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We define a suitable quantityZc that measures the pairing strength of two electrons added to the ground-state
wave function by means of the anomalous part of the one-particle Green’s function.Zc discriminates between
systems described by one-electron states, like ordinary metals and band insulators, for whichZc=0, and
systems where the single particle picture does not hold, like superconductors and resonating valence bond
insulators, for whichZcÞ0. By using a quantum Monte Carlo projection technique for the Hubbard model at
U / t=4, a finite Zc, with d-wave symmetry, is found at half filling and in the lightly doped regime, thus
emphasizing a qualitatively new feature coming from electronic correlation.
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I. INTRODUCTION

Since the discovery of high-temperature superconductors,
the question of whether a strongly correlated system, con-
taining only repulsive interactions, may display a supercon-
ducting ground state has been intensively investigated and
debated,1 mainly because high-temperature superconductors
are certainly strongly correlated materials and their proper-
ties, such as, for instance, their critical temperature and the
linear-temperature behavior of the resistance at optimal dop-
ing, cannot be explained by the standard Eliashberg theory of
the electron-phonon mechanism.2

On one side, any mean-field approximation of strongly
correlated systems fails to explain superconductivity without
an electron-electron attraction, which could be either ex-
plicit, as in the attractive Hubbard model,3 or mediated by
some boson, such as phonons in the BCS theory.4 On the
other hand, it is well known that correlated wave functions,
obtained by applying a Gutzwiller projector that inhibits the
expensive energy configurations, substantially improve the
mean-field states and usually also enhance the superconduct-
ing correlations.5–7 In particular, the fully projected wave
function with a d-wave superconducting pairing has been
proposed to be an excellent approximation of the exact
ground state of thet-J model for the underdoped and opti-
mally doped regimes.5,7,8

Moreover, the approach based on projected superconduct-
ing wave functions has been recently renewed, as it is pos-
sible to reproduce many important experimental aspects just
by assumingthat the ground state is described by a projected
BCS wave function.6,9 Within this scheme, the superconduc-
tivity is “hidden” in the undoped insulating state, where
phase coherence is inhibited by the charge gap, and it is
indeed stabilized by a small amount of doping. In this case,
in the underdoped region, while the superconducting order
parameter is proportional to the hole doping, the pairing
strength, measured as the bare superconducting gap function
of the unprojected wave function, decreases by adding holes
to the undoped Mott insulator.6 Unfortunately, the validity of
this scenario for the actual ground state of a microscopic
model remains a highly debated and controversial issue, de-
spite a huge amount of numerical work.7,10–13 In this paper,

we present a suitable quantity that could be simply related to
the pairing properties of the ground-state wave function and
we present very accurate numerical calculations in favor of
the above-mentioned picture for the simplest correlated sys-
tems, i.e., the single-band repulsive Hubbard model. There-
fore, we give an explicit way to measure the pairing proper-
ties that does not depend upon the particular wave function,
but, instead, is directly related to a true ground-state expec-
tation value. Finally, we argue that the superconducting prop-
erties at finite doping naturally follow from the hidden pair-
ing, which is also present in the undoped insulating state.

The outline of the paper is as follows: in Sec. II we
present the model and the numerical technique and in Sec. III
we show the results and draw the final remarks.

II. MODEL AND NUMERICAL TECHNIQUE

In the following, we consider the single-band Hubbard
model onL-site clusters defined by the Hamiltonian:

H = − t o
ki,jl,s

ci,s
† cj ,s + H.c. +Uo

i

ni,↑ni,↓ − mN, s1d

whereci,s
† creates an electron with spins at the sitei, ni,s

=ci,s
† ci,s is the density operator at the sitei, m is the chemical

potential, andN=oi,sni,s is the total number of particles. We
use square lattices tilted by 45° withL=2l2 and l odd with
periodic boundary conditions, so that the half-filled casesN
=Ld has a nondegenerate ground state even atU=0. This
condition strongly reduces the size effects, particularly im-
portant in two dimensions.

