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We calculate the current-pressure characteristics of a ballistic pinhole aperture between two volumes of
B-phase superfluid3He. The most important mechanism contributing to dissipative currents in weak links of
this type is the process of multiple Andreev reflections. At low biases this process is significantly affected by
relaxation due to inelastic quasiparticle-quasiparticle collisions. In the numerical calculations, suppression of
the superfluid order parameter at surfaces is taken into account self-consistently. When this effect is neglected,
the theory may be developed analytically like in the case ofs-wave superconductors. A comparison with
experimental results is presented.
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I. INTRODUCTION

Liquid 3He is a strongly interacting system of fermionic
atoms with nuclear spin 1/2. Its superfluid state below the
critical temperatureTc<1 mK is characterized by the cre-
ation of a condensate where the atoms form Cooper pairs.1

This is similar to what happens for electrons in supercon-
ducting metals and, although3He atoms are electrically neu-
tral, many analogs exist between the transport properties of
the two physical systems. For example, in both systems so-
called Andreev reflection can exist, where quasiparticles are
converted between particlelike and holelike branches of the
excitation spectrum by the pairing potential.2 However, in-
stead of the singlets-wave state of conventional supercon-
ductors, the pairing state in superfluid3He exhibits spin-
triplet p-wave symmetry. This means that the condensate has
internal degrees of freedom, resulting in a complicated struc-
ture for the order parameter and in the existence of multiple
superfluid phases. There is also no crystal potential to impose
symmetry restrictions, as in the case of unconventionally
paired sd-waved superconductors. As a result, many of the
analogous phenomena occur in a more complicated form in
3He than anywhere else. In this paper we study the properties
of pressure-biased weak links in superfluid3He. The weak
links consist of small apertures in a wall between two vol-
umes of the liquid,3 and, as such, are analogous to ballistic
point contacts between superconducting metals. The theory
of superconductor point contacts is well developed, and thus
most of the basic ideas may simply be inferred from existing
results.4–9

Most importantly, due to Andreev reflection, there are
bound quasiparticle states localized at the weak link, whose
energies are below the bulk gapD.10 These subgap states are
responsible for carrying the phase-dependent supercurrents,
i.e., the Josephson effects.3,11When the contact is biased by a
chemical-potential differenceU, the supercurrents oscillate
at the Josephson frequency 2U /". Under such a bias, also
dissipative dc currents will be generated. The most obvious
source of such currents is due to thermally excited quasipar-
ticles, but the resulting current is very small at low tempera-
tures. However, in the case of a point contact, the Cooper

pairs themselves may participate in the flow of a dissipative
current. This is because in transmitting a pair between the
two condensates, energy can be conserved by transferring the
excess energy 2U to the bound-state quasiparticles. As a re-
sult, large dc currents can flow with arbitrarily small biases
U!D also at low temperatures. The underlying process by
which this is accomplished is known as multiple Andreev
reflectionssMARd.9 In this process, the bound quasiparticles
are Andreev-reflected several times from the surrounding
pairing potentials under the influence of the biasU. After two
successive retroreflections, a quasiparticle has gained the en-
ergy 2U, and this corresponds to the dissipative transmission
of one Cooper pair. This coherent process is repeated until
the bound quasiparticles escape to energies aboveD or are
relaxed by inelastic scattering. The maximum numbern of
subgap reflections is given bynU=2D. In superconductor
weak links with nonperfect transparency, MAR can give rise
to a highly pronounced “subharmonic gap structure”sSGSd,
where the differential conductance is peaked at the biases
U=2D /n, with n=1,2,3,….9 On the other hand, in the limit
of very low transparency, a tunnel junction is formed, where
the subgap states and hence MAR are completely sup-
pressed.

In the case of superfluid3He the SGS is not likely to be
observable in practice. There are two reasons for this. First,
the practically achievable weak link diameters are quite
large: generally on the order of the zero-temperature coher-
ence lengthsj0<10–70 nmd, and certainly much larger than
the Fermi wavelengthslF<0.8 nmd. Since liquid 3He is
naturally free of impurities, the quasiparticles simply follow
classical ballistics through the aperture. Some nontranspar-
ency is introduced by scattering at the walls inside a finite-
length aperture, but this scattering is diffusive and its princi-
pal effect is to reduce the net currents.11 Second, also for
practical reasons, the biasesU in weak links of3He are al-
ways restricted to the limitU!D,12,13 while the SGS occurs
on the scale ofD. In fact, in most experimentsU is even
much smaller than the quasiparticle relaxation strength"G
due to inelastic scattering, which by itself satisfies"G!D.
The limit of a low-transparency point contact between
triplet-paired condensates was recently studied,14 but, as ex-
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plained above, such results are not likely to be important for
interpreting experiments in superfluid3He. For intermediate
transparencies, effects similar to those of Ref. 15 may be
expected.

