PHYSICAL REVIEW B 71, 075103(2005
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We investigate the phase diagram of the half-filled(ISJUHubbard-Heisenberg model with hopping
exchangel, and HubbardJ, on a two-dimensional square lattice. In the laNydéimit, and as a function of
decreasing values dflJ, the model shows a transition from dxdensity wave state to a spin dimerized
insulator. A similar behavior is observed Mt6 whereas aN=2 a spin density wave insulating ground state
is stabilized. TheN=4 model, has a-density wave ground state at large values/dfwhich as a function of
decreasing values dffJ becomes unstable to an insulating state with no apparent lattice and spin broken
symmetries. In this state, the staggered spin-spin correlations decay as a power law, resulting in gapless spin
excitations atj=(, 7). Furthermore, low lying spin modes with small spectral weight are apparent around the
wave vectorg)j=(0,) andg=(s,0). This gapless spin liquid state is equally found in the(8UHeisenberg
(U/t— ) model in the self-adjoint antisymmetric representation. An interpretation of this state in terms of a
m-flux phase is offered. Our results stem from projectiVe0) quantum Monte Carlo simulations on lattice
sizes ranging up to 24 24.
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[. INTRODUCTION intriguing result is a possible realization of a gapless spin-
) liquid phase for theN=4 model in the Heisenberg limit.
SU(N) symmetrlc_ models .of correlgted electron systems Tpe SUN) symmetric Hubbard-Heisenberg model we
have attracted considerable interests in the past decades. R@jsider reads
instance, those models are relevant for the understanding of
Mott insulators with orbital degeneracy as described by the H=H, +Hy + H, with
Kugel-Khomskii Hamiltoniart. For twofold orbital degen-
eracy and at a point where the orbital and spin degrees of
freedom play a very symmetric role, this model maps onto an Hi=- » 6}6;+ H.c.
SU(4) symmetric Hubbard, or Heisenberg model with funda- )
mental representation on each it¢ has also recently been
argued that realizations of $N) Hubbard models are at 5
reach in the context of optical latticés. Hy = 92 (5_T5_~_ pﬂ>
SU(N) generalizations of S(2) lattice fermion models N : T2
can be solved exactly in the largélimit. Systematic correc-
tions in terms of Gaussian fluctuations around the mean-field ]
or saddle point solution may be computed. The simplifica- __J T ey oot
tions which occur in the larghk limit, namely the suppres- Ha= ZNZ (D7D + DDy (1)
sion of quantum fluctuations have important consequences
for auxiliary field quantum Monte Carl@MC) simulations. 4t f
As a function of growing values dfl the negative sign prob- HeTre, G=(C G
lem inherent to stochastic methods is reduced thus renderingé;éj‘ and p corresponds to the band-filling. Ati=2, the
simulations more and more tractable. In fact, some generalpperator identity
zations of Hubbard models lead to the absence of sign prob-
lems for specific values dfi and irrespective of dopinty -1 + |
However, the extrapolation from the soluble lafgéimit to T(D;;Di',j”f DiiDip=9 -5+ Z[(ni" D(nj-1)-1]
the physicalN=2 case is by no means unambiguous since
phase transitions can occur as a functiorNof (2
In this paper, we will primarily concentrate on the half- o ) )
filed Hubbard-Heisenberg model on a square lattice and ma0!ds. Here, the fermionic representation of the spin 1/2
out it's phase diagram as a function &f and coupling operator read§:%25,3,c;r&sysfcsr where g are the Pauli spin
strength. At this band filling, the sign problem is absent formatrices. Thus, aN=2 the model reduces to the standard
even values oN. Hence, ground state properties can be in-Hubbard-Heisenberg model.
vestigated on lattice sizes ranging up to>224 unit cells. In the strong coupling limitJ/t— o0, and at integer val-
We will show the existence af-density wavegDDW) states  ues ofpN/2, charge fluctuations are suppressed. The model
down toN=4 and of spin-dimerized statesit6. The most maps onto the SIN) Heisenberg Hamiltonian

(Y

v ~,ciirN) is an N-flavored spinor,D;;
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J tion, we introduce bosonic fields to decouple the two body
H:NZ_ 2SS0 (3)  interaction terms. Let us start with the Heisenberg term
.y ¥P which we write—replacing the sum over nearest neighbors
with (i ,f) by a sum over bonds—in terms of perfect squares
ot .1 T J
S = Cy Cpi = 1 Pap 2 ©, i ) Hy= =7 2 (D5 + D)~ (Dy -~ Dy)”. 8
Y b

the generators of SW) satisfying the commutation relations .. ... o apply the standard HS transformation to obtain

