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We investigate the effect of unconventional density wavesUDWd condensate on an Anderson impurity using
large-N technique atT=0. In accordance with previous treatments of a Kondo impurity in pseudogap phases,
we find that Kondo effect occurs only in a certain range of parameters. Thef-electron density of states reflects
the influence of UDW at low energies and around the maximum of the density wave gap. The static spin
susceptibility diverges at the critical coupling, indicating the transition from strong to weak coupling. In the
dynamic spin susceptibility an additional peak appears showing the presence of the of UDW gap. Predictions
concerning nonlinear density of states are made. Our results apply to other unconventional condensates such as
d-wave superconductors andd-density waves as well.
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I. INTRODUCTION

Our understanding of the problem of dilute concentration
of magnetic impurities in normal metals benefited a lot from
exact solutions, and from reliable approximate methods.1

Among the latter, the large-N expansion seems to describe
successfully the low temperature properties of matter,N de-
notes the spin degeneracy, and 1/N can be used as an expan-
sion parameter.2–4 On the other hand, recently considerable
attention has been focused on the behavior of magnetic im-
purities in pseudogap phases, where the conduction electron
density of states varies as a power-law of energy around the
Fermi energy.5–13 The interest on this subject mainly arises
due to the behavior of the pseudogap and superconducting
phase of highTc superconductors. The interplay between un-
conventional condensates and quantum magnetic impurities
can reveal the nature of the underlying phase. Using large-N
technique, several interesting results were found concerning
the transition from magnetic to nonmagnetic phases, the qua-
siparticle density of states, etc.

Experimentally, from scanning tunneling microscopy
studies in Bi2Sr2CaCu2O8+d,

14,15 a strong variation of the
electron density of states was found around the impurity site:
beyond the superconducting coherence peaks, new structures
were identified indicating the presence of impurity induced
bound states. Some of the experiments can be explained by
pure potential scattering, but other features call for theoreti-
cal works to understand the effect of unconventional conden-
sates on magnetic impurities.16

This is why we have chosen to study the interaction be-
tween unconventional density wavessUDWd and magnetic
impurities. In UDW, the gap in the quasiparticle spectrum
vanishes on certain subsets of the Fermi surface, and its av-
erage over the Fermi surface is zero.17,18This causes the lack
of periodic modulation of the spin and charge density. Such
states have been proposed to describe the pseudogap phase
of high Tc superconductors,18–20 the low temperature phase
of a-sBEDT-TTFd2KHgsSCNd4,

21,22 the antiferromagnetic
phase in URu2Si2,

23,24 and other heavy fermion materials,25

the charge density wave in 2H-TaSe2,
26 and the pseudogap

phase in transition metal oxides.27 Due to the wave-vector
dependence of the gap, the transition to this phase is metal to
metal instead of metal to insulator, as in conventional density
wavesswith constant energy gapd.

The paper is organized as follows: in Sec. II, we study an
Anderson impurity embedded in an unconventional density
wave in the large-N limit at T=0. As opposed to previous
treatments,8,9 we allow for a macroscopic occupation of thef
state. Also special attention is payed to the excitations
around the UDW gap edge. From the saddle point equations,
the phase diagram is determined, and the effect of magnetic
field is discussed. In Sec. III, we turn to the investigation of
the properties of the impurity. Its density of states displays
the same power-law energy dependence at low energies as
that of band electrons, enhances around ±D and a Kondo
peak shows up at positive energies. The presence of these
three peaks is in accord with experimental findings in
Bi2Sr2CaCu2O8+d.

14,15 The peculiarities of the conduction
electron transport lifetime are explored. It diverges at the
Fermi energy, but the number of possible states is depressed
significantly, cancelling the divergence. On the other hand,
the lifetime of excitations and the number of states around
the UDW gap maximum diverges in the same manner, pro-
ducing an important contribution to transport properties. This
behavior cannot be found in a simple Fermi gas with a
power-law density of states.5 The Kondo energysor tempera-
tured depends strongly on thef level energy, and the lifetime
broadening is sensitive to the presence of the UDW gap. The
static spin susceptibility signals the transition from the
Kondo to the decoupled free moment regime, as was found
in similar treatments of a Kondo impurity.10,28,29 The dy-
namic spin susceptibility exhibits the usual Kondo peak, plus
an additional peak coming from the divergent peak in the
density of states of UDW. This again signals the presence of
particle-hole condensate. Some generalizations to nonlinear
density of states are made. In spite of the different topology
of the Fermi surfaces and the distinct nature of the conden-
sate, our results apply to other phases with power-law den-
sity of states like ind-wave superconductors30 or in d-density
waves.31
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II. PHASE DIAGRAM

