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Motion of tracer particles in He II
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Recent experiments have shown that it is possible to implement particle image velodiRi®tryn liquid

helium. However, to interpret the PIV data in the superfluid phase, it is necessary to understand how the
particles are affected by the two components, the viscous normal fluid and the inviscid superfluid, as well as by
the quantized vortex lines that may exist in the superfluid component. After setting up the governing equations
of motion, we first solve them in some simple cases in order to gain physical insight, and then we formulate
semiquantitative general arguments relating to turbulent flow, with the assumption initially that particle trap-
ping by vortex lines does not occur. We find that a number of different but simple regimes can be identified if
the particles are neutrally buoyant: in some regimes the particles trace the normal fluid, in others the superfluid,
and in others the total mass current. A numerical analysis for a model two-dimensional flow reveals an
instability that requires some modification of these conclusions. It is then shown that particle trapping on
vortex lines can be important and can lead to serious modification of our conclusions. The results of our
analysis are used to discuss what types of superfluid flow can usefully be studied by PIV, and to suggest the
most appropriate size and mass of the tracer particles.
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[. INTRODUCTION technique, hot wire anemometry, laser Doppler anemometry,
particle image velocimetryP1V), and others. In He Il there
The superfluid phase of liquid heliufiHe, or He II, to IS as yet no direct way to determine flow patterns in either
which we confine our attention, is a quantum fluid. Accord-the normal fluid or the superfluid; the most widely used tech-
ing to the two-fluid model of Landau and Tiszdt, consists ~ hiques (second sound and ion-trappingrobe only the
of the intimate mixture of two fluid components: the viscousVortex-line density averaged over a large volume. Measure-
normal fluid (of densityp, and velocityv,) and the inviscid ments of temperature, pressure and chemlcal potential suffer
superfluid(of densityp, and velocityv,). The total density of ~the same problem of poor spatial resolutitnt see Ref. 5

_ ; : ; Turbulent fluctuations, especially on small scales, remain
He Il, p=ps+pp, is approximately temperature independent, ' X '
but the relative proportions of normal fluid and superfluid largely unexplored. There is no doubt that the study of su-

/p and p,/p, depend strongly on the temperatdFelf T "perfluid .ﬂow, and especially superf_luid turbuler_wce, has been
g?)groachgns Ft)he critical temperatulie— T, =2.17168 K, the greatly impeded by the lack of suitable techniques of flow

heli b irel 100 and ol o1): visualization.
elium becomes entirely norméps/p—0 and p,/p— 1); Fortunately the need for flow-visualization techniques in

vice versa, in the limit of absolute zerd;— 0 K, the helium i iq helium has recently been recognized, and appropriate
becomes a pure superfiuid/p— 1 andp,/p—0). Ateasily  techniques are now being developed. For example, Lucas
accessible temperatures below 1 K the normal fluid fractiorynd collaboratofshave recently developed a cryogenic shad-
can become negligiband the helium can then be consid- owgraph technique to reveal convection patterns. However,
ered for many purposes as a pure superfluid. this technique depends on density variations caused by tem-
What makes He Il particularly interesting is that rotational perature fluctuations, so it cannot be immediately applied to
motion of the superfluid is constrained by quantum effectghe superfluid phase.
associated with discreteguantized vortex filaments. This The subject of this paper is the PIV technique, which has
quantized vorticity has been the subject of great experimen-been recently implemented with success in liquid helium by
tal and theoretical interest. Much current work is concernedwo experimental groups: that of Donnelly, Vinen, Niemela,
with the observed similarity between quantum turbulenceand Sreenivasah (until now in He | only and that of
and classical turbulende® something which is at first sur- VanScivet!~123 (in He Il). PIV is based on injecting many
prising, given the quantum restrictions and the two-fluid na-small tracer particles into the liquid. Two images are pro-
ture of the helium. duced using short laser pulses of different col@ay, green
Given the hundreds of papers written on the fluid dynam-and red focused into a narrow sheet and separated in time by
ics of He I, it is remarkable that there is so little direct a few milliseconds. Software then analyzes the images and
experimental information about flow patterns. From the pointidentifies green and red dots corresponding to the same par-
of view of flow visualization, the comparison between quan-ticle at the two different times; in this way the observed
tum fluids and classical fluids is striking. In classical fluids adistance between the corresponding dots yields the compo-
wide range of visualization techniques is available: ink,nent of the local velocity in the plane of the light sheet. It
smoke, Kalliroscope flakes, hydrogen bubbles, Baker's pHnust be stressed that, although PIV has been standard in
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classical fluid dynamics for many years, its successful appli- TABLE I. Parameters of He II.

cation to liquid He at temperatures near absolute zero was

not simple and represents a useful achievement. The poten-

tial of PIV is great, particularly in the study of He Il turbu- T (K) 1.3 1.5 1.8 21

lence. However, there is a key question which must be an- -

swered before PIV data can bg iﬂterpreted correctly: what db" (upoisg 15.3 13.5 13.0 18.0

the tracer particles actually trace? pslp 0.955 0.899 0.687 0.259
This question is far from trivial. The normal fluid is vis-

cous so it exerts a drag force on the tracer particles; the

superfluid is inviscid, so it causes no viscous drag. Howevernorrnal fluid. We shall comment later on the significance of

it is not correct to conclude that the particles trace only thefhls result

normal fluid, because, in time-dependent flafes example,

turbulent flows, inertial effects can cause a tracer particle to Il. ELUID AND PARTICLE PARAMETERS
respond also to superfluid motion. Furthermore, particles . o ) ) )
may become trapped on quantized vortex lines. The total density of liquidHe, p, is approximately inde-

The plan of the paper is the following. In Sec. Il we pendent of temperature and equal to 0._145 gc@ther rel- _
summarize the physical parameters of He Il and of the tracefVant parameters are shown as functions of temperature in
particles used in the experiments that are relevant to oufable I i, is the viscosity of the normal fluidys/p is the
discussion. In Sec. Ill we present the governing equations otuperfluid fraction. _ _
motion of the particles and describe the approximations and Specifications of the particles used so far by the different
the assumptions underlying thefmathematical details are experlmental groups are summanzeq in Table'll..The particle
contained in an AppendjxSection IV is concerned with the radius isa; the effective(averagg particle density i,
motion of particles in a fluid at rest under the influence of N all cases the particle sizes are illustrative, in that each
gravity. Section V is devoted to the case in which the normaPatch of particles has a certain distribution of size; the uni-
fluid and the superfluid velocities have no spatial dependenc@rmity of the physical properties is an important factor
but depend harmonically on time. We find that in some re_vx{h!ch the'expgrlmentallst.s must take into account when de-
gimes the particles trace the normal fluid, in others the suciding which kind of particle to use. In the experiments of
perfluid, in others the total mass current. In Sec. VI we usé0nnelly et al° the heavier particles were allowed to fall
the resulting physical insight to suggest plausible semiquarf®wards the bottom of the apparatus, so that there was effec-
titative results applicable to turbulent flows, but we ignorefive selection of particles that are, at least roughly, neutrally
the possibility that the tracer particles might be trapped orPuoyant:py=p.
quantized vortex lines. Section VII contains the results of
numerical simulations of simple two-dimensional row_s lIl. EQUATIONS OF MOTION
which apply to the case of vortex-coupled turbulence, in
which the normal fluid and superfluid velocity fields are the We consider the motion of a spherical particle of radius
same over a wide range of spatial scales due to the interaand densityp, in superfluid*He, described by a two-fluid
tion through the quantized vortices; here we highlight a po-model. In the earlier parts of the pap@p to and including
tential difficulty that, in some cases, the particle trajectory isSec. VI|) we shall assume that the particles do not interact
unstable and spatial segregation may occur. Section VIII wetrongly with the quantized vortex lines in the superfluid
examine the interaction between a tracer particle and a quagomponent and are certainly not trapped by these lines. We
tized vortex; we show that trapping is likely to occur in many make two further assumptions. The first assumption is that in
practical cases, and we show that such trapping may lead the case of turbulent flow the presence of particles does not
PIV observations that are difficult to interpret. Finally, Sec.modify the turbulence(the assumed weak interaction be-
IX summarizes our conclusions and points to further work. tween particles and vortex lines is a necessary but not suffi-

As we have mentioned, a few experimental results on theient condition for the validity of this assumption, which
application of PIV to superfluidHe have been published. probably requires also that the particles be sufficiently
Observations on thermal counterfiare of particular in-  small). The second assumption is that flow velocities vary by
terest and have shown that the tracer particles move with anly a small fraction in distances of ordarthis means that,
velocity of approximately one half of the velocity of the for turbulent flow of the superfluid component, the particle

TABLE Il. Specifications of the particles used in the experiments.

