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We investigate the phase diagram of the half-filled SUsNd Hubbard-Heisenberg model with hoppingt,
exchangeJ, and HubbardU, on a two-dimensional square lattice. In the large-N limit, and as a function of
decreasing values oft /J, the model shows a transition from ad-density wave state to a spin dimerized
insulator. A similar behavior is observed atN=6 whereas atN=2 a spin density wave insulating ground state
is stabilized. TheN=4 model, has ad-density wave ground state at large values oft /J which as a function of
decreasing values oft /J becomes unstable to an insulating state with no apparent lattice and spin broken
symmetries. In this state, the staggered spin-spin correlations decay as a power law, resulting in gapless spin
excitations atqW =sp ,pd. Furthermore, low lying spin modes with small spectral weight are apparent around the
wave vectorsqW =s0,pd andqW =sp ,0d. This gapless spin liquid state is equally found in the SUs4d Heisenberg
sU / t→`d model in the self-adjoint antisymmetric representation. An interpretation of this state in terms of a
p-flux phase is offered. Our results stem from projectivesT=0d quantum Monte Carlo simulations on lattice
sizes ranging up to 24324.
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I. INTRODUCTION

SUsNd symmetric models of correlated electron systems
have attracted considerable interests in the past decades. For
instance, those models are relevant for the understanding of
Mott insulators with orbital degeneracy as described by the
Kugel-Khomskii Hamiltonian.1 For twofold orbital degen-
eracy and at a point where the orbital and spin degrees of
freedom play a very symmetric role, this model maps onto an
SUs4d symmetric Hubbard, or Heisenberg model with funda-
mental representation on each site.2 It has also recently been
argued that realizations of SUsNd Hubbard models are at
reach in the context of optical lattices.3

SUsNd generalizations of SUs2d lattice fermion models
can be solved exactly in the large-N limit. Systematic correc-
tions in terms of Gaussian fluctuations around the mean-field
or saddle point solution may be computed. The simplifica-
tions which occur in the large-N limit, namely the suppres-
sion of quantum fluctuations have important consequences
for auxiliary field quantum Monte CarlosQMCd simulations.
As a function of growing values ofN the negative sign prob-
lem inherent to stochastic methods is reduced thus rendering
simulations more and more tractable. In fact, some generali-
zations of Hubbard models lead to the absence of sign prob-
lems for specific values ofN and irrespective of doping.4,5

However, the extrapolation from the soluble large-N limit to
the physicalN=2 case is by no means unambiguous since
phase transitions can occur as a function ofN.

In this paper, we will primarily concentrate on the half-
filled Hubbard-Heisenberg model on a square lattice and map
out it’s phase diagram as a function ofN and coupling
strength. At this band filling, the sign problem is absent for
even values ofN. Hence, ground state properties can be in-
vestigated on lattice sizes ranging up to 24324 unit cells.
We will show the existence ofd-density wavesDDWd states
down toN=4 and of spin-dimerized states atN=6. The most

intriguing result is a possible realization of a gapless spin-
liquid phase for theN=4 model in the Heisenberg limit.

The SUsNd symmetric Hubbard-Heisenberg model we
consider reads

H = Ht + HU + HJ with

Ht = − to
kiW,jWl

cW
iW
†
cW jW + H.c.

HU =
U

N
o

iW
ScW

iW
†
cW iW − r

N

2
D2

HJ = −
J

2N
o
kiW,jWl

sD
iW,jW
†

DiW,jW + DiW,jWDiW,jW
† d. s1d

Here, cW
iW
†
=sc

iW,1

†
,c

iW,2

†
,¯ ,c

iW,N

† d is an N-flavored spinor,DiW,jW

=cW
iW
†
cW jW and r corresponds to the band-filling. AtN=2, the

operator identity

− 1

4
sD

iW,jW
†

DiW,jW + DiW,jWDiW,jW
† d = SW iW ·SW jW +

1

4
fsniW − 1dsnjW − 1d − 1g

s2d

holds. Here, the fermionic representation of the spin 1/2

operator readsSW = 1
2os,s8cs

†sW s,s8cs8 wheresW are the Pauli spin
matrices. Thus, atN=2 the model reduces to the standard
Hubbard-Heisenberg model.