[Sa,ﬁ,i'i Sy,ﬁ,f] = 5i‘,j‘(sa,5,i~5y,ﬁ - Sy,B,i‘éa,ﬁ) . (5)
The representation of the $N) group is determined by the e o f 1T dysdm, 9)
local constraint b
Ei:réi: pg_ (6) 26l 72+ 75/2=\IA72N(y(Dfi#Dp)#i 7D} -Dp)]
. . _ _ T,
In the terminology of Young tableaux the previous leads to a s f [T d Rez,d Im z,eZoNARIz/*-Am(@D4+2%Dp)],
b

tableau withoN/2 rows and a single column. In particular, at
N=4, andp=1/2 (quarter-band filling the model maps onto ) ) )
the SU4) symmetric Kugel-Khomskii Hamiltonian with fun- /N the previous, we introduce a complex variable per bond:
damental representation of 84 on each lattice site. Astudy Z=(¥%*im)/v2NJA7. Following the same steps, we de-
of largeN Heisenberg models in various representations mafouple the Hubbard term as
be found in Ref. 6.

SL_J(N) Heisenberg models have be_en considergd numeri- e Ay o J H dq)Fe-zi{NAfuq>i?/4-iAfuqu‘(eiTe;-pN/2)]. (10)
cally in Refs. 7 and 8. Those models differ substantially from ;
ours in the choice of the representation. On one sublattice the
fundamental representatig¢foung tableau with one row and Using the earlier transformations, the partition function in
a single columhis considered and on the other the adjointthe limit A7— 0 is given by a functional integral over the
representatiorfYoung tableau wittN—1 rows and a single space and imaginary time dependent HS fields
column). Based on Green function Monte Carlo methods, it
has been argued this $4) model has a spin-liquid ground
state. However, simulations on larger lattice sizes with the
loop algorithm have shown that the model has a broken sym-
metry ground staté.In contrast, our results for the $4) (11)
Heisenberg model, at=1 and in the self-adjoint representa- )
tion [see Eq.(6)] point towards an insulating state with no The action reads
broken symmetries.

The paper is organized as follows. In the next section we SU®Y{}{z) = f dTJE ’Zb(7)|2+ UE q>§(7)/4
formulate the the partition function of the model as a path b ;
integral over bosonic field. This formulation constitutes the

Z f [1 D®;(n]] D Rez, (D Im z,(ne N(@H2E),
i b

starting point for both the saddle point approximation and the =%
auxiliary field quantum Monte Carlo simulatipns. In Sec. Il ~Ti Tr[Te—fngh(T)] 12
we present the phase diagram of the half-filled model as a (12
function of N and coupling constants. Finally, we summarize ith
and draw conclusions. wi
—. t
Il. LARGE- N LIMIT AND QUANTUM MONTE CARLO h(r)=- E [(t+Jz;j(7)ccj+H.c]
SIMULATION )
Both the saddle point approximation as well as the auxil- -iu> CDi‘(r)(ciIci‘—p/Z). (13
iary field QMC rely on a path integral formulation of the i
partition function. Using the Trotter decomposition, we write
the partition function as Notice that in the earlier definition df(7), the creation and
" annihilation operators are ndt-flavored spinors but corre-
Z=Tre M= Tr[ 11 e_A"Hte_ATHUe_ATHJ] _ 7 spond to spinless fermion operators.
n=1

. . A. The saddle point
Here mA7=8 and we have omitted the systematic error of P

oderA 7. Using the Hubbard Stratonovi¢kS) transforma- In the largeN limit, the saddle point approximation
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FIG. 2. Lowest lying single particle excitation at half-band fill-
ing. The transition from the DDW state to dimerized state corre-
sponds to a semimetal to insulator transition.

ization opens a quasiparticle gap at all wave vectors. Hence,
the transition from the DDW to the dimerized phase corre-
sponds to a semimetal to insulator transition as shown in
Fig. 2.

We note that the results of Affleck and Marstdmay be
recovered by imposing

ZS = Z3, ZG = Zl! Z7 = Z4, andZB = Zz. (18)

FIG. 1. (a) The four site unit cell with lattice vectorg, =24,
anda,=2a, and corresponding fields. He, anda, correspond to
the lattice vectors of the underlying square lattid®. Mean-field
order parameterksee Eq.(17)] as obtained from the saddle point
equations.

