PHYSICAL REVIEW B 71, 064511(2005

d-wave pairing in lightly doped Mott insulators
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We define a suitable quantiB that measures the pairing strength of two electrons added to the ground-state
wave function by means of the anomalous part of the one-particle Green’s furkidiscriminates between
systems described by one-electron states, like ordinary metals and band insulators, foiZysG¢hand
systems where the single particle picture does not hold, like superconductors and resonating valence bond
insulators, for whichZ,# 0. By using a quantum Monte Carlo projection technique for the Hubbard model at
U/t=4, a finite Z., with d-wave symmetry, is found at half filling and in the lightly doped regime, thus
emphasizing a qualitatively new feature coming from electronic correlation.
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I. INTRODUCTION we present a suitable quantity that could be simply related to
the pairing properties of the ground-state wave function and
Since the discovery of high-temperature superconductorsye present very accurate humerical calculations in favor of
the question of whether a strongly correlated system, conthe above-mentioned picture for the simplest correlated sys-
taining only repulsive interactions, may display a supercon-tems, i.e., the single-band repulsive Hubbard model. There-
ducting ground state has been intensively investigated anfdre, we give an explicit way to measure the pairing proper-
debated, mainly because high-temperature superconductorgies that does not depend upon the particular wave function,
are certainly strongly correlated materials and their properbut, instead, is directly related to a true ground-state expec-
ties, such as, for instance, their critical temperature and thetion value. Finally, we argue that the superconducting prop-
linear-temperature behavior of the resistance at optimal doperties at finite doping naturally follow from the hidden pair-
ing, cannot be explained by the standard Eliashberg theory afig, which is also present in the undoped insulating state.
the electron-phonon mechanigm. The outline of the paper is as follows: in Sec. Il we
On one side, any mean-field approximation of stronglypresent the model and the numerical technique and in Sec. Il
correlated systems fails to explain superconductivity withoutve show the results and draw the final remarks.
an electron-electron attraction, which could be either ex-
plicit, as in the attractive Hubbard modebr mediated by Il. MODEL AND NUMERICAL TECHNIQUE
some boson, such as phonons in the BCS tht@n the
other hand, it is well known that correlated wave functions
obtained by applying a Gutzwiller projector that inhibits the
expensive energy configurations, substantially improve the H=-t >, Ci’r(er ,+HCc.+UX N, N, — uN, (1)
mean-field states and usually also enhance the superconduct- e i
ing correlation$~’ In particular, the fully projected wave 1 _ . .
wherec; , creates an electron with spin at the sitei, n;,

function with ad-wave superconducting pairing has been™ " , i L i
proposed to be an excellent approximation of the exact Ci.oCio IS the density operator at the sitqu is the chemical

ground state of the-J model for the underdoped and opti- Potential, andN=3; ;n; ; is the total rjumbgr of particles. We

mally doped regime378 use square lattices tllteq_by 45° with=2I< and| pdd with
Moreover, the approach based on projected supercondud?—e”‘)d'c boundary conditions, so that the half-filled cel_SIe

ing wave functions has been recently renewed, as it is poss-) has a nondegenerate ground state evel=0. This

sible to reproduce many important experimental aspects jug&ondition strongly reduces the size effects, particularly im-

by assuminghat the ground state is described by a projected?ortant in two dimensions. _

BCS wave functiof:® Within this scheme, the superconduc- ~ Our purpose is to study the Gorkov's off-diagonal part of

tivity is “hidden” in the undoped insulating state, where the equal-time Green’s function at zero temperature

phase coherence is inhibited by the charge gap, and it is BSP_ Tt

indeed stabilized by a small amount of doping. In this case, P = (Wolcig o [ Vo), @

in the underdoped region, while the superconducting ordewhere|¥,) is the ground state of the Hamiltonigh Obvi-

parameter is proportional to the hole doping, the pairingously, FE>F can be nonzero only in the thermodynamic limit,

strength, measured as the bare superconducting gap functiorhere, because of the broken symmetry phenomghg),