In this paper we consider the limit of a short point contact
with perfect transparency, the so-called “pinhole.” Further-
more, we concentrate on studying the bias regionU!D, and
consider only theB phase of superfluid3He explicitly. How-
ever, some of the general results may just as well be applied
for the A phase, or any other triplet or singlet pairing state,
and for any value of a constant biasU. Even though the SGS
in the dc current cannot be resolved with our assumptions,
there are other details introduced by the complicated struc-
ture of the order parameter in3He, and its modification
due to surface scattering. The equilibrium limitU=0 for a
3He-B pinhole was studied in Ref. 11 in detail, and this paper
represents a generalization of that calculation to finite biases.
Parts of our results have already been published10 and we
review them here in order to obtain a self-contained presen-
tation. In addition, we present some analytical results and a
more thorough numerical analysis of the dc current and su-
percurrent amplitudes as a function of the bias pressure.
Some aspects related to the so-called “anisotextural”
effects11 are covered in more detail elsewhere.16

In Sec. II we start with some basic issues of the quasiclas-
sical theory, and in Sec. III the pinhole model and the general
current formulas are introduced. Section IV presents the ana-
lytical results obtained when surface pair breaking is ne-
glected. In this case many limiting cases are studied, and we
also briefly discuss the connection of the quasiclassical
model to the anisotextural effects.11 In Sec. V we present our
numerical results for the current amplitudes and the subgap
bound states in the presence of the pair-breaking effects, and
the computational methods are briefly explained. A compari-
son of the results to experimental data is provided in Sec. VI,
and the agreement is found to be good. Section VII con-
cludes with some discussion of future directions. Finally, de-
tails related to the self-consistent computation of the order
parameters and some mathematical results are gathered in the
Appendixes.

II. QUASICLASSICAL FRAMEWORK

Our analysis is based on the nonequilibrium formulation
of quasiclassical theory, which has been thoroughly reviewed
in Ref. 17. We start by considering some basic points of the
formalism here, since it is of essential importance to the
ensuing discussion. The central quantity is the Keldysh-space
propagator, which has the form

ǧ = FĝR ĝK

0̂ ĝAG, ǧ + ǧ = − p21̌, s1d

where ĝR,A,Ksk̂ ,R ;e ,td are 434 Nambu matrices, and “+”
denotes the quasiclassical folding product17—see Appendix

B. Herek̂ parametrizes positions on the spherical Fermi sur-
face of 3He, R is a spatial coordinate,e the quasiparticle
energy, andt is time. The Nambu matrices have the structure

ĝR,A = FgR,A fR,A

f̃R,A g̃R,AG, ĝK = F gK fK

− f̃K − g̃KG , s2d

where the diagonal componentsgR,A,K and off-diagonal com-
ponentsfR,A,K are 232 spin matrices, and the conjugation

operation “,” is defined asq̃sk̂ ,ed=qs−k̂ ,−ed* . In order to
automatically satisfy the normalization condition in Eq.s1d,
it is convenient to parametrize the propagator as follows:18–20

ĝR,A = 7 ipN̂R,A + F1 + gR,A + g̃R,A 2gR,A

− 2g̃R,A − 1 − g̃R,A + gR,AG
s3d

and

ĝK = − 2piN̂R + F sxK − gR + x̃K + g̃Ad − sgR + x̃K − xK + gdA

− sg̃R + xK − x̃K + g̃Ad sx̃K − ḡR + xK + gAd
G

+ N̂A, s4d

where

N̂R,A = Fs1 − gR,A + ḡR,Ad−1 0

0 s1 − g̃R,A + gR,Ad−1G . s5d

Here the spin matricesgR,Ask̂ ,R ;e ,td are called coherence
functions, and they may often be interpreted as Andreev-
reflection amplitudes. Since they fully parametrizeĝR,A, they
completely determine the density of quasiparticle states of

the system. The spin matrixxKsk̂ ,R ;e ,td, on the other hand,
is a distribution function describing the occupation of these
states. All expectation values of one-body observables may
be computed from the Keldysh componentĝK, which in-
cludes information on the states as well as their occupation.
The coherence functions satisfy the symmetryg̃R=sg̃Ad† and
are related to the spin components of the propagator bygR

=−sip−gRd−1+ fR. The distribution function is Hermitian:
sxKd†=xK.