B. The Monte Carlo simulation

The Monte Carlo approach relies on the same formulation
S S S of the partition function. Before discussing details of the
=— = = (14) implementation let us concentrate on our primary concern,
0zy(7)  Szp(7)  6Pi(7) namely the sign problem. In generafNS#22 is not a posi-
Vt(i_,ve quantity and, hence, may not be interpreted as an unnor-
malized probability distribution from which we sample field
configurations. Hence, in the Monte Carlo method, we con-

becomes exact. Assuming time independent fields, we deri
the mean-field equations

d;= i(2<cic{>h -p) sider the probability distribution
i 1
|e—NS(¢,ZE)|
o P(¢,22) = (19
Zij) = (G Chn, NS 4,27
D[ ¢,z2,Z]je™=9*7)|
|
&gy = <Cfcf>h' (15 and estimate the expectation value of an observable with
The earlier saddle point has been considered by Affleck 5623 .
and Marstor?:2? At half-band filling, p=1, andlarge values JD[¢,ZZ|P(¢,Z,5€' $220(¢,2,2)
of t/J a d-density wave state is realized. This state becomes (0)= . (20
unstable towards dimerization as the couplihgis reduced. i h22)
Here, we have solved the mean-field equations for a four site f D[ ¢,2,z]P($,2,2)€

unit-cell (see Fig. 1, thus allowing more freedom in the

dimerization pattern than in Ref. 10. With In the previous,0(¢,z,7) is the expectation value of the

, observable for a given configuration of fields, atiSoz?)
Z,=r"" (16)  =|e’NS#22|gd422 The denominator in the earlier equation,
corresponds to the average sige?)p.

the solutions we find are characterized b
y In the largeN limit, where the saddle point approximation

F1=r1=13=14=rp [I5=Tg=I7=Ig=Tg, becomes exact, the average sign is temperature independent
and equal to unity. On the other hand, it is known that for the
G1= o= b= b= b 5= b= 7= g = dg. SU(2) model the average sign decayseas'? whereV cor-

responds to the volume of the system akhds a positive

(17) . :
constant. Hence, we can conjecture thats a decreasing

The values of the oder parameters are plotted in Fig. 1. Afunction of N. This has for consequence that at a given tem-

apparent thel-density wave state withy,=rg and ¢p,=¢g is  perature the sign problem becomes less and less severe as

unstable towards box dimerization beldywJ=0.171 The function of growing values oN. We have checked this nu-

DDW state is a semimetal since gapless single particle excimerically for the quarter filledp=1/2, model. Unfortunately

tations are present at wave vectétsr/2a, +/2a). Dimer-  the sign problem for the S4¥) quarter-filled model—the
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L=6,p=1/2,Uft=4,J/t=0

{(e%)p

0.01

FIG. 3. Average sign as a function of for the quarter-filled

SU(N) Hubbard model. The solid line corresponds to a fit to the

form: ae™?,
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A7%. Given this systematic error, it is much more efficient to
use an approximate discrete HS transformation to decouple
the perfect square term

eAr)\Azz E ,y(|)e\fmn(l)A+O(AT4),

1=41,4#2

(28)

where the fieldsy and y take the values:
W21 =1+\6/3, yx2)=1-6/3,

P(x1) = £V2(3-16), 7(x2)= +2(3+16).

This transformation is not exact and produces an overall sys-
tematic error proportional t6A7\)3 in the Monte Carlo es-

SU4) symmetric Kugel-Khomskii model—was still to se- timate of an observable. However, since we already have a
vere to study the nature of the Mott insulating phase in thesystematic error proportional th72 from the Trotter decom-

strong coupling limit(see Fig. 3.
At half-band filling, p=1, and even values i, particle-

position, the transformation is as good as exact. It has the
great advantage of being discrete thus allowing efficient

hole symmetry leads to the absence of a minus-sign problemngampling.

At this filling, and under the canonical transformation

¢ — (= Dy (21)
the Hamiltonianh(7) transforms as
h(7) — h(r) (22
such that
TH[Ter 80 = T Te S8, (23)
Hence, the earlier quantity is real and
e NS= e N[ TH{Te o (24)

is positive for even values df.

C. The Heisenberg limit

We conclude this technical part with some comments con-
cerning the numerical simulations of the Heisenberg model.
At t/J=0, Hy is a good quantum number sinfd,,;,Hy]
=0. Hence, in principle it suffices to choose a trial wave
function |W;) satisfying Hy|¥1)=0 to guarantee that the
imaginary time propagation converges to the ground state of
the Heisenberg modégsee Eq(25)]. On the other hand, one
can relax this constraint on the trial wave function and
implement a Gutzwiller projection onto the Hilbert space
with no double occupancy. We have found the second ap-
proach to be much more efficient.