Authors Material a (um) pp (g cnid)
Van Sciveret al. (Refs. 11-13 Solid neon particles 3-5 1.2
Large hollow glass spheres 10-50 11
Small hollow glass spheres 4-6 1.1
Polymer microspheres 0.8 1.1
Donnelly et al. (Ref. 10 Hollow glass spheres 1-5 roughly 0.145
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must be small compared with the vortex line spacing, and, Dv. du Dv. du

for turbulent flow of the normal fluid component, the particle ~ Fi. = CPnl‘}( Dtn - ﬁ) Fo = CP@’(F; - #)
must be small compared to the Kolmogorov length. Since it

is relatively easier to achieve very intense turbulence in su- (5)
perfluid “He than in an ordinary fluid, the development of
submicron size particles would be desirable.

It is clear that we need to generalize to our classical two
fluid model the equations of motion of a particle in a non-
uniform flow in a classical fluid: an inviscid flutd for the
superfluid component, and a viscous fi3id’ for the normal Dt
fluid (detailed discussions of the two classical cases are con-
tained in the Appendix We make the assumption that the The summary of the derivation of formulé$) and(6) and a

In Egs.(4) and(5), the substantial derivatives of the normal
and superfluid velocity, respectively, are defined as

Dv, v Dvg  ov
ot TV Vv S (s Ve (6)

following equation represents a natural generalization: discussion of the assumptions behind this derivation, particu-
larly the way in which viscous and inertial effects are com-
du _ bined, is given in the Appendix. The added mass coefficient
ppﬁEE =FO+FY+FV+ R+ FP + D+ F + W C depends only on the particle geometry, and is the same for
A both inviscid and viscous fluids; see, e.g., Refs. 14, 15, and
+FO+F@ 4+ Fl@) (1) 18. For a spherical particl€=3. We note that the added

mass effect is related to what physicists would usually de-
where ¢ is the particle volume{{}:éwa3 for spherical par- scribe as the effective mass of the particle when it moves in
ticles), and g the acceleration due to gravity. In the right- the fluid.
hand side of Eq(1), the subscriptsif” and “s’ refer to the In the general case of nonuniform flow, the correct form
forces acting on the particle from the normal and superfluicf the forcesF" andF@ (containing the substantial deriva-
components, respectively; the superscripts relate to contribuive of the fluid velocity field, rather than the rate of change
tions to the force on the particle as followg) is the force  of the fluid velocity seen by the partiglevas derived origi-
due to gravity;(d) is the viscous drag forcéi) is the inertial  nally for the inviscid fluid(see, e.g., Ref. 14, although his-
force due to the carrier fluid accelerati¢or the gradient of torically the first to derive the correct form & and F@
the pressure and shear stiess) is the added mass force; was Taylot). The equation of motion of the particle in the
(B) is the Bassethistory) force; (F) is the Faxén correction viscous flow was derived originally in Ref. 15 for the case of
to the viscous draglw) is the shear-induced lift force; and the time-dependent spatially uniform flow, for which the sub-
(LM) is the Magnus lift force. The gravity force is given by stantial derivatives in Eqg4) and(5) reduce todv/dt. The
correct forms(4) and (5) for the forcesF™ and F@ in the
FO = ¥pp—p)g. (2) general case of spatially nonuniform viscous flow were pro-
] ] posed in Ref. 1@see also Ref. )7
_ Hereafter we consider small particles such that the par- | the approach typical of studies of particulate behavior
Flcle Reynolds number, relating to the nor.mal fluid, is small;iy turbulent flows(see, e.g., Refs. 20 and 2the Basset
i.e., Rg=2pyalVy—Up|/ uy <1, S0 that the viscous drag force pistory force (A18) is usually neglected. Strictly speaking,
is linear in the relative velocity between the particle and thehis force is negligible only if the particle relaxation time

normal fluid. For a spherical particle we have defined below in Eq(11), is smaller than the time scale of
@ the fluid motion?? For tracer particles in the turbulent flow
Fn’ = 6maun(vy = Up). (3)  this means that should be smaller than the turnover timg

of the smallest eddies. Suppose that the turbulence is char-
This expression for the drag force assumes that the rotogcterized by a Kolmogorov energy spectrum, for which the
mean free path =3un/ (pyg) is much smaller than the par- fluid velocity on a scalé, is of ordere'/*?®, wheree is the
ticle sizea, wherevg=2kgT/(7) is the average thermal rate of flow of energy per unit mass down the associated
velocity of the rotons,kg is Boltzmann's constantm’ Richardson cascadésee Sec. VI A The smallest eddies
=0.16mis the roton effective mass, ami=6.65x 102*gis  have a size equal to the Kolmogorov dissipation lenbth,
the mass of the helium atom. The conditiore a is satisfied ~ which is given byb“n: € 113, wherev is the appropriate ki-
for a typical particle size ifT>1K (for example A nematic viscosity. It is then easily shown that the condition
~10"°cm atT=1.3 K), but one must be aware of the exis- that the Basset history force be negligible is that the particle
tence of ballistic regimes at lower temperatures. size,a, be small compared with,(p,/p)*'? i.e., roughly that

The inertial force due to an acceleration of the fluid hasa must be small compared with the smallest length scale in
the same form for both inviscid and viscous components, i.ethe turbulence, which we have already assumed to be the
case.

The Faxén correction to the viscous drzngf) is of the
order of (a?/ LZ)ng), whereL is the length scale of the fluid
motion, and it too can be neglected in the case where the
Likewise, the form of the added mass force is identical forparticle size is smaller than the Kolmogorov dissipation
both fluids: length.

) Dv ' Dv
F =pnd o FS =ps0 s @)
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The transverse lift forc&@ is quite different in each of less than the smallest scale of the turbulence and if there is
the two fluids. In the superfluid component it is presumablyno trapping of particles on vortex lines, assumptions that we
of the form derived for a classical inviscid fluld: F(@ made at the start of the discussion in this section.
=CpHv-up) X w, wherew is the vorticity, andC, the lift With the above assumptions we arrive at the following
coefficient, equal, for a sphere, to 0.5. Classically, it arisesnodeling equation of the particle motion:
from the stretching of a uniform upstream vorticity around

the particle as the fluid flows past it. In the normal compo- ﬁd_ue = 6mau(V.—u.) + Ho. — 0.0 Vi
nent the transverse lift force has presumably the form of the ~ *P" dt " #a(Vn = Up) + Dlpp = )G + o1 Dt

shear-induced Saffman lift force, described in the Appendix.

Since we are assuming that the particles do not become +Cpnﬁ<
trapped on vortex lines, they must remain in parts of the
superfluid velocity field that are irrotational. Therefore the Dve du
transverse lift force=’ must vanish. Behaviour can there- + CPsf}(Ft - Ff) 9
fore be very different from that in a classical inviscid fluid.

Turning to the lift force from the normal fluid, we can |n the absence of gravity, after setti@=1/2, it is conve-
compare its magnitude with that of the viscous drag on th&jent to rewrite this equation as
particle. We note that the ratio of the shear-induced Saffman

+ pg—=2
Dt dt) Ps

Dv, d_u9> Dv,
Dt

lift force Fg“’) (see the Appendixto the viscous drag can be du, 1 3 Dv,  Dvg
estimated as dt T(V” Up) + 2p, Prpe TPpp ) (10
a| v vy of @\ wherep, and the viscous relaxation time,are given by
2 Re; L) (7) Po :
. p 2a2P0
whereL is the length scale of the turbulence. Thus the Saff- Po=ppt o> T= ? (11
n

man lift force can be neglected if the particle Reynolds num-

ber is less than unity and if the particle size is less than the |n the case of neutrally buoyant particlgs,=p) the pa-

minimum value ofL, which is the Kolmogorov dissipation rametersp, and r reduce to

length in the normal fluidroughly equal in practice to the

vortex-line spacing. 3 pa’
A rotation of the particle combined with a finite relative Po=oP T3,

velocity between the particle and the fluid will also induce "

the transverse Magnus force on the partiéiéM); see the

Appendix. Although, in the case of small Reynolds numbers, IV. SEDIMENTATION

this force is independent of the viscosity, the latter plays a

crucial role in transferring a circulation from the particle to  If the normal fluid and the superfluid are both stationary

the fluid?® This justifies the form of the modeling equation (V,=Vs=0), then, in the presence of gravity and starting from

of motion (1) where we assume that the Magnus lift force, the initial condition u,=0, the equation of motion is

given by Eq.(A22) with p replaced byp,, acts on the particle ppddu,/dt=-6mauyu,+ 3 p,—p)g. After an initial transient,

from the normal fluid, but no such a force is exerted by thethe particle achieves the terminal speed

superfluid component whose viscosity is zero. In the absence

(12)

of interparticle collisions the only mechanism inducing the 0 = Zazg(PE—P) 13)
particle rotation is the local shear in the ambient flow. In the “ 9 n '

considered case where the particle size is much smaller than _ _
the length scale of the flow, the vorticity can be considered a¥ith the time scalgknown as the particle response time
uniform (see subsection 2 of the AppengiSince the vor-

