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Recent experiments have shown that it is possible to implement particle image velocimetrysPIVd in liquid
helium. However, to interpret the PIV data in the superfluid phase, it is necessary to understand how the
particles are affected by the two components, the viscous normal fluid and the inviscid superfluid, as well as by
the quantized vortex lines that may exist in the superfluid component. After setting up the governing equations
of motion, we first solve them in some simple cases in order to gain physical insight, and then we formulate
semiquantitative general arguments relating to turbulent flow, with the assumption initially that particle trap-
ping by vortex lines does not occur. We find that a number of different but simple regimes can be identified if
the particles are neutrally buoyant: in some regimes the particles trace the normal fluid, in others the superfluid,
and in others the total mass current. A numerical analysis for a model two-dimensional flow reveals an
instability that requires some modification of these conclusions. It is then shown that particle trapping on
vortex lines can be important and can lead to serious modification of our conclusions. The results of our
analysis are used to discuss what types of superfluid flow can usefully be studied by PIV, and to suggest the
most appropriate size and mass of the tracer particles.
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I. INTRODUCTION

The superfluid phase of liquid helium4He, or He II, to
which we confine our attention, is a quantum fluid. Accord-
ing to the two-fluid model of Landau and Tisza,1 it consists
of the intimate mixture of two fluid components: the viscous
normal fluid sof densityrn and velocityvnd and the inviscid
superfluidsof densityrs and velocityvsd. The total density of
He II, r=rs+rn, is approximately temperature independent,
but the relative proportions of normal fluid and superfluid,
rs/r and rn/r, depend strongly on the temperatureT. If T
approaches the critical temperature,T→Tl=2.17168 K, the
helium becomes entirely normalsrs/r→0 and rn/r→1d;
vice versa, in the limit of absolute zero,T→0 K, the helium
becomes a pure superfluidsrs/r→1 andrn/r→0d. At easily
accessible temperatures below 1 K the normal fluid fraction
can become negligible,2 and the helium can then be consid-
ered for many purposes as a pure superfluid.

What makes He II particularly interesting is that rotational
motion of the superfluid is constrained by quantum effects
associated with discretesquantizedd vortex filaments. This
quantized vorticity3 has been the subject of great experimen-
tal and theoretical interest. Much current work is concerned
with the observed similarity between quantum turbulence
and classical turbulence,4–8 something which is at first sur-
prising, given the quantum restrictions and the two-fluid na-
ture of the helium.

Given the hundreds of papers written on the fluid dynam-
ics of He II, it is remarkable that there is so little direct
experimental information about flow patterns. From the point
of view of flow visualization, the comparison between quan-
tum fluids and classical fluids is striking. In classical fluids a
wide range of visualization techniques is available: ink,
smoke, Kalliroscope flakes, hydrogen bubbles, Baker’s pH

technique, hot wire anemometry, laser Doppler anemometry,
particle image velocimetrysPIVd, and others. In He II there
is as yet no direct way to determine flow patterns in either
the normal fluid or the superfluid; the most widely used tech-
niques ssecond sound and ion-trappingd probe only the
vortex-line density averaged over a large volume. Measure-
ments of temperature, pressure and chemical potential suffer
the same problem of poor spatial resolutionsbut see Ref. 6d.
Turbulent fluctuations, especially on small scales, remain
largely unexplored. There is no doubt that the study of su-
perfluid flow, and especially superfluid turbulence, has been
greatly impeded by the lack of suitable techniques of flow
visualization.

Fortunately the need for flow-visualization techniques in
liquid helium has recently been recognized, and appropriate
techniques are now being developed. For example, Lucas
and collaborators9 have recently developed a cryogenic shad-
owgraph technique to reveal convection patterns. However,
this technique depends on density variations caused by tem-
perature fluctuations, so it cannot be immediately applied to
the superfluid phase.

The subject of this paper is the PIV technique, which has
been recently implemented with success in liquid helium by
two experimental groups: that of Donnelly, Vinen, Niemela,
and Sreenivasan10 suntil now in He I onlyd and that of
VanSciver11–13 sin He IId. PIV is based on injecting many
small tracer particles into the liquid. Two images are pro-
duced using short laser pulses of different colorsssay, green
and redd focused into a narrow sheet and separated in time by
a few milliseconds. Software then analyzes the images and
identifies green and red dots corresponding to the same par-
ticle at the two different times; in this way the observed
distance between the corresponding dots yields the compo-
nent of the local velocity in the plane of the light sheet. It
must be stressed that, although PIV has been standard in
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classical fluid dynamics for many years, its successful appli-
cation to liquid He at temperatures near absolute zero was
not simple and represents a useful achievement. The poten-
tial of PIV is great, particularly in the study of He II turbu-
lence. However, there is a key question which must be an-
swered before PIV data can be interpreted correctly: what do
the tracer particles actually trace?

This question is far from trivial. The normal fluid is vis-
cous so it exerts a drag force on the tracer particles; the
superfluid is inviscid, so it causes no viscous drag. However,
it is not correct to conclude that the particles trace only the
normal fluid, because, in time-dependent flowssfor example,
turbulent flowsd, inertial effects can cause a tracer particle to
respond also to superfluid motion. Furthermore, particles
may become trapped on quantized vortex lines.

The plan of the paper is the following. In Sec. II we
summarize the physical parameters of He II and of the tracer
particles used in the experiments that are relevant to our
discussion. In Sec. III we present the governing equations of
motion of the particles and describe the approximations and
the assumptions underlying themsmathematical details are
contained in an Appendixd. Section IV is concerned with the
motion of particles in a fluid at rest under the influence of
gravity. Section V is devoted to the case in which the normal
fluid and the superfluid velocities have no spatial dependence
but depend harmonically on time. We find that in some re-
gimes the particles trace the normal fluid, in others the su-
perfluid, in others the total mass current. In Sec. VI we use
the resulting physical insight to suggest plausible semiquan-
titative results applicable to turbulent flows, but we ignore
the possibility that the tracer particles might be trapped on
quantized vortex lines. Section VII contains the results of
numerical simulations of simple two-dimensional flows
which apply to the case of vortex-coupled turbulence, in
which the normal fluid and superfluid velocity fields are the
same over a wide range of spatial scales due to the interac-
tion through the quantized vortices; here we highlight a po-
tential difficulty that, in some cases, the particle trajectory is
unstable and spatial segregation may occur. Section VIII we
examine the interaction between a tracer particle and a quan-
tized vortex; we show that trapping is likely to occur in many
practical cases, and we show that such trapping may lead to
PIV observations that are difficult to interpret. Finally, Sec.
IX summarizes our conclusions and points to further work.

As we have mentioned, a few experimental results on the
application of PIV to superfluid4He have been published.
Observations on thermal counterflow12 are of particular in-
terest and have shown that the tracer particles move with a
velocity of approximately one half of the velocity of the

normal fluid. We shall comment later on the significance of
this result.

II. FLUID AND PARTICLE PARAMETERS

The total density of liquid4He, r, is approximately inde-
pendent of temperature and equal to 0.145 g cm−3. Other rel-
evant parameters are shown as functions of temperature in
Table I: mn is the viscosity of the normal fluid;rs/r is the
superfluid fraction.

Specifications of the particles used so far by the different
experimental groups are summarized in Table II. The particle
radius isa; the effectivesaveraged particle density isrp.

In all cases the particle sizes are illustrative, in that each
batch of particles has a certain distribution of size; the uni-
formity of the physical properties is an important factor
which the experimentalists must take into account when de-
ciding which kind of particle to use. In the experiments of
Donnelly et al.10 the heavier particles were allowed to fall
towards the bottom of the apparatus, so that there was effec-
tive selection of particles that are, at least roughly, neutrally
buoyant:rp<r.

III. EQUATIONS OF MOTION

We consider the motion of a spherical particle of radiusa
and densityrp in superfluid4He, described by a two-fluid
model. In the earlier parts of the papersup to and including
Sec. VIId we shall assume that the particles do not interact
strongly with the quantized vortex lines in the superfluid
component and are certainly not trapped by these lines. We
make two further assumptions. The first assumption is that in
the case of turbulent flow the presence of particles does not
modify the turbulencesthe assumed weak interaction be-
tween particles and vortex lines is a necessary but not suffi-
cient condition for the validity of this assumption, which
probably requires also that the particles be sufficiently
smalld. The second assumption is that flow velocities vary by
only a small fraction in distances of ordera; this means that,
for turbulent flow of the superfluid component, the particle

TABLE I. Parameters of He II.

T sKd 1.3 1.5 1.8 2.1

mn smpoised 15.3 13.5 13.0 18.0

rs/r 0.955 0.899 0.687 0.259

TABLE II. Specifications of the particles used in the experiments.