The Hamiltonian describing an infinite-U Anderson impu-
rity interacting with an unconventional density wave is given
by

H = o
k,m

8 Sjskdsak,m
+ ak,m − ak−Q,m

+ ak−Q,md

+ Dskdsak,m
+ ak−Q,m + ak−Q,m

+ ak,md +
V
ÎN

fsak,m
+

+ ak−Q,m
+ dfmb+

+ fm
+ sak,m + ak−Q,mdbgD + Eo

m

fm
+ fm, s1d

whereak,m
+ andak,m are, respectively, the creation and anni-

hilation operators of an electron of momentumk and spin
m, −sømøs, N=2s+1. Similarly, fm

+ and fm creates and
annihilates an electron on the localizedE level, b+ andb are
the slave boson operators, responsible for the hole states.2,3

In a sum with prime,kx runs from 0 to 2kF skF is the Fermi
wave numberd, Q=s2kF ,p /b,p /cd is the best nesting vector.
Dskd=D sinsbkyd is the unconventional density wave order
parameter, and is taken to be real for simplicity. A gap with
cossbkyd, or ky→kz replacement would yield to the same
results. Our system is based on an orthogonal lattice, with
lattice constantsa,b,c toward directionx,y,z. The system is
anisotropic, the quasi-one-dimensional direction is thex axis.
The a electron system possesses a density of states, which
varies linearly with energy around the Fermi energy,
Nsvd /N0= uvu /D for uvu!D, N0 is the normal state density of
states per spin at the Fermi energy.17 The linearized kinetic-
energy spectrum isjskd=vFskx−kFd, and the dispersion in
the other directions can be neglected for practical purposes.
By introducing the spinor

Csk,m,td = S ak,mstd
ak−Q,mstd

D , s2d

the single-particle thermal Green’s function of thea elec-
trons without hybridization is obtained from Eq.s1d as

Gsk,ivnd = −E
0

b

dtkTtCsk,m,tdC+sk,m,0dlHeivnt

= fivn − jskdr3 − r1Dskdg−1, s3d

where vn is the fermionic Matsubara frequency,ri’s
si =1,2,3d are the usual Pauli matrices acting on momentum
space.

The Hamiltonian should be restricted to the subspace

o
m

fm
+ fm + b+b = Q, s4d

where in the true large-N limit Q grows extensively withN,
i.e., Q=Nq, 0,q,1. In the original formulation of the
model,Q=1, but in order to preserve a macroscopic occupa-
tion of the f state, the above generalization was found to be
useful.3 It has been argued that the properties of the spin-1

2
Anderson model are best represented byq=1/2 in the large-

N limit.2 Within the mean-field approximation, the slave-
boson operators are replaced by their expectation value,
b0=kbl /ÎN, and the constraint is satisfied by introducing a
Lagrange multiplierl,

H = o
k,m

8
hjskdsak,m

+ ak,m − ak−Q,m
+ ak−Q,md

+ Dskdsak,m
+ ak−Q,m + ak−Q,m

+ ak,md + Vb0fsak,m
+ + ak−Q,m

+ dfm

+ fm
+ sak,m + ak−Q,mdgj + sE + ldo

m

fm
+ fm + Nlsb0

2 − qd. s5d

It has been shown3 that the slave boson mean-field approxi-
mation produces the correct low energy physics of the con-
ventional Anderson impurity model in the entire parameter
range atT=0. The value ofl andb0 is determined by mini-
mizing the free energy of the system with respect to them.8,9

As a result, the saddle point equations atT=0 are given by

b0
2 = q −

1

2
+

1

p
E

0

` E + l

x2f1 + G̃asxdg2 + sE + ld2
dx, s6d

b0l =
b0

p
E

0

W x2f1 + G̃asxdgasxdG

x2f1 + G̃asxdg2 + sE + ld2
dx, s7d

whereasxd=2Kf1/Î1+sx/Dd2g /ÎD2+x2p for x,W, 0 oth-
erwise,Kszd is the complete elliptic integral of the first kind.
The case of a magnetic impurity embedded in a normal me-
tallic host can be studied withasxd=1/uxu. W=vFkF is one-

half of the bandwidth,G=V2pN0, G̃=Gb0
2. The critical value

of E is obtained as

Ec = −
G

p
lnS4W

D
D s8d

in the weak coupling limit sW@Dd. Below this value,
only the trivial solution of the saddle point equations
exist, namelyb0=0 andl=−E, and no Kondo effect occurs.
To study the more general case, when the density of
states varies as a power law of energy, one must assume
Dskd=Dusinsbkydur signfsinsbkydg, 0, r ,`. The sign func-
tion assures the vanishing average of the gap over the Fermi
surface, and ther exponent results in a density of states as
Nsvd /N0= uv /Du1/rGs1/2rd /ÎprGfs1+rd /2rg for uv /Du1/r