In the strong coupling limit,U / t→`, and at integer val-
ues ofrN/2, charge fluctuations are suppressed. The model
maps onto the SUsNd Heisenberg Hamiltonian
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H =
J

N
o
kiW,jWl

o
a,b

Sa,b,iWSb,a,jW s3d

with

Sa,b,iW = c
a,iW
†

cb,iW −
1

N
da,bo

g

c
g,iW
†

cg,iW s4d

the generators of SUsNd satisfying the commutation relations

fSa,b,iW,Sg,d,jWg = diW,jWsSa,d,iWdg,b − Sg,b,iWda,dd. s5d

The representation of the SUsNd group is determined by the
local constraint

cW
iW
†
cW iW = r

N

2
. s6d

In the terminology of Young tableaux the previous leads to a
tableau withrN/2 rows and a single column. In particular, at
N=4, andr=1/2 squarter-band fillingd the model maps onto
the SUs4d symmetric Kugel-Khomskii Hamiltonian with fun-
damental representation of SUs4d on each lattice site. A study
of large-N Heisenberg models in various representations may
be found in Ref. 6.

SUsNd Heisenberg models have been considered numeri-
cally in Refs. 7 and 8. Those models differ substantially from
ours in the choice of the representation. On one sublattice the
fundamental representationsYoung tableau with one row and
a single columnd is considered and on the other the adjoint
representationsYoung tableau withN−1 rows and a single
columnd. Based on Green function Monte Carlo methods, it
has been argued this SUs4d model has a spin-liquid ground
state. However, simulations on larger lattice sizes with the
loop algorithm have shown that the model has a broken sym-
metry ground state.8 In contrast, our results for the SUs4d
Heisenberg model, atr=1 and in the self-adjoint representa-
tion fsee Eq.s6dg point towards an insulating state with no
broken symmetries.

The paper is organized as follows. In the next section we
formulate the the partition function of the model as a path
integral over bosonic field. This formulation constitutes the
starting point for both the saddle point approximation and the
auxiliary field quantum Monte Carlo simulations. In Sec. III
we present the phase diagram of the half-filled model as a
function ofN and coupling constants. Finally, we summarize
and draw conclusions.

II. LARGE- N LIMIT AND QUANTUM MONTE CARLO
SIMULATION

Both the saddle point approximation as well as the auxil-
iary field QMC rely on a path integral formulation of the
partition function. Using the Trotter decomposition, we write
the partition function as

Z = Trfe−bHg = TrFp
n=1

m

e−DtHte−DtHUe−DtHJG . s7d

Here mDt=b and we have omitted the systematic error of
oderDt2. Using the Hubbard StratonovichsHSd transforma-

tion, we introduce bosonic fields to decouple the two body
interaction terms. Let us start with the Heisenberg term
which we write—replacing the sum over nearest neighbors

kiW, jWl by a sum over bondsb—in terms of perfect squares

HJ = −
J

4N
o
b

sDb
† + Dbd2 − sDb

† − Dbd2. s8d

We can now apply the standard HS transformation to obtain

e−DtHJ ~E p
b

dgbdhb, s9d

e−obfgb
2/2+hb

2/2−ÎJDt/2NsgbsDb
†+Dbd+ihbsDb

†−Dbddg

~E p
b

d Rezbd Im zbe
−obfNDtJuzbu2−DtJszbDb

†+z̄bDbdg.

In the previous, we introduce a complex variable per bond:
zb=sgb+ ihbd /Î2NJDt. Following the same steps, we de-
couple the Hubbard term as

e−DtHU ~E p
iW

dFiWe
−oiWfNDtUF

iW
2
/4−iDtUFiWscWiW

†
cWiW−rN/2dg. s10d

Using the earlier transformations, the partition function in
the limit Dt→0 is given by a functional integral over the
space and imaginary time dependent HS fields

Z ~E p
iW

DFiWstdp
b

D RezbstdD Im zbstde−NSshFj,hzj,hz̄jd.

s11d

The action reads

s12d

with

hstd = − o
kiW,jWl

fst + Jz̄kiW,jWlstddc
iW
†
cjW + H.c.g

− iUo
iW

FiWstdsc
iW
†
ciW − r/2d. s13d

Notice that in the earlier definition ofhstd, the creation and
annihilation operators are notN-flavored spinors but corre-
spond to spinless fermion operators.