We now summarize the technicalities required to carry The algorithm we use here is very related to the one we
efficient simulations. Since we are interested in ground statbave used in Ref. 12 where a detailed technical section is
properties, it is more efficient to adopt a projective methodprovided.

based on the equation
P e—ﬁH/Zoe—BH/Z )
(0= im YOSy
B—e (Ve wy)

(25)

IIl. NUMERICAL RESULTS

Our results are summarized in the phase diagram shown

The trial wave functiof¥+) is required to be nonorthogonal in Fig. 4. Here, we consider the half-filled case as a f_unction
to the ground state an corresponds to a projection param- of N-andt/J. For values ot/J>0 we setU=0. Thet=0 line

eter. For the trial wave function we choose the form
U =[P @ (W), © - @ [Py, (26)

corresponds to the Heisenberg model where charge fluctua-
tions are completely suppressege Sec. Il € All our simu-
lations are carried out with the projective algorithm of Eq.

where|¥;), is the ground state of the single particle Hamil- (25) and, hence, reflect ground state properties. In the large-

tonian 43 7c) ¢ ,+H.c. in the flavora Hilbert space. With
DY ol

this choice of trial wave function, the action within the pro-

jection formalism takes the form

S= Sy = In(x| TET0H) ), (27)

N limit, the data stems for the mean-field calculation of the
previous section. AtN=6, we essentially reproduce the
saddle point result with a somewhat smaller valuet 69
reflecting the instability of the DDW phase in favor of the
spin-dimerized phase. Irrespective of the coupling, the
SU(2) model shows an insulating spin-density wa@&DW)

where|x+) is the ground state of the spinless fermion Hamil-state. The most interesting feature of the phase diagram oc-
tonian: = scrcj+H.c. In the simulations we will presentin curs atN=4. Apart from the DDW phase present latge

the next section, we have typically us@d=40 which we

values oft/J we find an insulating phagsolid circles in Fig.

found to be sufficient to filter out the ground state from the#) With no apparent broken symmetries and no spin gap. We

trial wave function within statistical uncertainty.

will argue that in this phase the antiferromagnetic spin cor-

We use a finite imaginary time-stépr which we have set  'elations are critical leading to gapless spin modes around
to A7J=0.1. This introduces a systematic error of the orderthe antiferromagnetic wave vect@=(, 7). Furthermore,
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aiep &= ia Sold:m) = 2 (WolO(= @) xu(@)[ e D+
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2% o e z 1 WO Plxp(@e 200"
— - .
0.2 2 2 9} m 0 q)1Xo\q))|"€
. A O Zo(q)
014\ Dimer A @ | (32
0 — AT @ T H] In the previous|W¥,) corresponds to the normalized ground
o o1 02,03 04 05 state. |y,(G)) are eigenstates dfi with momentumg and
N

{Wo|O(=0)|xn(6))|>0. The gapAq(d) corresponds to the
FIG. 4_ Phase diagram of the half-filledie., p energy difference between the first excited statgqd)) and

=(2/IN)2 <c .Ci.w] Hubbard-Heisenberg model as a function of the ground state an@®(q)= (1/\V)E’e'QJO(J) Finally, the

t/J. For t/J>O we setU=0. Thet=0 line corresponds to the residueZs(g) corresponds to the spectral weight of the low-

Heisenberg model where charge fluctuations are completely supst lying excitation.

pressedsee Sec. Il & The symbols correspond to the parameters  To study the model, we have considered the following

where we have carried out simulations and denote the followingbservables. Let us define the magnetization as

phases/A: spin-dimerized phas&): DDW phase[]: Spin-density _

wave phase, an@®: insulating phase with no broken lattice and spin Ogpiri) = > f(a)clc, with >, f(a)=0. (33)

symmetries and no gap to spin excitatiofgapless spin-liquid @ @

(GSL) phase. For even values ofl considered here, we choofgr)=+1.