The functionxK is not the only way to introduce a distri-
bution function. A more common definition is given by writ-
ing

ĝK = ĝR + ĥ − ĥ + gA, s6d

which satisfies the normalization condition for anyĥ. How-

ever, any physicalĝK may be parametrized by choosingĥ
diagonal,

ĥ = Fh1 0

0 − h̃1
G , s7d

with the spin matrixh1sk̂ ,R ;e ,td as the new distribution
function. Alsoh1 is Hermitian,sh1d†=h1, and it is connected
to xK by the relation

h1 = o
n=0

`

sgR + g̃Rdn + fxK − gR + x̃K + g̃Ag + sgA + g̃Adn. s8d

The functionsxK and x̃K have the interpretations of distribu-
tion functions for “particlelike” and “holelike” excitations,
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while h1 includes contributions from the coherent Andreev
reflections between the two types. In equilibriumh1 reduces
to the function hsed=tanhsbe /2d=1−2fsed, where b
=1/kBT, T is the temperature, andkB is Boltzmann’s con-
stant, andfsed is the Fermi distribution. In comparison,xK

takes the formxKsed=hseds1−gRg̃Ad. Thus h1 has a more
direct interpretation as a “quasiparticle” distribution function
in, for example, the Andreev bound states inside the weak
link or a vortex core.

The propagatorǧ satisfies a transportlike equation of mo-
tion, which depends on self-consistently computed self-
energies. The latter have a similar Keldysh-space and
Nambu-space structure asǧ in Eqs. s1d and s2d.17,20 The
equation forǧ may be rewritten as a Riccati-type transport
equation for the coherence functionsgR,A, and a kinetic equa-
tion for xK.20 In particular, the equation forgR is

i"vF · = gR = − 2egR − DR + gR + D̃R + gR + SR + gR − gR + S̃R,

s9d

where the spin matricesSR and DR are the Nambu-space
diagonal and off-diagonal self-energies, respectively, and
vF=vFk is the Fermi velocity. However, we only need these
in equilibrium, where the kinetic equation is always solved
by xK=hs1−gRg̃Ad, and the folding products in Eq.s9d sim-
plify to matrix products. In the mean-field approximation
SR,A=Smf andDR,A=Dmf, which are independent ofe. Most
importantly, the off-diagonal spin matrixDmf determines the
order parameter of the superfluid. In this paper the strong-
coupling effects, i.e., inelastic quasiparticle-quasiparticle
scattering, are only taken into account with a simple
“normal-state” model SR,A=Smf± iG1sed, where G1s−ed
=G1sed. This effectively adds an imaginary part to energies:
e→eR,A=e± iG1sed. Physically, the imaginary part describes
a finite quasiparticle lifetime, which is important in the pa-
rameter ranges of3He weak link experiments.12,13 Math-
ematically, it is important for regularizing the divergences in
the MAR process, which occur at low-pressure biases.8 In
general, the collisional self-energy17 gives strong-coupling
corrections also toDR,A sand hence a gap-dependent contri-
bution to the lifetime6d, but their proper calculation is too
complicated for the purposes of this paper.

III. PRESSURE-BIASED PINHOLE

We now apply the above formalism to describe a small
constriction of diameterd and areaS=psd/2d2 in wall be-
tween two volumes of superfluid3He, when there is a pres-
sure differenceP between the two sides. As a result of ther-
momechanical effects, there may also exist a temperature
difference. Although we initially allow for this possibility,
we shall always assume the sides to be in good thermal con-
tact and thus at equal temperatures. We use the so-called
pinhole model, which is a direct generalization of that used
already in Ref. 4—see Fig. 1. Thus we assume that while
d@lF, it is still much smaller than the zero-temperature co-
herence lengthj0="vF /2pkBTc. We also assume that the
wall is negligibly thin in comparison withd, so that scatter-
ing inside the aperture need not be considered.sA simple

way to relax the latter assumption was considered in Ref.
11.d The convenience of this model is that the calculation of
the nonequilibrium current through the constriction need not
be done self-consistently, since all feedback effects away
from the aperture may be neglected to lowest order ind/j0.
It is enough to know theequilibrium propagatorssor coher-
ence functionsd calculated close to the wall on its leftsld and
right srd sides in the absence of the constriction. However, in
anisotropically paired superfluid3He the computation of
these propagators still requires a one-dimensional self-
consistent calculation, since the presence of the surface leads
to pair-breaking effects21 and to the existence of surface-
bound quasiparticle states below the bulk gap.