Authors Material a smmd rp sg cm−3d

Van Sciveret al. sRefs. 11–13d Solid neon particles 3–5 1.2

Large hollow glass spheres 10–50 1.1

Small hollow glass spheres 4–6 1.1

Polymer microspheres 0.8 1.1

Donnelly et al. sRef. 10d Hollow glass spheres 1–5 roughly 0.145
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must be small compared with the vortex line spacing, and,
for turbulent flow of the normal fluid component, the particle
must be small compared to the Kolmogorov length. Since it
is relatively easier to achieve very intense turbulence in su-
perfluid 4He than in an ordinary fluid, the development of
submicron size particles would be desirable.

It is clear that we need to generalize to our classical two-
fluid model the equations of motion of a particle in a non-
uniform flow in a classical fluid: an inviscid fluid14 for the
superfluid component, and a viscous fluid15–17for the normal
fluid sdetailed discussions of the two classical cases are con-
tained in the Appendixd. We make the assumption that the
following equation represents a natural generalization:

rpq
dup

dt
= Fsgd + Fn

sdd + Fn
sid + Fn

sad + Fn
sBd + Fn

sFd + Fn
svd + Fn

sLM d

+ Fs
sid + Fs

sad + Fs
svd, s1d

whereq is the particle volumesq= 4
3pa3 for spherical par-

ticlesd, and g the acceleration due to gravity. In the right-
hand side of Eq.s1d, the subscripts “n” and “s” refer to the
forces acting on the particle from the normal and superfluid
components, respectively; the superscripts relate to contribu-
tions to the force on the particle as follows:sgd is the force
due to gravity;sdd is the viscous drag force;sid is the inertial
force due to the carrier fluid accelerationsor the gradient of
the pressure and shear stressd; sad is the added mass force;
sBd is the Bassetshistoryd force; sFd is the Faxén correction
to the viscous drag;svd is the shear-induced lift force; and
sLM d is the Magnus lift force. The gravity force is given by

Fsgd = qsrp − rdg. s2d

Hereafter we consider small particles such that the par-
ticle Reynolds number, relating to the normal fluid, is small;
i.e., Rep=2rnauvn−upu /mn!1, so that the viscous drag force
is linear in the relative velocity between the particle and the
normal fluid. For a spherical particle we have

Fn
sdd = 6pamnsvn − upd. s3d

This expression for the drag force assumes that the roton
mean free pathl=3mn/ srnvGd is much smaller than the par-
ticle sizea, wherevG=Î2kBT/ spm*d is the average thermal
velocity of the rotons,kB is Boltzmann’s constant,m*

=0.16m is the roton effective mass, andm=6.65310−24 g is
the mass of the helium atom. The conditionl!a is satisfied
for a typical particle size if T.1 K sfor example l
<10−6 cm atT=1.3 Kd, but one must be aware of the exis-
tence of ballistic regimes at lower temperatures.

The inertial force due to an acceleration of the fluid has
the same form for both inviscid and viscous components, i.e.,

Fn
sid = rnq

Dvn

Dt
, Fs

sid = rsq
Dvs

Dt
. s4d

Likewise, the form of the added mass force is identical for
both fluids:

Fn
sad = CrnqSDvn

Dt
−

dup

dt
D, Fs

sad = CrsqSDvs

Dt
−

dup

dt
D .

s5d

In Eqs.s4d ands5d, the substantial derivatives of the normal
and superfluid velocity, respectively, are defined as

Dvn

Dt
=

]vn

]t
+ svn · = dvn,

Dvs

Dt
=

]vs

]t
+ svs · = dvs. s6d

The summary of the derivation of formulass4d ands6d and a
discussion of the assumptions behind this derivation, particu-
larly the way in which viscous and inertial effects are com-
bined, is given in the Appendix. The added mass coefficient
C depends only on the particle geometry, and is the same for
both inviscid and viscous fluids; see, e.g., Refs. 14, 15, and
18. For a spherical particleC= 1

2. We note that the added
mass effect is related to what physicists would usually de-
scribe as the effective mass of the particle when it moves in
the fluid.

In the general case of nonuniform flow, the correct form
of the forcesFsid andFsad scontaining the substantial deriva-
tive of the fluid velocity field, rather than the rate of change
of the fluid velocity seen by the particled was derived origi-
nally for the inviscid fluidssee, e.g., Ref. 14, although his-
torically the first to derive the correct form ofFsid and Fsad

was Taylor19d. The equation of motion of the particle in the
viscous flow was derived originally in Ref. 15 for the case of
the time-dependent spatially uniform flow, for which the sub-
stantial derivatives in Eqs.s4d and s5d reduce todv /dt. The
correct formss4d and s5d for the forcesFsid and Fsad in the
general case of spatially nonuniform viscous flow were pro-
posed in Ref. 16ssee also Ref. 17d.

In the approach typical of studies of particulate behavior
in turbulent flowsssee, e.g., Refs. 20 and 21d the Basset
history forcesA18d is usually neglected. Strictly speaking,
this force is negligible only if the particle relaxation timet,
defined below in Eq.s11d, is smaller than the time scale of
the fluid motion.22 For tracer particles in the turbulent flow
this means thatt should be smaller than the turnover timeth

of the smallest eddies. Suppose that the turbulence is char-
acterized by a Kolmogorov energy spectrum, for which the
fluid velocity on a scalebh is of ordere1/3bh

1/3, wheree is the
rate of flow of energy per unit mass down the associated
Richardson cascadessee Sec. VI Ad. The smallest eddies
have a size equal to the Kolmogorov dissipation length,bh,
which is given bybh

4 =e−1n3, wheren is the appropriate ki-
nematic viscosity. It is then easily shown that the condition
that the Basset history force be negligible is that the particle
size,a, be small compared withbhsrn/rd1/2; i.e., roughly that
a must be small compared with the smallest length scale in
the turbulence, which we have already assumed to be the
case.

The Faxén correction to the viscous drag,Fn
sFd is of the

order of sa2/L2dFn
sdd, whereL is the length scale of the fluid

motion, and it too can be neglected in the case where the
particle size is smaller than the Kolmogorov dissipation
length.
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The transverse lift forceFsvd is quite different in each of
the two fluids. In the superfluid component it is presumably
of the form derived for a classical inviscid fluid:14 Fsvd

=CLrqsv−upd3v, wherev is the vorticity, andCL the lift
coefficient, equal, for a sphere, to 0.5. Classically, it arises
from the stretching of a uniform upstream vorticity around
the particle as the fluid flows past it. In the normal compo-
nent the transverse lift force has presumably the form of the
shear-induced Saffman lift force, described in the Appendix.

Since we are assuming that the particles do not become
trapped on vortex lines, they must remain in parts of the
superfluid velocity field that are irrotational. Therefore the
transverse lift forceFs

svd must vanish. Behaviour can there-
fore be very different from that in a classical inviscid fluid.

Turning to the lift force from the normal fluid, we can
compare its magnitude with that of the viscous drag on the
particle. We note that the ratio of the shear-induced Saffman
lift force Fn

svd ssee the Appendixd to the viscous drag can be
estimated as

ai = vni1/2

n1/2 = Rep
1/2Sa

L
D1/2

, s7d

whereL is the length scale of the turbulence. Thus the Saff-
man lift force can be neglected if the particle Reynolds num-
ber is less than unity and if the particle size is less than the
minimum value ofL, which is the Kolmogorov dissipation
length in the normal fluidsroughly equal in practice to the
vortex-line spacing7d.

A rotation of the particle combined with a finite relative
velocity between the particle and the fluid will also induce
the transverse Magnus force on the particle,FsLM d; see the
Appendix. Although, in the case of small Reynolds numbers,
this force is independent of the viscosity, the latter plays a
crucial rôle in transferring a circulation from the particle to
the fluid.23 This justifies the form of the modeling equation
of motion s1d where we assume that the Magnus lift force,
given by Eq.sA22d with r replaced byrn, acts on the particle
from the normal fluid, but no such a force is exerted by the
superfluid component whose viscosity is zero. In the absence
of interparticle collisions the only mechanism inducing the
particle rotation is the local shear in the ambient flow. In the
considered case where the particle size is much smaller than
the length scale of the flow, the vorticity can be considered as
uniform ssee subsection 2 of the Appendixd. Since the vor-
ticity v can be interpreted as twice the effective local angu-
lar velocity of the fluid, the magnitude of the particle angular
velocity uVu cannot be larger than12uvu, so that the ratio of
the Magnus lift force to the viscous drag cannot exceed

pa3rnuvuuvn − upu
6pamnuvn − upu

,
rnauvn − upu

mn

ai = vni
uvn − upu

, « Rep, s8d

where« is the small parameter introduced by Eq.sA1d. From
Eqs.s7d ands8d it follows that, in the case where the particle
size is less than the smallest length scale of the flow, the
Magnus force is much smaller than the Saffman lift force
sindeed,uFn

sLM du / uFn
svdu&«1/2 Rep

1/2d.
We conclude then that all the forcesFn

sBd, Fn
sFd, Fn

svd, Fs
svd,

and Fn
sLM d can probably be neglected if the particle size is

less than the smallest scale of the turbulence and if there is
no trapping of particles on vortex lines, assumptions that we
made at the start of the discussion in this section.