2
ticity w can be interpreted as twice the effective local angu- = Za_pe_ (14)
lar velocity of the fluid, the magnitude of the particle angular 9 wun

velocity Q| cannot be larger thad|w|, so that the ratio of

the Magnus lift force to the viscous drag cannot exceed These formulas can be used to determine the particle size

al!, provided, of course, that the particles are not neutrally
buoyant. For the polymer microspheres used by Van Sciver
and collaborato’8 we have a=~8x10°cm and Pp
~1.1 gcm?, thus, atT=1.5 K, the terminal speed ig.,
wheres is the small parameter introduced by £41). From  <0.10 cm/s, and the particles response timer.is=0.12
Egs.(7) and(8) it follows that, in the case where the particle x 1073 5.
size is less than the smallest length scale of the flow, the |n the following sections we consider sufficiently small
Magnus force is much smaller than the Saffman lift forceparticles such that their terminal sedimentation veloti#)
(indeed,|F§1LM)|/|F§]w)\ <gl? Reyz)- is small compared with characteristic velocities of the flow;
We conclude then that all the forcEﬁB), FEF), Fg“”, F(S‘”), then we can neglect gravity in the particle equation of mo-
and F™™ can probably be neglected if the particle size istion.

77'a-gl)n|""||vn - up| N Pna|Vn B up| a” v Vn” _

e Re,, (8)
677'a/—‘*n|Vn - up| HMn |Vn - up| %
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V. TIME-DEPENDENT FLOWS WITH NO volume of fluid. Note however that this conclusion, obtained
SPATIAL DEPENDENCE here for spatially-independent flows, may be affected by is-

We assume that the velocities of the normal fluid and the?¥€S of stability in the case of spatially-dependent floass

superfluid have no spatial dependence but have harmonfySCUSSEd in Sec. VI
time dependence,=V, expliwt) andvs=Vexpiwt), where
w is the angular frequencyOur neglect of the trapping of

particles by vortex lines is then irrelevanthen in Eq.(10) VI. TURBULENT FLOW

Dv,/Dt=dv,/dt andDvy/Dt=dvy/dt, whered/dtis an ordi- More generallyy, andv, depend both on time and space.
nary derivative, so that the solution of EQ.0) is With the assumption that the particles are neutrally buoyant

t (pp=p), Eq. (10) takes the form

up=UY exp(— —) +U, expliot), (15)
T d_ug 1 Pn| Mn
. 0 . :_(Vn_up)+_ _+(Vn'v)vn

where the transient terid,” exp(-t/7) allows for an arbi- dt 7 plLdt
trary initial particle velocityu,(0) att=0, and the term N

P +bs ES+(VS-V)VS . (19

p

1 3i 3i
Up= : [(1 + wTPn)Vn+ (ﬂ)vs} (16)
1+iw7) 20, 2p,

is the steady-state response of the particle.

To understand what is predicted by Eq9) it is instruc-
tive to consider for a moment the simpler equation

Equation(16) has two interesting limits. ltor>1, then du N
the steady-state response is givenUy= 3p~X(p,V,+pVo), th | at (v-V)v (20)
while if w7<1 then it is given byU,=V,, that is to say the
particles track the normal fluid. describing the motion of a neutrally buoyant particle in a

The case of particles that are neutrally buoyant is particusingle incompressible fluid in the absence of viscosity and in
larly simple. In the limit wr>1 we haveU,=p %(p,V, regions where the flow is irrotational. The motion of this
+psV¢), which means that the particles move with a velocityfluid is described by the Euler equation, which is
corresponding to the total current densify=p,v,+psVs), N 1
which is equal to zero in, for example, a second sound wave, —+(v-V)v=—=Vp, (21
and is equal to simplyg at very low temperatures. In the A p

limit w7<1 we have agaitU,=V,, so the particles move \nerep is the pressure. Equatid®0) thus becomes
with the normal component. These results show that, from a

practigal point of vie_w, the_ use of neutrally buoyant particles du, __ 1 Vp (22)

is obviously convenient, since they do not tend to be lost by dt p '

sedimentation and the particle velocity is rather simply re- ] S ] )
lated to the velocities of the two fluids. The right-hand side is equal to the force per unit mass acting

We note that the transient term in EG5) must die out at  ©n an element of the fluid in the absence of viscosity, and is
times large compared to the relaxation timdit does not ~ @lso equal to the force on the particle that replaces, and
vanish therefore & =0). It is interesting to note the behavior MOVes with, this volume in the fluid. This force causes the

of the particle velocity in response to a step-function chang®article to accelerate at the same rate as does the displaced
Avgin v att=0. If v,=0, the particle velocity is given by ~ element of fluid. Therefore, apart from a possible transient,

Eg. (20) predicts that the particle will move with the fluid,
d_Ug:_Eg+P_sd_Vs 17) even in the absence, as here, of viscosity. Of course in a
dt T pdt’ sense this conclusion must obviously be true, and it confirms
. - that we are using the correct equations of motion for the
so that the particle veloqty Jumps from zero(j@/p)Avs at particle. However, as we shall see later, the conclusion is not
t=0 and then decays with time constant _ _.quite correct. Although it is true that this predicted motion of
In cases when the superfluid and normal fluid velocitiespe particle is a solution of E29), it turns out, as we shall
are the samey,=Vv,=V (see Sec. VI, the particle velocity is  gee |ater, that the motion is not completely stable, although
given by the instability may become apparent only after a significant
d Un—V time has elapsed.
d—t(up—V) =- _pT_ (18) Returning to Eq(19), we make use of the two-fluid equa-
tions, which aré
from which we see that, after an initial transient, the particle
velocity ought faithfully to followv for all time-dependences Dvs —_Psy p+pSVT, p Dv,
of v. Physically there is a simple reason for this behavior. ° Dt p ° "Dt
After the initial transient, the force on the partidlarising + u V2 (23)
from pressure gradients in the flyics exactly the same as ntoom
the force on the volume of fluid that replaces the particle whereSis the specific entropy. We have omitted any force of
Therefore the particle must move in the same way as thisnutual friction. This is because such a force arises from the

=-Pryp-psvT
P
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interaction of the vortex cores with the normal fluid, so that It is instructive to estimate the relative magnitudes of the
it is unimportant in regions of the flow remote from the viscous relaxation timez, and the turnover timesy and ,,,
vortex cores, where, according to our assumptions, the paat higher temperature@bove 1 K, where the drag on a

ticle is situated. particle is described by the Stokes l4ftg. (3)]. Consider,
Substituting from Eqs(23) into Eq.(19), we see that the for example, the case of grid turbulence in superfltiig’.
temperature gradients cancel out, leaving In this case it is believed that each fluid has essentially the

same turbulent velocity field, characterized by a Richardson

du, 1 1 M cascade, with a Kolmogorov spectrum, on length scales large
BTy —y) - = Fngo , )
dt T(V" Up) pr+ p V. (24) enough for dissipative processes to be unimportant. Such