In the following we assume that the order parameters and
the corresponding equilibrium coherence functionsgRi and
gAi have already been calculated on both sidesi = l ,r—see
Sec. V and Appendix A for more details. Thus the results of
this section are still very general and applicable to any type
of pairing state.

Let us choose the coordinates such that thez axis is per-
pendicular to the wall and points fromlsz,0d to rsz.0d.
The current through the pinhole is given by17

Istd = GnE de

2pi
kk̂zTr CsedfgKsk̂d − gKs− k̂dglk̂z.0, s10d

where gKsk̂ ;e ,td is the diagonal Nambu component ofĝK

inside the pinhole,k¯lk̂z.0=ek̂z.0sdVk̂ /4pds¯d, and Tr is a
spin-matrix trace. For particle current the spin matrixCsed
=1. For heat currentCsed=e and the spin current for spin
projection along the axisa=x,y,z would be obtained by
using the corresponding Pauli matrixC=sa. The unit Gn

= 1
2vFNs0dS=M /p" is the normal-state conductance, where

Ns0d is the single-spin density of states in the normal state11

andM is the number of conducting transverse modes.
If we count energies from the chemical potential of the

sider, the pressure biasP causes a shift in the l-side chemi-
cal potential byU=ml −mr, whereU=sm3/rdP, m3 being the
mass of a3He atom andr the mass density of the liquid. The
phase differencef=wr −wl between thel and r condensates
then varies according toḟ=2U /". AssumingU to be con-
stant, this is solved byfstd=vJt where the Josephson fre-
quencyvJ=2U /". The constant biasU gives gRl a simple
time dependence,gRlsed→gRlse ,td=e−ifstdgRlsed, while gRr

FIG. 1. Quasiparticles hitting the wall outside of the constriction
are scattered, which leads to a suppression of the superfluid state at
distances closer to the wall thanj0 sdashed trajectoriesd. Only qua-
siparticles hitting the constriction directly are ballistically transmit-
ted and contribute to the currentssolid trajectoriesd.
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remains time independent. This allows one to evaluate the
folding products ingK fEq. s4dg analytically—see Appendix
B. First it is convenient to define

Istd = Gnkk̂zIsk̂,tdlk̂z.0, s11d

where Isk̂ ,td is a “channel-resolved” current. Since this is
periodic with the Josephson periodTJ=2p /vJ, we expand

Isk̂,td = o
m=−`

`

Imsk̂de−imvJt, s12d

where Imsk̂d= I−m
* sk̂d=kIsk̂ ,tdeimvJtlTJ

and we defined the
time averagek¯lTJ

=TJ
−1e0

TJs¯ddt. Evaluating the folding

products one finds, formù0 andk̂z.0,

Imsk̂d = − o
n=0

` E de Tr CsedhFlr
n+m,nfk̂,e − s2n + mdU,Ug

− Frl
n,n+mf− k̂,e + s2n + m+ 1dU,− Ugj, s13d

where

Fij
k,lsk̂,e,Ud = Pij

k se,UdfxKised − gRisedx̃Kjse − Udg̃Aisedg

3fPij
l se,Udg† s14d

and

Pij
k se,Ud = p

p=1

k

gRise + 2pUdg̃Rjfe + s2p − 1dUg. s15d

The distribution function isxKi =hisedf1−gRig̃Aig, and again

i = l ,r. The k̂ dependences have been dropped for clarity.
If Csed is assumed to be energy independent, then Eq.

s13d can be simplified by changing integration variables. In
the following we also assume the two sides to be at equal
temperatures, such thathl,rsed=hsed=tanhsbe /2d. When the
normal-state contribution proportional toedefhse+Ud
−hsedg=2U is separated, one finds

Imsk̂d = Tr CH2Udm0 − o
n=0

` E de

3fFlr
n+m,nsk̂,e,Ud − Frl

n,n+ms− k̂,e,− UdgJ . s16d

Identifying the coherence functiongR as an Andreev-
reflection amplitude, Eq.s16d has a clear interpretation as
describing the MAR process, with the indexn running over
the number of successive reflections. The present results
have been derived by assumingU to be constant. However, it
may be shown that even whenU varies in time, corrections

to the results are small at least ifU̇!"G1
2. When U!"G1

and U̇&"vJ
2 this should be well satisfied.