Our purpose is to study the Gorkov’s off-diagonal part of
the equal-time Green’s function at zero temperature

Fk
BSP= kC0uck,↑

† c−k,↓
† uC0l, s2d

whereuC0l is the ground state of the HamiltonianH. Obvi-
ously,Fk

BSPcan be nonzero only in the thermodynamic limit,
where, because of the broken symmetry phenomena,uC0l
may not have a definite number of particles. On a finite sys-
tem, broken symmetry phenomena do not occur andFk

BSP is
always zero, the ground stateuC0l having always a definite
number of particlesN. In a finite system,Fk

BSP can be com-
puted from14
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Fk = kC0
N+2uck,↑

† c−k,↓
† uC0

Nl, s3d

whereuC0
Nl is the ground state withN particles.

In order to evaluateFk, we consider the auxiliary-field
Monte Carlo technique, where the exact ground-state wave
function is filtered out starting from a trial state.15 Since we
are interested in calculatingFk, we are forced to take as the
initial wave function a BCS stateuCGl containing only com-
ponents with an even number of particles

uCGl = J expSo
k

fkck,↑
† c−k,↓

† Du0l, s4d

where u0l is the vacuum, fk=Dk/ sek−m0+Ekd, ek

=−2tscoskx+coskyd is the free-electron dispersion,m0 is a
variational parameter of the initial state playing the role of
the chemical potential of the underlying BCS Hamiltonian,
Dk is the corresponding gap function chosen to have either a
d-wave symmetryDk=Dscoskx−coskyd or an s-wave sym-
metry Dk=D, andEk=Îsek−m0d2+Dk

2. The correlation factor
J=e−goini,↑ni,↓, g being a variational parameter of the initial
state, partially projects out expensive energy configurations
with doubly occupied sites.

In the following, we assume that for an appropriate gap
function symmetry, theN-particle ground state ofH has a
nonvanishing overlap withuCGl, at least forN=N* and N
=N* +2, whereN=N* represents a closed shell density. This
assumption has been verified on small clusters, where the
exact diagonalization by Lanczos is possible.

Therefore, on each finite system, we compute for fixed
imaginary timet

Fkstd =
kCGue−tH/2ck,↑

† c−k,↓
† e−tH/2uCGl

kCGue−tHuCGl
. s5d

Fkstd will be finite even on a finite size, because the trial
function uCGl contains sectors with differentN, namely
uCGl=oNaNuCG

Nl. Then for larget

Fkstd = Fk

bN*+2

bN*
e−tDc/2, s6d

where N* is given by an appropriate choice of the true
chemical potentialm, Dc is the energy gap between the states
with N* andN* +2, and

bN = kCG
NuC0

NlaN. s7d

Therefore, in order to estimateFk, the overall factor

g =
bN*+2

bN*
e−tDc/2 s8d

must be computed by evaluating the average number of par-
ticles

kNl = N* +
2g2

s1 + g2d
. s9d

An efficient choice ofuCGl is obtained by tuningm0 very
close to the energy levelek with N* +2 particles, andD
! uek−m0u, i.e., D much smaller than the free-electron finite-

size energy gap. The last condition implies thatuCG
N*

l and

uCG
N*+2l are free-electron wave functions in the thermody-

namic limit. Therefore,uCGl essentially contains only two
components in the sectors withN=N* andN=N* +2, and the
imaginary time projection can be done without paying much
attention to the chemical potential, the number of particles
being conserved byH. It should be emphasized that, within
this choice, the trial wave function is unbiased, apart from
the choice of the symmetry of the gap functionDk, that is
considered only to split the degeneracy of the noninteracting
shells and to permit the calculation of the anomalous part of
the Green’s function Eq.s3d.