A. The saddle point

In the large-N limit, the saddle point approximation
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dS

dzbstd
=

dS

dz̄bstd
=

dS

dFiWstd
= 0 s14d

becomes exact. Assuming time independent fields, we derive
the mean-field equations

FiW = is2kc
iW
†
ciWlh − rd,

zkiW,jWl = kc
iW
†
cjWlh,

z̄kiW,jWl = kcjW
†
ciWlh. s15d

The earlier saddle point has been considered by Affleck
and Marston.9,10 At half-band filling, r=1, andlarge values
of t /J a d-density wave state is realized. This state becomes
unstable towards dimerization as the couplingt /J is reduced.
Here, we have solved the mean-field equations for a four site
unit-cell ssee Fig. 1d, thus allowing more freedom in the
dimerization pattern than in Ref. 10. With

Zi ; r ie
ifi/4 s16d

the solutions we find are characterized by

r1 = r2 = r3 = r4 = rA, r5 = r6 = r7 = r8 = rB,

f1 = f2 = f3 = f4 = fA, f5 = f6 = f7 = f8 = fB.

s17d

The values of the oder parameters are plotted in Fig. 1. As
apparent thed-density wave state withrA=rB andfA=fB is
unstable towards box dimerization belowtc/J.0.17.11 The
DDW state is a semimetal since gapless single particle exci-
tations are present at wave vectorss±p /2a, ±p /2ad. Dimer-

ization opens a quasiparticle gap at all wave vectors. Hence,
the transition from the DDW to the dimerized phase corre-
sponds to a semimetal to insulator transition as shown in
Fig. 2.

We note that the results of Affleck and Marston10 may be
recovered by imposing

Z5 = Z3, Z6 = Z1, Z7 = Z4, andZ8 = Z2. s18d

B. The Monte Carlo simulation

The Monte Carlo approach relies on the same formulation
of the partition function. Before discussing details of the
implementation let us concentrate on our primary concern,
namely the sign problem. In general,e−NSsf,z,z̄d is not a posi-
tive quantity and, hence, may not be interpreted as an unnor-
malized probability distribution from which we sample field
configurations. Hence, in the Monte Carlo method, we con-
sider the probability distribution

Psf,z,z̄d =
ue−NSsf,z,z̄du

E Dff,z,z̄gue−NSsf,z,z̄du
s19d

and estimate the expectation value of an observable with

kOl =
E Dff,z,z̄gPsf,z,z̄deidsf,z,z̄dOsf,z,z̄d

E Dff,z,z̄gPsf,z,z̄deidsf,z,z̄d

. s20d

In the previous,Osf ,z, z̄d is the expectation value of the
observable for a given configuration of fields, ande−NSsf,z,z̄d

= ue−NSsf,z,z̄dueidsf,z,z̄d. The denominator in the earlier equation,
corresponds to the average sign:keidlP.

In the large-N limit, where the saddle point approximation
becomes exact, the average sign is temperature independent
and equal to unity. On the other hand, it is known that for the
SUs2d model the average sign decays ase−DVb whereV cor-
responds to the volume of the system andD is a positive
constant. Hence, we can conjecture thatD is a decreasing
function of N. This has for consequence that at a given tem-
perature the sign problem becomes less and less severe as
function of growing values ofN. We have checked this nu-
merically for the quarter filled,r=1/2,model. Unfortunately
the sign problem for the SUs4d quarter-filled model—the

FIG. 1. sad The four site unit cell with lattice vectors,aW1=2aWx

andaW2=2aWy and corresponding fields. Here,aWx andaWy correspond to
the lattice vectors of the underlying square lattice.sbd Mean-field
order parametersfsee Eq.s17dg as obtained from the saddle point
equations.

FIG. 2. Lowest lying single particle excitation at half-band fill-
ing. The transition from the DDW state to dimerized state corre-
sponds to a semimetal to insulator transition.
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SUs4d symmetric Kugel-Khomskii model—was still to se-
vere to study the nature of the Mott insulating phase in the
strong coupling limitssee Fig. 3d.