The current may also be Fourier expanded as

IsU,td = I0sUd + o
m=1

`

fIm
SsUdsinsmvJtd + Im

CsUdcossmvJtdg,

s17d

where the coefficientsI0,Im
S ,Im

C are real valued. They are con-
nected to the complex amplitudes of Eq.s12d by

I0 = Gnkk̂zI0sk̂dlk̂z.0,

Im
S = 2GnImkk̂zImsk̂dlk̂z.0,

Im
C = 2GnRekk̂zImsk̂dlk̂z.0. s18d

From Eqs.s4d and s8d we also note thatkgKlTJ
=−2pih1 and

thus the dc component is given by

I0 = − GnE dekk̂zTr Csedfh1sk̂d − h1s− k̂dglk̂z.0. s19d

As seen in Eq.s16d, in the case of particle current it is con-
venient to separate the dc component asI0sUd=GnU
+ IARsUd. HereGnU is the normal-state part andIARsUd is due
to MAR only.8 At high biasesIAR saturates and gives rise to
the “excess current” on top ofGnU ssee belowd. In what
follows we shall be interested in calculatingI0,Im

S ,Im
C both

analytically and numerically for the case of superfluid
3He-B. We only concentrate on analyzing the particlesor
massd current, whereC=1.

IV. RESULTS FOR THE CASE WITH NO
GAP SUPPRESSION

A. General results

For simplicity we shall first neglect the suppressing effect
of the solid wall on the order parameter. This makes the
problem formally similar to thes-wave case, and the results
of this section are rather straightforward generalizations of
those of Refs. 5–8. TheB-phase order parameter1 is thus

assumed to be of the formDisk̂ ,zd;Disk̂d ·sis2 for i = l ,r,
and Smf=0. In this case Eq.s9d is easily solved.10 The gap

vectors for momentum directionk̂ are given by Dl,rsk̂d
=Deiwl,r

d̂l,rsk̂d, whered̂l,rsk̂d=Rl,rk̂. Here,Rl,r =Rsn̂l,r ,uLd are
rotation matrices, withuL=arccoss−1/4d the dipole-locked
rotation angle1 and n̂i the rotation axis on sidei = l ,r.

If, for each k̂, we choose the spin-quantization axis par-

allel to d̂l 3 d̂r, the condensates may be divided into↑↑ and
↓↓ parts, which behave much like two independents-wave

systems.22 If we definef
k̂

l,r
as the azimuthal angles ofd̂l,r in

the plane perpendicular tod̂l 3 d̂r, which satisfy f
−k̂

i
=f

k̂

i

+p, thenDl,r andgl,r are diagonal,
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Dl,r = DF− e−if
k̂

l,r
0

0 eif
k̂

l,rG , s20d

gR,A;l,r = gR,AF− e−if
k̂

l,r
0

0 eif
k̂

l,rG . s21d

Here gR,A=−D / feR,A± iÎD2−seR,Ad2g, and eR,A=e± iG1sed,
whereG1 is present to model inelastic scattering. The phase
differences of the two condensates over the contact are given
by fk̂·s=f−sxk̂, where s= ±1, f=wr −wl =vJt, and xk̂

=arccossd̂l ·d̂rd. Using these definitions, Eq.s16d simplifies
to10

Imsk̂d = Tr CH2Udm0 + 2Feimxk̂ 0

0 e−imxk̂
G

3 PE de tanhsbe/2df1 − ugRsedu2g

3o
n=0

`

p
q=1

n

ugRse − qUdu2 p
p=l+1

n+2m

gRse − pUdJ . s22d

The distribution functionh1 is proportional to the unit matrix

in spin space. Fork̂z.0 it is given by

h1
.sed = hsed + o

n=0

`

p
j=0

n

ugRse − jUdu2

3hhfe − sn + 1dUg − hse − nUdj s23d

and for k̂z,0 by

h1
,sed = hse + Ud + o

n=0

`

p
j=0

n

ugRfe + s j + 1dUgu2

3hhfe + sn + 2dUg − hfe + sn + 1dnUgj. s24d

The dc component of the particle currentfEq. s19dg may now
be written as

I0 = − sGn/2d E defh1
.sed − h1

,sedg. s25d

We note that the result forI0 is exactly the same as for an
s-wave superconductor.6,7 In particular, it is independent of
the spin-orbit rotation matrices.16