vortex-coupled turbulencean arise because the turbulence
Neglecting the viscosity of the normal fluid, E@4) reduces in each fluid has a natural tendency to have the same Kol-
to Eq.(22), which says that the force on the particle is due tomogorov form, the two velocity fields being accurately
the pressure gradient alone. But the pressure gradient, if ibcked together by mutual friction. For a Kolmogorov spec-
were to act alone on the fluid, would cause an acceleration dfum the turbulent velocity associated with eddies on a scale
the whole fluid, i.e., a change in the total current denpity b is given byv?(b) = €303, The turnover timeg(b), asso-
=pVntpVs. We conclude that, apart from possible tran- ciated with these eddies is thérhv(b). For a classical fluid
sients, and with neglect of the viscosity of the normal fluid,with kinematic viscosityr the Richardson cascade is termi-
the particle will move with velocityj/p, as in the situation nated by viscous dissipation at the Kolmogorov dissipation
described in a previous section. length scale given bjz)f?z 3/e. In the case of the vortex-

coupled turbulence there is dissipation, due to a combination
A. Homogeneous turbulence without steady mean counterflow ~Of normal fluid viscosity and mutual friction, on a length

scale of the order of vortex-line spacing, so that this spacing

We now take into account the effects of viscosity, return-acts as an effective value bf,. At the same time the effec-

ing to Eq.(19), and apply our consideration to fully devel- tjye kinematic viscosity is of ordes,/ p, wherep is the total
oped homogeneous turbulence. We still neglect the possibiljensity of the heliunf.Thus we find that
ity that particles may be trapped on vortex lines. We also
assume for the present that the turbulence is not accompa- 7b) 3<£)2’3<%)2
nied by any steady average flow or counterflow, and we use + \p a/’

a frame of reference in which the time-averaged fluid veloci-

ties vanish. We imagine that turbulence in each fluid involves>INCe We are assuming that the particle size is much less than

. : 2
a range of eddy sizes, with a Richardson cascade, and wiff}® Mminimum length scale in the turbulence, the raig a)

viscouslike dissipation on a small scale. We focus on a lengtf?ust be large compared with unity. Furthermore, the ratio
scaleb within the inertial rangé, <b<b, whereby, is the (b/b,) must be equal to or larger than unity, since thgre is no
(|arge scale at which energy is fed into the cascade, [apd tL'erulence ona |ength scale less ﬂhﬁp't follows that in all

is the (smal) scale at which the energy is destroy@ile ~ Circumstancesr(b)>r, so that, according to our assump-
Kolmogorov length. At the scaleb the velocities are of the tions, the particle must follow the normal fluid.

ordervgb) andv,(b). The nonlinear terms in Eq19) are

those which lead in the Navier-Stokes equation to the trans- g tyrpulence with steady uniform mean counterflow

fer of energy to different length scales, and this transfer is

most effective between neighboring scales. The transfer pro- Ve now extend this treatment to the special case when the
cess gives rise to a finite lifetime for eddies of sizeequal two fluids are in steady and uniform average relative motion,

in order of magnitude to the “turnover time’ry(b) each fluid itself moving with a spatially uniform velocity and
~Db/vy(b) and 7,(b) = b/v,(b). It follows that the motion on having a spatially homogeneous turbulent velocity field.
the length scald is likely to make contributions to the two Such a flow is a model for counterflow turbulence in super-

. 4 . . . .
terms in square brackets in E(L9) of the ordervy(b)/ 7 ﬂu'dh_Hﬁ‘tYYe start in aln arblt;atrﬁ/ mert![gillframe of :ef{e_rgncea
zvg(b)/b andvn(b)/rnzvﬁ(b)/b. in whic e mean values of the particle, normal fluid an

When comparing these two terms with the first term of theSUperf_IUId velocity, respectively, ar@p), (vp), and (vy.
Equation(19) then takes the form

equation,(v,—up)/ 7, we distinguish between the following
two limits. If the turnover timesrg and 7, are significantly du’  du,) ul=v: Uy —{v,)
less than the relaxation timg the term(v,—uy)/ 7 can be ?{EJF dtp =- L - n- B - .

neglected and the particle will move with the velocjtyp

induced by the two terms within the square bracket in Eq. pn| NV, , , ,

(19). In the opposite limit, ifr, and 7,, are significantly larger N (Vo Vv + (v - V)vy

than 7, the particle will move with the normal fluitbesides P
Ps|:
+

(25
n

issues of stability of the trajectory Ps % / , /

At very low temperatures- becomes very largésmall a (Vs Vvs+ (v - V)VS]
viscous dra@j and the normal fluid density becomes very (26)
small. The particle will then follow the turbulence in the
superfluid component. where primes denote fluctuations of the velocities above the
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mean. Averaging over space, and using the assumption that du, _v-up, Dv
the turbulence in each fluid is homogeneous, we find that th = 7- + 75= (29
Kup) (U = (v 27 where Dv/Dt=gv/dt+(v-V)v and y=3p/(2p,). For neu-
dt r ' (27) trally buoyant particlesy=1.

We emphasize that the two velocity fields coincide only

so that after a transient the average velocity of the particle ign Ilength s_((j:a:jez mg}mﬂcar:tly Il_arger tha_l?r: th?hm;nlmum length
equal to the average velocity of the normal fluid. SubtractingScae provided by he vortex liné spacingo that our repre-

Eqg. (27) from Eq.(26) we obtain the equation describing the tsr(]antatlo“ W';”I nottﬁe gciod f|(_)|r vortex-coupledr]tulrlbulellflqe on
fluctuations in the particle velocity: e smallest length scales. However, as we shall explain, our

principal motivation in this section is to explore an instability

q C, in the particle trajectories to which we have already referred
uy u,—v N X -l

p__"p"VYn, Pn[ atn (VY +V]) - V ]Vfl‘} several times, and our approach, which is really to treat the

dt T helium as a single viscous fluid, is adequate for this purpose.
, Note that, fory=1, u,(t)=v(r(t),t) is a formal solution
+ p_s{% +[((vg+V) - V )vg} ) (28)  of Eq.(29), wherer (t) is a trajectory of a fluid particlepas-
pLdt sive scalay, because the Lagrangian time derivatoke,/dt
seen by the particle coincides with the substantial derivative
We note that both the viscous term and each term in squa@/Dt of the fluid velocity. It would therefore seem natural to
brackets are invariant to an inertial transformation of coordi-conclude that neutrally buoyant particles should follow the
nates, although the individual terms within each squardluid exactly, and that almost buoyant particles should trace
bracket are not invariant. It follows that we can evaluate eaclthe fluid almost exactly.
term separately in any convenient frame. The first term in  However, it has been known for some time that particles
square brackets can be considered conveniently in a framgith density larger than that of the fluid are expelled from
moving with the mean velocityv,) of the normal fluid, regions of high vorticity, and that they cluster, eventually, in
while the second term in square brackets in a frame movinghe regions of high rate of strain and low vorticity. In con-
with the mean velocityvy) of the superfluid. It follows that trast, particles with density lower than that of the fluid are
the fluctuations in the particle velocity are independent of the&drawn towards regions of high vorticitisee, e.g., Refs. 24
mean steady counterflow. Thus, generally, the particle foland 25 and references thereiMoreover, recent work has
lows the average motion of the normal fluid, after the relax-indicated that even the motion of a neutrally buoyant particle
ation time 7 allows (u,) to become equal t¢v,), but other- is unstable, and that particle trajectories differ from those of
wise it senses only the turbulent fluctuations in the velocity2n ideal passive scalar. _
fields of the two fluid in the same way as it would if the ~ Note that the only situation where the formal solution
mean flows were absent. up()=v(r(t),t) is stable is the case of very low tempera-
Our conclusion that the average particle velocity is equafures. In this case the normal fluid is absent v, and Eq.
to the average velocity of the normal fluid is not in agree-(29 becomes, for neutrally buoyant particles=1), a kine-
ment with recent experimental resullsWe return to this matic equation for fluid points. Such an equation obviously
matter later. has a neutrally stable solutia=v,. (However, even in this
case there are potential sources for instability, such as the
finite size of the particle, and the fact that the particle density
VIl. VORTEX-COUPLED TURBULENCE is unlikely to be precisely equal to the fluid dengity
) ) Clearly the issue of the stability of particle trajectories
Recent experimerfts® and theoretical worl® suggest st pe taken into account when using the PIV method to
that, if He Il is made turbulent by agitating it with a towed study turbulence in He I, including the special case of

grid or rotating propellers, then a rather simple form of tur-y,ortex_coupled turbulence. Real turbulent flows are hard to
bulence is produced. Both fluids become turbulent, the trgeat 5o it is instructive to study the motion of particles in
bulence in both cases being es_sentl_ally cI_aSS|caI on 'eng‘%\mpler, two-dimensional, flows in order to gain physical in-
scales greater than those on_wh|ch dissipation oceurs, Wh|c§]ght into what happens in real turbulent flows. The govern-
turns out to be comparable with the average vortex line spagng equations of motion must be solved numerically, but the
ing {~L,"* furthermore, the mutual friction between the ¢ompytational difficulty is much less than in the case of
two fluids, arising from the presence of vortex lines in theyhree-dimensional flows. To model the turbulent velocity

s:Jperqu:dl cofmponk;ant, elnsurr(]as thr?t not onIyI is _thef_tulrdbulenCﬁem v we use the Arnold-Beltrami-Childres$ABC)
classical in form but also that the two velocity fields are 27-29 —\ABC_, ABC _ABC  ABC

essentially identical:v,=vs=v, where v represents the ggvn\fnpone?tnsdof?gg a;/ the p(ovi)ﬁtr :18’( y’lzj)zar()e' where the
vortex-coupled turbulent velocity. This idea has already been 7
mentioned in connection with grid turbulence in Sec. VI A.

