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Using the renormalization group with included self-energy effects and exact diagonalization of small clusters
we investigate the ground-state phase diagram of a two-dimensional extended Hubbard model with nearest-
neighbor exchange interactionJ, in addition to the local Coulomb repulsionU. The main instabilities are
antiferromagnetism close to half filling anddx2−y2 superconductivity in the doped system. We find that self-
energy effects are fatal for superconductivity in the repulsive Hubbard modelsi.e., J=0, U.0d. The super-
conductivity is triggered by finite J. The combined action ofJ and U interactions provide a remarkably
efficient, mechanism to enhance bothdx2−y2 superconducting and antiferromagnetic correlations.
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I. INTRODUCTION

One of the most striking features observed in the phase
diagram of the high-Tc superconducting cuprates is the prox-
imity between the insulating state with long-range antiferro-
magnetic order and the superconducting phase. This remark-
able issue and the fact that at optimum doping the
antiferromagnetic coherence length remains finitesj,4a for
La2−xSrxCu04d, have been the source of inspiration for many
theoretical works in which the pairing mechanism is pro-
posed to be originated in the fluctuations of the spin-density
wave phase. Another peculiarity of these materials is that the
superconducting order parameter hasdx2−y2 symmetry. The
reason for this property is also thought to be the closeness to
the antiferromagnetic phase as the lines of nodes of the su-
perconducting gap allows for the existence of gapless spin
excitations and superconductivity can coexist with spin-
density wave fluctuations. Very recently, the proximity be-
tween these two phases supplemented with the effect of dis-
order has been the basic ingredient in a phenomenological
model to suggest thatcolossaleffects can be expected in the
phase diagram of the cuprates.1

The fact that the ground state of the undoped materials is
antiferromagnetic immediately suggests that the Hubbard
model could be a good candidate for a microscopic descrip-
tion of these compounds. Instead, the explanation of the su-
perconducting mechanism in the framework of this model
remains very controversial. A superconducting solution is
found when the model is tackled with some many-body
techniques.2–10 However, all the numerical works devoted to
search indications of superconductivity in the repulsive Hub-
bard model have been negative so far.11–14Another candidate
model to provide the basis for the theoretical investigation of
the high-Tc superconductors is thet-J model, which coin-
cides with the Hubbard Hamiltonian in the limit ofU→`
scorresponding toJ→0d. In the case of thet-J model, many-
body methods and numerical results seem to be in agreement
concerning the possibility of a superconducting state with
dx2−y2 symmetry.15–18The range ofJ at which it may occur is,
however, not precisely determined and it is likely to lie be-
yond the region where the mapping from the Hubbard model
is valid.

This motivates the study of thet-J-U model

H = − t o
ki j l,s

scis
† cjs + H.c.d + Jo

ki j l
Si ·Sj + Uo

i

ni↑ni↓, s1d

which, in addition to the Coulomb repulsionU of the usual
Hubbard Hamiltonian, contains a nearest-neighbor exchange
interactionJ as thet-J model. In such a way, we can expect
to retain appealing features of both models, like the charge
fluctuations introduced byU but forbidden in the constrained
t-J model and the robust superconducting correlations intro-
duced by the exchange interaction and explore the interplay
between both effects. In addition to these heuristic argu-
ments, thet-J-U model is closely related to the extended
Hubbard model with correlated hopping, which has been de-
rived from the three-band extended Hubbard model as an
effective one-band Hamiltonian to describe the low energy
properties of the Cu-O planes of the high-Tc materials.19 The
latter model is characterized by three different nearest-
neighbor hopping amplitudestAA,tAB,tBB depending on the
occupation of the two sites involved, as well as the usual
Coulomb repulsionU,

H = Uo
i

ni↑ni↓ − o
ki j l,s

scis
† cjs + H.c.dhtAAs1 − nis̄d

3s1 − njs̄dtABfs1 − nis̄dnjs̄d + nis̄s1 − njs̄dgtBBnis̄njs̄.

s2d

Each of the parameters of the above model depend on the
parameters of the original three-band Hamiltonian and there
is a degree of uncertainty in their precise values. The rel-
evant property is that reasonable estimates indicate thattAB is
larger than the other two.19 The analysis of the different hop-
ping processes in Eq.s2d reveals that the one driven bytAB
mediates antiferromagnetic correlations. In particular, in the
strong coupling limitU@ tAA, tAB,tBB, the exchange interac-
tion obtained by treating Eq.s2d with second order perturba-
tion theory isJ=4tAB

2 /U. Furthermore, when this process is
suppressed, antiferromagnetic correlations are completely
eliminated and a metal-insulator transition can take place at
finite U in the half-filled system.20–22For weak coupling, the
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Hamiltonians2d can be treated with mean-field Hartree-Fock
and BCS-like techniques in two dimensionss2Dd sRef. 23d
and with operator product expansion and bosonization in
1D.24 It turns out that, close to half filling, the predicted
phase diagram is equivalent to that obtained starting from an
effective t-J-U model.25 In summary, the relevance of the
t-J-U model to describe the physics of the cuprates can be
also supported by its closeness to the correlated Hubbard
model derived from the more detailed three-band Hubbard
model for the Cu-O planes.

Coming back to the phenomenology of the superconduct-
ing cuprates, thet-J-U model provides the framework for
recent suggestions based on a combined order parameter
with superconducting and bond-density-wave components
with dx2−y2 symmetries to explain the intriguing pseudogap
phenomena.26 In general, extended Hubbard models in low
dimensions are of interest in the context of high-Tc
materials27–29 and also to understand the rich structure ob-
served in the phase diagrams of organic materials such as
sTMTSFd2PF6 andsTMTSFd2ClO4,

22,24,30–37which cannot be
explained on the basis of the local Coulomb interaction of
the usual Hubbard model.