B. Limiting cases

In the small-biassor adiabaticd limit U!D the variation
of phase differencefstd=vJt is slow. In this case one may
describe the junction in terms of the occupation of the An-
dreev bound states10

ek̂,ssfd = − Sign„k̂zsinsfk̂,s/2d…D cossfk̂,s/2d, s26d

which are obtained from the poles ofĝR in equilibrium. The
Keldysh function may be now approximated with the “qua-
siequilibrium” form ĝK=h1

_sĝR− ĝAd so that

fgKgss = − 4p2i Signsk̂zd
dek̂,ssfd

df
dfe − ek̂,ssfdgh1

_sed.

s27d

Defining the bound-state occupation probabilities

pk̂,s = h1 − h1
_fek̂,ssfdgj/2, k̂z _ 0, s28d

the particle current may be written as

Istd = 4pGn o
s,d=±1

Kk̂z

dedk̂,ssfd

df
pdk̂,sL

k̂z.0
. s29d

Neglecting Andreev reflections forueu.D, we may approxi-
mategR<−e−iqsed−zsedusD− ueud whereqsed=arccosse /Dd and
zsed=G1sed /ÎD2−e2 which is strictly valid only forueu!D.
Using these we may approximateh1

. as

h1
.sed = hsed − usD − ueudE

−D

e

de8h8se8d

3expF−
2

U
E

e8

e

de9zse9dG s30d

and a similar expression exists forh1
,. Then it may be shown

that the occupation probabilities satisfy the kinetic equation

ṗk̂,sstd = Gsedffsed − pk̂,sstdg, s31d

where f =s1−hd /2 is the Fermi distribution,e=ek̂,sffstdg,
and we defined the relaxation rateG=2G1/". In a normal-
state Fermi-liquid approximationG,spkBTd2+e2, while in
the superfluid state some corrections from the existence of
the gap may be expected.6 The initial conditions for this
equation are mostly determined by the “thermalization” of
the bound states when they hit the gap edges ate= ±D.6,10

Thus if att= t0 we haveek̂,sffst0dg=−D sfor k̂z.0d, then the
occupation is returned to equilibrium:pk̂,sst0d= fs−Dd. In the
limit U!"G, Eq. s31d may be solved to yield

Istd = Isffstdg + GnUo
s,d
Kk̂z

2pb

"Gsed

fdedk̂,s/dfg2

cosh2sbe/2d L k̂z.0
,

s32d

wheree=edk̂,sffstdg andIssfd is the supercurrent of Ref. 22.
Approximating Gsed<Gs0d;G0, its time average may be
simplified to

I0sUd = sD/"G0dgsTdGnU, s33d

where the temperature factor is given bygsTd
=e−1

1 tanhsbDx/2dsx/Î1−x2ddx. This result is only correct to
leading order in"G0/D, since we have neglected the correc-
tions from energiesueu.D. This approximation is valid for
temperatures not too close to the critical temperatureTc. An-
other exactly soluble limit of Eq.s31d is that ofU!D at zero
temperature, if we additionally assume the Fermi-liquid form
Gsed=ce2. In this case
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I0sUd = 2GnDE
0

1

dxexpF−
cD2

2U
sarcsinx − xÎ1 − x2dG ,

s34d

which varies asI0sUd,U−1/3 whenU→0 and not linearly as
Eq. s33d at higher temperatures. This is plotted in Fig. 2 for
experimentally feasible parameters.

For U,"G quasiparticles in the MAR cycle begin to
reach the gap without being scattered, andIAR begins to satu-
rate. In the limit"G!U!D the current is slowly varying,
and on the order of 2GnD. Finally, in the large-bias limitU
@D one finds that IAR saturates with the asymptotic
behavior5,8

Iexc=
8D

3
GntanhsbU/2d. s35d

This is known as an excess current, since the total dc current
is then of the formI0sUd=GnU+ Iexc, where the first term is
the normal-state value and the second one approaches a con-
stant.