With the above assumptions we arrive at the following
modeling equation of the particle motion:

rpq
dup

dt
= 6pamnsvn − upd + qsrp − rdg + rnq

Dvn

Dt

+ CrnqSDvn

Dt
−

dup

dt
D + rsq

Dvs

Dt

+ CrsqSDvs

Dt
−

dup

dt
D . s9d

In the absence of gravity, after settingC=1/2, it is conve-
nient to rewrite this equation as

dup

dt
=

1

t
svn − upd +

3

2ro
Srn

Dvn

Dt
+ rs

Dvs

Dt
D , s10d

wherero and the viscous relaxation time,t are given by

ro = rp +
r

2
, t =

2a2ro

9mn
. s11d

In the case of neutrally buoyant particlessrp=rd the pa-
rametersro andt reduce to

ro =
3

2
r, t =

ra2

3mn
. s12d

IV. SEDIMENTATION

If the normal fluid and the superfluid are both stationary
svn=vs=0d, then, in the presence of gravity and starting from
the initial condition up=0, the equation of motion is
rpqdup/dt=−6pamnup+qsrp−rdg. After an initial transient,
the particle achieves the terminal speed

u` =
2

9

a2gsrp − rd
mn

, s13d

with the time scalesknown as the particle response timed

t` =
2

9

a2rp

mn
. s14d

These formulas can be used to determine the particle size
a11, provided, of course, that the particles are not neutrally
buoyant. For the polymer microspheres used by Van Sciver
and collaborators12 we have a<8310−5 cm and rp
<1.1 g cm−3; thus, at T=1.5 K, the terminal speed isu`

<0.10 cm/s, and the particles response time ist`<0.12
310−3 s.

In the following sections we consider sufficiently small
particles such that their terminal sedimentation velocitys14d
is small compared with characteristic velocities of the flow;
then we can neglect gravity in the particle equation of mo-
tion.
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V. TIME-DEPENDENT FLOWS WITH NO
SPATIAL DEPENDENCE

We assume that the velocities of the normal fluid and the
superfluid have no spatial dependence but have harmonic
time dependencevn=Vn expsivtd andvs=Vs expsivtd, where
v is the angular frequency.sOur neglect of the trapping of
particles by vortex lines is then irrelevantd. Then in Eq.s10d
Dvn/Dt=dvn/dt andDvs/Dt=dvs/dt, whered/dt is an ordi-
nary derivative, so that the solution of Eq.s10d is

up = Up
s0d expS−

t

t
D + Up expsivtd, s15d

where the transient termUp
s0d exps−t /td allows for an arbi-

trary initial particle velocityups0d at t=0, and the term

Up =
1

s1 + ivtdFS1 +
3ivtrn

2ro
DVn + S3ivtrs

2ro
DVsG s16d

is the steady-state response of the particle.
Equations16d has two interesting limits. Ifvt@1, then

the steady-state response is given byUp= 3
2r−1srnVn+rsVsd,

while if vt!1 then it is given byUp=Vn, that is to say the
particles track the normal fluid.

The case of particles that are neutrally buoyant is particu-
larly simple. In the limit vt@1 we haveUp=r−1srnVn

+rsVsd, which means that the particles move with a velocity
corresponding to the total current densitysj =rnvn+rsvsd,
which is equal to zero in, for example, a second sound wave,
and is equal to simplyvs at very low temperatures. In the
limit vt!1 we have againUp=Vn, so the particles move
with the normal component. These results show that, from a
practical point of view, the use of neutrally buoyant particles
is obviously convenient, since they do not tend to be lost by
sedimentation and the particle velocity is rather simply re-
lated to the velocities of the two fluids.

We note that the transient term in Eq.s15d must die out at
times large compared to the relaxation timet sit does not
vanish therefore atT=0d. It is interesting to note the behavior
of the particle velocity in response to a step-function change
Dvs in vs at t=0. If vn=0, the particle velocity is given by

dup

dt
= −

up

t
+

rs

r

dvs

dt
, s17d

so that the particle velocity jumps from zero tosrs/rdDvs at
t=0 and then decays with time constantt.

In cases when the superfluid and normal fluid velocities
are the same,vn=vs=v ssee Sec. VIId, the particle velocity is
given by

d

dt
sup − vd = −

up − v

t
, s18d

from which we see that, after an initial transient, the particle
velocity ought faithfully to followv for all time-dependences
of v. Physically there is a simple reason for this behavior.
After the initial transient, the force on the particlesarising
from pressure gradients in the fluidd is exactly the same as
the force on the volume of fluid that replaces the particle.
Therefore the particle must move in the same way as this

volume of fluid. Note however that this conclusion, obtained
here for spatially-independent flows, may be affected by is-
sues of stability in the case of spatially-dependent flowssas
discussed in Sec. VIId.

VI. TURBULENT FLOW

More generally,vn andvs depend both on time and space.
With the assumption that the particles are neutrally buoyant
srp=rd, Eq. s10d takes the form

dup

dt
=

1

t
svn − upd +

rn

r
F ]vn

]t
+ svn · = dvnG

+
rs

r
F ]vs

]t
+ svs · = dvsG . s19d

To understand what is predicted by Eq.s19d it is instruc-
tive to consider for a moment the simpler equation

dup

dt
= F ]v

]t
+ sv · = dvG s20d

describing the motion of a neutrally buoyant particle in a
single incompressible fluid in the absence of viscosity and in
regions where the flow is irrotational. The motion of this
fluid is described by the Euler equation, which is

]v

]t
+ sv · = dv = −

1

r
= p, s21d

wherep is the pressure. Equations20d thus becomes

dup

dt
= −

1

r
= p. s22d

The right-hand side is equal to the force per unit mass acting
on an element of the fluid in the absence of viscosity, and is
also equal to the force on the particle that replaces, and
moves with, this volume in the fluid. This force causes the
particle to accelerate at the same rate as does the displaced
element of fluid. Therefore, apart from a possible transient,
Eq. s20d predicts that the particle will move with the fluid,
even in the absence, as here, of viscosity. Of course in a
sense this conclusion must obviously be true, and it confirms
that we are using the correct equations of motion for the
particle. However, as we shall see later, the conclusion is not
quite correct. Although it is true that this predicted motion of
the particle is a solution of Eq.s29d, it turns out, as we shall
see later, that the motion is not completely stable, although
the instability may become apparent only after a significant
time has elapsed.

Returning to Eq.s19d, we make use of the two-fluid equa-
tions, which are3

rs
Dvs

Dt
= −

rs

r
= p + rsS= T, rn

Dvn

Dt
= −

rn

r
= p − rsS= T

+ mn=2vn, s23d

whereS is the specific entropy. We have omitted any force of
mutual friction. This is because such a force arises from the
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interaction of the vortex cores with the normal fluid, so that
it is unimportant in regions of the flow remote from the
vortex cores, where, according to our assumptions, the par-
ticle is situated.

Substituting from Eqs.s23d into Eq. s19d, we see that the
temperature gradients cancel out, leaving

dup

dt
=

1

t
svn − upd −

1

r
= p +

mn

r
=2vn. s24d

Neglecting the viscosity of the normal fluid, Eq.s24d reduces
to Eq.s22d, which says that the force on the particle is due to
the pressure gradient alone. But the pressure gradient, if it
were to act alone on the fluid, would cause an acceleration of
the whole fluid, i.e., a change in the total current densityj
=rnvn+rsvs. We conclude that, apart from possible tran-
sients, and with neglect of the viscosity of the normal fluid,
the particle will move with velocityj /r, as in the situation
described in a previous section.