of the unprojected wave function, decreases by adding holesay not have a definite number of particles. On a finite sys-

to the undoped Mott insulat§tUnfortunately, the validity of  tem, broken symmetry phenomena do not occur B is

this scenario for the actual ground state of a microscopi@lways zero, the ground stat,) having always a definite

model remains a highly debated and controversial issue, dewumber of particledN. In a finite systemFESP can be com-

spite a huge amount of numerical work-3In this paper, puted front*

In the following, we consider the single-band Hubbard
'model onL-site clusters defined by the Hamiltonian:
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Fi=(Vq |Ck,¢C—k,l|\I’o>, () —m— =8

Where|\If§> is the ground state witN particles. 0.02 —A— Free electrons
In order to evaluatd-,, we consider the auxiliary-field A N
Monte Carlo technique, where the exact ground-state wave 0.01{ =« A
function is filtered out starting from a trial stateSince we o . Z_\\
are interested in calculating,, we are forced to take as the - 0.00 ¥ \/ —
initial wave function a BCS stati@’) containing only com- - \/
ponents with an even number of particles -0.014 242 sites U/t=4 |V ]
A
W) :Jexp@ fkclﬁcik,l)|o>, (4) 012345678910

R/ (1,0)

where [0) is the vacuum, f,=A/(e—uo+Ey), € _ _
=—2t(cosk,+cosk,) is the free-electron dispersiop, is a  FIG. 1. (Color online Anomalous part of the Green’s function
variational parameter of the initial state playing the role of!" real space at half filling for free electrons and 19/t=4, ob-
the chemical potential of the underlying BCS Hamiltonian,tamed by the Monte Carlo projection technique described in Sec. II.
Ay is the corresponding gap function chosen to have eithera
d-wave symmetryA,=A(cosk,—cosk,) or ans-wave sym-  |¥} "% are free-electron wave functions in the thermody-
metry A=A, andE, = V(ek—,uo)2+Aﬁ. The correlation factor namic limit. Therefore|¥s) essentially contains only two
J=e"%iM M, g being a variational parameter of the initial components in the sectors with=N" andN=N"+2, and the
state, partially projects out expensive energy configurationgnaginary time projection can be done without paying much
with doubly occupied sites. attention to the chemical potential, the number of particles

In the following, we assume that for an appropriate gapbeing conserved bi. It should be emphasized that, within
function symmetry, theN-particle ground state off has a this choice, the trial wave function is unbiased, apart from
nonvanishing overlap withiWs), at least forN=N" andN  the choice of the symmetry of the gap functidp, that is
=N"+2, whereN=N" represents a closed shell density. Thisconsidered only to split the degeneracy of the noninteracting
assumption has been verified on small clusters, where thghells and to permit the calculation of the anomalous part of

exact diagonalization by Lanczos is possible. the Green’s function E(3).
Therefore, on each finite system, we compute for fixed The superconducting order paramekleis related to the
imaginary timer short-distance component of the Fourier transform
- - - 2/t A SN
Al R S S Frs (U Ak ch, +ch e, @0
(Pgle™We) namelyP=2F,, with »=(+1,0) or »=(0, +1) for a d-wave

F.(7) will be finite even on a finite size, because the trial SUPerconductor, ang=F, with »=(0,0) for ans-wave su-

function | W) contains sectors with differen, namely perconductor. A plot of at half filling is shown in Fig. 1.
|‘Pe>=ENaN|‘I’g>- Then for larger Although the pairing function fotJ/t=4 is smaller than the

corresponding one for free electrons, which vanishes in the
thermodynamic limit, the qualitative behavior is completely
different. In the former casé&; appears to have a coherence