The t-J-U model has an explicit effective attraction me-
diated by J that enables a superconducting solution even
within a simple BCS-like description. Numerical studies of
this model in ladders indicate that superconducting correla-
tions with dx2−y2 symmetry are enhanced in comparison to
those of the usual Hubbard model.38 More recently, an analy-
sis based on the Landau-Fermi-liquid picture has been
adopted to argue that the pairing interaction mediated byJ
combined by a strong renormalization of the effective den-
sity of states caused byU results in a significant enhance-
ment of the superconducting order parameter while quantum
Monte Carlo simulations based on a variational wave func-
tion with a BCS structure support this picture.39 Investiga-
tions of the weak coupling phase diagram at van Hove fill-
ings of the two-dimensional version of this model
supplemented by a nearest-neighbor Coulomb repulsion and
next-nearest-neighbor hopping amplitude have also been
reported.40

The aim of this work is to investigate the two-dimensional
phase diagram of thet-J-U model with two complementary
techniques: exact diagonalizationsEDd of a small cluster
with 434 sites and the one-loop renormalization groupsRGd
technique presented in Refs. 6, 41. The latter are expected to
provide reliable indications of the main instabilities of the
Fermi liquid in the limit of weak interactions. ED is an un-
biased method that consists in the exact calculation of the
ground-state wave function, allowing for the direct evalua-
tion of the relevant correlation functions but has the draw-
back that the size of the clusters that are amenable to be
treated is small. In spite of that limitation, in the case of the
t-J model, the conclusions based on numerical results on
such small clusters are among the most robust ones regarding
superconductivity.17 It is therefore interesting to analyze the
predictions of these two methods and to compare them with
previous results.

The article is organized as follows, in Sec. II we provide
some technical details on the methods we employ. In particu-
lar, we describe the procedure followed to include self-

energy corrections in the RG treatment. An important refer-
ence is the behavior of the relevant susceptibilities evaluated
with this RG procedure for the usual Hubbard model. This is
discussed in Sec. III. In Sects. IV and V we present the
results for thet-J-U model using RG and ED, respectively.
Section VI is devoted to summary and conclusions.

II. TECHNICAL DETAILS

A. Renormalization group method

The basic hypothesis of the renormalization group method
is that the normal state is well described by the effective
action for quasiparticles near the Fermi surface. The descrip-
tion of the many body problem is done in terms of the two-
body effective interactionUlsu1,u2,u3d and the quasiparticle
weight Zlsud. In the Wilson’s renormalization scheme,
Ulsu1,u2,u3d is the effective interaction between electrons
within the ring ±L around the Fermi surface. This interaction
is renormalized by the scattering processes involving all
electronsoutsidethe ring ±L. A physical interpretation of the
cutoff L is that it plays the role of an effective temperature or
the experimental probe frequency. In previous versions of
RG,6,8,9,40it was assumedZlsud=1. In what follows, we sum-
marize the improved RG method of Ref. 41 which also con-
siders self-energy corrections by taking into account the
renormalization of the quasiparticle weight.

An important issue to note is the fact thatUlsu1,u2,u3d
andZlsud depend only on the anglesui that parametrize the
positions of the particles on the Fermi surface. This is justi-
fied by a simple power counting which tells us that only the
angular dependence of the effective interaction is marginal
sor marginally relevantd and only terms up to linear in energy
are to be kept in the renormalization of the angle-dependent
self-energy.41 In the renormalization group procedure, these
functions are continuously renormalized as the energy cutoff,
parametrized by the scalel asL=8t exps−ld is reduced. The
ensuing equation for the evolution ofUl within the one-loop
renormalization group scheme has the following structure:

]Ul

]l
= bpphUl,Ulj + 2bphhUl,Ulj − bphhUl,XUlj

− bphhXUl,Ulj − XbphhXUl,XUlj, s3d

where X is the exchange operator defined asXUs1,2,3d
=Us2,1,3d. One must remember that Eq.s3d is a functional
flow equation, i.e.,Ul and all terms on the right-hand side
depend on three anglessu1,u2,u3d. Particle-particlesCooperd
and particle-holesdensity-waved differential bubblesbpp and
bph are shown on Fig. 1.

To solve numerically Eq.s3d we discretize the angleu
which defines the so-calledN-patch model. The function
Ulsu1,u2,u3d is then represented by a set of coupling con-
stants labeled by three discrete indexes. For thet-J-U model,
the initial condition is
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Ul=0su1,u2,u3d = HU −
J

4
fcossx3 − x1d + cossy3 − y1dg

−
J

2
fcossx3 − x2d + cossy3 − y2dgJ , s4d

where sxi ,yid are components of the wave vectork i, corre-
sponding to the angleui at the noninteracting Fermi surface.
All coupling constants are found to diverge at the same criti-
cal scalelc as

Ulsu1,u2,u3d → Ũsu1,u2,u3d
lc − l

, s5d

where the weightsŨ are model dependent constants. This
type of solution is called the fixed-pole solution in contrast to
the mobile-pole solution, where different coupling constants
diverge at different critical scales. For realistic systems,
where the initial coupling is not extremely small, only fixed
poles are relevant.42 The critical scalelc depends on the bare
coupling constantsU and J and on the band filling param-
etrized by the chemical potential. The critical cutoffLc
=8t exps−lcd appears to be the characteristic temperature of
the model. The most precise nonrestrictive interpretation of
Lc is that at this energy electrons start to build bound states.
Namely, the poles in Eq.s5d are the two-particle propagator
poles, indicating the onset of bound states. These bound
states can be of charge, spin or superconducting kind and all
of them renormalize the one-particle weight. This renormal-
ization is angle dependent and its evolution is described by
the following expression:

]lln Zlsud =
1

s2pd2 E du8Isu8,− Ldhlsu,u8d, s6d

with the initial conditionZlsud=1. The functionIsu ,ed is the
angle-dependent density of states at the energye smeasured
from the Fermi leveld. The quantity hlsu ,u8d contains
particle-particlesppd and particle-holesphd contributions

hlsu,u8d ; s2X − 1dbpphUl,Ulj + 2bphhXUl,XUlj

+ 2bphhUl,Ulj − bphhUl,XUlj − bphhXUl,Ulj
s7d

with all terms on the right-hand side taken with external legs
su1,u2,u3d=su ,u8 ,u8d. The interaction inserted in all beta

functions obeys the scaling Eq.s3d. The relation between
interactionUl and the usual physical interactionG contains
the rescalingZ factors41