At half-band filling,r=1, and even values ofN, particle-
hole symmetry leads to the absence of a minus-sign problem.
At this filling, and under the canonical transformation

c
iW
† → s− 1dix+iyciW s21d

the Hamiltonianhstd transforms as

hstd → hstd s22d

such that

TrfTe−e0
bdthstdg = TrfTe−e0

bdthstdg. s23d

Hence, the earlier quantity is real and

e−NS= e−NS0fTrfTe−e0
bdthstdggN s24d

is positive for even values ofN.
We now summarize the technicalities required to carry

efficient simulations. Since we are interested in ground state
properties, it is more efficient to adopt a projective method
based on the equation

kOl0 = lim
b→`

kCTue−bH/2Oe−bH/2uCTl
kCTue−bHuCTl

. s25d

The trial wave functionuCTl is required to be nonorthogonal
to the ground state andb corresponds to a projection param-
eter. For the trial wave function we choose the form

uCTl = uCTl1 ^ uCTl2 ^ ¯ ^ uCTlN, s26d

whereuCTla is the ground state of the single particle Hamil-
tonian −tokiW,jWlciW,a

†
cjW,a+H.c. in the flavora Hilbert space. With

this choice of trial wave function, the action within the pro-
jection formalism takes the form

S= S0 − lnkxTuTe−e0
bdthstduxTl, s27d

whereuxTl is the ground state of the spinless fermion Hamil-
tonian: −tokiW,jWlciW

†
cjW+H.c. In the simulations we will present in

the next section, we have typically usedbJ=40 which we
found to be sufficient to filter out the ground state from the
trial wave function within statistical uncertainty.

We use a finite imaginary time-stepDt which we have set
to DtJ=0.1. This introduces a systematic error of the order

Dt2. Given this systematic error, it is much more efficient to
use an approximate discrete HS transformation to decouple
the perfect square term

eDtlA2
= o

l=±1,±2
gsldeÎDtlhsldA + OsDt4d, s28d

where the fieldsh andg take the values:

gs±1d = 1 +Î6/3, gs±2d = 1 −Î6/3,

hs±1d = ± Î2s3 −Î6d, hs±2d = ± Î2s3 +Î6d.

This transformation is not exact and produces an overall sys-
tematic error proportional tosDtld3 in the Monte Carlo es-
timate of an observable. However, since we already have a
systematic error proportional toDt2 from the Trotter decom-
position, the transformation is as good as exact. It has the
great advantage of being discrete thus allowing efficient
sampling.

C. The Heisenberg limit

We conclude this technical part with some comments con-
cerning the numerical simulations of the Heisenberg model.
At t /J=0, HU is a good quantum number sincefHtUJ,HUg
=0. Hence, in principle it suffices to choose a trial wave
function uCTl satisfying HUuCTl=0 to guarantee that the
imaginary time propagation converges to the ground state of
the Heisenberg modelfsee Eq.s25dg. On the other hand, one
can relax this constraint on the trial wave function and
implement a Gutzwiller projection onto the Hilbert space
with no double occupancy. We have found the second ap-
proach to be much more efficient.

The algorithm we use here is very related to the one we
have used in Ref. 12 where a detailed technical section is
provided.

III. NUMERICAL RESULTS

Our results are summarized in the phase diagram shown
in Fig. 4. Here, we consider the half-filled case as a function
of N andt /J. For values oft /J.0 we setU=0. Thet=0 line
corresponds to the Heisenberg model where charge fluctua-
tions are completely suppressedssee Sec. II Cd. All our simu-
lations are carried out with the projective algorithm of Eq.
s25d and, hence, reflect ground state properties. In the large-
N limit, the data stems for the mean-field calculation of the
previous section. AtN=6, we essentially reproduce the
saddle point result with a somewhat smaller value oftc/J
reflecting the instability of the DDW phase in favor of the
spin-dimerized phase. Irrespective of the couplingt /J, the
SUs2d model shows an insulating spin-density wavesSDWd
state. The most interesting feature of the phase diagram oc-
curs atN=4. Apart from the DDW phase present atlarge
values oft /J we find an insulating phasessolid circles in Fig.
4d with no apparent broken symmetries and no spin gap. We
will argue that in this phase the antiferromagnetic spin cor-
relations are critical leading to gapless spin modes around

the antiferromagnetic wave vectorQW =sp ,pd. Furthermore,

FIG. 3. Average sign as a function ofN for the quarter-filled
SUsNd Hubbard model. The solid line corresponds to a fit to the
form: ae−bb.
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we will present results showing that low lying spin modes
with very small spectral weight are present around theqW
=s0,pd andqW =s0,pd wave vectors.22

To establish the earlier phase diagram, we have computed

equal-time and time displaced correlation functions. LetOsiWd
be an observable, with time displaced correlation function

