800ømø8000. Dashed lines are linear
fits. Inset: ExtrapolationHmax

0 of Hmax for ÎWm→0 versusU.
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Hmax= uHskx
H,0du =ÎsR+ 1dL

2
h0. s12d

If the amplitudeh0 of the hole density modulation is finite in
the limit of an infinitely long laddersR→`d, the maximum
Hmax of the spectral transform must diverge asÎR for R
→`. In Fig. 6 we show the finite-size scaling ofHmax/ÎR
,h0 as a function of the inverse ladder length forU=3t and
U=12t. The values ofHmax/ÎR obtained for a fixed number
m of density matrix eigenstates converge to finite values for

R→`, suggesting the existence of stripes in this limit for
both couplingsU. After extrapolation to the limit of vanish-
ing DMRG truncation errors, however,Hmax/ÎR seems to
vanish for largeR in the caseU=3t while it still converges to
a finite value forU=12t ssee Fig. 6d. This indicates that
stripes exist in the ground state of infinitely long ladders for
sufficiently strong coupling such asU=12t but that the hole
and spin structures found in finite ladders for weak couplings
such asU=3t are artifacts of open boundaries and DMRG
truncation errors. It has already been observed in other
problems13 that DMRG truncation errors can result in an
artificial broken symmetry ground state after extrapolation to
infinite system sizes, while extrapolating first to the limit of
vanishing truncation errors restores the true ground-state
symmetry in the thermodynamic limit.

Our study shows the presence of stripes in the ground
state of infinitely long ladders forU=12t but a uniform
ground state forU=3t. Therefore, there is a quantum phase
transition at a critical valueUc between a uniform phasesfor
U,Ucd and a phase in which the translation symmetry is
broken by the formation of stripessfor U.Ucd. The ampli-
tude h0,Hmax/ÎR of the hole density modulation can be
seen as the order parameter of the stripe phase. The results
for finite ladder lengths show that the critical couplingUc
probably lies betweenU=3t andU=5t ssee the data for 21
36 ladders in the inset of Fig. 4d. Extensive calculations for
various values ofU and a systematic extrapolation of the
order parameterh0,Hmax/ÎR to the limit of infinite ladder
length will be necessary to calculateUc more precisely and
to determine the nature of the phase transition.

Our conclusions for ladders of finite width cannot be ex-
tended to a two-dimensional lattice withL=R→`. Nevethe-
less, combined with other results for two-dimensional
systems1,5–9 our findings suggest that a similar transition be-
tween a uniform ground statespossibly with off-diagonal su-
perconducting correlationsd and a stripe ground state could
occur at finite couplingU in the two-dimensional Hubbard
model close to half filling. The existence of such a transition
in two-dimensional strongly correlated electron systems
could play a significant role in the physics of layered cuprate
compounds.

In conclusion, we have investigated the formation of
stripes in six-leg Hubbard ladders at a hole doping of 9.5%.
Using a parallelized DMRG code we have been able to de-
termine the amplitude of the hole density modulation in the
limits of vanishing DMRG truncation errors and infinitely
long ladders. Our results show that stripes exist in the ground
state of these systems for strong but not for weak couplings.
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the Zuse Institut BerlinsZIBd who granted exclusive access
to computational resources on their HLRN complex. This
work was partly supported by the Competence Network for
Scientific High Performance Computing in BavariasKON-
WIHRd.

FIG. 5. sColor onlined Maximum Smax of uSskx,0du for the 7
36 system. Dashed line: linear fit, dotted line: quadratic fit, solid
line: quadratic fit with constraintSmaxs0dù0 for Wm→0.

FIG. 6. sColor onlined AmplitudeHmax/ÎR~h0 of the hole den-
sity modulation for a fixed numbers6000ømø8000d of density-
matrix eigenstatesssquared and extrapolated to the limitWm→0
scircled as a function of the inverse ladder length 1/R for U=12t
ssolid symbolsd andU=3t sopen symbolsd. Dashed lines are linear
fits.
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