Gls1,2,3d = fZls1dZls2dZls3dZls4dg−1/2Uls1,2,3d. s8d

To find out which correlations are relevant and candidates for
order parameter we must allow the theory to choose between
all possible two-particle correlations. For this reason we have
to follow the renormalization of several angle-resolved cor-
relation functions. The superconducting correlation function
xl

SCsu1,u2d measures correlations between the Cooper pairs
su1,u1+pd andsu2,u2+pd, all states being at the Fermi sur-
face. The antiferromagnetic correlation functionxl

AFsu1,u2d
correlates two nested electron-hole pairscksu1d

† scksu1d+sp,pd

and cksu2d
† scksu2d+sp,pd. The charge density wave correlation

function xl
CDWsu1,u2d correlates the nested chargelike

electron-hole pairs. To get the renormalization group flow of
all correlation functions we follow the procedure given in
Ref. 6 but dressing the electronic propagators withZ factors
as in Ref. 41. We get

xl
dsu1,u2d =

1

Zlsu1dZlsu2d R du z̃l
dsu1,udDl

dsudz̃l
dsu,u2d.

s9d

The functionDl
dsud is written

Dl
SCsud =

1

2 o
n=+,−

IfnLsld,ug s10d

for the SC channel and

Dl
AFsud =

1

2

If− Lsld,ug
1 + umu/Lsld

, s11d

for the AF channel where only the negative shellsn=−1d
contributes to the flow.

The flow of the quantityz̃l
dsu1,ud that has the role of a

triangular vertex is written

f]l − hsu1d − hsu2dgz̃l
dsu1,u2d

= − R du z̃l
dsu1,udDl

dsudVl
dsu,u2d. s12d

The meaning ofz̃l
dsu1,u2d is that

z̃l
dsu1,u2d ; Zlsu1dzl

dsu1,u2dZlsu2d

so that the initial conditions forz̃l
d and forzl

d are the same:

zl=0
d su1,u2d = dDsu1 − u2d, s13d

wheredD is the Dirac function. Initial conditions for suscep-
tibilities are

xl=0
d su1,u2d = 0. s14d

After discretization we integrate numerically Eqs.s9d and
s12d. The relevant susceptibility in each channel is the domi-
nant eigenvalue of the angle-resolved correlation function.
The corresponding eigenvector determines the angular de-
pendence of the order parameter.

FIG. 1. Propagators corresponding to degrees of freedom on the
shell ±L are indicated with a bar, while propagators of degrees of
freedom outside the ring ±L are denoted with an arrow.
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B. Exact diagonalization

This method consists in the exact computation, by re-
course to Lanczos algorithm, of the ground-statesg.s.d wave
function of the model Hamiltonians1d on a small cluster. We
consider a cluster containing 434 lattice sites.

Due to the finite size of the cluster, its reciprocal lattice
contains just some fewsN=16d points. As several instabili-
ties are expected to be competitive in this model, the rough
mesh of availablek vectors can produce an important bias
and lead to an artificial enhancement of some kind of corre-
lation. The only resort to minimize this drawback is to con-
sider different kinds of boundary conditions, which is
equivalent to consider different choices of the 16k points.
An arbitrary choice of boundary conditions breaks the point
group symmetry of the original lattice. Exceptions are the
periodic sPd and antiperiodicsAPd boundary conditions,
which lead to the mesh indicated in Figs. 2sbd and 2scd, re-
spectively. MixedsMd boundary conditionssperiodic in one
direction and antiperiodic in the otherd lead to the pattern
depicted in Fig. 2sad. The latter breaks some of the symme-
tries of theC4v group of the original lattice, the correspond-
ing point group beingC2v. Typically, these three choices of
boundary conditions are the ones leading to the lowest en-
ergy. In our study, we compute the g.s. ofs1d, considering the
three abovementioned possibilities within the subspaces cor-
responding to the different one-dimensional representations
of the point group and totalk =s0,0d. In the noninteracting
system, it is easy to see that closed-shell configurations are
those leading to the lowest energy. For some densities of
particles this condition is, however, not possible to be ful-
filled for any choice of the boundary conditions and the g.s.
is degenerate. The interactions normally lift most of the de-
generacies. In some cases, it is observed that when the inter-
actions overcome some particular value, a change is pro-
duced in the BC leading to the lowest energy. The latter

effect is an indication that interactions lead to some qualita-
tive change in the behavior of the g.s. This is, of course, a
mere finite size effect but provides a valuable information,
since it reflects that the system prefers a change in the popu-
lation of availablek points in order to take advantage of the
interactions and thus lower the energy.

To investigate the superconducting correlations in the g.s.
it is useful to study the behavior of the pair correlation func-
tion sPCFd

Psr d =
1

N
o

i

kC0uDa
†sRi + r dDasRiduC0l, s15d

where uC0l is the ground-state wave function whileDos
† sRid

=ci↑
† ci↓

† for on-site s pairing, Da
†sRid=odfasddfci+d↑

† ci↓
†

−ci+d↓
† ci↑

† g /Î8, with fessdd=1 for extendeds pairing, and
fdsdd=1ffdsdd=−1g when d= ± s1,0dfd= ± s0,1dg for dx2−y2

pairing. This function is normalized in such a way that
uDa

†siduC0l2=1. A superconducting state with pairs of a given
symmetry is expected to have sizable correlations between
pairs far separated by arbitrary large distances. In the case of
the 434 cluster, the largest available distance isr =s2,2d.
The PCF between pairs separated by this maximum distance
is denotedPm. As even in the noninteracting limit the PCF
can be finite, we interpret an enhancement of the correspond-
ing PCF relative to its value atU=0, J=0 as an indication of
the superconducting instability.

To study the spin-density-wavesSDWd correlations it is
useful to compute the spin-spin correlation function

Ssr d =
1

N
o

i

kC0uSzsRi + r dSzsRiduC0l, s16d

and to analyze the Fourier transform

Sskd =
1

N
o

i

eik·RiSsr d, s17d

which provides information on the nature of the correlations
between spins.