A. Homogeneous turbulence without steady mean counterflow

We now take into account the effects of viscosity, return-
ing to Eq. s19d, and apply our consideration to fully devel-
oped homogeneous turbulence. We still neglect the possibil-
ity that particles may be trapped on vortex lines. We also
assume for the present that the turbulence is not accompa-
nied by any steady average flow or counterflow, and we use
a frame of reference in which the time-averaged fluid veloci-
ties vanish. We imagine that turbulence in each fluid involves
a range of eddy sizes, with a Richardson cascade, and with
viscouslike dissipation on a small scale. We focus on a length
scaleb within the inertial rangebh!b!b0 whereb0 is the
slarged scale at which energy is fed into the cascade, andbh

is the ssmalld scale at which the energy is destroyedsthe
Kolmogorov lengthd. At the scaleb the velocities are of the
order vssbd and vnsbd. The nonlinear terms in Eq.s19d are
those which lead in the Navier-Stokes equation to the trans-
fer of energy to different length scales, and this transfer is
most effective between neighboring scales. The transfer pro-
cess gives rise to a finite lifetime for eddies of sizeb, equal
in order of magnitude to the “turnover time”tssbd
<b/vssbd andtnsbd<b/vnsbd. It follows that the motion on
the length scaleb is likely to make contributions to the two
terms in square brackets in Eq.s19d of the ordervssbd /ts

<vs
2sbd /b andvnsbd /tn<vn

2sbd /b.
When comparing these two terms with the first term of the

equation,svn−upd /t, we distinguish between the following
two limits. If the turnover timests and tn are significantly
less than the relaxation timet, the termsvn−upd /t can be
neglected and the particle will move with the velocityj /r
induced by the two terms within the square bracket in Eq.
s19d. In the opposite limit, ifts andtn are significantly larger
thant, the particle will move with the normal fluidsbesides
issues of stability of the trajectoryd.

At very low temperaturest becomes very largessmall
viscous dragd and the normal fluid density becomes very
small. The particle will then follow the turbulence in the
superfluid component.

It is instructive to estimate the relative magnitudes of the
viscous relaxation time,t, and the turnover times,ts andtn,
at higher temperaturessabove 1 Kd, where the drag on a
particle is described by the Stokes lawfEq. s3dg. Consider,
for example, the case of grid turbulence in superfluid4He7.
In this case it is believed that each fluid has essentially the
same turbulent velocity field, characterized by a Richardson
cascade, with a Kolmogorov spectrum, on length scales large
enough for dissipative processes to be unimportant. Such
vortex-coupled turbulencecan arise because the turbulence
in each fluid has a natural tendency to have the same Kol-
mogorov form, the two velocity fields being accurately
locked together by mutual friction. For a Kolmogorov spec-
trum the turbulent velocity associated with eddies on a scale
b is given byv2sbd<e2/3b2/3. The turnover time,tsbd, asso-
ciated with these eddies is thenb/vsbd. For a classical fluid
with kinematic viscosityn the Richardson cascade is termi-
nated by viscous dissipation at the Kolmogorov dissipation
length scale given bybh

4 <n3/e. In the case of the vortex-
coupled turbulence there is dissipation, due to a combination
of normal fluid viscosity and mutual friction, on a length
scale of the order of vortex-line spacing, so that this spacing
acts as an effective value ofbh. At the same time the effec-
tive kinematic viscosity is of ordermn/r, wherer is the total
density of the helium.7 Thus we find that

tsbd
t

< 3S b

bh
D2/3Sbh

a
D2

. s25d

Since we are assuming that the particle size is much less than
the minimum length scale in the turbulence, the ratiosbh /ad2

must be large compared with unity. Furthermore, the ratio
sb/bhd must be equal to or larger than unity, since there is no
turbulence on a length scale less thanbh. It follows that in all
circumstancestsbd@t, so that, according to our assump-
tions, the particle must follow the normal fluid.

B. Turbulence with steady uniform mean counterflow

We now extend this treatment to the special case when the
two fluids are in steady and uniform average relative motion,
each fluid itself moving with a spatially uniform velocity and
having a spatially homogeneous turbulent velocity field.
Such a flow is a model for counterflow turbulence in super-
fluid 4He. We start in an arbitrary inertial frame of reference,
in which the mean values of the particle, normal fluid and
superfluid velocity, respectively, arekupl, kvnl, and kvsl.
Equations19d then takes the form

dup8

dt
+

dkupl
dt

= −
up8 − vn8

t
−

kupl − kvnl
t

+
rn

r
F ]vn8

]t
+ svn8 · = dvn8 + skvnl · = dvn8G

+
rs

r
F ]vs8

]t
+ svs8 · = dvs8 + skvsl · = dvs8G ,

s26d

where primes denote fluctuations of the velocities above the

POOLEet al. PHYSICAL REVIEW B 71, 064514s2005d

064514-6



mean. Averaging over space, and using the assumption that
the turbulence in each fluid is homogeneous, we find that

dkupl
dt

= −
kupl − kvnl

t
, s27d

so that after a transient the average velocity of the particle is
equal to the average velocity of the normal fluid. Subtracting
Eq. s27d from Eq.s26d we obtain the equation describing the
fluctuations in the particle velocity:

dup8

dt
= −

up8 − vn8

t
+

rn

r
F ]vn8

]t
+ fskvnl + vn8d · = gvn8G

+
rs

r
F ]vs8

]t
+ fskvsl + vs8d · = dvs8G . s28d

We note that both the viscous term and each term in square
brackets are invariant to an inertial transformation of coordi-
nates, although the individual terms within each square
bracket are not invariant. It follows that we can evaluate each
term separately in any convenient frame. The first term in
square brackets can be considered conveniently in a frame
moving with the mean velocitykvnl of the normal fluid,
while the second term in square brackets in a frame moving
with the mean velocitykvsl of the superfluid. It follows that
the fluctuations in the particle velocity are independent of the
mean steady counterflow. Thus, generally, the particle fol-
lows the average motion of the normal fluid, after the relax-
ation timet allows kupl to become equal tokvnl, but other-
wise it senses only the turbulent fluctuations in the velocity
fields of the two fluid in the same way as it would if the
mean flows were absent.

Our conclusion that the average particle velocity is equal
to the average velocity of the normal fluid is not in agree-
ment with recent experimental results.12 We return to this
matter later.

VII. VORTEX-COUPLED TURBULENCE

Recent experiments4–6 and theoretical work7,8 suggest
that, if He II is made turbulent by agitating it with a towed
grid or rotating propellers, then a rather simple form of tur-
bulence is produced. Both fluids become turbulent, the tur-
bulence in both cases being essentially classical on length
scales greater than those on which dissipation occurs, which
turns out to be comparable with the average vortex line spac-
ing ,<L0

−1/2; furthermore, the mutual friction between the
two fluids, arising from the presence of vortex lines in the
superfluid component, ensures that not only is the turbulence
classical in form but also that the two velocity fields are
essentially identical:vn=vs=v, where v represents the
vortex-coupled turbulent velocity. This idea has already been
mentioned in connection with grid turbulence in Sec. VI A.
It can be argued, therefore, that, on scales larger than the
vortex-line spacing the governing equation of motions10d
reduces to

dup

dt
=

v − up

t
+ g

Dv

Dt
, s29d

where Dv /Dt=]v /]t+sv ·= dv and g=3r / s2rod. For neu-
trally buoyant particlesg=1.

We emphasize that the two velocity fields coincide only
on length scales significantly larger than the minimum length
scale provided by the vortex line spacing,7 so that our repre-
sentation will not be good for vortex-coupled turbulence on
the smallest length scales. However, as we shall explain, our
principal motivation in this section is to explore an instability
in the particle trajectories to which we have already referred
several times, and our approach, which is really to treat the
helium as a single viscous fluid, is adequate for this purpose.

Note that, forg=1, upstd;v(r std ,t) is a formal solution
of Eq. s29d, wherer std is a trajectory of a fluid particlespas-
sive scalard, because the Lagrangian time derivativedup/dt
seen by the particle coincides with the substantial derivative
D /Dt of the fluid velocity. It would therefore seem natural to
conclude that neutrally buoyant particles should follow the
fluid exactly, and that almost buoyant particles should trace
the fluid almost exactly.

However, it has been known for some time that particles
with density larger than that of the fluid are expelled from
regions of high vorticity, and that they cluster, eventually, in
the regions of high rate of strain and low vorticity. In con-
trast, particles with density lower than that of the fluid are
drawn towards regions of high vorticityssee, e.g., Refs. 24
and 25 and references thereind. Moreover, recent work26 has
indicated that even the motion of a neutrally buoyant particle
is unstable, and that particle trajectories differ from those of
an ideal passive scalar.

Note that the only situation where the formal solution
upstd;v(r std ,t) is stable is the case of very low tempera-
tures. In this case the normal fluid is absent,v;vs, and Eq.
s29d becomes, for neutrally buoyant particlessg=1d, a kine-
matic equation for fluid points. Such an equation obviously
has a neutrally stable solutionup;vs. sHowever, even in this
case there are potential sources for instability, such as the
finite size of the particle, and the fact that the particle density
is unlikely to be precisely equal to the fluid densityd.