SOsiW − jW,td = kOsiW,tdOs jWdl − kOsiWdlkOs jWdl s29d

and corresponding Fourier transform

SOsqW,td = o
rW

eiqWrWSOsrW,td. s30d

From the equal time correlation functionSOsqWd;SOsqW ,t
=0d, we can establish the presence of long range order at a
given wave vector. In this caseSOsqWd scales as the volume of
the system,V, the proportionality constant being the square
of the order-parameter. From the imaginary time displaced
correlation functions, we can compute spectral functions,
SOsqW ,vd by solving

SOsqW,td =
1

p
E dvSOsqW,vde−tv,

SOsqWd =
1

p
E dvSOsqW,vd, s31d

with the use of the maximum entropy method.
Information on gaps and the spectral weight of the lowest

lying excitation, is obtained directly form the imaginary time
correlation function without having recourse to analytical
continuation

s32d

In the previous,uC0l corresponds to the normalized ground
state. uxnsqWdl are eigenstates ofH with momentumqW and
ukC0uOs−qWduxnsqWdlu.0. The gapDOsqWd corresponds to the
energy difference between the first excited stateux0sqWdl and

the ground state andOsqWd=s1/ÎVdo jWe
iqW jWOs jWd. Finally, the

residueZOsqWd corresponds to the spectral weight of the low-
est lying excitation.

To study the model, we have considered the following
observables. Let us define the magnetization as

OspinsiWd = o
a

fsadca
†ca with o

a

fsad = 0. s33d

For even values ofN considered here, we choosefsad= ±1.
Note that SUsNd symmetry leads to the identity

SspinsiW − jWd ; kOspinsiWdOspins jWdl =
N

N2 − 1Ko
a,b

Sa,b,iWSb,a,jWL ,

s34d

whereS
iW
a,b

are the generators of SUsNd fSee Eq.s4dg.
To detect spin-dimerization and DDW instabilities we

consider, respectively,

OdimersiWd = OspinsiWdOspinsiW + aWxd s35d

and

ODDWsiWd = jxsiWd − j ysiWd s36d

with current

jxsiWd = io
a

sc
iW,a

†
ciW+aWx,a

− c
iW+aWx,a

†
ciW,ad s37d

and an equivalent form forj ysiWd. Finally, we obtain informa-
tion on single particle excitations by measuring time dis-
placed Green functions:GskW ,td=−kTckW,astdckW,a

† s0dl. From
this quantity we can extract quasiparticle gaps as well as the
spectral functionAskW ,vd.

A. The DDW phase

We start our description of the phase diagram with the
DDW phase. Figure 5sad shows the finite size scaling of

SDDWsQW d /L2 at the antiferromagnetic wave vectorQW

=sp ,pd. For t /J=0.5 and both considered values ofN the

data supports limL→`SDDWsQW d /L2.0 thus signaling a DDW
ordered phase. One can confirm this point of view from the
analysis on the single particle spectral function along thekW

=s0,pd to kW =sp ,0d line in the Brillouin zonefsee Fig. 5sbdg.
After size scalingfsee Fig. 5scdg the data are consistent with

FIG. 4. Phase diagram of the half-filledfi.e., r

=s2/Ndoakc
iW,a

†
ciW,alg Hubbard-Heisenberg model as a function of

t /J. For t /J.0 we setU=0. The t=0 line corresponds to the
Heisenberg model where charge fluctuations are completely sup-
pressedssee Sec. II Cd. The symbols correspond to the parameters
where we have carried out simulations and denote the following
phases:n: spin-dimerized phase,s: DDW phase,h: Spin-density
wave phase, andP: insulating phase with no broken lattice and spin
symmetries and no gap to spin excitationssgapless spin-liquid
sGSLd phased.
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the vanishing of the quasiparticle gap atkW =sp /2 ,p /2d thus
confirming the semimetal character of the DDW phase.

Since the single particle spectrum has gapless excitations
at the nodal pointskW =s±p /2 , ±p /2d we can expect gapless
spin excitations centered around the wave vectorsqW =s0,pd,
qW =sp ,0d, and qW =sp ,pd, along with a power-law decay of
the equal time spin-spin correlations. Figure 6 confirms this.
The spin gap vanishes at the earlier mentioned wave vectors
fFig. 6sbdg. The spectral weight,ZspinsqWd, of the low lying qW
=s0,pd spin excitation is very small in comparison toqW
=sp ,pd. For the L=20 lattice we haveZspinsqWd /SspinsqWd
.0.006 atqW =s0,pd andZspinsqWd /SspinsqWd.0.5 atqW =sp ,pd.