It can be argued, therefore, that, on scales larger than the
vortex-line spacing the governing equation of motid®)

reduces to v}, ®¢=B sin(2mx) + A cog272),

viBC = Asin(2m2) + C cog2my),
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FIG. 1. Plot of the path lines of a two-dimensional ABC flow  FIG. 2. Plot of(|uy|) as a function ot/ 7sgc. Solid lines corre-
(A=B andC=0) in the (x,2) plane. spond toA=B=120 cm/s, dashed lines &&=B=60 cm/s, and dot-
ted lines toA=B=10 cm/s. The symbols correspond to different
values of the radius of the particles: Squams8.075x 107 cm;
circles:a=8.5x 107 c¢m; trianglesa=8.925x 10°° cm. In all runs
C=0,T=2K, andp,=1.1 g/cn.

08¢ = C sin(2my) + B cog2mx), (30)

andA, B, andC are given parameters. The use of an ABC
flow is motivated by simplicity and computational conve- that the temperature isT=2 K, for which p,
nience. ABC flows are solutions of the steady Euler equatiorr 0.08055 g cri¥ and ps=0.06507 g crir. The choice of ve-

and of the time dependent, forced Navier-Stokes equatiorlocity range is motivated by the orders of magnitude
Despite the simple functional form, they represent a relaachieved in the Oregon towed-grid experimehtnd we
tively complex spatial structure consisting of six vortex tubestake three values oA: 120 cm/s, 60 cm/s, and 10 cm/s
of positive and negative circulation aligned parallel to the(With B=A andC=0). To measure the ability of the particles
Cartesian axes within the unit bax1/2<x<1/2, -1/2 to track the flgld, we calculate the ensemble-averaged veloc-
<y=1/2, -1/2<z=<1/2). ABC flows thus provide ideal- !ty of the par'glcles,(|up|>, and the ense.rrjble—averaged ve_loc—
ized models of turbulent vortex structures, and for this purJtyAgf: the fluid evaluated at the position of each particle,
pose they have been used in applications ranging from astrélY ). Figure 2 shows(|uy|) plotted versust/ 7agc, and
physical fluid dynamic® to superfluidity?! For the sake of Fig- 3 shows the ensemble—a\{eraged relative dlffgrence be-
simplicity we chooseA=B and C=0, a condition which tween the veloc_lt_y of the part|cl_es and the veIOC|t_y of_ the
guarantees that the flow is two-dimensional; this restrictiorfluid at the position of the particlegnote the logarithmic
does not affect our results and serves to simplify their graphiScale. It is apparent that, after an initial transient, the par-
cal presentation. t!cles trace the fluid ratherl yveII, particularly the smaller par-

To visualize the ABC flow we follow the motion of a ticles at the smaller velocities. .
number of fluid particlegdistinct from tracer particlosby Note in Fig. 2 that, at relatively large flow velocitfui,)
integrating the equatiodr ,/dt=v*BC using a semi-implicit (@nd also([v*5%[)) decreases with time. This is a conse-
Crank-Nicholson methoer. The resulting path lines are .5
shown in Fig. 1.

We now proceed to simulate numerically the motion of -1.4}
the tracer particles using the ABC flow model. Our numeri-
cal simulations start at time=0 by placing an ensemble bFf
particles(typically N=1000 at random positions in the com- 2
putational box. For simplicity we assume that all particles é
have the same size and density. The initial velocity of a .| _
particle at positiorr =r, is equal to the fluid velocity at that
position. The particle position, and velocityu, are then 22 1
integrated in time by solving E¢29) for u, and the equation os P |
dr_p/dt:up .for' Mo perlod_lc boundary condltlor_15 are used. 4@ § § § § %& %ﬁ SR
Since the lifetime of eddies in a turbulent flow is typically of |
the order of the turnover time, we stop the calculation at the 7
final time t=37pgc=27/|w"EC| where @"BC=V XVABC 54
=27vABC | for which 7pgc=(A?+B2+C?)71/2,

First we consider the case of particles that are not neu- FIG. 3. Plot of logq((Ju,~v*E€|/|[VAEC])) as a function of
trally buoyant. We choosg,=1.1 g/cnt and a range of val-  t/7,gc. Lines and symbols correspond to those of Fig. 2. In all runs
ues of radius centred aroursd=8.5X 10°° cm. We assume C=0, T=2 K, andp,=1.1 g/cnf.

-1.6

0 05 ] 15 5 25 3
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the flow. The first is the region where the vortici®/B¢ has
magnitude "B =|w"B| larger than three-quarters of the
maximum value, 8¢ >0.7543¢. The second region is
where the invariane*® of the rate-of-strain tensog;°C,
given bye*Bc=32 35 efFefFC, exceeds three-quarters of
the maximum valueg"5¢>0.75e/27, wheree/° is

FIG. 4. Position of tracer particles in ttg,z) plane(a=8.075
X 107° cm andp,=1.1 g cm) at different times. Calculation per-
formed atT=2 K and ABC flow intensityA=B=120 cm/s,C=0,
for which 745c=5.89x 1072 s: (a) t=0.0 s,(b) t=3.53x 103 s, (¢)
t=7.06x1073s, (d) t=1.06x 107 s, (e) t=1.41x 1072 s, and(f) t

=1.76X 1072 s=3rpgc. max

1/ wf® ™
quence of the spatial segregation resulting from the instabil- =2 ——+—L—]. (31)
ity of particle trajectories mentioned above. The effect is 2\ 0 X

made clear if we consider the actual positions of the particle;igure 5 shows how the numbét of particles in the two
in the flow, as we see in Flg 4, |n|t|a”y the partiCIeS are regions depends on tin"{eca|ed in units Oﬁ-ABC) for numeri-
randomly scattered throughout the computational box. Agal simulations performed using different particle sizes and
time progresses, the particles are expelled from the region&BC flow intensities(the temperature and the particle den-
where the vorticity is large and segregate into the regionsity is the same as in the previous calculatiothe number
where the rate of strain is large; this is evident if we comparey of particles in the two regions is scaled in units N,
the final pOSition of the partiCleS in Flg 4 against the ABC which is the number of partic|es in each region[ao (the
path lines of Fig. 1. We conclude that the apparently goodnitial number of particles in the region of large vorticity and
result shown in Fig. 3 may hide a difficulty: the particles jn the region of large strain rate are not exactly the same, due
seem to trace the flow fairly well, but, particularly for large to the arbitrary definition of these regions and the random-
velocities, the trajectories are unstable, and the particles segess of the initial position of the particledt is apparent that,
regate spatially, moving from the regions of large vorticity to a5 time progresses, the number of particles in the region of
the regions of large strain rate. Sin€e0, it should be ex- |arge rate of strain increases whereas the number of particles
pected that the initial random scatter of particles be prein the region of large vorticity decreases. The rate at which
served in(x,y) and(y,2) planes, and this is indeed the case, this separation occurs depends upon the size of the particles
as we have verified numerically. and the intensity of the flow: the stronger the eddy and the
At smaller flow velocitiegsayA=B=10 cm/s,C=0), the  |arger the particle, the more pronounced is the separation.
ensemble-averaged velocitjyu,|) does not decrease with  The use of buoyant particles reduces the segregation ef-
time (Fig. 2), and indeed if we look at the distribution of fect, although it does not eliminate it. We have performed
particles in the(x,z) plane over the same time scatéragc  calculations for buoyant particles =2 K for the same
we see no sign of segregation. range of flow velocities and radius values centered around
To obtain a more quantitative understanding of how thea=2.525x 10 cm. Figure 6 shows the difference between
expulsion from the eddies depends on the particle size antthe ensemble-averaged velocity of the particles and the
the intensity of the turbulent flow we define two regions in ensemble-averaged velocity of the fluid at the position of the
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FIG. 6. Plot of logy((|up,—v"®°|/|[vA%<))) as a function of FIG. 8. (logyoA,logip7) plane. The domain above the curve

t/ Tagc for neutrally buoyant particles dt=2 K. Solid lines corre- identified by the value of parametercorresponds to the segrega-
spond toA=B=120 cm/s, dashed lines fo=B=60 cm/s, and dot-  tion of particles within three turnover times of the ABC flow.
ted linesA=B=10 cm/s. The symbols correspond to different val- Crosses:=0.05; triangles:y=0.1; circles:y=0.5; squaresy=1.0;
ues of the radius of the particles: Squames5.0x 10°° cm; circles:  stars:y=1.2.

a=2.525x 10°* cm; triangles:a=5.0x 1074 cm.