III. RENORMALIZATION-GROUP RESULTS FOR
HUBBARD MODEL WITH REPULSIVE AND ATTRACTIVE

INTERACTION

In this section we present results for the usual Hubbard
model obtained by the RG method described in the previous
section. The motivation is twofold. For the case of theU
.0 model, it was shown in Ref. 41 that self-energy correc-
tions included in the renornalization ofZsud are important to
predict the antiferromagnetic instability at half filling in 2D
and to recover the correct expression for the jump at the
Fermi points in 1D but the behavior of the susceptibilities
away from half-filling has not been analyzed so far. On the
other hand, forU,0 the model is a paradigmatic example of
a superconductor and it is, therefore, an important reference
point to analyze the behavior of the superconducting corre-
lations. The results shown correspond to a discretization of
32 patches.

When applied to the usual Hubbard model with repulsive
interactionssU.0d, the RG without considering self-energy

FIG. 2. Reciprocal lattice of the 434 cluster assumingsad
mixed boundary conditions,sbd periodic boundary conditions, and
scd antiperiodic boundary conditions. Ground-state configurations
corresponding to the fillingsn=0.75 sthick arrowsd and n=0.875
sadding the thin arrows to the previous cased are also sketched.
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corrections,6,8,9 predicts that at some critical scalelc, the su-
perconducting susceptibility withdx2−y2 symmetry together
with AF susceptibility diverge within the parquet regime
sumu,Ld, even at half filling. This feature is expected to be
an artifact of the approximation since forn=1 umklapp pro-
cesses are active and they are expected to drive the system
toward an insulating AF state. In Ref. 41 it was shown that,
due to the renormalization of the quasiparticle weight, the
SC susceptibility is suppressed below its noninteracting
value, while the AF susceptibility remains enhanced, al-
though weakly, relative to the noninteracting particle-hole
one.

Figure 3 shows the behavior for the different susceptibili-
ties as functions of the scalel, at different densities defined
by the chemical potentialm=8t exps−lmd. The susceptibilities
with and without self-energy corrections are respectively
plotted in thin and thick lines. The two left-hand panels cor-
respond to half fillingslm=`d and summarize the results of
Ref. 41. Without self-energy corrections both SC and AF
susceptibilities diverge atlc, AF being dominant. Self-energy
effects suppress the divergence, decreasing the SC suscepti-
bility bellow its noninteracting value. The AF susceptibility
is also renormalized by self-energy effects but remains larger
than the noninteracting one. The scalel* ssee Fig. 3d at which
the AF susceptibility begins to depart from the behavior of
the noninteracting one is, however, not affected by the self-
energy corrections. This kind of behavior extends along the
parquet regime, defined by the conditionumu,L.

The region at lower densities such thatumu,L is usually
called BCS regime because only Cooper channel has loga-
rithmic contributions to the effective interaction. The two
right-hand panels of Fig. 3 show how in this regime both AF
and SC susceptibilities remain slightly larger than their non-
interacting values when self-energy corrections are taken
into account.

These results need some discussion. Up to now it was
rather widely accepted that the 2D Hubbard model has a
dx2−y2 SC state away from half filling. On the contrary, results
on the right-hand panels of Fig. 3 do not convincingly indi-
cate a strong superconducting instability. The SC correlation

functions being only weakly enhanced and the scalel* being
strongly renormalized towards high values when self-energy
effects are taken into accountssee right-hand lower panel of
Fig. 3d. This indicates that the energyL* =8t exps−l*d at
which superconducting correlations begin to manifest them-
selves decreases when self-energy effects are considered. At
Lc there is a creation of bound states because the four-point
vertex s5d has poles. These bound states are the gapless
modes that destroy the one-particle coherence via self-energy
corrections and the result is that the phase transition is sup-
pressed, probably to some finite lower energy.

To justify the above interpretation we calculated for com-
parison the RG flow of the attractive Hubbard model, for
which the instabilities are better known. TheU,0 model is
a paradigmatic example ofs-wave-type superconductor and
its phase diagram has been investigated in detail by mean-
field and numerical techniques. Unlike the repulsive counter-
part, predictions by different methods agree about the main
instabilities expected in its phase diagram.43,44At weak cou-
pling, the explicit local negative interaction leads to BCS-
like superconductivity away from half filling. Forn=1, local
CDW is believed to be degenerate withs-wave superconduc-
tivity in the g.s.43 In 1D, such degeneracy is exact due to
symmetry reasons. This is because the repulsive model has
dominant AF correlations with a power law decay. Since no
breaking of the SUs2d symmetry is possible, the behavior of
the correlations in any of the spacial direction must behave
in the same way. On another hand, there is an exact transfor-
mation ci↑

† → s−1dici↑, ci↓
† →ci↓

† , which maps the repulsive
model into the attractive one, while maps the degeneratez
and x,y components of the dominant SDW correlations of
the U.0 model to the CDW and superconducting ones, re-
spectively, of theU,0 counterpart. The above reasoning can
also be extended to the 2D case provided that no symmetry
breaking in the ground state of theU.0 model takes place.
Results obtained with RG for the attractive model in 2D
shown in Fig 4 are in very good agreement with the descrip-
tion provided by numerical methods.43,44 At half filling slm

=`, see left-hand panels of Fig. 4d, the most remarkable
feature is the degeneracy observed between CDW and SC

FIG. 3. sColor onlined AF supper panelsd and
dx2−y2 SC slower panelsd susceptibilities as func-
tions of the scalel for Hubbard model withU
=1.6t and densities determined bylm=` sleft-
hand panelsd andlm=3 sright-hand panelsd, corre-
sponding, respectively, to half fillingsparquet re-
gimed and high dopingswithin the BCS regimed.
Thick and thin lines correspond to results with
and without self-energy corrections, respectively.
The noninteracting particle-particle and particle-
hole susceptibilities are shown in dashed lines.
The critical scalelc as well as the scalel* at
which the susceptibility departs from the behav-
ior of the noninteracting one are indicated with
magenta and cyan arrows, respectively.
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susceptibility with locals-wave symmetry, which remain
slightly larger than the noninteracting one when self-energy
corrections are considered. This should be rather expected
since the present method provides a description of the nor-
mal state and only the onset of the instability towards the
symmetry broken state is captured. Below half fillingslm=5,
3, see middle and right-hand panels of Fig 4d, CDW suscep-
tibility becomes weaker, approximately equal to the nonin-
teracting one, while the superconducting susceptibility be-
comes more enhanced. Self-energy effects suppress the
divergence of the different instabilities but do not renormal-
ize the scalel* .