!1, andGsxd is the complete gamma function. With this, the
above condition is modified as

Ec = −
G

p
lnS2r+1W

D
D . s9d

The higher the value ofr, the lower the criticalf level en-
ergy, and by lettingr →`, the case of a normal metal can be
reached with a constant density of states, whenEc→−`,
which means, that Kondo effect is always present atT=0.
When r →0, a fully gapped particle-hole condensate is re-
covered withDskd=D signskyd, but without long range spin
or charge ordering. The saddle point equations have been
solved numerically, and the results are shown in Figs. 1 and
2 for q=1/2 andq=1/6. Forcomparison, we also show the
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results assuming a normal metallic host. AsG decreases,b0
increases much sharper, and reaches its maximum valueÎq
rapidly. In spite of the different constraintssq=1/2 and 1/6d,
the similarity between the figures is striking, indicating that
the results hardly depend on the filling factors. As tol, it
equals touEu below its critical value, and approaches 0 as the
f level energy is further increased.

The effect of magnetic field can readily be incorporated
into the theory by adding the Zeeman term to the Hamil-
tonian,

HZeeman= − ho
m

tmfm
+ fm, s10d

where the appropriate choice oftm can represent the two
extreme limits:32 s1d the straightforward generalization of the
SUs2d model, wheretm=m/N and the magnetic field com-
pletely lifts the impurity degeneracy, ors2d, when
tm=signsmd, where twoN/2-fold degenerate levels are intro-
duced by the field. For large fields, the criticalf level energy
is obtained as

Ec < Ec0 + uhuH s 1
2 − qd for cases1d,

signs 1
2 − qd for cases2d,

J s11d

where Ec0 is the critical f level energy without magnetic
field. Forqø1/2, which is thought to be the physically mo-
tivated case, an applied magnetic field enhances the critical
E, hence destroys the Kondo region. This follows naturally
from the fact, that we haveN/2 states belowE generated by
the magnetic field, so the highest occupied state atT=0 is
below the actualE. On the other hand, forqù1/2, by the
use a magnetic field, the system can be driven back into the
strong coupling regime, but the physical realization of such a
situationsi.e., qù1/2d seems to be doubtful. Here, the high-
est occupied state generated by the magnetic field is aboveE,
which makes the hybridization possible again.

III. DENSITY OF STATES, SPIN SUSCEPTIBILITY

The Green’s function of thef electrons reads as

Gfsivnd =
1

ivn − E − l + ivnG̃asvnd
, s12d

whereasxd was defined below Eq.s7d. The self-energy of the
f electrons along the real frequency axis is obtained as

S fsv + idd = −
2G̃

p
XQsD − uvudHv

D
KFÎ1 −Sv

D
D2G

+ iUv

D
UKSv

D
DJ + Qsuvu − DdiKSD

v
DC ,

s13d

which exhibits the marginal Fermi liquid behavior discov-
ered by Zhanget al.:8 for small frequencies, the self-energy

varies as S fsv!Dd=−G̃f2v lns4D / uvud /p+ i uvug /D. For
r Þ1 exponent, ReS f ,signsvduvumins1,1/rd, Im S f ,uvu1/r. In
general, the imaginary part of the self-energy is directly pro-
portional to thea electron density of states. From the self-
energy, the realf electron density of states,3 which is the
imaginary part of the Fourier transform of
−kTtb

+stdfmstdfm
+ s0dbs0dl, reads as

r fsvd = −
b0

2

p

Im S fsvd
fv − E − l − ReS fsvdg2 + fIm S fsvdg2 ,

s14d

which has the same low energy behavior as thea electron
density of states, namely around the Fermi energyr fsvd

FIG. 1. TheE dependence of the order parametersthe expecta-
tion value of the slave-boson operatord is plotted for q=1/2,
W=20D, G /D=0.1, 0.5, 1, and 2 from right to leftssolid lined, while
the dashed line represents the behavior of an Anderson impurity
embedded in a normal metallic host.