X length as in a true superconductor, whereas in the latter a
where N' is given by an appropriate choice of the true completely delocalizedFg is observed. Based on the
chemical potentiak, A is the energy gap between the statesresonating-valence bor{&VB) theory® we want to define a

by +2
Fi(7) = Fe e ™, ®)
N

with N* andN"+2, and quantity, closely related t&,, that also makes sense when
by = <\Pg|q,lal>aN_ %) P=0, as in the insulating case. Indeed, according to the RVB
theory, the insulator already contains some sort of pairing,
Therefore, in order to estimatg, the overall factor the electrons being paired in RVB singlets. Following this
b paradigm, we normalize the anomalous pairing function in
y= g‘ 2 A2 (8) real space and define the quantity
N
Fr
must be computed by evaluating the average number of par- 9r= /—2 P2 ' 1D
ticles R R
el 2 where the sum is for all distances in the lattice, compatible
(N)=N"+ (1++2)° © with the symmetry offFg. Notice that, also for an infinite

system with a charge gap, though the anomalous avétage
An efficient choice of W¢) is obtained by tunings, very s zero, a finite ratiay is still possible. In practiceg? may
close to the energy leved with N'+2 particles, andA  pe interpreted as the probability function of two electrons
<[€ o, i-e., A much smaller than the free-electron finite- added into a singlet state at a distaitand, therefore, de-
size energy gap. The last condition implies th&f ) and  termines the pair function, which is the true superconducting
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08 T - T gether, inducing a vanishing, in the thermodynamic limit.
——A=0.05 | a—=» A Let us now consider much less trivial examples that clearly
----- 2x1 J/t=1 show that the pairing strength, provides a general and
xlJ/e= guantitative definition of pairing, which holds not only for
simple superconductor systems, but also for much more
complicated systems. The first simple case isfthily pro-
jectedd-wave superconducting wave function at half filling,
whereZ, is finite (see Fig. 2 but the strong constraint of no
e W double occupation, which does not allow us to destroy a pair
LT and create it in a different position, rules out off-diagonal
0000 0.05 0.10 0.45 .20 long-range order, i.eRP=0. Another striking example comes
11 from the ground state of thteJ model on the two-leg ladder:
in this case the off-diagonal long-range order is suppressed
FIG. 2. (Color online Size scaling of thed-wave pairing DY one-dimensional quantum fluctuations, but, nevertheless,
strengthZ, for different wave functions at half filling: the uncorre- Zc remains finite(see Fig. 2 showing that the pairing is well
lated BCS wave function with =0.05, the free-electron wave func- defined also in this system, as widely accepted? N
tion (A — 0), the wave function with a finite antiferromagnetic order ~ There is another important reason to study the pairing
parameter{obtained by adding to tha —0 BCS Hamiltonian a  StrengthZ. instead of the order parameter in a strongly
further antiferromagnetic mean-field terfal)'Aae(n ;—n; )], the ~ correlated system the value of the quasiparticle weight
Gutzwiller wave function witrg=1 (full square$ and thefully pro-  defined asZN:I<‘I’§+1|CEI‘I’§>I2, can be very smai-**andP,
jected BCS wave function witth=0.05 (full circles). The same if finite, is expected to be at most of the same order. There-
quantity for the exact ground state of the two-chainladder at low  fore, wheneveiZy, is very small, it is very difficult to detect
doping is also showiffull triangles. a nonzero value of the anomalous aver&y€erhe suppres-
sion of the d-wave pairing obtained in previous

Cooper pair ifP>0. For a BCS superconductor with a full calculation$'*?can be explained by the fact that the quasi-
gap(e.g., withs-wave symmetrygg is localized with a well- ~ particle weight decreases very rapidly with(see below and
defined coherence length, whereas if the pairing function haBef. 22. For this reason it is very difficult, at the present
nodes, such as in thi-wave casegg decays with a power time, to detect pairing by studying directly the order param-
law, but, nonetheless, fmite amp"tude of the pairing func- eter or the pairing correlations. The question of a finite
tion exists at short distance. In strong-coupling superconduc@nomalous average of ordgy could be still compatible with
tivity, the coherence length is expected to be small, and théhe published numerical calculatidhd?and it is beyond the
most important contribution to the pairing function is at the scope of this paper. On the other hand, the pairing strength
shortest distance allowed by the symmetry of the pairing Zc. being a ratio of two quantities of the same order, is not

function. Therefore, we define thiring strength that we ~ affected by the small quasiparticle weighg and, therefore,
denote by represents a much more sensitive detector of pairing, a nec-

essary but in principle not sufficient condition for supercon-
Z.=|g,|. (120 ductivity. In the following, we can safely discuss thavave
pairing properties of the Hubbard model because a nonzero