Below half filling, the s-wave type SC susceptibility is
clearly larger than the noninteracting particle-particle one. As
expected, the CDW remains non renormalized. Compared to
the repulsive Hubbard modelsFig. 3d, the enhancement of
SC correlations is more convincing and in the present case
we can indeed assign the divergence atlc to the onset of the
s-wave superconductivity. Altogether, the attractive Hubbard
model away from half filling shows strong tendencies to-
wards thes-wave superconductivity even when the self-
energy corrections are taken into account. This is in contrast
to the repulsive case where the self-energy effects have a
more pronounced effect against thedx2−y2 superconductivity.
The reason for this behavior is rather simple: thes-wave
superconductivity in the attractive Hubbard model is an ef-
fect of first order inU, while the self-energy corrections are
of second order. As long as the coupling is weak the BCS-
like instability is a good approximation. Formally this means
that the mean-field and the Kosterlitz-Thouless transitions
are close to one another. In the case of the repulsive interac-
tion thedx2−y2 superconductivity and the self-energy correc-
tions are both of second order inU, so that by decreasingU
one cannot promote only superconductivity and make the
fluctuations subdominant.

IV. RENORMALIZATION-GROUP RESULTS
FOR THE t-J-U MODEL

We present results for the relevant susceptibilities in the
t-J-U model in Fig. 5. The left-hand panels correspond to

half filling and the behavior is similar to that of the Hubbard
case. Namely, SC susceptibility withdx2−y2 symmetry
evolves to values below of the noninteracting one, while AF
susceptibility remains higher than its noninteracting value,
indicating that atn=1, the system flows towards an AF in-
sulating state. Upon doping thedx2−y2 superconductivity gets
progressively stronger and becomes the dominant instability
at about the crossover lineL=m, just as in the Hubbard
model. The right-hand panels show a typical flow of the
susceptibility in the BCS regimesL,md where the domi-
nant correlations are of superconductivity type.

The above picture shares some features with the behavior
observed in the Hubbard model, discussed in the previous
section. Important issues to highlight are as follows.sid At
half filling the behavior of the relevant susceptibilities is very
similar to that of the repulsive Hubbard model. However, the
scalelc at which the onset of the AF instability takes place as
well as the scalel* are smaller than for theJ=0 case. The
susceptibility is also significantly larger than the noninteract-
ing one, even when self-energy corrections are included in
the RG procedure. These features indicate thatJ contributes
to increase the AF correlations and the Néel temperature.sii d
At higher dopings, within the BCS regime, AF susceptibility
coincides with the noninteracting one while SC correlations
become significantly enhanced. This is in contrast to the be-
havior of the repulsive modelssee Fig. 3d where SC correla-
tions are only weakly enhanced. Instead, the behavior on the
right panels of Fig. 5 resembles the one of the attractive
Hubbard model, if we associatedx2−y2 SC and AF suscepti-
bilities in Fig. 5, respectively, tos-wave SC and CDW sus-
ceptibilities on middle and right panels of Fig. 4. Also note
that, as in the attractive model, the scalel* remains unaf-
fected by self-energy effects. In addition, the scalelc at
which the onset of the superconducting instability is ob-
served is small in thet-J-U model, implying a high critical
temperature. We have carried out a similar analysis for other
values of the parametersJ andU and found that the symme-
try of the dominant superconducting correlations is always
dx2−y2. We have verified the reliability of these results upon
increasing number of patches up to 64 patches. The reason

FIG. 4. sColor onlined CDW supper panelsd
and s-wave SCslower panelsd susceptibilities as
functions of the scalel for U=−0.8t and densities
determined bylm=`, 5, 3, corresponding to half
filling and two densities within the BCS regime
sfrom left to rightd. Other details are the same as
in Fig. 3.
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for the robustness of the SC correlations is in the fact that the
J interaction has an attractivedx2−y2 SC component, so that
superconductivity exists already at first order ofUl while the
fluctuations are only subdominant, just as in the attractive
Hubbard case.

In order to have a more quantitative representation of the
role played by both interactions we present the phase dia-
gram in Fig. 6. The “critical temperature” plotted in the fig-
ure is defined asTc,Lc, whereLc=8t exps−lcd. Results for
the repulsive Hubbard model are also shown for comparison.
By comparing the plots forJ=0, U=1.6t andJ=1.6t, U=0 in
the left panel and forJ=0, U=1.6t and J=0.4t, U=1.6t in
the right panelsthe arrows are drawn to ease the readingd, it
is clear thatJ is a remarkably efficient mechanism to drive
AF close to half filling anddx2−y2 superconductivity in the

doped system. Another important feature is that at fixedJ,
the effect ofU is to increase the “critical temperature.” This
means that the two interactions are not competitive but, in-
stead, cooperate to increase the strength of antiferromagnetic
and superconducting correlations.

V. EXACT-DIAGONALIZATION RESULTS FOR THE t-J-U
MODEL IN THE 4 Ã4 CLUSTER

The results of the previous section suggest that the com-
bined effect of the interactionsJ andU drives superconduc-
tivity with dx2−y2 symmetry in the doped system, leading to a
significant enhancement of the superconducting correlations.
As in the case of the pure Hubbard model numerical methods
fail to detect the tendency towardsdx2−y2 superconductivity,
it is interesting to analyze the case of finiteJ.

We show below results obtained by following the strategy
explained in Sec. II. We computed the exact g.s. energy and
wave function in a 434 cluster and calculated the correla-
tion functions between pairs with local and extendeds-wave
anddx2−y2 symmetries. We focused our attention on the study
of three different fillingssn=0.625, 0.75, 0.875d, correspond-
ing to N=10, 12, 14 particles in the cluster.

Let us begin with the analysis of the boundary conditions
leading to the lowest energy. For the casen=0.625, the g.s. is
obtained for PBC. In the noninteracting limit, it corresponds
to a closed-shell configuration and for all the explored values
of the interactions, it lies in the subspace associated to the
representation of the point group withs-wave-like character.
Thek points lying on the Fermi surface of the noninteracting
system aresp /2, 0d and the symmetry related points. For
these points, the structure factorsfesskd=cosskxd+cosskyd
and fdskd=cosskxd−cosskyd, corresponding to BCS gaps with
extendeds and dx2−y2-wave symmetries have exactly the
same strengthufdu= ufesu=1.