. N would be wrong however to conclude that buoyant particles
particles(note the logarithmic scalewe conclude that the 56 immune from segregation: the instability simply requires

particles trace the fluid well. We find that the quantitieg|) 5 |onger time scale to be visiblabout ten times? ryse with
and(|[vA®“]) do not change with time during the time scale the parameters usedSince this time scale is significantly
under consideratiofup to three times the value of 7agc),  larger than the lifetime of the eddies in real turbulefite
which suggests that there is no segregation. To confirm thigurnover time, segregation has no effect on PIV. We note
result we have plotted the position of the particles in thethat this absence of effective segregation is an added reason
(x,2) plane, and found that the initial random scatter is prefor choosing to use neutrally buoyant particles.

served. Indeed, Fig. 7 shows that the normalized numbers of To quantify the segregation in the ABC flow, we introduce
particles in the region of large strain rate and in the region othe quantityNs/Nj whereNs is the number of particles in a
large vorticity do not change as the time progregsespare  region of high rate of strain an$ is the initial number of

the vertical scale against the vertical scale of Fig. 5 particles in that region. Based on a visual perception of the
results illustrated by Figs. 4 and 5, we suggest the following
criterion for particle segregation in the ABC flow. We say
that the particles have segregated if, after three turnover
times of the ABC flow, the quantiti®/ N becomes greater
than 2. Since the particle motion in the ABC flow is deter-
mined by the parametersand y [see Eq(29)] and the flow
strength A, the proposed criterion enables us to identify in
(7,7,A) space the domain corresponding to the particle seg-
regation within three turnover times. (@, 7) plane such a
domain is located above the curve defined by the value of the
parametery; see Fig. 8.

1.2

1.15
1.1

105}

0.95
VIIl. TRAPPING OF PARTICLES ON VORTEX LINES
0.9
We have repeatedly stressed that our discussion so far has
0.85 . . . . . been based on the assumption that the tracer particles do not
0 05 1 15 2 25 3

become trapped on vortex lines in the superfluid component.

FIG. 7. Plot ofN/N, versust/ 7asc whereN is the number of We must now dis_cuss whether this ass_ump_tion is jgs_tified.
particles in the region of large strain rate and in the region of large/Ve Shall find that in many cases of practical interest it is not
vorticity, and N is the initial number of particles in that region. Justified, and in these cases we must discuss the resulting
Solid lines correspond t&=B=120 cm/s, dashed lines ta=B  €ffect on the motion of the particles. For the sake of simplic-
=60 cm/s, and dotted lines ®=B=10 cm/s. Solid symbols refer Ity, we shall only consider the interaction of a Single particle
to large rate of strain and open symbols refer to large vorticitywith a single vortex; in reality, it is possible that many vor-
Squares:a=5.0x 10°° cm; circles:a=2.525x 107* cm; triangles:  tices become trapped onto the same particle, as in some ex-
a=5.0x 10"* cm. Calculation performed with buoyant particles for periments the estimated intervortex spacing is of the order of
T=2 K. the particle size.
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We note first that when a particle of radiass trapped on

PHYSICAL REVIEW B 71, 064514(2005

Estimating nowdu,/dt=d?r/dt* from the solution(36)

a vortex the energy of the helium is reduced by an amounive find

approximately equal to the kinetic energy of the displaced
superfluid. It is easy to see that this kinetic energy is given

approximately by

K’a
B loglalzy),

m

Es (32)

where k=h/m,~ 1073 cn? s™1 is the quantum of circulation
in He Il. For typical particle size€s>kgT, where kg is

duy/dt=— 1287~ 8Bt +rg) " (37)

and, clearly, sincgr~2.8x 1073 s (for the case of Jum
particles, the acceleration can be neglected until the moment
when the particle reaches the close vicinity of the vortex
core. This is consistent with the approximation in E28f).

It is convenient to divide the radial motion of the particle
into two stages. In the first stage the particle, which starts at

Boltzmann’s constant, so that thermal effects do not inhibit =0 at distance, from the vortex, approaches the vortex up

trapping.

We confine our attention to neutrally buoyant particles.
Let us first consider an initial condition in which a particle is
at rest at a distancg from an isolated stationary rectilinear

vortex, the normal fluid being also at rest. We assume for the
present that the vortex line does not move in response to any

movement of the particle. Then, from Ed.0), for the case
of a neutrally buoyant particl€py=3p/2) the equation of
motion of the particle is
dup 1 3
P 2po(vs Vvs, (33
wherev remains equal to that due to a stationary vortex; i.e.
v,=[0,«/(2m7r),0] (cylindrical polar coordinatgs

If the viscous term, w,/7, vanishes, then Eq33) has a
solution corresponding to the particle moving in a circula
orbit round the vortex with velocity/ p=(ps/ p)Vs.

For neutrally buoyant particles of the sizae1 um, the
particle relaxation time isr=pa?/(3u,) ~2Xx107°s. This
time is much smaller than the time taken for the particle t
orbit around the vortex ifr, is comparable with typically
relevant values, which must be of the order of the vorte
spacing¢ in a turbulent superfluid. Thus any orbital motion
will be strongly damped, as will be any motion along the
vortex.

Thus we can focus on motion of the particle in the radial
direction, which is driven by the radial terfw,-V)v,, and
which has the form of a radial pressure-gradient forc
V(1/r?). Let u, denote the radial component of. We have

r

du u, 28
W 39

where B=p?/(8m%p) ~0.79x 1078 cmf* s72 (here and be-
low in this section the numerical values of parameters ar
calculated at the temperature 1.85% K

It can be expected that the particle acceleration is smal
(we will justify this assumption latgr so that the particle
motion is governed by the balance of the friction and th
pressure gradient force, i.e—.‘,lup+2Br‘3:0. Butu,=dr/dt
so this equation takes the form

r3dr/dt= - 28r7. (35)

The solution is

rt=-8Bst+rj. (36)

(0)

€,

e

to some distance of the order, say, @, 2vithout disturbing

the vortex significantly. The timg, required for the particle

to travel fromr=rg to r=2a is given by(2a)*=-887t,+rg,
_ o

which is
t,= 1 .
a 8ﬁ7( )

In the second stage our assumption that the position of
vortex remains unperturbed by the approaching particle must
fail; the vortex must become curved, effectively due to the
presence of an image vortex in the particle, and it must
move. Eventually it connects to the particle; at this point the
vortex length and thus the kinetic energy of the superfluid
around the vortex, rapidly decrease, until what is left at the
final timet, is the particle trapped on the vortex. Clearly this
presumed scenario is only an educated guess; the details of
the relative motion of vortex and particle may be rather com-
plicated, particularly during the second stage: the motion be-
comes of a three-dimensional nature, and it may involve the
generation of Kelvin waves on the vortex, which may add to

_(2a)*
ro

(38)

the loss of energy due to viscous dissipation. We do not
know how long the second stage takes, but we guess that it is

Xess thart,. Thust, is our estimate for the trapping time of a

particle released from rest at a distangefrom an isolated
rectilinear vortex.