The data on which this statement are based stems from Fig.
12scd The size scaling of the static spin structure factor at

QW =sp ,pd is consistent with a power-law decay of the stag-

gered spin-spin correlation functions:SspinsQW =sp ,pdd /L2

~L−2. It is interesting to note that even though gapless spin
excitations are present atqW =s0,pd no sign of a cusp in the
spin structure factor at this wave vector is apparentfSee Fig.
6sadg. This signals alarge exponent for thes0,pd spin cor-
relations. Note that in the saddle approximation both the
s0,pd and sp ,pd spin correlations decay asr−4 and no cusp
feature in the static spin structure factor is apparent.13

B. N=6

To study the stability of the DDW phase fromt /J=0.5 to
the Heisenberg point, it is convenient to consider the quasi-
particle gap atkW =sp /2 ,p /2d fsee Fig. 7sadg. For values of
t /Jø1/5 the data are consistent with the opening of a qua-
siparticle gap atkW =sp /2 ,p /2d. The opening of the quasipar-
ticle gap is accompanied by the opening of a spin-gapfsee
Fig. 7sbdg. Hence, the data suggest that for values oft /J
ø1/5 atN=6 we have entered a spin dimerized phase, with
spin and charge gaps.

We confirm this point of view by looking into the dimer
correlation functionsfsee Fig. 8sadg. Those correlations are
dominant at wave vectorqW =sp ,0d in agreement with the
mean-field dimerization pattern. To establish long-range or-
der we have to extrapolateSdimersp ,0d /L2 to the thermody-
namic limit. For t /Jø1/5 gaps are present both in the
charge and spin degrees of freedom. Since the presence of
gaps is equivalent to the localization of spin and charge de-
grees of freedom, we fit the finite size data to the form:a
+brce−L/j. Adopting this form for the finite size corrections,
the data are consistent with the onset of a spin-dimerized
state fort /Jø1/5.

FIG. 5. sad Size scaling of the DDW equal time correlation

functions at wave vectorQW =sp ,pd. sbd Single particle spectral
function in the DDW phase on a 20320 lattice. Here, we normalize
the peak height to unity and along thes0,pd to sp ,0d line each
spectrum satisfies the sum rulee−`

0 dvAskW ,vd=pnskWd=p /2. scd Size
scaling of the quasiparticle gap atkW =sp /2 ,p /2d andkW =s0,pd. The
data show the semimetal character of the DDW phase.

FIG. 6. Spin correlations in the DDW phase.sad Equal time spin
structure factor.sbd Size scaling of the spin gap atqW =s0,pd andqW
=sp ,pd.
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C. N=4

We now turn our attention to the SUs4d model. From the
size analysis of the quasiparticle gap atkW =sp /2 ,p /2d fsee
Fig. 9sadg we can conclude that the DDW state is unstable for
values oft /Jø1/4. In contrast to theN=6 case, no spin gap
opens across the transition up to the Heisenberg limitfsee
Fig. 9sbdg. The correlation functions presented in Fig. 10 in
the Heisenberg limit show dominant spin-spin correlations.
In accordance with the absence of spin gap no sign of long-
range dimerization is apparent.

The issue is now to establish the existence or non-
existence of long range antiferromagnetic order. In Fig. 11,
we plot the spin-spin correlation at the largest distance,

sL /2 ,L /2d, on our L3L lattice as well as SspinsqW
=sp ,pdd /L2 as a function of 1/L. As apparent, the extrapo-
lation is consistent with the absence of long-range magnetic
ordering. In particular, at the Heisenberg point, where we
have carried out simulations on lattices ranging up to 24
324, our extrapolated values read limL→` SspinsrW
=sL /2 ,L /2dd=0.002±0.003 along with limL→` SspinsQW
=sp ,pdd /L2=0.0008±0.004.

The data are equally consistent with a power-law decay
of the spin-spin correlations. Concentrating again on the
Heisenberg point the dashed lines in Fig. 11 correspond
to the forms: SspinsqW =sp ,pdd /L2~L−1.25 and SspinsrW
=sL /2 ,L /2dd~L−1.12. The difference between the two nu-
merical values of the exponents gives an idea of their
uncertainty.

FIG. 7. Quasiparticlesad and spinsbd gaps atN=6 as a function
of coupling. For t /J.0 we setU=0, and t /J=0 refers to the
Heisenberg modelssee Sec. II Cd.