For fillings n=0.75 andn=0.875, the lowest energy in the
noninteracting case is achieved by considering MBC. In this
limit, the only ingredient playing a role in the energetic bal-
ance is the kinetic energy gain. As interactions are switched

FIG. 5. sColor onlined AF supper panelsd and
dx2−y2 SC slower panelsd susceptibilities as func-
tions of the scalel for Hubbard model withU
=J=1.6t and densities determined bylm=` sleft-
hand panelsd andlm=3 sright-hand panelsd, corre-
sponding, respectively, to half fillingsparquet re-
gimed and high dopingswithin the BCS regimed.
Other details are the same as in Fig. 3.

FIG. 6. sColor onlined Phase diagram showing combined action
of U and J interactions. The “critical temperature” is defined as
Tc,Lc=8t exps−lcd ssee textd. Left and right panels correspond to
J=1.6t andJ=0.4t, respectively. Plots in blue circles correspond to
U=0, 0.4t ,0.8t ,t ,1.6t ,3.2t. The ones corresponding to the lowest
and highestU are drawn in open and dark filled symbols, respec-
tively. The plot in red squares corresponds to the usual Hubbard
model sJ=0 and U=1.6td. The line T=m separates the regions
where the SDW anddx2−y2 superconductingsdSCd instabilities are
the dominant ones.
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on, the g.s. corresponds to APBC for sufficiently largeJ and
U. This indicates that thek points tuned by APBC are able to
take advantage of some effect of the interactions, compen-
sating the loss of kinetic energy. For the latter boundary con-
ditions, the Fermi points of the noninteracting system lie on
the lines of nodes offes. Therefore, it is likely that the most
favored instability by such a change of population in thek
space isdx2−y2-wave superconductivity. Some values of the
GS energy per site are shown in Tables I and II.

It is interesting to note that, for the densityn=0.75, the
g.s. belongs to the representation of the point symmetry
group withs-wave-like character within the region where the
g.s. corresponds to APBC. Instead, forn=0.875 and also
within the region of parameters where the g.s. corresponds to
APBC, the character of the point-group representation is
dx2−y2-wave-like. Since in the present clustern=0.875, dif-
fers fromn=0.75 in two particles, this change of representa-
tion is consistent with the idea that a pair of particles with
dx2−y2-wave symmetry was added to a many-particle back-
ground with totals-wave symmetry. We actually speculate

that such a background is also made up of paired particles.
The behavior ofPm, the pair correlation functions15d

corresponding to pairs separated by the maximum possible
distance of the cluster, for a particle densityn=0.625 is
shown in Fig. 7. The correlation function corresponding to
local pairs withs-wave symmetry is much weaker and is not
shown. The corresponding values for the noninteracting sys-
tem are indicated in dot-dashed lines to ease the comparison.
In the latter limit, correlations of pairs withdx2−y2 symmetry
remain weaker than those of the noninteracting case while
s-wave ones are slightly enhanced for small enoughU. The
effect of J is to produce a weak enhancement ofPm within
the two symmetry channels in comparison to the pure Hub-
bard case. In particular,dx2−y2 ones become stronger than
those of the noninteracting case for small enoughU.

The pairing functionPm for the densityn=0.75 is shown
in Fig. 8. We have analyzed the behavior using the two
boundary conditions leading to the lowest energy. In the case
of APBC shown in the upper panel of Fig. 8, only the corre-
lation of pairs withdx2−y2 symmetry is shown, since those

TABLE I. Ground-state energy per site for the 434 cluster with particle densityn=0.75. Stars indicate
states with APBC and the representation of the point group that transforms similar to ans wave. Otherwise
the states correspond to MBC.

U J=0 J=0.25 J=0.5 J=0.75 J=1 J=1.5 J=1.75 J=2

0 −1.5607 −1.5940 −1.6298 −1.6681 −1.7092 −1.8006 −1.8514 −1.9057

2 −1.3233 −1.3651 −1.4101 −1.4584 −1.5100 −1.6239 −1.6864 −1.7526

4 −1.1607 −1.2094 −1.2616 −1.3176 −1.3772 −1.5075 −1.5803* −1.6619*

6 −1.0516 −1.1045 −1.1615 −1.2225 −1.2874 −1.4291* −1.5125* −1.5975*

8 −0.9774 −1.0326 −1.0924 −1.1565 −1.2247 −1.3773* −1.4630* −1.5503*

10 −0.9255 −0.9818 −1.0430 −1.1089 −1.1792 −1.3385* −1.4258* −1.5145*

12 −0.8878 −0.9445 −1.0065 −1.0735 −1.1451 −1.3087* −1.3969* −1.4867*

14 −0.8596 −0.9162 −0.9786 −1.0463 −1.1187 −1.2852* −1.3741* −1.4645*

16 −0.8377 −0.8942 −0.9567 −1.0247 −1.0977 −1.2662* −1.3556* −1.4465*

18 −0.8204 −0.8765 −0.9391 −1.0073 −1.0807 −1.2505* −1.3403* −1.4315*

20 −0.8063 −0.8621 −0.9246 −0.9929 −1.0666 −1.2375* −1.3275* −1.4189*

TABLE II. Ground state energy per site for the 434 cluster with particle densityn=0.875. Stars indicate
states with APBC and the representation of the point group that transforms similar to adx2−y2 wave. Other-
wise the states correspond to MBC.