We must now consider how this result relates to trapping
in a random tangle of vortex lines, such as will often exist
approximately on a length scale comparable with the line
spacingf. These lines will be in continual motion with ve-
locities of the order =«/(27€). There may be an addi-
tional velocity, due to local overall motion of the lines, but
v, is likely to represent a minimum value. The normal fluid
velocity is likely to be largely uncorrelated tg on the scale
¢, so the velocity of the normal fluid relative to the superfluid

yortex lines is likely to be fluctuating and not less than

If the relaxation time(11) (for a neutrally buoyant par-
ﬁicle) is small, the particles will move generally with the
normal fluid, so that they will move with the velocity,
relative to the superfluid vortex lines. The fact that the mo-
tion of the vortex lines is not regular does not affect the
validity of the following argument.

We introduce a capture cross sectitp, to describe the
probability of capture of a particle by a vortex line within the
tangle. The mean free path for capture is then giverlLpy
=£?/b,, and the mean free time B,=¢?/(bv,). The cross
sectionb, can presumably be obtained from computer simu-
lations, although the need to take account of the movement
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of the vortex line in response to the presence of the particle We consider three particular cases of special interest, and

makes it nontrivial. We can, however, make a preliminarydiscuss the importance of trapping in each case.

estimate as follows. As already shown, the capture time from The first isvortex-coupled turbulencealready discussed

a distance for a particle initially at rest is given roughly by in earlier sections. In this case, as we have already noted, the

ta%rél(Sﬂr) [Eq. (39)]; i.e., by two fluids have the same velocity fields on scales greater
than ¢, and the vortices can be expected to move on these
large scales with this same common velocity. Whether trap-

(39 ping occurs is then unimportant. On scales comparable with
¢ the different velocity fields do not coincide, and trapping

Now suppose that a particle, moving with velocity, ap-  will then have a rather complicated effect.

. mpry  3mulg

a - - .
psKZ’T pusa2

proaches the vortex line with an impact paramegeit will The second isuperfluid turbulence at a very low tem-
probably be captured if the time it spends at a distance operature where the normal fluid is effectively absent. Our
aboutr, from the line is greater than, i.e., if calculation of the mean free time associated with trapping is

then inapplicable. However, in this case the vortex lines
(40) move with the local superfluid velocity, and there is no nor-
mal fluid and no mutual friction. Therefore it is probable that

i L whether or not trapping occurs is unimportant, and, apart
It follows that our estimated capture cross section is given by,qm transients, the particles will follow the superfluid.

l'o 3772:“nré
— > — %5 -
UL psK”&

2.2 2 The third case ighermal counterflow turbulencabove
3 Pska 2pskat o ) X .
be = 2 = , (41) 1 K. This is the only case for which there exist any experi-
ST v 3Ty mental result$? We have noted the argument of Sec. VI B
and the mean free time by that in the absence of trapping the particles can be expected
X o\ 1/ to follow on average the motion of the normal fluid. This is
T =16 2mee [ €° (42) not in accord with experiment. The vortex line spacings in
p=1.68 k \pxad?) = the experiments are such that the mean free time for trapping
. _ . is likely to be not more than 30 ms, so that in practice trap-
The ratiou,/(psx) is typically about 0.1, and therefore ping is very likely to have occurred.
omp2[ ¢\23 It is interesting to consider in connection with thermal
b~ 77 <_> . (43)  counterflow turbulence a very simple, but, as it turns out,
Kk \a inadequate model for the mean particle velocities in the pres-

ence of trapping. Suppose that the vortex tangle in counter-
evolution 'of the turbulence on the scdlgit is the effective ggvn:;g:gﬂf n.lcfﬁe'f'e '?: tg/%cer?gg wgr\;e%gghe;hpeeﬁ;%%ﬂgg d
turnover time on scalé_. We have already no_ted thabught theory! that it does move with the superfluid, at least ap-
to be less than the minimum length scale in the turbulenceyoximately, but it is not quite isotropic, the lines tending to
and therefore thai ought to be less thaf. Thus mean free oint preferentially in directions normal to the heat flow,
time will be larger than/(¢). In experiments ¢ varies from  egpecially at higher temperatures. Suppose further than the
3 wm to 100um. In practicea cannot be much less than trapped particles do not have a significant influence on the
1 um, so that the mean free time varies from about 1 ms tdocal motion of the lines, and that viscous interaction of a
about 10 s. Observations in which particle trapping does noparticle with the normal fluid causes the particle to move
occur might be possible at the upper end of this range oélong the line at a rate given by the Stokes law with the force
mean free times, but not at the lower end. It must be notedgqual to the component of the viscous force along the line. It
however, that if there were a large average valuvpfvy, is then easy to show that the particles can be expected to
the capture timé, would be less than that indicated by Eq. move at an average velocity relative to the superfluid equal
(43), and observations in which trapping does not occuito one-third of the relative velocity between the two fluids,
would become more difficult. the factor of one-third arising from the average value of
It might be thought at first sight that, if trapping does co$ 6 over a sphere, wher@is a polar angle relative to the
occur, the particles will move on average with the velocity ofdirection of heat flow. Experiment shows that the particles
the unperturbed vortex lines. Unfortunately, this is not gen4move with an average velocity equal to one-half of the nor-
erally true, for two reasons. First, the presence of a particle anal fluid velocity*? The discrepancy is in the wrong direc-
a particular point on a vortex line can modify the motion of tion to be due to lack of isotropy in the vortex tangle. How-
the line [the motion of free line relative to the local super- ever, as we have already emphasized, the trapped particles
fluid velocity is determined by the Magnus effeétpsx  must almost certainly modify the local motion of the vorti-
X (v —Vs), wheref is the force of mutual friction between ces, and this may be the reason for the discrepancy. Devel-
the line and the normal fluid; this force is effectively modi- opment of this idea poses severe problems. We emphasize
fied locally if a particle is attached to the liheSecondly, if ~ that in this case the particles appear not to respond in any
the normal fluid is flowing locally with a velocity that has a Simple way to the flow.
component parallel to the vortex line, then the viscous force
on the particle will cause it to move along the line. These
effects are clearly rather complicated, and their elucidation We have set up the governing equations of motion for
will require further work. particles in He IlI, highlighting the approximations and the

The quantity 2r¢?/ « is the timer(¢) that characterizes the

IX. CONCLUSION
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limitations of these equations. By solving some simple one- We assume below that the body force is absent and con-
dimensional problems, we have identified various regimessider a spherical particle moving with velocity, in the ir-
which are particularly simple if the particles are neutrally rotational flow fieldv(r ,t) of the inviscid fluid. We assume

buoyant. These regimes correspond to the particles tracingat the size of the particle is much smaller than the charac-
the motion of the superfluid, the normal fluid or the total teristic length scale of the flow, i.e.,

mass current/p. These solutions allow us to gain physical

insight into the nature of the motion of particles in turbulent e=a|Vvg/w<1, (A1)
flows. In the case where the superfluid and normal fluid ve-

locity fields are essentially the same on a large range ofvherev, is the ambient velocity field of the fluidV=V
length scales, we find that, if the eddy turnover time is much-u, the relative velocity between the ambient flow at the
less than the relaxation time of the particle, the particle willposition of the center of the sphere and the partivé;)
move with the mass curreft p; vice versa, if the turnover =v,(R(t),t), R(t) being the position of the center of the par-
time is much larger than the relaxation time, the particle willticle. Assumption(Al) means that it will be sufficient to
move with the normal fluid, provided the trajectory of the consider only uniform-straining fields of the fluid velocity. It
particle is stable. At very low temperatures the particle willis also assumed that the timescale of chang®ins large

follow the turbulence of the superfluid. compared with the time required for a fluid to pass around
To study the issue of the stability of the particle trajectorythe particle.

we have solved numerically some two-dimensional flow The relative velocity field around the particle=v-u, is
problems which refer to the situation in which the superfluidthe solution of the Euler and continuity equations subject to
and normal fluid velocity fields are essentially the same ovethe condition of zero flux through the particle surface; at
a wide range of scales. We have found that it is important t9arge distances from the sphee- vo—u,,. In the reference
be aware of the possibility that particles segregate spatialliframe moving with the particler’ =(x},x5,%3), the relative
moving from regions of high vorticity into regions of high fiow field, w(r’,t) can be represented as the sum of the uni-
rate of strain; fortunately we have concluded that, using eXsorm “far-field” flow W, the perturbatiomwY) caused by
isting particles, it is possible to avoid this segregation effecCtine gphere, and the extensional flaw®, i.e.,

We show that these promising results may well be invali-
dated when we take into account the trapping of particles by w=W +AwWY + AwE. (A2)
the vortex lines, unless the density of vortex lines is very
small and smaller than is often the case in practice. We shoWhe perturbatiolAwY) is of the same order of magnitude as
that in some simple cases, notably vortex-coupled superfluigy, while |Aw®|/W=0(¢). Since the flow fieldw is irrota-
turbulence and superfluid turbulence at a very low temperational, w=V ¢ where
ture, trapping does not invalidate some rather simple results.