Clearly the issue of the stability of particle trajectories
must be taken into account when using the PIV method to
study turbulence in He II, including the special case of
vortex-coupled turbulence. Real turbulent flows are hard to
treat, so it is instructive to study the motion of particles in
simpler, two-dimensional, flows in order to gain physical in-
sight into what happens in real turbulent flows. The govern-
ing equations of motion must be solved numerically, but the
computational difficulty is much less than in the case of
three-dimensional flows. To model the turbulent velocity
field v we use the Arnold-Beltrami-ChildresssABCd
flow27–29 and set v=vABC=svx

ABC,vy
ABC,vz

ABCd, where the
components ofvABC at the pointr =sx,y,zd are

vx
ABC = A sins2pzd + C coss2pyd,

vy
ABC=B sins2pxd+A coss2pzd,
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vz
ABC = C sins2pyd + B coss2pxd, s30d

and A, B, andC are given parameters. The use of an ABC
flow is motivated by simplicity and computational conve-
nience. ABC flows are solutions of the steady Euler equation
and of the time dependent, forced Navier-Stokes equation.
Despite the simple functional form, they represent a rela-
tively complex spatial structure consisting of six vortex tubes
of positive and negative circulation aligned parallel to the
Cartesian axes within the unit boxs−1/2øxø1/2, −1/2
øyø1/2, −1/2øzø1/2d. ABC flows thus provide ideal-
ized models of turbulent vortex structures, and for this pur-
pose they have been used in applications ranging from astro-
physical fluid dynamics30 to superfluidity.31 For the sake of
simplicity we chooseA=B and C=0, a condition which
guarantees that the flow is two-dimensional; this restriction
does not affect our results and serves to simplify their graphi-
cal presentation.

To visualize the ABC flow we follow the motion of a
number of fluid particlessdistinct from tracer particlesd by
integrating the equationdr p/dt=vABC using a semi-implicit
Crank-Nicholson method.32 The resulting path lines are
shown in Fig. 1.

We now proceed to simulate numerically the motion of
the tracer particles using the ABC flow model. Our numeri-
cal simulations start at timet=0 by placing an ensemble ofN
particlesstypically N=1000d at random positions in the com-
putational box. For simplicity we assume that all particles
have the same size and density. The initial velocity of a
particle at positionr =r p is equal to the fluid velocity at that
position. The particle positionr p and velocityup are then
integrated in time by solving Eq.s29d for up and the equation
dr p/dt=up for r p; periodic boundary conditions are used.
Since the lifetime of eddies in a turbulent flow is typically of
the order of the turnover time, we stop the calculation at the
final time t=3tABC=2p / uvABCu where vABC= = 3vABC

=2pvABC, for which tABC=sA2+B2+C2d−1/2.
First we consider the case of particles that are not neu-

trally buoyant. We chooserp=1.1 g/cm3 and a range of val-
ues of radius centred arounda=8.5310−5 cm. We assume

that the temperature is T=2 K, for which rn
=0.08055 g cm−3 andrs=0.06507 g cm−3. The choice of ve-
locity range is motivated by the orders of magnitude
achieved in the Oregon towed-grid experiments,5 and we
take three values ofA: 120 cm/s, 60 cm/s, and 10 cm/s
swith B=A andC=0d. To measure the ability of the particles
to track the fluid, we calculate the ensemble-averaged veloc-
ity of the particles,kuupul, and the ensemble-averaged veloc-
ity of the fluid evaluated at the position of each particle,
kuvABCul. Figure 2 showskuupul plotted versust /tABC, and
Fig. 3 shows the ensemble-averaged relative difference be-
tween the velocity of the particles and the velocity of the
fluid at the position of the particlessnote the logarithmic
scaled. It is apparent that, after an initial transient, the par-
ticles trace the fluid rather well, particularly the smaller par-
ticles at the smaller velocities.

Note in Fig. 2 that, at relatively large flow velocity,kuupul
sand alsokuvABCuld decreases with time. This is a conse-

FIG. 1. Plot of the path lines of a two-dimensional ABC flow
sA=B andC=0d in the sx,zd plane.

FIG. 2. Plot ofkuupul as a function oft /tABC. Solid lines corre-
spond toA=B=120 cm/s, dashed lines toA=B=60 cm/s, and dot-
ted lines toA=B=10 cm/s. The symbols correspond to different
values of the radius of the particles: Squares:a=8.075310−5 cm;
circles:a=8.5310−5 cm; triangles:a=8.925310−5 cm. In all runs
C=0, T=2 K, andrp=1.1 g/cm3.

FIG. 3. Plot of log10skuup−vABCu / uvABCuld as a function of
t /tABC. Lines and symbols correspond to those of Fig. 2. In all runs
C=0, T=2 K, andrp=1.1 g/cm3.
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quence of the spatial segregation resulting from the instabil-
ity of particle trajectories mentioned above. The effect is
made clear if we consider the actual positions of the particles
in the flow, as we see in Fig. 4. Initially the particles are
randomly scattered throughout the computational box. As
time progresses, the particles are expelled from the regions
where the vorticity is large and segregate into the regions
where the rate of strain is large; this is evident if we compare
the final position of the particles in Fig. 4 against the ABC
path lines of Fig. 1. We conclude that the apparently good
result shown in Fig. 3 may hide a difficulty: the particles
seem to trace the flow fairly well, but, particularly for large
velocities, the trajectories are unstable, and the particles seg-
regate spatially, moving from the regions of large vorticity to
the regions of large strain rate. SinceC=0, it should be ex-
pected that the initial random scatter of particles be pre-
served insx,yd andsy,zd planes, and this is indeed the case,
as we have verified numerically.

At smaller flow velocitiesssayA=B=10 cm/s,C=0d, the
ensemble-averaged velocitykuupul does not decrease with
time sFig. 2d, and indeed if we look at the distribution of
particles in thesx,zd plane over the same time scalet /tABC

we see no sign of segregation.
To obtain a more quantitative understanding of how the

expulsion from the eddies depends on the particle size and
the intensity of the turbulent flow we define two regions in

the flow. The first is the region where the vorticityvABC has
magnitudevABC= uvABCu larger than three-quarters of the
maximum value,vABC.0.75vmax

ABC. The second region is
where the invarianteABC of the rate-of-strain tensoreij

ABC,
given byeABC=oi=1

3 o j=1
3 eij

ABCeij
ABC, exceeds three-quarters of

the maximum value,eABC.0.75emax
ABC, whereei,j

ABC is

eij
ABC =

1

2
S ]vi

ABC

]xj
+

]v j
ABC

]xi
D . s31d

Figure 5 shows how the numberN of particles in the two
regions depends on timesscaled in units oftABCd for numeri-
cal simulations performed using different particle sizes and
ABC flow intensitiessthe temperature and the particle den-
sity is the same as in the previous calculationd. The number
N of particles in the two regions is scaled in units ofN0,
which is the number of particles in each region att=0 sthe
initial number of particles in the region of large vorticity and
in the region of large strain rate are not exactly the same, due
to the arbitrary definition of these regions and the random-
ness of the initial position of the particlesd. It is apparent that,
as time progresses, the number of particles in the region of
large rate of strain increases whereas the number of particles
in the region of large vorticity decreases. The rate at which
this separation occurs depends upon the size of the particles
and the intensity of the flow: the stronger the eddy and the
larger the particle, the more pronounced is the separation.

The use of buoyant particles reduces the segregation ef-
fect, although it does not eliminate it. We have performed
calculations for buoyant particles atT=2 K for the same
range of flow velocities and radius values centered around
a=2.525310−4 cm. Figure 6 shows the difference between
the ensemble-averaged velocity of the particles and the
ensemble-averaged velocity of the fluid at the position of the

FIG. 4. Position of tracer particles in thesx,zd planesa=8.075
310−5 cm andrp=1.1 g cm−3d at different times. Calculation per-
formed atT=2 K and ABC flow intensityA=B=120 cm/s,C=0,
for which tABC=5.89310−3 s: sad t=0.0 s,sbd t=3.53310−3 s, scd
t=7.06310−3 s, sdd t=1.06310−2 s, sed t=1.41310−2 s, andsfd t
=1.76310−2 s=3tABC.