U J=0 J=0.25 J=0.5 J=0.75 J=1

0 −1.6339 −1.6690 −1.7074 −1.7496 −1.7967

2 −1.2936 −1.3404 −1.3937 −1.4547 −1.5240

4 −1.0473 −1.1091 −1.1812 −1.2625 −1.3514

6 −0.8805 −0.9571 −1.0445 −1.1394 −1.2404*

8 −0.7712 −0.8580 −0.9540 −1.0566 −1.1685*

10 −0.6978 −0.7897 −0.8908 −0.9991* −1.1154*

12 −0.6460 −0.7406 −0.8446 −0.9568* −1.0751*

14 −0.6079 −0.7037 −0.8095 −0.9239* −1.0437*

16 −0.5788 −0.6752 −0.7819 −0.8979* −1.0186*

18 −0.5560 −0.6524 −0.7598 −0.8768* −0.9982*

20 −0.5376 −0.6338 −0.7417 −0.8594* −0.9812*
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with local-s and extended-s waves are negligibly small in
comparison. In the case of MBC shown in the lower panel,
correlations in both, extendeds-wave anddx2−y2-symmetry
channels are only slightly enhanced for some values ofJ and
suppressed for others. Instead, for APBC, a clear enhance-
ment of the correlations of pairs withdx2−y2 is observed asJ
is switched on. Note that, in contrast to the caseJ=0, the
correlation functionPm lies above the line indicating the
magnitude ofPm in the noninteracting case.

Similar remarks apply to the behavior ofPm at the density
n=0.875, shown in Fig. 9. The enhancement ofdx2−y2 pairing
correlations for the case of APBC is related to the fact that
the availablek vectors mainly populated in the ground state
contribute with a sizable structure factor to a pairing interac-
tion at the Fermi surface withdx2−y2 symmetry.

If, for the latter densities, we plot the pair correlation
function in the GS corresponding to the optimal boundary
condition si.e., that leading to the lowest energyd, we obtain

the picture shown in Fig. 10. In good agreement with the
analysis done in the discussion about the behavior of the g.s.
energy, we see that the change in the boundary condition
leading to the lowest energy, is accompanied with an en-
hancement of thedx2−y2-wave pairing correlation function.
The pairing correlation functions with extendeds symmetry
are, instead, vanishing small within all the range of param-
eters. This could be an unfortunate consequence of the small
size of the cluster and to the fact that the most populatedk
points when the boundary conditions change, lie on the lines
of nodes of the structure factorfes. However, this behavior is
in agreement with the results predicted by RG.

To finalize, we present some results on the behavior of
spin-spin correlation functions. Figures 11 and 12 show some
typical plots corresponding to the g.s. in the cluster with

FIG. 7. sColor onlined Pair correlation function at the maximum
distancePm of the cluster for a density of particlesn=0.625. Blue
circles correspond to pairs withdx2−y2 and red diamonds to extended
s symmetry. Different plots correspond toJ=0, 0.25, 0.5, 0.75, 1.
Open and filled dark symbols correspond to the lowest and highest
value ofJ, respectively. The dotted-dashed line indicates the value
of Pm in the noninteracting limit.

FIG. 8. sColor onlined Pair correlation function at the maximum
distance of the 434 clusterPm for a density of particlesn=0.75.
Different plots correspond toJ=0, 0.25, 0.5, 0.75, 1, 1.5, 1.75, 2.
Upper and lower panels correspond to APB and MBC, respectively.
Other details are as in Fig. 7.

FIG. 9. sColor onlined Pair correlation function at the maximum
distance of the 434 clusterPm for a density of particlesn=0.875.
Other details are as in Fig. 8.

FIG. 10. sColor onlined Pair correlation function at the maxi-
mum distance of the 434 clusterPm for pairs withdx2−y2 symmetry
corresponding to the optimal boundary conditions for the ground
state. Upper and lower panels correspond to densities of particles
n=0.75 andn=0.875, respectively. Other details are as in Figs. 7
and 8.

U-J SYNERGY EFFECT FOR HIGH-Tc SUPERCONDUCTORS PHYSICAL REVIEW B71, 064519s2005d

064519-9



MBC. In the case of Fig. 11 the latter boundary condition
corresponds to the one leading to the lowest energy within
the range of parameters shown. In Fig. 12 this is not always
the case but we found that there are only slight quantitative
differences between the results of the figure and the corre-
sponding ones with APBC. The important feature to note is
that the effect ofJ is to increase the peak ofSsp ,pd. By
comparing the height of the latter peak for the two densities
it is clear that AF correlations increase as the system ap-
proaches to half filling. Forn=0.75, Sskd shows a wide
structure for the usual Hubbard model, and for largeU the
peak is placed at incommensurate positionsk Þ sp ,pd ssee
lower panels of Fig. 11d. Remarkably, the effect ofJ is to
shift these peaks to the AF vectors. All these features are
consistent with the idea thatJ drives an enhancement of AF
correlations relative to the usual Hubbard case. The small
size of the cluster does not allows us to have an estimate of
the AF correlation length. It can be, however, noted that for
the lower densityssee Fig. 11d Sskd spreads out on a wide
range ofk vectors surroundingsp ,pd, consistent with a pic-
ture of short-range AF correlations. Instead, for lower dop-
ing, the structure evolves to a sharper peak aroundsp ,pd
suggesting larger coherence lengths. It is also interesting to
note that the increment of AF correlationssfrom n=0.75 to
n=0.875d is accompanied by a decrease of the pairing corre-
lations ssee Fig. 6d, in agreement with the RG results from
the previous section.

VI. SUMMARY AND CONCLUSIONS

The main result of the present study is that the coopera-
tive effect between the nearest-neighbor exchange interaction
J and the on-site Coulomb repulsionU increases in a larger
than simply additive way the antiferromagnetic anddx2−y2

superconducting tendencies in 2D. For our analysis we used
the angle resolved renormalization group including self-
energy corrections and the exact diagonalization methods.