The superconducting order parameterP is related to the
short-distance component of the Fourier transform

FR = kC0
N+2usc0,↑

† cR,↓
† + cR,↑

† c0,↓
† duC0

Nl, s10d

namelyP=2Fh, with h=s±1,0d or h=s0, ±1d for a d-wave
superconductor, andP=Fh with h=s0,0d for an s-wave su-
perconductor. A plot ofFR at half filling is shown in Fig. 1.
Although the pairing function forU / t=4 is smaller than the
corresponding one for free electrons, which vanishes in the
thermodynamic limit, the qualitative behavior is completely
different. In the former case,FR appears to have a coherence
length as in a true superconductor, whereas in the latter a
completely delocalizedFR is observed. Based on the
resonating-valence bondsRVBd theory,16 we want to define a
quantity, closely related toFk, that also makes sense when
P=0, as in the insulating case. Indeed, according to the RVB
theory, the insulator already contains some sort of pairing,
the electrons being paired in RVB singlets. Following this
paradigm, we normalize the anomalous pairing function in
real space and define the quantity

gR =
FR

ÎoR8
FR8

2
, s11d

where the sum is for all distances in the lattice, compatible
with the symmetry ofFR. Notice that, also for an infinite
system with a charge gap, though the anomalous averageFR
is zero, a finite ratiogR is still possible. In practice,gR

2 may
be interpreted as the probability function of two electrons
added into a singlet state at a distanceR and, therefore, de-
termines the pair function, which is the true superconducting

FIG. 1. sColor onlined Anomalous part of the Green’s function
in real space at half filling for free electrons and forU / t=4, ob-
tained by the Monte Carlo projection technique described in Sec. II.
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Cooper pair ifP.0. For a BCS superconductor with a full
gapse.g., withs-wave symmetryd gR is localized with a well-
defined coherence length, whereas if the pairing function has
nodes, such as in thed-wave case,gR decays with a power
law, but, nonetheless, afinite amplitude of the pairing func-
tion exists at short distance. In strong-coupling superconduc-
tivity, the coherence length is expected to be small, and the
most important contribution to the pairing function is at the
shortest distanceh allowed by the symmetry of the pairing
function. Therefore, we define thepairing strength, that we
denote by

Zc = ughu. s12d

In Sec. III, we will show thatZc is a fundamental quantity
that is able to distinguish between simple nonpaired states,
such as weakly interacting electron systems or standard band
insulators, and states containing paired electrons, such as un-
correlated superconductors or Mott insulators, which cannot
be adiabatically connected to band insulators.

III. RESULTS AND DISCUSSION

First of all, we present the results of the pairing strength
for simple wave functions, whose properties are well estab-
lished ssee Fig. 2d.

In the thermodynamic limit,Zc is finite for an uncorre-
latedd-wave superconductor and, instead, it vanishes for free
electrons, for a weakly correlated electron system, described
by the Gutzwiller wave function, and for a spin-density wave
insulating state with a finite antiferromagnetic order param-
eter. While in the former case the wave function obviously
contains paired electrons, inducing a finite value ofZc sand
also of the superconducting order parameterPd, in the latter
cases the wave functions are clearly described within the
single-particle picture and the electrons are not paired to-

gether, inducing a vanishingZc in the thermodynamic limit.
Let us now consider much less trivial examples that clearly
show that the pairing strengthZc provides a general and
quantitative definition of pairing, which holds not only for
simple superconductor systems, but also for much more
complicated systems. The first simple case is thefully pro-
jectedd-wave superconducting wave function at half filling,
whereZc is finite ssee Fig. 2d but the strong constraint of no
double occupation, which does not allow us to destroy a pair
and create it in a different position, rules out off-diagonal
long-range order, i.e.,P=0. Another striking example comes
from the ground state of thet-J model on the two-leg ladder:
in this case the off-diagonal long-range order is suppressed
by one-dimensional quantum fluctuations, but, nevertheless,
Zc remains finitessee Fig. 2d, showing that the pairing is well
defined also in this system, as widely accepted.17–19