FIG. 5. Plot ofN/N0 versust /tABC whereN is the number of
particles in a region of high strain rate or high vorticity andN0 is
the initial number of particles in that region. Solid lines correspond
to A=B=120 cm/s, dashed lines toA=B=60 cm/s, and dotted
lines toA=B=10 cm/s. Solid symbols correspond to the region of
large rate of strain and open symbols correspond to the region of
large vorticity: Squares: a=8.075310−5 cm; circles: a=8.5
310−5 cm; triangles:a=8.925310−5 cm. Calculation performed
with T=2 K andrp=1.1 g/cm3.
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particlessnote the logarithmic scaled: we conclude that the
particles trace the fluid well. We find that the quantitieskuupul
and kuvABCul do not change with time during the time scale
under considerationsup to three times the value oft /tABCd,
which suggests that there is no segregation. To confirm this
result we have plotted the position of the particles in the
sx,zd plane, and found that the initial random scatter is pre-
served. Indeed, Fig. 7 shows that the normalized numbers of
particles in the region of large strain rate and in the region of
large vorticity do not change as the time progressesscompare
the vertical scale against the vertical scale of Fig. 5d. It

would be wrong however to conclude that buoyant particles
are immune from segregation: the instability simply requires
a longer time scale to be visiblesabout ten timest /tABC with
the parameters usedd. Since this time scale is significantly
larger than the lifetime of the eddies in real turbulencesthe
turnover timed, segregation has no effect on PIV. We note
that this absence of effective segregation is an added reason
for choosing to use neutrally buoyant particles.

To quantify the segregation in the ABC flow, we introduce
the quantityNs/N0

s whereNs is the number of particles in a
region of high rate of strain andN0

s is the initial number of
particles in that region. Based on a visual perception of the
results illustrated by Figs. 4 and 5, we suggest the following
criterion for particle segregation in the ABC flow. We say
that the particles have segregated if, after three turnover
times of the ABC flow, the quantityNs/N0

s becomes greater
than 2. Since the particle motion in the ABC flow is deter-
mined by the parameterst andg fsee Eq.s29dg and the flow
strength A, the proposed criterion enables us to identify in
st ,g ,Ad space the domain corresponding to the particle seg-
regation within three turnover times. InsA,td plane such a
domain is located above the curve defined by the value of the
parameterg; see Fig. 8.

VIII. TRAPPING OF PARTICLES ON VORTEX LINES

We have repeatedly stressed that our discussion so far has
been based on the assumption that the tracer particles do not
become trapped on vortex lines in the superfluid component.
We must now discuss whether this assumption is justified.
We shall find that in many cases of practical interest it is not
justified, and in these cases we must discuss the resulting
effect on the motion of the particles. For the sake of simplic-
ity, we shall only consider the interaction of a single particle
with a single vortex; in reality, it is possible that many vor-
tices become trapped onto the same particle, as in some ex-
periments the estimated intervortex spacing is of the order of
the particle size.

FIG. 6. Plot of log10skuup−vABCu / uvABCuld as a function of
t /tABC for neutrally buoyant particles atT=2 K. Solid lines corre-
spond toA=B=120 cm/s, dashed lines toA=B=60 cm/s, and dot-
ted linesA=B=10 cm/s. The symbols correspond to different val-
ues of the radius of the particles: Squares:a=5.0310−5 cm; circles:
a=2.525310−4 cm; triangles:a=5.0310−4 cm.

FIG. 7. Plot ofN/N0 versust /tABC whereN is the number of
particles in the region of large strain rate and in the region of large
vorticity, and N0 is the initial number of particles in that region.
Solid lines correspond toA=B=120 cm/s, dashed lines toA=B
=60 cm/s, and dotted lines toA=B=10 cm/s. Solid symbols refer
to large rate of strain and open symbols refer to large vorticity.
Squares:a=5.0310−5 cm; circles: a=2.525310−4 cm; triangles:
a=5.0310−4 cm. Calculation performed with buoyant particles for
T=2 K.

FIG. 8. slog10 A, log10 td plane. The domain above the curve
identified by the value of parameterg corresponds to the segrega-
tion of particles within three turnover times of the ABC flow.
Crosses:g=0.05; triangles:g=0.1; circles:g=0.5; squares:g=1.0;
stars:g=1.2.
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We note first that when a particle of radiusa is trapped on
a vortex the energy of the helium is reduced by an amount
approximately equal to the kinetic energy of the displaced
superfluid. It is easy to see that this kinetic energy is given
approximately by

Es =
rsk

2a

4p
logsa/j0d, s32d

wherek=h/m4<10−3 cm2 s−1 is the quantum of circulation
in He II. For typical particle sizesEs@kBT, where kB is
Boltzmann’s constant, so that thermal effects do not inhibit
trapping.

We confine our attention to neutrally buoyant particles.
Let us first consider an initial condition in which a particle is
at rest at a distancer0 from an isolated stationary rectilinear
vortex, the normal fluid being also at rest. We assume for the
present that the vortex line does not move in response to any
movement of the particle. Then, from Eq.s10d, for the case
of a neutrally buoyant particlesr0=3r /2d the equation of
motion of the particle is

dup

dt
= −

1

t
up +

3rs

2ro
svs · = dvs, s33d

wherevs remains equal to that due to a stationary vortex; i.e.,
vs=f0,k / s2prd ,0g scylindrical polar coordinatesd.

If the viscous term, −up/t, vanishes, then Eq.s33d has a
solution corresponding to the particle moving in a circular
orbit round the vortex with velocityj /r=srs/rdvs.

For neutrally buoyant particles of the sizea=1 mm, the
particle relaxation time ist=ra2/ s3mnd,2310−5 s. This
time is much smaller than the time taken for the particle to
orbit around the vortex ifr0 is comparable with typically
relevant values, which must be of the order of the vortex
spacing, in a turbulent superfluid. Thus any orbital motion
will be strongly damped, as will be any motion along the
vortex.

Thus we can focus on motion of the particle in the radial
direction, which is driven by the radial termsvs·= dvs, and
which has the form of a radial pressure-gradient force
=s1/r2d. Let up denote the radial component ofup. We have

dup

dt
= −

up

t
−

2b

r3 , s34d

where b=rsk
2/ s8p2rd,0.79310−8 cm4 s−2 shere and be-

low in this section the numerical values of parameters are
calculated at the temperature 1.85 Kd.

It can be expected that the particle acceleration is small
swe will justify this assumption laterd, so that the particle
motion is governed by the balance of the friction and the
pressure gradient force, i.e.,t−1up+2br−3=0. But up=dr /dt
so this equation takes the form

r3dr/dt = − 2bt. s35d

The solution is

r4 = − 8btt + r0
4. s36d

Estimating nowdup/dt=d2r /dt2 from the solutions36d
we find

dup/dt = − 12sbtd2s− 8btt + r0
4d−7/4 s37d

and, clearly, sincebt<2.8310−13 s−1 sfor the case of 1mm
particlesd, the acceleration can be neglected until the moment
when the particle reaches the close vicinity of the vortex
core. This is consistent with the approximation in Eq.s35d.

It is convenient to divide the radial motion of the particle
into two stages. In the first stage the particle, which starts at
t=0 at distancer0 from the vortex, approaches the vortex up
to some distance of the order, say, of 2a, without disturbing
the vortex significantly. The timeta required for the particle
to travel fromr =r0 to r =2a is given bys2ad4=−8btta+r0

4,
which is

ta =
r0

4

8bt
S1 −

s2ad4

r0
4 D . s38d

In the second stage our assumption that the position of
vortex remains unperturbed by the approaching particle must
fail; the vortex must become curved, effectively due to the
presence of an image vortex in the particle, and it must
move. Eventually it connects to the particle; at this point the
vortex length and thus the kinetic energy of the superfluid
around the vortex, rapidly decrease, until what is left at the
final time t0 is the particle trapped on the vortex. Clearly this
presumed scenario is only an educated guess; the details of
the relative motion of vortex and particle may be rather com-
plicated, particularly during the second stage: the motion be-
comes of a three-dimensional nature, and it may involve the
generation of Kelvin waves on the vortex, which may add to
the loss of energy due to viscous dissipation. We do not
know how long the second stage takes, but we guess that it is
less thanta. Thusta is our estimate for the trapping time of a
particle released from rest at a distancer0 from an isolated
rectilinear vortex.

We must now consider how this result relates to trapping
in a random tangle of vortex lines, such as will often exist
approximately on a length scale comparable with the line
spacing,. These lines will be in continual motion with ve-
locities of the ordervL=k / s2p,d. There may be an addi-
tional velocity, due to local overall motion of the lines, but
vL is likely to represent a minimum value. The normal fluid
velocity is likely to be largely uncorrelated tovL on the scale
,, so the velocity of the normal fluid relative to the superfluid
vortex lines is likely to be fluctuating and not less thanvL.

If the relaxation times11d sfor a neutrally buoyant par-
ticled is small, the particles will move generally with the
normal fluid, so that they will move with the velocityvL
relative to the superfluid vortex lines. The fact that the mo-
tion of the vortex lines is not regular does not affect the
validity of the following argument.