We have first considered the repulsive and the attractive
Hubbard models and we have calculated the self-energy-
dressed dominant correlation functions at half-filling and at
finite doping. In the repulsivesU.0d case self-energy ef-

fects reduce radically all two-particle correlations and de-
stroy their divergences near the critical scale. At half filling
the SC correlation function is below itsU=0 value, while the
AF one remains stronger than its value forU=0, but loses
the divergence. This behavior, discussed in Ref. 41, is a sig-
nature of the Mott localization tendencies with simultaneous
build up of short-ranged AF correlations. At finite doping,
surprisingly and contrary to previous predictions made by
the RG theory without self-energy correctionssRef. 6d, the
superconducting instabilities are strongly reduced by self-
energy corrections even deeply in the BCS regime, i.e., when
the Fermi surface is badly nested and umklapps are irrel-
evant. In the case of the attractive interactionsU,0d our RG
results are in complete agreement with previous studies.43,44

At half filling the s-wave superconductivity and the charge
density wave correlations are degenerate. The flow of the
two correlation functions looks similar to the one of the AF
correlation function for repulsive Hubbard model at half fill-
ing. Just as in the repulsive case, the self-energy effect regu-
larizes the flow of correlation functions nearLc at half filling
and no phase transition occurs at this scale. The effective
action of the regime belowLc was discussed by Schulz.45

Contrary to the half-filled case, at finite doping the attractive
Hubbard model shows a convincing onset of the supercon-
ductivity. In comparison to the repulsive case wheredx2−y2

SC susceptibility is only weakly enhanced, in the attractive
case thes-wave SC correlations atLc are not destroyed by
the self-energy, while CDW susceptibility remains stuck to
its U=0 value. At this point some general remarks are in
order. We have seen that there are fundamental differences
between RG flows of the repulsive and of the attractive Hub-
bard models. The fluctuations in the repulsive model are
much stronger and probably fatal for superconductivity. They
tend not only to decrease the magnitude of the SC suscepti-
bility but also to decrease the energyL* =8t exps−l*d at
which it begins to depart from the behavior of the noninter-
acting one. Our present study is unable to say if the super-
conductivity is stabilized or not at some energy lower than
Lc. However, the absence of all divergences indicates that
the scenarios with preformed pairs of AF and SC type are
relevant even in the weak coupling limit. These RG results

FIG. 11. sColor onlined Fourier transform of
the spin-spin correlation function forn=0.75 and
MBC. Different panels correspond to differentU.
Open and filled dark symbols correspond toJ
=0 andJ=1, respectively. Other plots correspond
to intermediate equally spaced values ofJ.
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agree with the ED analysis for the intermediate-to-strong
couplings, where no superconductivity was detected. The
situation is fundamentally different in the attractive Hubbard
model, where the superconducting instability is robust upon
self-energy corrections. This is the RG version of the well
known fact that the incoherent preformed pairs can live only
at intermediate-to-strong interaction.46

The study of the two Hubbard models was a necessary
introduction to the RG analysis of thet-J-U model. The
question that we answer is if the superconductivity of thet
-J-U model is enhanced or reduced with respect to the
simple casesJ=0 and U=0. The answer is thatJ and U
cooperate tosad increase the critical cutoff andsbd keeping
the renornalized susceptibility enhanced relative to the non-
interacting one. We also found that the latter effect is ob-
served not only on the superconducting side of the phase
diagram but also on the antiferromagnetic one. We thus have
an evidence for theU-J synergy effect. The phase diagram
on Fig. 6 shows in particular the casessU=1.6t, J=0d, sU
=0, J=1.6td, andsU=1.6t, J=1.6td. The critical temperature
of the third case is much higher than for the first two, while
the onset ofdx2−y2 SC remains convincingly large in the flow
of the correlation function.

Exact-diagonalization results support the above picture. In
fact, for large enoughJ andU, we find below half filling a
clear enhancement of the SC correlations withdx2−y21 sym-
metry which is accompanied by a change in the type of
boundary conditions leading to the lowest energy. This be-
havior is consistent with the idea that the large Coulomb
repulsion spreads out the Fermi surface towards sectors of
the Brillouin zone where the interactionJ has the largest
amplitude in the BCS channel withdx2−y2 symmetry. In such
a way, we can think that particles are pushed to a region of
the phase space, where the attractive interaction is most ef-
ficient to organize them into pairs. Similar arguments can be
proposed to explain the enhancement of AF correlations at
half filling since theJ interaction has components along AF
and SC channels. In particular, in Ref. 41 it has been found
that the angle-resolved quasiparticle weightZsud renormal-
izes in such a way that it displays a maximum in regions of
the Fermi surface that are separated by the magnetic vector

Q=sp ,pd. We have not found strong differences between the
behavior ofZsud in the usual Hubbard model and thet-J-U
one neither at half filling nor for finite doping. Therefore, the
most likely scenario at half filling is that the larger popula-
tion of convenient regions of thek space become available to
be exploited by the component of theJ interaction along the
AF channel.

We have not found any indication of bond-order-like in-
stability. This is in disagreement with some mean-field
predictions26 but in full agreement with other RG studies on
van-Hove fillings of thet-t8-J-U models.40 Our conclusion
regarding the combinedJ-U mechanism to drive large super-
conducting correlations is also in agreement with previous
investigations based on Fermi liquid arguments and quantum
Monte Carlo simulations.39 Within the repulsive Hubbard
model, we obtained by renormalization group that the self-
energy corrections are fatal for superconductivity and by ex-
act diagonalization that the superconductivity is unlikely.
This result is important because it reconciles theN-patch RG
with exact diagonalizationand with a number of other ap-
proaches. Our results show that while thedx2−y2 pairing exists
in the Hubbard modelsbecause vertex indeed divergesd, the
onset of macroscopic superconductivity is suppressed. This
result is in agreement with the very recent findings by Ple-
khanov and co-workers.47

All above remarks indicate that theJ interaction is vital
for the superconductivity while theU interaction increases
considerably the tendency towards pair formation. They also
suggest that minimal microscopic models supporting recent
phenomenological proposals for colossal effects in the phase
diagram of the high-Tc compounds1 may be based on these
two interactions. In fact, our results indicate that the interac-
tion J provides a kick to the potential or weak antiferromag-
netic and superconducting tendencies of the Hubbard model,
that triggers a gigantic response in the system. This picture
resembles the behavior of manganites where colossal mag-
netoresistance effects take place in response to external mag-
netic fields and this analogy is behind the proposal of Ref. 1.
The appropriate microscopic approach should be based on a
recently developedN-patch renormalization group theory for
disordered and interacting imperfectly nested system.48 On

FIG. 12. sColor onlined The same as Fig. 11
for n=0.875.
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the other hand, as discussed in our introductory section, deri-
vations starting from the three band model for the cuprates
also support the idea that thet-J-U model is a good candi-
date for a minimal one-band Hamiltonian for these materials.
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