In Sec. Ill, we will show thatZ. is a fundamental quantity | f7 learl d q " £ oairs i
that is able to distinguish between simple nonpaired stated2'U€ 014 appears very clearly, and condensation ot pairs 1S
pected at finite doping in two dimensions.

such as weakly interacting electron systems or standard bar?d(B ‘ dering th wum Monte Carl it
insulators, and states containing paired electrons, such as un- elore considering the guantum Monte tarlo results, we

correlated superconductors or Mott insulators, which cannot oW the results for a small lattice b=18 sites, where it is

be adiabatically connected to band insulators. possi.ble to pe_rform exact diagonalization by the Lanczos
Y algorithm. In Fig. 3, we report the results 8¢, P, andZy as

a function ofU/t. The comparison betwedhandZzy clearly
IIl. RESULTS AND DISCUSSION supports our pictureR? is small in the strong-coupling Hub-
bard model becausd, is small. On the other hand, a much
First of all, we present the results of the pairing strengthhigher signal of paired electrons can be obtained by studying
for simple wave functions, whose properties are well estabthe pairing strengtlz., which shows a broad maximuiz,
lished (see Fig. 2 =0.5 for U/t=16, decreasing to the minimum valug
In the thermodynamic limitZ. is finite for an uncorre- =0.16 forU— . At this point, it is useful to compare our
latedd-wave superconductor and, instead, it vanishes for freexact results with the ones obtained by the simple variational
electrons, for a weakly correlated electron system, describegave function of Eq(4) with the optimizedd wave A, and
by the Gutzwiller wave function, and for a spin-density waveg.?® Although the value of the anomalous averayand the
insulating state with a finite antiferromagnetic order param-quasiparticle weight are highly overestimated at strong cou-
eter. While in the former case the wave function obviouslypling, this variational wave function provides an excellent
contains paired electrons, inducing a finite valueZpfland  estimate ofzZ, for all values ofU/t= 20, thus capturing the
also of the superconducting order paramégrin the latter  correct feature of pairing.
cases the wave functions are clearly described within the We now turn to larger systems and calculate the pairing
single-particle picture and the electrons are not paired tostrength by using the zero-temperature Monte Carlo projec-

L

Pairing strength
5%
:
[ ]
(]
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U/t FIG. 5. (Color onling The d-wave pairing strengt,—Z° as a
C

function of the projection time- for different dopings. The arrows
indicate the value oZ corresponding to the variational wave func-
tion of Eq.(4) with an optimizedA for zero and eight hole&. for

X . the s-wave pairing in one dimension is also shown. In this case, the
and the short-distance anomalous avergydriangles are also value of the pairing=g at the nearest-neighbor distance is smaller

shown. Contlnuous{ZN_), _Iong daShed.ZC)’ e_md dotted_(P_) lines than the corresponding on-site value, despite the repulsive interac-
correspond to the variational calculation with the variational wave

function of Eq.(4) with an optimizedAy and projected onto the tion U.
subspaces with 16 and 18 electrons.

FIG. 3. (Color onling The d-wave pairing strengtz,, (circles
as a function olU in anL=18 site cluster witiN"=L. The quasi-
particle weightZy for N=16 (squaresat the momentuni2s/3,0)

with afinite Z,=0.1 in the thermodynamic limit. It is impor-

. , . ! , ) tant to stress that this is a purely ground-state property, since
tion technique based on auxiliary fielffsThe inclusion of o injtial state does not contain a sizable pairing and the
the simple Gutzwiller factor/, which improves substantially jyaginary time projection unambiguously increase the pair-
the convergence in imaginary time is particularly impor- g sirength. It is worth noting that, in this case, a finite value
tant because, at finite doping, the sign problem prevents Ust 7 goes not mean that the ground state is superconducting,

from working with arbitrary large imaginary time. but only that two added electrons in the half-filled Hubbard
Firstly, we consider the half-filled case. Remarkably, formodel are paired together indawave singlet.
large systemsZ increases with the projection time (see In the doped case, the limitation of the sign problem and