We introduce a capture cross section,bc, to describe the
probability of capture of a particle by a vortex line within the
tangle. The mean free path for capture is then given byLp
=,2/bc, and the mean free time byTp=,2/ sbcvLd. The cross
sectionbc can presumably be obtained from computer simu-
lations, although the need to take account of the movement
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of the vortex line in response to the presence of the particle
makes it nontrivial. We can, however, make a preliminary
estimate as follows. As already shown, the capture time from
a distancer0 for a particle initially at rest is given roughly by
ta< r0

4/ s8btd fEq. s38dg; i.e., by

ta =
p2rr0

4

rsk
2t

=
3p2mnr0

4

rsk
2a2 . s39d

Now suppose that a particle, moving with velocityvL, ap-
proaches the vortex line with an impact parameterr0. It will
probably be captured if the time it spends at a distance of
aboutr0 from the line is greater thanta, i.e., if

r0

vL
.

3p2mnr0
4

rsk
2a2 . s40d

It follows that our estimated capture cross section is given by

bc
3 =

rsk
2a2

3p2mnvL
=

2rska2,

3pmn
, s41d

and the mean free time by

Tp = 1.68
2p,2

k
S mn

rsk

,2

a2D1/3

. s42d

The ratiomn/ srskd is typically about 0.1, and therefore

Tp ,
2p,2

k
S,

a
D2/3

. s43d

The quantity 2p,2/k is the timets,d that characterizes the
evolution of the turbulence on the scale,; it is the effective
turnover time on scale,. We have already noted thata ought
to be less than the minimum length scale in the turbulence,
and therefore thata ought to be less than,. Thus mean free
time will be larger thants,d. In experiments5 , varies from
3 mm to 100mm. In practicea cannot be much less than
1 mm, so that the mean free time varies from about 1 ms to
about 10 s. Observations in which particle trapping does not
occur might be possible at the upper end of this range of
mean free times, but not at the lower end. It must be noted,
however, that if there were a large average value ofuvn−vsu,
the capture timeTp would be less than that indicated by Eq.
s43d, and observations in which trapping does not occur
would become more difficult.

It might be thought at first sight that, if trapping does
occur, the particles will move on average with the velocity of
the unperturbed vortex lines. Unfortunately, this is not gen-
erally true, for two reasons. First, the presence of a particle at
a particular point on a vortex line can modify the motion of
the line fthe motion of free line relative to the local super-
fluid velocity is determined by the Magnus effect,f =rsk
3 svL−vsd, where f is the force of mutual friction between
the line and the normal fluid; this force is effectively modi-
fied locally if a particle is attached to the lineg. Secondly, if
the normal fluid is flowing locally with a velocity that has a
component parallel to the vortex line, then the viscous force
on the particle will cause it to move along the line. These
effects are clearly rather complicated, and their elucidation
will require further work.

We consider three particular cases of special interest, and
discuss the importance of trapping in each case.

The first isvortex-coupled turbulence, already discussed
in earlier sections. In this case, as we have already noted, the
two fluids have the same velocity fields on scales greater
than ,, and the vortices can be expected to move on these
large scales with this same common velocity. Whether trap-
ping occurs is then unimportant. On scales comparable with
, the different velocity fields do not coincide, and trapping
will then have a rather complicated effect.

The second issuperfluid turbulence at a very low tem-
perature, where the normal fluid is effectively absent. Our
calculation of the mean free time associated with trapping is
then inapplicable. However, in this case the vortex lines
move with the local superfluid velocity, and there is no nor-
mal fluid and no mutual friction. Therefore it is probable that
whether or not trapping occurs is unimportant, and, apart
from transients, the particles will follow the superfluid.

The third case isthermal counterflow turbulenceabove
1 K. This is the only case for which there exist any experi-
mental results.12 We have noted the argument of Sec. VI B
that in the absence of trapping the particles can be expected
to follow on average the motion of the normal fluid. This is
not in accord with experiment. The vortex line spacings in
the experiments are such that the mean free time for trapping
is likely to be not more than 30 ms, so that in practice trap-
ping is very likely to have occurred.

It is interesting to consider in connection with thermal
counterflow turbulence a very simple, but, as it turns out,
inadequate model for the mean particle velocities in the pres-
ence of trapping. Suppose that the vortex tangle in counter-
flow turbulence is isotropic and moves with the superfluid
component. There is evidence, from both experiment and
theory1 that it does move with the superfluid, at least ap-
proximately, but it is not quite isotropic, the lines tending to
point preferentially in directions normal to the heat flow,
especially at higher temperatures. Suppose further than the
trapped particles do not have a significant influence on the
local motion of the lines, and that viscous interaction of a
particle with the normal fluid causes the particle to move
along the line at a rate given by the Stokes law with the force
equal to the component of the viscous force along the line. It
is then easy to show that the particles can be expected to
move at an average velocity relative to the superfluid equal
to one-third of the relative velocity between the two fluids,
the factor of one-third arising from the average value of
cos2 u over a sphere, whereu is a polar angle relative to the
direction of heat flow. Experiment shows that the particles
move with an average velocity equal to one-half of the nor-
mal fluid velocity.12 The discrepancy is in the wrong direc-
tion to be due to lack of isotropy in the vortex tangle. How-
ever, as we have already emphasized, the trapped particles
must almost certainly modify the local motion of the vorti-
ces, and this may be the reason for the discrepancy. Devel-
opment of this idea poses severe problems. We emphasize
that in this case the particles appear not to respond in any
simple way to the flow.

IX. CONCLUSION

We have set up the governing equations of motion for
particles in He II, highlighting the approximations and the
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limitations of these equations. By solving some simple one-
dimensional problems, we have identified various regimes,
which are particularly simple if the particles are neutrally
buoyant. These regimes correspond to the particles tracing
the motion of the superfluid, the normal fluid or the total
mass currentj /r. These solutions allow us to gain physical
insight into the nature of the motion of particles in turbulent
flows. In the case where the superfluid and normal fluid ve-
locity fields are essentially the same on a large range of
length scales, we find that, if the eddy turnover time is much
less than the relaxation time of the particle, the particle will
move with the mass currentj /r; vice versa, if the turnover
time is much larger than the relaxation time, the particle will
move with the normal fluid, provided the trajectory of the
particle is stable. At very low temperatures the particle will
follow the turbulence of the superfluid.

To study the issue of the stability of the particle trajectory
we have solved numerically some two-dimensional flow
problems which refer to the situation in which the superfluid
and normal fluid velocity fields are essentially the same over
a wide range of scales. We have found that it is important to
be aware of the possibility that particles segregate spatially,
moving from regions of high vorticity into regions of high
rate of strain; fortunately we have concluded that, using ex-
isting particles, it is possible to avoid this segregation effect.

We show that these promising results may well be invali-
dated when we take into account the trapping of particles by
the vortex lines, unless the density of vortex lines is very
small and smaller than is often the case in practice. We show
that in some simple cases, notably vortex-coupled superfluid
turbulence and superfluid turbulence at a very low tempera-
ture, trapping does not invalidate some rather simple results.
But in other cases, such as thermal counterflow turbulence,
trapping has probably a serious effect, which is hard to in-
terpret.

We hope that this work will encourage further experi-
ments, including laminar regimes which are important to test
our understanding of the interaction between particles and
He II. On the theoretical side, the next step is clearly to move
to three-dimensional simulations which can more properly
include the presence of the quantized vortices, and to simu-
lations that take proper account of trapping.
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APPENDIX: FORCE ACTING ON A PARTICLE IN THE
NONUNIFORM FLOW

1. Sphere in the inviscid unsteady nonuniform
irrotational flow

Subsections 1 and 2 are based on the approach developed
in Ref. 14.

We assume below that the body force is absent and con-
sider a spherical particle moving with velocityup in the ir-
rotational flow fieldvsr ,td of the inviscid fluid. We assume
that the size of the particle is much smaller than the charac-
teristic length scale of the flow, i.e.,

« = ai = v0i/W! 1, sA1d

where v0 is the ambient velocity field of the fluid,W =V
−up the relative velocity between the ambient flow at the
position of the center of the sphere and the particle,Vstd
=v0(Rstd ,t), Rstd being the position of the center of the par-
ticle. AssumptionsA1d means that it will be sufficient to
consider only uniform-straining fields of the fluid velocity. It
is also assumed that the timescale of change inW is large
compared with the time required for a fluid to pass around
the particle.