. . ) ) Note that SUN) symmetry leads to the identity
we will present results showing that low lying spin modes

with very small spectral weight are present around dhe N
=(0,n) andg=(0,7) wave vectorg? %pin(I ]) = <Osp|n(|)osp|n(l)> 2 Sa,BFS,B a
To establish the earlier phase diagram, we have computed

equal-time and time displaced correlation functions.(D(eﬁ)
be an observable, with time displaced correlation function \whereS*? are the generators of $N) [See Eq(4)].
I

To detect spin-dimerization and DDW instabilities we
Soli = 1,7 =(0(i,70() ~(OXO()) ~ (29)  consider, respectively,

Odimer(r) = ospin(r)ospin(r+ é:x) (35)

(34)

and corresponding Fourier transform
and

So(G,7) = 2 €TSo(F, 7). (30 Oppw(i) = (1) = (1) (36)
r with current

From the equal time correlation functioB,(g)=S(q,

=0), we can establish the presence of long range order at a

given wave vector. In this cas®)(d) scales as the volume of

the systemy, the proportionality constant being the squareand an equivalent form fojg(i). Finally, we obtain informa-

of the order-parameter. From the imaginary time displacedion on single particle excitations by measurlng time dis-

correlation functions, we can compute spectral functionsplaced Green functionsG(K, 7)=~(T¢ (7-)ck (0)). From

So(d, w) by solving this quantity we can extract quasiparticle gaps as well as the
spectral functiomA(K, w).

) (37)

LA T . T
Jx(l) - I% (CiYaCHaX,a Ci+ax,a

- 1 L
So(G,7) = — J dwSo(q, w)e™™,
™ A. The DDW phase
We start our description of the phase diagram with the
DDW phase Figure &) shows the finite size scalmg of
So(d) = J dwSo(d, @), B s,(Q)/L? at the antiferromagnetic wave vectod
=(7r,). Fort/J=0.5 and both considered values Mfthe

with the use of the maximum entropy method. data supports lim...Sppw(Q)/L?>0 thus signaling a DDW
Information on gaps and the spectral weight of the lowesPrdered phase. One can confirm this point of view from the
lying excitation, is obtained directly form the imaginary time analysis on the single particle spectral function alongkhe
correlation function without having recourse to analytical=(0,) to k=(,0) line in the Brillouin zongsee Fig. B)].
continuation After size scalindsee Fig. c)] the data are consistent with
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t/J=05U=0 t/J =05 N=4
c,\lq 08 ON=6 @ S(q)
= 06 - o @@ © (a) opin
t 1
%0'4- oo O 05
Q024 e:N=4 o o 0
“

0 0.04 0.08 0.12 0.16 0.2
1/L

t/J=05Uft=0,N=4

t/J=05,U=0,N=4 08 —
B . 06 O:q=(0m (b)
(,0) 0.2
0 T T T
0 0.05 0.1 0.15 0.2
1/L
t-i" FIG. 6. Spin correlations in the DDW phaga) Equal time spin
— _— structure factor(b) Size scaling of the spin gap &(0,7) andq
< (E, §) :(ﬂ_, ﬂ.).
The data on which this statement are based stems from Fig.
12(c) The size scaling of the static spin structure factor at
/\ Q=(ar, ) is consistent with a power-law decay of the stag-
L1\ 0,7) gered spin-spin correlation functiong,{Q=(m,m))/L?

-1 -08-06-04-02 0

w/J « L2 It is interesting to note that even though gapless spin

excitations are present gt&(0,#) no sign of a cusp in the
t/J=05U=0,N =4 spin structure factor at this wave vector is appaf&eate Fig.

/ 6(a)]. This signals darge exponent for the€0,7) spin cor-
relations. Note that in the saddle approximation both the
(0,7) and (7, ) spin correlations decay as* and no cusp
feature in the static spin structure factor is appatént.

B.N=6

To study the stability of the DDW phase froth]=0.5 to

FIG. 5. () Size scaling of the DDW equal time correlation the Heisenberg point, it is convenient to consider the quasi-
functions at wave vectoQ=(w, ). (b) Single particle spectral particle gap ak=(w/2,m/2) [see Fig. 7a)]. For values of
function in the DDW phase on a 2020 lattice. Here, we normalize t/J<1/5 the data are consistent with the opening of a qua-
the peak height to unity and along tii@,) to (,0) line each  siparticle gap ak=(/2,7/2). The opening of the quasipar-
spectrum satisfies the sum ryi& dwA(K, w)=7m(K)=/2. (c) Size  ticle gap is accompanied by the opening of a spin-g=e
scaling of the quasiparticle gap ket (7/2,7/2) andk=(0,7). The  Fig. 7(b)]. Hence, the data suggest that for valuest/af
data show the semimetal character of the DDW phase. =<1/5 atN=6 we have entered a spin dimerized phase, with
o o . spin and charge gaps.
the vanishing of the quasiparticle gaplat(w/2,m/2) thus We confirm this point of view by looking into the dimer
confirming the semimetal character of the DDW phase.  coyrelation functiongsee Fig. &)]. Those correlations are