FIG. 2. TheE dependence of the order parameter is shown for
q=1/6, W=20D, G /D=0.1, 0.5, 1, and 2 from right to leftssolid
lined, while the dashed line represents the behavior of an Anderson
impurity embedded in a normal metallic host.
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,uv /Du1/r. Also around ±D, it is expected to increase sharply
due to the divergence of the UDW density of states, but the
divergent peak is suppressed since the denominator in Eq.
s14d also diverges, as can be seen in Fig. 3. In fact,r fs±Dd
=0, which is invisible in Fig. 3 due to its scale. The same
phenomenon was discussed in charge density waves in the
presence of a nonmagnetic impurity.33 In a Fermi gas with
power-law density of states,5 these pecularities around ±D
are absent. AboveEc, the large, asymmetric Kondo peak ap-
pears, and moves to higher frequencies, even aboveD, asE
is further increased. For nonlinear density of statessr Þ1d,
the results are shown in Fig. 4 forr =1/2 and 2. AsE in-
creases, theuvu1/r behavior around the Fermi energy becomes
visible. The peaks at ±D become less pronounced asr in-
creases, since atr →` the normal state results should be
recovered. For competing order parameters, which is pre-

sumably the case in underdoped highTc cuprate supercon-
ductors, whered-density wave andd-wave superconductor
are the dominant phases according to one class of theories,18

more structures are expected inr fsvd. In the coexistence
region, distinct peaks from the superconducting and
d-density wave gap edge would appear19 together with
Kondo peak.

The T-matrix of the conductionsad electrons is obtained
as

Tsv + idd =
V2b0

2

v − E − l − S fsvd
, s15d

whose poles determine the impurity bound states or
resonances.19 By closely examining the denominator of Eq.
s15d, we find resonances at theVK− ig, VK can be identified
with the Kondo temperature,2,16 as was done in similar treat-
ments of the large-N limit of the Kondo model,7,8,10andg is
the lifetime broadening of thef level,4 and is shown in Fig.
5. The Kondo temperature increases almost linearly withE,
g reaches its maximum aroundE=D. For largeE, the reso-
nance appears atE− iqG, identically to the case of a normal
conduction band.4 Alternatively, one can define the Kondo
energy scale2,4 asÎVK

2 +g2, but it hardly differs fromVK.
The imaginary part of theT-matrix, which gives the

inverse transport lifetime of the conduction electrons, is
proportional to the realf-electron density of states, hence
for small energiest,uvu−1. Its detection is a very subtle
issue, since the number of states having this behavior
is Nsvd,uvu, henceNsvdt,const. The same cancellation
is found for ther Þ1 case. Alsot is expected to be enhanced
around ±D as lns2Î2/Îu1−uv /Duud. The number of possible
states diverges in the same manner ast, resulting in
Nsvdt, ln2Îu1−uv /Duu. For nonlinear density of states, simi-
larly to the case ofr =1, botht andNsvd diverges around the
gap maximum, which givesNsvdt, ln2u1−uv /Duu1/2Îr. This
behavior could be checked by experiments, although its de-
tection is not an easy task, because such excitation are sup-

FIG. 3. The f-electron density of states is shown forq=1/4,
G /D=1 for E slightly aboveEc ssolid lined, E=0 sdashed lined, and
E= uEcu sdashed-dotted lined.

FIG. 4. Thef-electron density of states is shown forr =1/2 sleft paneld andr =2 sright paneld for q=1/2,G /D=1 for E=−D ssolid lined,
E=0 sdashed lined andE=D sdashed-dotted lined.
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pressed at low temperatures. With the help of theT-matrix,
the local UDW density of states can be determined at the
impurity site,

rasvd =
N0r fsvdsv − E − ld2p

G̃b0
2

, s16d

and is shown in Fig. 6 and in Fig. 7 forr =1/2 and 2.Slightly
aboveEc, a sharp resonance atVK modifies the density of
states. By increasingE, the Kondo peak is broadened, and
the new zero atv=E+l can completely suppress the peak at

v=D. As r decreases, the Kondo peak becomes sharper as
sD /VKd1/r.

Using Eq.s14d, the low temperature specific heat is ob-
tained as

CsT → 0d =
18zs3dG̃

DpsE + ld2T2, s17d

which has the same temperature dependence as that of the
density wave. For a nonlinear density of states, the specific
heat varies asCsTd,Ts1+rd/r. Also from the behavior of
r fsvd, the low temperature behavior of the resistivity can be
calculated,34 and is obtained asRsTd−Rs0d,−T2 ln2sTd. For
generalr Þ1 exponents, it decreases as −Tmins2,2/rd.