The relative velocity field around the particle,w=v−up is
the solution of the Euler and continuity equations subject to
the condition of zero flux through the particle surface; at
large distances from the spherew→v0−up. In the reference
frame moving with the particle,r 8=sx18 ,x28 ,x38d, the relative
flow field, wsr 8 ,td can be represented as the sum of the uni-
form “far-field” flow W, the perturbationDwsUd caused by
the sphere, and the extensional flowDwsEd, i.e.,

w = W + DwsUd + DwsEd. sA2d

The perturbationDwsUd is of the same order of magnitude as
W, while uDwsEdu /W=Os«d. Since the flow fieldw is irrota-
tional, w= =f where

f = f0 + fsUd + fsEd. sA3d

The potential of the uniform flow isf0=W ·r 8. The potential
of the zero-order perturbation of the uniform flowDwsUd

caused by the sphere isfsUd=CsUdsr8dW ·r 8, wherer8= ur 8u,
and, for a spherical particle,CsUdsr8d=a3/ s2r83d. Finally, for
the potential of the extensional flow we havefsEd=eijxi8xj8,
whereeij =const are the components of the rate-of-strain ten-
sor.

To calculate the force acting on the particle, the Euler
equation must be formulated in the noninertial reference
frame moving with the particle:

]w

]t
+ sw · = dw = −

1

r
= p8 −

dup

dt
, sA4d

where the last term represents the D’Alembert force, andp8
is the fluid pressure in the noninertial reference frame. The
force acting on the particle is

F = −E
S

p8n dS, sA5d

whereS is the surface of the particle. Since the flow is irro-
tational, we havesw ·= dw= 1

2 = sw ·wd. Now, using the
Cauchy-Lagrange integral, written in the noninertial refer-
ence frame as

MOTION OF TRACER PARTICLES IN… PHYSICAL REVIEW B 71, 064514s2005d

064514-13



rS ]f

]t
+

1

2
w ·w +

dup

dt
·x8D + p8 = fstd, sA6d

where fstd is the function which can be determined from the
conditions atux8u→`, and making use of the gradient theo-
rem, the force acting on the particle can be calculated as

F = rE
S
S ]f

]t
+

1

2
w ·wDndS+ rq

dup

dt
. sA7d

Taking into account that the termsW + =fsUdd ·sW
+ =fsUdd is symmetric with respect to the center of the
spherefand, therefore, its contribution to integralsA7d is
zerog, and making use of the perturbation technique for ex-
pansionsA2d sin terms of«d, the force acting on the sphere
can be represented as

F

r
=E

S
S ]f0

]t
+

]fsUd

]t
DndS+E

S

sW + = fsUdd · = fsEdndS

+ q
dup

dt
. sA8d

Incorporating the potentialsf0, fsUd and fsEd and making
use again of the gradient theorem, one finds

Fi = rqhs1 + CdsẆi + eijWjd + su̇pdij, sA9d

where C= uCsUdsr8dur8=a=1/2 is theadded mass coefficient,
and s˙d;d/dt. SinceW =V −up, we write

Ẇi + eijWj =
]v0i

]t
+ eijv0j − su̇pdi , sA10d

where the right-hand side is evaluated at the position of the
particle center. Becauseeijv0j ;v0j]v0i /]xj8, we have

Ẇi + eijWj ;
Dv0i

Dt
−

dsupdi

dt
, sA11d

so that the fluid-particle interaction force takes the form

F = rq
Dv

Dt
+ CrqSDv

Dt
−

dup

dt
D , sA12d

where the subscript “0” is now omitted, andv should be
understood as the ambient flow field of the fluid.

2. Sphere in the inviscid unsteady nonuniform rotational flow

We assume now that the vorticity of the ambient flow
v0= = 3v0 is not zero, but all other assumptions formulated
in the previous subsection remain valid. In the uniform
straining flow the vorticity is also uniform. Sinceuvu
<i=v0i, the rate of change of vorticity can be estimated as
u]v /]tu<usv ·= dv0u<i=v0i2, so that on the time scale char-
acteristic of the flow past a sphere the relative change in the
far-field vorticity is udvu<ai=v0i /W! uvu. In terms of
small parameter« the above means that, toOs«d, ]v /]t=0,
so that the relative flow field can be represented by the
asymptotic expansionfsimilar to Eq.sA2dg

w = W + DwsUd + DwsEd + Dwsvd, sA13d

where the first three terms are the same as in Eq.sA2d, and
the order of magnitude of the rotational contributionDwsvd is
uDwsvdu /W=Os«d. Based on the asymptotic expansion in
terms of«, the calculation of the forceF is similar to that of
the previous subsectionsfor details see Ref. 14d. The fluid-
particle interaction force can be represented as the sum of the
force sA12d and the rotational contribution, i.e.,

F = rq
Dv

Dt
+ CrqSDv

Dt
−

dup

dt
D + Fsvd, sA14d

where

Fsvd = rqCLsv − upd 3 v sA15d

fin Eqs.sA14d andsA15d the subscript “0” is omitted, so that
v andv refer to the ambient flow fieldg. Physically, the con-
tribution Fsvd arises due to stretching of vortex lines. In Eq.
sA15d CL is the lift coefficient; for a sphereCL =1/2. The
right-hand sides of Eqs.sA14d andsA15d are evaluated at the
center of the sphere.

3. Spherical particle in the unsteady nonuniform viscous flow

Here the situation is more complicated because the analy-
sis of the unsteady particle motion in an arbitrary nonuni-
form flow is no longer possible. Maxey and Riley15 studied
analytically the unsteady motion of a sphere in an arbitrary
creeping flow and obtained the following result for the fluid-
particle interaction force:

F = Fsdd + CrqSdv

dt
−

dup

dt
D + rq

Dv

Dt
+ FB, sA16d

where the first termFsdd=6parnsv−upd represents the vis-
cous drag in the case where the particle Reynolds number
Rep!1, andFsBd is the Bassetshistoryd force. It is important
to emphasize that the analysis15 was performed for a creep-
ing flow where the derivative of the fluid velocitydv /dt,
seen by the particle, and the substantial derivativeDv /Dt
cannot be distinguished. In Ref. 15 it was found that the
added mass coefficientC for a spherical particle in a viscous
flow is precisely the same as for a sphere in an inviscid fluid,
C=1/2.

Based on the observation that, in the case of unsteady,
spatially uniform flow, the form and the physical interpreta-
tion of the second and the third terms in Eq.sA16d coincide
with the form and interpretation of the similar terms in the
force sA12d, Mei16 proposed that, for an arbitrary nonuni-
form viscous flow, the forcesA16d should be generalized as
follows:

F = 6parnsv − upd + CrqSDv

Dt
−

dup

dt
D + rq

Dv

Dt
+ FB.

sA17d

The numerical study18 of the accelerated sphere’s motion in
the steady straining flow confirmed that the value of the
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added mass coefficient,C=1/2 remains valid for higher par-
ticle Reynolds numbers and strongly nonuniform flows. In
general, the added mass coefficient depends only on the par-
ticle geometry.

The Basset force has the form

FB = 6parnE
−`

t

Kst − t,td
dsv − upd

dt
dt. sA18d

The comprehensive study of the kernelKst−t ,td can be
found in Ref. 17. We only note that for relatively short time

Kst − t,td =
a

Îpnst − td
, sA19d

but the behavior of the integral kernel becomes more com-
plicated for larger times; in particular, ast→` the history
kernel decays much faster thant−1/2.

Further generalizations include a modificationsby numer-
ous authors; see, e.g., Ref. 33 and references thereind of the
viscous drag term for the case of higher particle Reynolds
numbers, e.g.,

Fsdd =
1

2
CDsRepdpa2ruv − upusv − upd, sA20d

and also modifications of the kernelsA19d for the case of
high initial relative velocity between the fluid and the par-
ticle.

The force in the formsA17d was derived in the case of
weak shear. In the case where shear is sufficiently strong, the
Saffman lift forceFsvd should also be included in Eq.sA17d;
see, e.g., Refs. 34 and 35. In the case of simple shear such
that vx=vxsyd, vy=vz=0 the lift force is

Fy
svd = 6.46rn1/2a2Îdvx

dy
fvx − supdxg, Fx

svd = Fz
svd = 0.

sA21d

In the case where the finite relative velocityup−v be-
tween the particle and the fluid is combined with rotation of
the particle, a transverse force known as the Magnus lift
force should be included in Eq.sA17d as well. This force
arises due to asymmetry of streamlines in the vicinity of the
rotating sphere. In the case where the particle Reynolds num-
ber Rep and the rotational Reynolds number ReV

=4ruVua2/m, whereV is the angular velocity of the particle
rotation, are small, this force was calculated in Ref. 23 in the
form

FsLM d = pa3rV 3 sup − vd. sA22d
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