FIG. 8. sad Equal time dimer correlation functions for the SUs6d
Heisenberg model.sbd Size scaling of the dimer correlation function
at qW =s0,pd. For t /J.0 we setU=0, and t /J=0 refers to the
Heisenberg modelssee Sec. II Cd.

FIG. 9. Size scaling of the quasiparticle and spin gaps atN=4.
For t /J.0 we setU=0, andt /J=0 refers to the Heisenberg model
ssee Sec. II Cd.

FIG. 10. Equal time dimer and spin correlation functions for the
SUs4d Heisenberg model.
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Hence, the equal time data are consistent with an insulat-
ing phase with no apparent lattice or spin symmetry breaking
and no gap in the magnetic excitations. It is now intriguing
to investigate the spin dynamics of this phase. Figure 12sad.
plots the dynamical spin-structure factor att /J=0.1, U / t=0
on a 16316 lattice. The data show several features. The gap
at qW =sp ,pd is a finite size effectfsee Fig. 9sbdg. Taking this
into account, the data are consistent with a gapless mode
with linear dispersion aroundqW =sp ,pd. This feature is
clearly not surprising since the equal time correlation func-
tions show critical behavior at this wave vector. As we fol-
low this mode toqW =s0,pd the line shape becomes very
broad and spectral weight seems to spill down to low ener-
gies. This is especially apparent on the intensity plot for
which we have used a logarithmic scalefsee Fig. 12sbdg.
Since the spectral weight of the low-lying modes aroundqW
=s0,pd is very small, it is desirable to confirm the earlier
statement. To this aim we plot in Fig. 12scd the imaginary
time displaced correlation functions,SspinsqW ,td, at qW =s0,pd
and qW =sp ,pd both in the gapless spin-liquid phase att /J
=0.1 and for comparison in the DDW phase att /J=0.5. Let
us start with the DDW phase where we were able to show the
presence of gapless spin modes around thesp ,pd, s0,pd,
andsp ,0d points in thermodynamic limitfsee Fig. 6sbdg. On
theL=20 sized system considered in Fig. 12scd one sees that
both theqW =s0,pd andqW =sp ,pd correlators decay assymtoti-
cally with the same exponential form, thus signaling low
energy spin excitations at both wave vectors. Of course there
is a big difference in the prefactor multiplying this exponen-
tial decay. This reflects the fact that the spectral weight of the
low-lying s0,pd excitation is much smaller than that of the
qW =sp ,pd excitation. Let us now turn our attention to the
gapless spin liquid phase att /J=0.1. As apparent the data
show a very similar behavior at the exception that the spec-
tral weight atqW =s0,pd is reduced in comparison to the DDW
phase. We note that due to the extremely small scales in-

volved in theqW =s0,pd data at t /J=0.1 we are unable to
obtain accurate results beyondtJ.8. Hence, on the basis of
these data, we believe that the spin-liquid phase indeed
shows low lying spin modes not only atsp ,pd, but also at
s0,pd and sp ,0d. Finally, we note that as we approach the
Heisenberg point, the spectral weight of the low lying mode
at qW =s0,pd becomes smaller and smaller. This renders nu-
merical detection of this feature at the Heisenberg point hard.

FIG. 11. Size scaling of the equal time spin-spin correlation
functions. Fort /J.0 we setU=0, andt /J=0 refers to the Heisen-
berg modelssee Sec. II Cd.

FIG. 12. sColor onlined sad Dynamical spin structure factor on a
16316 lattice. We have normalized the peak height of each spec-
trum to unity so as to put forward the overall shape of the disper-
sion relation. The reader however has to bear in mind that the
weight under each spectrum is equal to the equal structure factor
Sspinsqd which is peaked atqW =sp ,pd and vanishes atqW =s0,0d. sbd
Intensity plot of the data ofsad on a logarithmic scale.scd Imaginary
time correlation functions. Here, one can see that without having
recourse to analytical continuation, the bare imaginary time data
support the existence of low lying modes atqW =s0,pd ssee textd. At
t /J=0.5st /J=0.1d we consider a 20320s16316d lattice.
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IV. SUMMARY AND DISCUSSION