The local impurity spin susceptibility is calculated from

xsivmd = − meff
2 To

n

Gfsivn + ivmdGfsivnd, s18d

which describes the response of the system to a magnetic
field that couples solely to the impurity.28,29 Its static limit at
T=0 reads as

xs0d = meff
2 Sb0

2 − q + 1
2

E + l

−
2

p
E

0

` sE + ld2

hx2f1 + G̃asxdg2 + sE + ld2j2
dxD , s19d

which is shown in Fig. 8 together with the corresponding
results in a normal metallic host. The susceptibility diverges
at Ec, indicating the transition from the Kondo to the decou-
pled free spin region, since in the latter region, it behaves as
xsTd=meff

2 qs1−qd /T. Similar behavior revealed itself in the
response of a Kondo impurity to external field.10,28,29

The imaginary part of the impurity spin susceptibility
should be readily accessible by neutron scattering experi-
ments, and is evaluated atT=0 as

Im xsvd =
meff

2 p

b0
4 E

0

v

r fsxdr fsx − vddx. s20d

For small frequencies, it behaves as Imxsvd=G̃2v3/6psE
+ld4D2, while for nonlinear density of states, it increases as
v1+2/r. Beyond the usual Kondo peak occurring aroundVK,
an additional sharp peak shows up atD+VK corresponding
to excitations around the UDW gap. AsE increases, the latter
becomes dominant, but its sharpness is smeared, as can be
seen in Fig. 9. In a pure UDW, only one single peak is
expected in Imxsvd located at 2D, so the presence or ab-
sence of the extra two peaks can identify the presence or
absence of magnetic impurities.

IV. CONCLUSION

In summary we have studied the screening of a magnetic
impurity in unconventional density waves. We considered an
infinite-U Anderson impurity in the large-N limit, when the
occupation of thef level increases extensively withN.
Kondo effect only occurs, if thef level energy or the hybrid-

FIG. 5. The Kondo scale,VK is plotted forq=1/2, G /D=0.1,
0.5, 1, and 2 from right to leftssolid lined. The dashed line repre-
sents the behavior of a normal metallic host. Note thatVK never
vanishes in this case. The inset shows the lifetime broadening,g,
together with normal host results.

FIG. 6. The local density of statessat the impurity sited of UDW
is plotted forq=1/4 forG /D=1 for E slightly aboveEc ssolid lined,
E=0 sdashed lined, andE= uEcu sdashed-dotted lined.
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ization matrix element exceeds a certain value, and the re-
sults are almost independent of the chosen value of thef
level occupation. The impurity density of states exhibits the
UDW coherence peaks at ±D, and the usual Kondo peak.
The conduction electron density of states at the impurity site
displays similar behavior. Moreover, an additional zero at the
effective f level energy can suppress the UDW peak atD.
The transport lifetime of the conduction electrons is deter-
mined from theT-matrix, and is found to diverge atv=0,
and ±D. The former is suppressed due to the small number of
states possessing this kind of behavior. The static impurity
spin susceptibility diverges at the criticalf level energy,

where the transition from Kondo to weak-coupling takes
place. The dynamic spin susceptibility is enhanced at the
Kondo energy, but an additional sharp resonance is noticed
belonging to excitations from the gap maximum of UDW
states to the Kondo peak. These features can help to identify
the magnetic or nonmagnetic nature of impurities in
pseudogap phases. The present results apply to other phases
with power-law density of states, since the investigated
physical quantities did not involve specific coherence fac-
tors, which depend strongly on the nature of the
condensate.17 In future studies we plan to explore specific
quantities characteristic to the condensate.

FIG. 8. TheE dependence of static spin susceptibility is shown
on a semilogarithmic scale forq=1/2, W=20D, G /D=0.1, 0.5, 1,
and 2 from right to leftssolid lined, while the dashed line accounts
for the susceptibility of an Anderson impurity embedded in a nor-
mal metallic host.

FIG. 9. The evolution of the dynamic spin susceptibility for
various values ofE sfrom E=−1.25D by 0.1D steps from left to
rightd is shown forq=1/6, W=20D, G /D=1. Two distinct peaks
show up aboveEc, and merge as one passes into the Kondo regime
with increasingE. The thick line denotesE<0.

FIG. 7. The local density of statessat the impurity sited of UDW is plotted forr =1/2 sleft paneld and r =2 sright paneld for q=1/2,
G /D=1 for E=−D ssolid lined, E=0 sdashed lined, andE=D sdashed-dotted lined.
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