Since the sm.gle» particle spectrum has gapless excitationfominant at wave vectog=(,0) in agreement with the
at the nodal point&=(+/2, +7/2) we can expect gapless mean-field dimerization pattern. To establish long-range or-
spin excitations centered around the wave veoda€0,7),  der we have to extrapola®y,e(,0)/L? to the thermody-
g=(m,0), andg=(m,m), along with a power-law decay of namic limit. Fort/J<1/5 gaps are present both in the
the equal time spin-spin correlations. Figure 6 confirms thischarge and spin degrees of freedom. Since the presence of
The spin gap vanishes at the earlier mentioned wave vectogaps is equivalent to the localization of spin and charge de-
[Fig. 6(b)]. The spectral weighZ,i{(d), of the low lyingq  grees of freedom, we fit the finite size data to the foem:
=(0,7) spin excitation is very small in comparison § +bre /¢, Adopting this form for the finite size corrections,
=(m,m). For the L=20 lattice we haveZg,{(4)/Syi(G)  the data are consistent with the onset of a spin-dimerized
=0.006 atg=(0,7) and Zs,(G)/Sspi(@) =0.5 atg=(m, 7).  state fort/I<1/5.

075103-6



PHASE DIAGRAM OF THE HALF-FILLED TWO-.. PHYSICAL REVIEW B 71, 075103(2005

N=6 (a) N=4 (a)
v:t/J=015 :¢/J=1/10
~e3d L Ve | ~ 06 1 vii=y
&l V kI
KIS )
0.2 =044
I 1
e . - e
& 0.1 m:4/J=1/5 & 0.2 A:t)J=1/4
q A:tfI=1/4 4 O:t/J=1/3
o:t/J=1/2 O:t/J=1/8
0 L] T T 0 T ) T T 1 T )
0 0.04 0.08 012 0.16 0 002 004 006 008 01 012 014 016
1/L 1/L
N=4 (b)
N=6 (b)
~ 06 ] S J=1/10 +:/7=0 ;tt//ii(:n ~
0 DAY E
€ Fé — ActfI=1/4 ;,/ <
~ 0.4 e T— =
I O:¢I=1/3 __
O =%
£ 02+ v:t/J =015 ~
< - T T T T T T T
0 LtI=1/4 0:t/J=1/5 0 002 004 006 008 01 012 014 016
0 0.04 0.08 0.12 0.16 /L

FIG. 9. Size scaling of the quasiparticle and spin gaps-=a4.
FIG. 7. Quasiparticléa) and spin(b) gaps afN=6 as a function  Fort/J>0 we setU=0, andt/J=0 refers to the Heisenberg model
of coupling. Fort/J>0 we setU=0, andt/J=0 refers to the (see Sec. Il ¢
Heisenberg modelsee Sec. || ©

(L/2,L/2), on our LXL lattice as well as Syq
C.N=4 =(m,m))/L? as a function of 1l.. As apparent, the extrapo-
We now turn our attention to the $4) model. From the lation is consistent with the absence of long-range magnetic
size analysis of the quasiparticle gapkat(w/2,7/2) [see ordering. In particullar, at the Heisenberg poir_1t, where we
Fig. 9@)] we can conclude that the DDW state is unstable fo’@ve carried out simulations on lattices ranging up to 24
values oft/J<1/4. In contrast to th&l=6 case, no spin gap <24 ~our extrapolated values read [im. Sy
opens across the transition up to the Heisenberg lisge  =(L/2,L/2))=0.002+0.003 along with lip... Spi(Q
Fig. Ab)]. The correlation functions presented in Fig. 10 in=(7,))/L?=0.0008+0.004.
the Heisenberg limit show dominant spin-spin correlations. The data are equally consistent with a power-law decay
In accordance with the absence of spin gap no sign of longef the spin-spin correlations. Concentrating again on the
range dimerization is apparent. Heisenberg point the dashed lines in Fig. 11 correspond
The issue is now to establish the existence or nonto the forms: sspm((j:(wlw))/LZOcL—l-25 and Sspin(F
existence of long range antiferromagnetic order. In Fig. 11=(L/2,L/2))«L"112 The difference between the two nu-
we plot the spin-spin correlation at the largest distancemerical values of the exponents gives an idea of their
uncertainty.