There is another important reason to study the pairing
strengthZc instead of the order parameterP: in a strongly
correlated system the value of the quasiparticle weightZN,
defined asZN= zkC0

N+1uck
†uC0

Nlz2, can be very small20,21andP,
if finite, is expected to be at most of the same order. There-
fore, wheneverZN is very small, it is very difficult to detect
a nonzero value of the anomalous averageP. The suppres-
sion of the d-wave pairing obtained in previous
calculations11,12 can be explained by the fact that the quasi-
particle weight decreases very rapidly withU ssee below and
Ref. 22d. For this reason it is very difficult, at the present
time, to detect pairing by studying directly the order param-
eter or the pairing correlations. The question of a finite
anomalous average of orderZN could be still compatible with
the published numerical calculations11,12and it is beyond the
scope of this paper. On the other hand, the pairing strength
Zc, being a ratio of two quantities of the same order, is not
affected by the small quasiparticle weightZN and, therefore,
represents a much more sensitive detector of pairing, a nec-
essary but in principle not sufficient condition for supercon-
ductivity. In the following, we can safely discuss thed-wave
pairing properties of the Hubbard model because a nonzero
value ofZc appears very clearly, and condensation of pairs is
expected at finite doping in two dimensions.

Before considering the quantum Monte Carlo results, we
show the results for a small lattice ofL=18 sites, where it is
possible to perform exact diagonalization by the Lanczos
algorithm. In Fig. 3, we report the results forZc, P, andZN as
a function ofU / t. The comparison betweenP andZN clearly
supports our picture:P is small in the strong-coupling Hub-
bard model becauseZN is small. On the other hand, a much
higher signal of paired electrons can be obtained by studying
the pairing strengthZc, which shows a broad maximumZc
.0.5 for U / t.16, decreasing to the minimum valueZc
.0.16 for U→`. At this point, it is useful to compare our
exact results with the ones obtained by the simple variational
wave function of Eq.s4d with the optimizedd waveDk and
g.23 Although the value of the anomalous averageP and the
quasiparticle weight are highly overestimated at strong cou-
pling, this variational wave function provides an excellent
estimate ofZc for all values ofU / t&20, thus capturing the
correct feature of pairing.

We now turn to larger systems and calculate the pairing
strength by using the zero-temperature Monte Carlo projec-

FIG. 2. sColor onlined Size scaling of thed-wave pairing
strengthZc for different wave functions at half filling: the uncorre-
lated BCS wave function withD=0.05, the free-electron wave func-
tion sD→0d, the wave function with a finite antiferromagnetic order
parameterfobtained by adding to theD→0 BCS Hamiltonian a
further antiferromagnetic mean-field terms−1diDAFsni,↑−ni,↓dg, the
Gutzwiller wave function withg=1 sfull squaresd and thefully pro-
jected BCS wave function withD=0.05 sfull circlesd. The same
quantity for the exact ground state of the two-chaint-J ladder at low
doping is also shownsfull trianglesd.
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tion technique based on auxiliary fields.15 The inclusion of
the simple Gutzwiller factorJ, which improves substantially
the convergence in imaginary timet, is particularly impor-
tant because, at finite doping, the sign problem prevents us
from working with arbitrary large imaginary time.

Firstly, we consider the half-filled case. Remarkably, for
large systems,Zc increases with the projection timet ssee
Fig. 4d. In this case, in order to reduce the size effects, we
have performed the finite-size scaling ofZc−Zc

G, whereZc
G is

the value corresponding to the Gutzwiller wave function
uCGl with D→0 fZc

G→0 in the thermodynamic limitssee
Fig. 2dg. Already forL=50 sites, the evaluation of the pairing
strength is rather accurate and close to larger sizes. As shown
in Fig. 4, Zc increases monotonically witht, and the value
for t=6 should safely represent, for all sizes considered, a
rather accurate lower bound for thet→` limit. The thermo-
dynamic limit of Zc appears therefore clearly finite, consid-
ering also that fort=6, Zc−Zc

G increaseswith the system
size ssee the inset of Fig. 4d. Our extrapolation is consistent

with a finite Zc*0.1 in the thermodynamic limit. It is impor-
tant to stress that this is a purely ground-state property, since
the initial state does not contain a sizable pairing and the
imaginary time projection unambiguously increase the pair-
ing strength. It is worth noting that, in this case, a finite value
of Zc does not mean that the ground state is superconducting,
but only that two added electrons in the half-filled Hubbard
model are paired together in ad-wave singlet.