But in other cases, such as thermal counterflow turbulence, d= o+ ¢V + . (A3)
trapping has probably a serious effect, which is hard to in-
terpret. The potential of the uniform flow igy=W -r'. The potential

We hope that this work will encourage further experi- of the zero-order perturbation of the uniform flosw")
ments, including laminar regimes which are important to testaused by the sphere &Y=CY(r" )W -r’, wherer’=|r’|,
our understanding of the interaction between particles andnd, for a spherical particl&Y(r’)=a3/(2r’3). Finally, for
He II. On the theoretical side, the next step is clearly to movehe potential of the extensional flow we hayé=e;x/x;,
to three-dimensional simulations which can more properlwvhereajzconst are the components of the rate-of-strain ten-
include the presence of the quantized vortices, and to simusor.
lations that take proper account of trapping. To calculate the force acting on the patrticle, the Euler
equation must be formulated in the noninertial reference
frame moving with the particle:
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APPENDIX: FORCE ACTING ON A PARTICLE IN THE F=- f p'ndsS, (A5)
NONUNIFORM FLOW S
1. Sphere in the inviscid unsteady nonuniform whereS is the surface of the particle. Since the flow is irro-
irrotational flow tational, we have(w:V)w=2V(w-w). Now, using the
Subsections 1 and 2 are based on the approach develop€aduchy-Lagrange integral, written in the noninertial refer-
in Ref. 14. ence frame as
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dp 1 d =W + Aw™ + Aw® + Aw(@| Al3
p(§+§W.W+iE.X/)+p/:f(t)’ (AG) W W w w ( )

where the first three terms are the same as in(&g), and
the order of magnitude of the rotational contributidbw'® is
|AW@|/W=0(g). Based on the asymptotic expansion in
terms ofe, the calculation of the forcE is similar to that of
the previous subsectioffor details see Ref. 24 The fluid-

wheref(t) is the function which can be determined from the
conditions atx’|— c, and making use of the gradient theo-
rem, the force acting on the particle can be calculated as

ap 1 d_“r_) particle interaction force can be represented as the sum of the
F :PL S FgWew ndS+pd o (A7) force (A12) and the rotational contribution, i.e.,

. . Dv Dv du
Taking into account that the termW+V¢Y). (W F=pd—+ Cpﬂ(— - —‘-’) +F@), (A14)
+V oY) is symmetric with respect to the center of the Dt Dt dt
sphere[and, therefore, its contribution to integreA7) is where
zerg|, and making use of the perturbation technique for ex-
pansion(A2) (in terms ofe), the force acting on the sphere
can be represented as F@'=p9C (v-uy) X o (A15)

F_ ey oY L) © [in Egs.(A14) and(A15) the subscript “0” is omitted, so that
p B L( ot * at ndS+ S(W * V™) VetndS v and w refer to the ambient flow field Physically, the con-
tribution F® arises due to stretching of vortex lines. In Eq.
+19d_UE (A8) (A15) C, is the lift coefficient; for a spher€ =1/2. The
’ right-hand sides of Eq$A14) and(A15) are evaluated at the

. . ) center of the sphere.
Incorporating the potentialgy,, ¢ and ¢® and making

use again of the gradient theorem, one finds
3. Spherical particle in the unsteady nonuniform viscous flow

Fi=p{(1 +C) (W, + ;W) + (Up)i}, (A9) Here the situation is more complicated because the analy-
where C= CY(t")|.._,=1/2 is theadded mass coefficient sis of the unsteady particle motion in an arbitrary nonuni-
and () =d/dt Sinc;e:\;lv—v—u We write ' form flow is no longer possible. Maxey and Riléystudied

= : = o

analytically the unsteady motion of a sphere in an arbitrary
creeping flow and obtained the following result for the fluid-

- g .
W + ;W = 70' +&jvgj — (Up)i, (A10)  particle interaction force:
. S . dv du Dv
where the right-hand side is evaluated at the position of the F=F9+Cpd| — - —=L|+pd— +Fg, (Al16)
particle center. Becaussgvo =vgjdug/Jx], we have dt dt Dt
where the first ternF@=67mapr(v-u,) represents the vis-
. DvOi d(U )i . P
W +e;W, = ot _d'f_ (Al11) cous drag in the case where the particle Reynolds number

Re,<1, andF® is the Bassethistory) force. It is important

so that the fluid-particle interaction force takes the form {0 eémphasize that the analySisvas performed for a creep-
ing flow where the derivative of the fluid velocitsv/dt,

_ bv Dv _dup seen by the particle, and the substantial derivaiwe Dt
F‘Pﬁa*'cfw Dt dt /)’ (A12)  cannot be distinguished. In Ref. 15 it was found that the

added mass coefficie for a spherical particle in a viscous
where the subscript “0” is now omitted, andshould be flow is precisely the same as for a sphere in an inviscid fluid,
understood as the ambient flow field of the fluid. Cc=1/2.
Based on the observation that, in the case of unsteady,
2. Sphere in the inviscid unsteady nonuniform rotational flow ~ SpPatially uniform flow, the form and the physical interpreta-
o ) tion of the second and the third terms in E416) coincide
We assume now that the vorticity of the ambient flow ity the form and interpretation of the similar terms in the
wo="V XV is not zero, but all other assumptions formulatedsqce (A12), Mei'® proposed that, for an arbitrary nonuni-

in the previous subsection remain valid. In the uniformsoy yiscous flow, the forcéA16) should be generalized as
straining flow the vorticity is also uniform. Sincéw|  fojiows:

~| Vv, the rate of change of vorticity can be estimated as

|dew! | = |(w- V)Vg| = ||V vg|%, so that on the time scale char- _ Dv du, Dv
acteristic of the flow past a sphere the relative change in the T~ 07aPY(V = Up) + Cpd| == | +pd e+ Fa.

far-field vorticity is |dw|~=a|Vv|/W<|w|. In terms of (A17)
small parametes the above means that, @(¢), dew/dt=0,

so that the relative flow field can be represented by th&he numerical study of the accelerated sphere’s motion in
asymptotic expansiofsimilar to Eq.(A2)] the steady straining flow confirmed that the value of the

064514-14



MOTION OF TRACER PARTICLES IN.. PHYSICAL REVIEW B 71, 064514(2005

added mass coefficienf,=1/2 remains valid for higher par- @_1 )
ticle Reynolds numbers and strongly nonuniform flows. In Fo= ECD(Rep)Wa P|V‘Up|(V‘Up)’ (A20)
general, the added mass coefficient depends only on the par-
ticle geometry. and also modifications of the kerngA19) for the case of
The Basset force has the form high initial relative velocity between the fluid and the par-
ticle.
The force in the form(A17) was derived in the case of
t div-uy,) weak shear. In the case where shear is sufficiently strong, the
Fg= GWHPVJ K(t-r, T)—dp—dT- (A18)  saffman lift forceF® should also be included in EGA17);
- T see, e.g., Refs. 34 and 35. In the case of simple shear such
thatv,=v4(y), v,=v,=0 the lift force is

The comprehensive study of the kerri€lt-r,7) can be (@) _ 122 | Aoy (@) _ (o) _
found in Ref. 17. We only note that for relatively short time Fy"=6.4pr"a d_y[vx_ (Uphd, R =F"=0.

(A21)

a (A19) In the case where the finite relative velocity-v be-
tween the particle and the fluid is combined with rotation of

the particle, a transverse force known as the Magnus lift

force should be included in EqA17) as well. This force

but the behavior of the integral kernel becomes more comarises due to asymmetry of streamlines in the vicinity of the

plicated for larger times; in particular, as- the history rotating sphere. In the case where the particle Reynolds num-

kernel decays much faster thér'2 ber Reg and the rotational Reynolds number Re

Further generalizations include a modificatitny numer- ~ =4p|€/a*/ ., whereQ is the angular velocity of the particle
ous authors; see, e.g., Ref. 33 and references thestthe rotation, are small, this force was calculated in Ref. 23 in the

K(t-r77=

Vav(t-7)

viscous drag term for the case of higher particle Reynold£e'™
numbers, e.g., FW = 7a3p X (up - V). (A22)
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