Sspin (‘D (a)

= +:t/J=0 o0:t/J=1/10
S 034 v:t/J=015

£ O:t/J=1/5
A:tfI=1/4

0 0.05 0.1 0.15 0.2

FIG. 8. (a) Equal time dimer correlation functions for the &Y
Heisenberg mode(b) Size scaling of the dimer correlation function
at g=(0,7). For t/J>0 we setU=0, andt/J=0 refers to the FIG. 10. Equal time dimer and spin correlation functions for the
Heisenberg modelsee Sec. Il ¢© SU(4) Heisenberg model.
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~ 0.12 N=t @ (a) S(q,w), N=4,t/J=0.1
§ +:t/J=0 (0,0) | / ) ! E
g’ 0.08 Al =1/4

vt/ I=1/10

=
R

Sepin(F

CEIAS
1/L
__—/

(0,7I') —/—\

A:t)T=1/4
v:t/J=1/10

0,0 ———1 1

T T T
0 0.04 0.08 0.12 0.16 0.2

FIG. 11. Size scaling of the equal time spin-spin correlation
functions. Fort/J>0 we setU=0, andt/J=0 refers to the Heisen-
berg model(see Sec. Il © w/J

0.1
0.01
0.001
le-04
le-05

Hence, the equal time data are consistent with an insulat-
ing phase Wi_th no apparent Iatticg or spin symmetry br.eal_<ing 0,0) ©,7) (m,7) (0,0)
and no gap in the magnetic excitations. It is now intriguing
to investigate the spin dynamics of this phase. Figur@)12
plots the dynamical spin-structure factortal=0.1, U/t=0 103 Arg=(mm, [T =01
on a 16x 16 lattice. The data show several features. The gap 1 “Proreveer
at 4=(m, m) is a finite size effecfsee Fig. &)]. Taking this — 014
into account, the data are consistent with a gapless mode < 0.01
with linear dispersion aroundj=(w, ). This feature is “E 0.001 ]
clearly not surprising since the equal time correlation func- Ul%o.oom 3
tions show critical behavior at this wave vector. As we fol- — (© .
low this mode toG=(0,#) the line shape becomes very i *:¢=(0,m),t/J=01
broad and spectral weight seems to spill down to low ener- 5 3 d g 4 1
gies. This is especially apparent on the intensity plot for 7J
which we have used a logarithmic scdkee Fig. 120)].

Since the spectral weight of the low-lying modes aroapd FIG. 12. (Color onling (a) Dynamical spin structure factor on a
=(0,m) is very small, it is desirable to confirm the earlier 16x 16 lattice. We have normalized the peak height of each spec-
statement. To this aim we plot in Fig. @2 the imaginary  trum to unity so as to put forward the overall shape of the disper-
time displaced correlation functionSy(qg, 7), at G=(0,) sion relation. The reader however has to bear in mind that the
and g=(, ) both in the gapless spin-liquid phase ta weight under each spectrum is equal to the equal structure factor
=0.1 and for comparison in the DDW phasetht=0.5. Let ~ Sspid) Which is peaked afj=(w, ) and vanishes a§=(0,0). (b)
us start with the DDW phase where we were able to show thEtensity plot of the data of8) on a logarithmic scaldc) Imaginary
presence of gapless spin modes around (ther), (0, ), time correlation functlons. I.-|ere,. one can see.thatlwnhoqt having
and (=, 0) points in thermodynamic limitsee Fig. 6b)]. On recourse to ar_1a|yt|cal contlnugtlon, the li)are imaginary time data
theL=20 sized system considered in Fig(d2one sees that SUP_port the_eX|stence of l.OW lying modesc(0, m) .(see text At

- N . t/J=0.5t/J=0.1) we consider a 28 20(16X 16) lattice.
both theq=(0,#) andq=(r, ) correlators decay assymtoti-
cally with the same exponential form, thus signaling low
energy spin excitations at both wave vectors. Of course there
is a big difference in the prefactor multiplying this exponen-Vvolved in theg=(0,m) data att/J=0.1 we are unable to
tial decay. This reflects the fact that the spectral weight of thé@btain accurate results beyondl~8. Hence, on the basis of
low-lying (0,7) excitation is much smaller than that of the these data, we believe that the spin-liquid phase indeed
G=(, ) excitation. Let us now turn our attention to the shows low lying spin modes not only &tr, ), but also at
gapless spin liquid phase &tJ=0.1. As apparent the data (0,7) and (,0). Finally, we note that as we approach the
show a very similar behavior at the exception that the specHeisenberg point, the spectral weight of the low lying mode
tral weight atg=(0, ) is reduced in comparison to the DDW at §=(0,7) becomes smaller and smaller. This renders nu-
phase. We note that due to the extremely small scales irmerical detection of this feature at the Heisenberg point hard.