The half-filled SUsNd Hubbard Heisenberg model shows a
variety of phases, which we have analyzed in detail. The
saddle point physics—a DDW phase at large values oft /J
which becomes unstable to a spin dimerized state—is valid
down to N=6. On the other hand, the SUs2d model has a
SDW insulating phase irrespective of the coupling constant.
The most intriguing aspect of the phase diagram, is the gap-
less spin liquid state in the SUs4d model in the vicinity of the
Heisenberg point. The SUs4d model has a DDW ground state
at large values oft /J. As appropriate for this semimetallic
state, we find gapless single particle excitations at wave vec-
tors kW =s±p /2 , ±p /2d. In the particle-hole channel those
single particle excitations lead to gapless spin modes cen-
tered aroundqW =sp ,pd, qW =s0,pd, and qW =sp ,0d. Reducing
the magnitude of the hopping matrix element we find a semi-
metal to insulator transition. In the insulating phase the anti-

ferromagnetic,QW =sp ,pd, spin correlations are critical and
for the SUs4d Heisenberg model the data are consistent with

the form SspinsrWd,eiQW ·rWurWu−1.12. This state shows no lattice
broken symmetries and, hence, is a candidate for a gapless
spin liquid state. In the particle-hole channel, the dynamical
spin structure factor points to gapless excitations atqW
=sp ,pd but also to low-lying modes with small spectral
weight centered aroundqW =s0,pd andqW =sp ,0d.

It is tempting to argue that the gapless spin liquid phase is
well described by a DDW mean-field state supplemented
with a Gutzwiller projection. Requiring invariance under
time reversal symmetry pins the flux in each elementary
square top. Clearly, the Gutzwiller projection triggers the
semimetal to insulator transition but one could argue that in
the particle-hole channel excitations remain gapless such that
low lying spin excitations are present at wave vectorsqW
=sp ,pd, qW =s0,pd, and q=sp ,0d. In the SUs2d case, this
variational wave function has been investigated in details. It
turns out that due to a local SUs2d symmetry14 it is equiva-
lent to a BCSd-wave Gutzwiller projected wave function.15

At the particle-hole symmetric point the equal time spin-spin
correlations of this wave function have been computed16 to
obtain a power-law decay of the antiferromagnetic correla-

tions:SsrWd,eiQW ·rWurWu−1.5. Furthermore, the spin structure factor
as computed form the variational wave function shows no
cusp feature atqW =s0,pd and qW =sp ,0d.23 This result com-
pares favorably with behavior of the spin-spin correlations in
the SUs4d Heisenberg model discussed in the present work.

Alternatively we can ask the question of whether or not
our results for the SUs4d Heisenberg model are understand-

able from the perspective of the large-N saddle point. In the
large-N limit and at the Heisenberg point one can stabilize
the p-flux phase by adding biquadratic terms to the
Hamiltonian.10 Furthermore, Hemerleet al.17 have argued in
favor of the stability of thep-flux phase to gauge fluctua-
tions arising from the constraint of no double occupancy. At
the mean-field level, thep-flux phase shows antiferromag-

netic spin-spin correlations which decay asSsrWd,eiQW ·rWurWu−4.
Including gauge fluctuations in a 1/N approximation reduces
the mean field exponent.18 On the other hand, thes0,pd spin-
spin correlations remain unaffected by gauge fluctuations.18

Those results compare favorably with our calculations at
N=4.

To investigate the nature of the spinless liquid state we
find in the SUs4d Heisenberg model, it is desirable to inves-
tigate it’s behavior under perturbations. Following the varia-
tional work of,16,19 the particle-hole symmetric point is un-
stable towards aZ2 spin liquid as realized for example in
quantum dimer models.20 This instability is triggered by the
inclusion of a next nearest neighbor hopping matrix element
in the BCS Slater determinant. In the spin model this trans-
lates in the inclusion of a frustrating exchange coupling. Un-
fortunately, this is not accessible to the quantum Monte Carlo
approach since frustration leads to a minus sign problem.
Another perturbation, which is accessible to the Monte Carlo
approach, is the inclusion of a uniform magnetic field. Based
on the mean-field description of thep-flux phase, we can
speculate that the pointlike Fermisurface at zero field
evolves to rings around centered around the zero field nodes.
Since we are at a particle-hole symmetric point and that this
symmetry is not broken under the inclusion of a magnetic
field, the finite field Fermi surface is unstable towards mag-
netic ordering. Very much as in discussed in Ref. 21 this
produces a field induced transition to an magnetically or-
dered state.
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