Fig. 4). In this case, in order to reduce th% size effch_ts, W&he strong dependence upon hole doping prevent us from

have performed the finite-size scaling&f-Z;, whereZg' is  performing an accurate finite-size scaling, but, as shown in

the value corresponding to the Gutzwiller wave functlonFig 5, the effect remains rather clear, afd-ZC increases

. G . . . . - 1 1 C

[We) with A—0 [Z:—0 in the thermodynamic limitsee  jmmediately as soon as the projection time is turned on. On

Fig. 2]. Already forL=50 sites, the evaluation of the pairing tne other hand, at large enough doping, we have found the

_strength is ra_ther accurate and c_Iose to !arger sizes. As Sho"Uﬂ)posite effect, clearly againdtwave pairing. Interestingly,

in Fig. 4, Z; increases monotonically with, and the value 554 thes-wave pairing strength, obtained by using an initial

for =6 should safely represent, for al! sizes considered, g5ve function W) with swave symmetry, is not enhanced

rather accurate lower bound for the- o limit. The thermo- by the imaginary time projectiofmot shown. However, we

dy_namlc limit of Z, appears tge_refore clea_rly finite, consid- h3ve not checked other symmetry sectors sucp as dy,

ering also that forr=6, Z.~Z¢' increaseswith the system anq  therefore, at large doping there maybe other types of

size (see the inset of Fig.)4Our extrapolation is consistent pairing instabilitie€? It is remarkable that also for large
clusters the simple Gutzwiller wave function with a finite,

04 d ' ' and optimizedd-wave gap functioristabilized in the under-
= O Holes) , +—a—*1% doped regioh describes accurately the enhanced pairing
to 03 444/4 N S | strengthZ,, as shown by the arrows in Fig. 5.
g ard v/vii/ :;:::2::' Finally, it is important to emphasize that a finifg is a
4;5 02 /,,/_/-’/s/ - 1 peculiar aspect of purely two-dimensional systems, as, for
go T e 010 \ instance, in one dimension no evidence of a finite pairing
= " [ s | 00s =6 strength is found even at half f|II|ng;ee' I':|g..5
‘m 01 ~v—98 E To conclude, it turns out that the pairing is a robust prop-
A ::: 040 0.05 010 0.15 erty of two-dimensional lightly doped Mott insulators and
0.0 . . 1/L appears already in small size calculations. The pairing
o 2 4 6 8 strengthZ. increases with decreasing doping and has its
T (t'l) maximum at half filling, where phase coherence is inhibited

by the charge gap. We argue that a finite pairing strength for
FIG. 4. (Color online Thed-wave pairing strengt, as a func- ~ an insulator is just thqualitativefeature that discriminates a
tion of the projection timer for different clusters at half filling. The band insulator, for which a single-particle description holds,
inset shows the finite size scaling 8§z for r=6. from RVB insulator, which is defined in terms of singlet
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pairs, as in a fully projected BCS wave function of E4). explanation of the ultimate mechanism of the high-
Within this framework, determined by the measurable quantemperature superconductivity.

tity Z. and independent of the variational ansatwe dis-
cover the possibility of having a RVB-like insulator when the
existence of a finite pairing strength is accompanied by the
antiferromagnetic long-range order, as in the half-filled Hub- We acknowledge useful discussion with R. Hlubina, M.
bard modeP® In this simple model, the insulator is somehow Fabrizio, and A. Parola. In particular we thank Shiwei Zhang
prepared to become a superconductaith d-wave symme-  for fruitful discussions and for sharing with us unpublished
try) and a small amount of doping allows the propagation ofresults. This work was partially supported by MIUROFIN

the RVB pairst® This scenario offers a simple and natural 2003. F.B. is supported by INFM.
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