m,m),t/J=0.5
0,7),¢/J =05

t
Il
—
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IV. SUMMARY AND DISCUSSION able from the perspective of the lardesaddle point. In the

The half-filled SUN) Hubbard Heisenberg model shows a largeN limit and at the Hei;enberg point one can stabilize
variety of phases, which we have analyzed in detail. Thdh® 7-flux phase by adding biquadratic terms to the
saddle point physics—a DDW phase at large values/ &f Hamiltonian1® Furthermore, Hemerlet all” have argued in
which becomes unstable to a spin dimerized state—is valiégvor of the stability of ther-flux phase to gauge fluctua-
down to N=6. On the other hand, the $2) model has a tions arising from the constraint of no double occupancy. At
SDW insulating phase irrespective of the coupling constantthe mean-field level, ther-flux phase shows antiferromag-
The most intriguing aspect of the phase diagram, is the gametic spin-spin correlations which decay &g) ~ € |F|™.
less spin liquid state in the 4 model in the vicinity of the  Including gauge fluctuations in a /approximation reduces
Heisenberg point. The S4) model has a DDW ground state the mean field exponeft.On the other hand, th@®, ) spin-
at large values of/J. As appropriate for this semimetallic spin correlations remain unaffected by gauge fluctuat®ns.
state, we find gapless single particle excitations at wave vecrhose results compare favorably with our calculations at
tors k=(x#w/2,+7/2). In the particle-hole channel those N=4.
single particle excitations lead to gapless spin modes cen- To investigate the nature of the spinless liquid state we
tered aroundj=(w,m), G=(0,w), and g=(s,0). Reducing find in the SU4) Heisenberg model, it is desirable to inves-
the magnitude of the hopping matrix element we find a semitigate it's behavior under perturbations. Following the varia-
metal to insulator transition. In the insulating phase the antitional work of1®1°the particle-hole symmetric point is un-

ferromagnetic,é:(w,w), spin correlations are critical and stable towards &, spin liquid as realized for example in

for the SU4) Heisenberg model the data are consistent Witrﬁ:ﬁ:g?omn g;rger:er;]fggg.;r:iiei:?gsrgzl())irli%/oipspﬁgggri;ﬂxbgléﬁent
(P — QO F-L12 Thi -
the form Sy (F) ~¢ ™+ This state shows no lattice in the BCS Slater determinant. In the spin model this trans-

bque_n s_ymmetrles and, he_nce, is a candidate for a gaplerﬁes in the inclusion of a frustrating exchange coupling. Un-
spin liquid state. In the particle-hole channel, the dynamica, ynately, this is not accessible to the quantum Monte Carlo
spin structure factor points to gapless excitationsqat gn5r6ach since frustration leads to a minus sign problem.
=(m,m) but also to low-lying modes with small spectral Apqther perturbation, which is accessible to the Monte Carlo
weight centered aroung=(0,m) andq=(,0). approach, is the inclusion of a uniform magnetic field. Based
Itis tem_pting to argue that the gapless spin liquid phase i$, the mean-field description of the-flux phase, we can
well described by a DDW mean-field state supplementedpecuylate that the pointlike Fernsurface at zero field
with a Gutzwiller projection. Requiring invariance under gyolves to rings around centered around the zero field nodes.
time reversal symmetry pins the flux in each elementarygince we are at a particle-hole symmetric point and that this
square tomr. Clearly, the Gutzwiller projection triggers the symmetry is not broken under the inclusion of a magnetic
semimetal to insulator transition but one could argue that iffig|d, the finite field Fermi surface is unstable towards mag-
the particle-hole channel excitations remain gapless such thktic ordering. Very much as in discussed in Ref. 21 this

low lying spin excitations are present at wave vectdrs produces a field induced transition to an magnetically or-
=(m,m), q=(0,7), and q=(,0). In the SU2) case, this Jered state.

variational wave function has been investigated in details. It
turns out that due to a local $2) symmetry# it is equiva-
lent to a BCSd-wave Gutzwiller projected wave functidf. ACKNOWLEDGMENTS
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