In the doped case, the limitation of the sign problem and
the strong dependence upon hole doping prevent us from
performing an accurate finite-size scaling, but, as shown in
Fig. 5, the effect remains rather clear, andZc−Zc

G increases
immediately as soon as the projection time is turned on. On
the other hand, at large enough doping, we have found the
opposite effect, clearly againstd-wave pairing. Interestingly,
also thes-wave pairing strength, obtained by using an initial
wave functionuCGl with s-wave symmetry, is not enhanced
by the imaginary time projectionsnot shownd. However, we
have not checked other symmetry sectors such asp or dxy
and, therefore, at large doping there maybe other types of
pairing instabilities.24 It is remarkable that also for large
clusters the simple Gutzwiller wave function with a finite,
and optimized,d-wave gap functionsstabilized in the under-
doped regiond describes accurately the enhanced pairing
strengthZc, as shown by the arrows in Fig. 5.

Finally, it is important to emphasize that a finiteZc is a
peculiar aspect of purely two-dimensional systems, as, for
instance, in one dimension no evidence of a finite pairing
strength is found even at half fillingssee Fig. 5d.

To conclude, it turns out that the pairing is a robust prop-
erty of two-dimensional lightly doped Mott insulators and
appears already in small size calculations. The pairing
strength Zc increases with decreasing doping and has its
maximum at half filling, where phase coherence is inhibited
by the charge gap. We argue that a finite pairing strength for
an insulator is just thequalitativefeature that discriminates a
band insulator, for which a single-particle description holds,
from RVB insulator, which is defined in terms of singlet

FIG. 3. sColor onlined The d-wave pairing strengthZc scirclesd
as a function ofU in an L=18 site cluster withN* =L. The quasi-
particle weightZN for N=16 ssquaresd at the momentums2p /3 ,0d
and the short-distance anomalous averageP strianglesd are also
shown. ContinuoussZNd, long dashedsZcd, and dottedsPd lines
correspond to the variational calculation with the variational wave
function of Eq. s4d with an optimizedDk and projected onto the
subspaces with 16 and 18 electrons.

FIG. 4. sColor onlined Thed-wave pairing strengthZc as a func-
tion of the projection timet for different clusters at half filling. The
inset shows the finite size scaling ofZc−Zc

G for t=6.

FIG. 5. sColor onlined The d-wave pairing strengthZc−Zc
G as a

function of the projection timet for different dopings. The arrows
indicate the value ofZc corresponding to the variational wave func-
tion of Eq.s4d with an optimizedDk for zero and eight holes.Zc for
thes-wave pairing in one dimension is also shown. In this case, the
value of the pairingFR at the nearest-neighbor distance is smaller
than the corresponding on-site value, despite the repulsive interac-
tion U.
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pairs, as in a fully projected BCS wave function of Eq.s4d.
Within this framework, determined by the measurable quan-
tity Zc and independent of the variational ansatz, we dis-
cover the possibility of having a RVB-like insulator when the
existence of a finite pairing strength is accompanied by the
antiferromagnetic long-range order, as in the half-filled Hub-
bard model.25 In this simple model, the insulator is somehow
prepared to become a superconductorswith d-wave symme-
tryd and a small amount of doping allows the propagation of
the RVB pairs.16 This scenario offers a simple and natural

explanation of the ultimate mechanism of the high-
temperature superconductivity.
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