C. Anisotextural effects

Most of the above results have been derived by assuming
the biasU to be timeindependent and the spin-orbit textures
to be fixed. Thus alsoxk̂ must be constant in time. However,
there are situations where the textures may also oscillate
resonantly with the Josephson frequency,11 and the theory
may be generalized to take such anisotextural effects into
account. Consider in particular the limitU!"G0 and T
<Tc, which is realized in the experiments of Ref. 13, for
example. Starting from Eqs.s29d and s31d we find the fol-
lowing expression:

Istd = pGnbD2Kk̂zHcosxk̂ sinf +
U

"G0
F1 − cosxk̂ cosf

+ sinxk̂

"ẋk̂

2U
sinfGJL

k̂z.0
, s36d

wheref=vJt andxk̂ =xk̂std. The first and third terms corre-
spond to them=1 terms in Eq.s17d, while the second term is
the equivalent of Eq.s33d. The last term is new, and it is only
present whenxk̂ is time dependent. Assuming now thatxk̂std
oscillates TJ periodically, then we see that all the
f-dependent terms can also have finite-time averages. Actu-
ally, the averages of the last two terms in Eq.s36d exactly
cancel each other, but the average of the first term gives a dc
current in addition to Eq.s33d. Thus, forT<Tc we may write

Idc,totalsUd < I0sUd + kI1
SsU,tdsinsvJtdlTJ

, s37d

whereI1
S has theTJ periodicity of the anglesxk̂std. The first

term in Eq.s37d results from the MAR process, where energy
is dissipated directly to the quasiparticle system. The second
term corresponds to dissipation via the excitation of collec-
tive order-parameter modes, i.e., spin waves, which are
driven by the oscillating Josephson spin currents.11 The true
magnitude of the resulting dc current depends on the details
of the process, which is in general geometry dependent.
Therefore, we shall not attempt to explore this issue any
further here. Note, however, that while the dc currentI0sUd is
independent ofRl,r, the second contribution may depend
strongly on them. In fact, forU!"G the coefficient I1

S

is generally of the form I1
Sstd=s2m3/"dfa1czz+a2scxx

+cyydgstd, whereci j =Rmi
l Rm j

r . TheU-independent parameters
a1sTd and a2sTd may be computed numerically even when
gap suppression effects are accounted for,11 and we may ex-
pect Eq.s37d to remain valid also in this case. Finally note
that very similar dc current contributions may arise from the
“Shapiro” or “Fiske” type effects, wherevJ coincides with
some resonance frequency of the cell instead of the order-
parameter texture.23

V. GAP SUPPRESSION AND NUMERICS

A. Calculation of the coherence functions

For a more realistic calculation, one must take into ac-
count the suppression of thep-wave order parameterD0
=D0·sis2 close to solid walls. However, when this effect is
included, the calculation of the coherence functions may
only be done numerically, and the current must be computed
from Eq. s16d.

We assume the surface to have translation symmetry in its
plane, and a rotation symmetry around its normalẑ. If we
also neglect external magnetic fields and flow parallel to the
surface, then theB-phase order parameter may be param-
etrized by the form

D0sk̂,zd = fDiszdk̂x,Diszdk̂y,D'szdk̂zg, s38d

where z=0 is at the wall. The real amplitudesDiszd and
D'szd both approach the valueD asuzu→`. Close to the wall

FIG. 2. The dc currentsI0 for temperaturesT/Tc=0.4, 0.5, 0.6,
0.7, 0.8, 0.9 in order of decreasing amplitude. The solid lines in-
clude the gap-suppression effects, whereas in the dashed lines it is
neglected. The dash-dotted line is the zero-temperature result of Eq.
s34d, while the straight dashed line corresponds to Eq.s33d at
T/Tc=0.4. The results are similar for both parallel and antiparallel
n̂l,r’s. HereF1

a=0 anda=1.6.
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their behavior must be calculated using one of the different
models for the surface scattering, which are generally ex-
pressed as a boundary condition for the propagators.24–27The
simplest surface model assumes a completely specular scat-
tering of the quasiparticles from the surface. This already
leads to significantly improved results for the pinhole
currents.11 However, most surfaces are believed to be micro-
scopically rough, so that they scatter quasiparticles diffusely.
There are several model boundary conditions for such sur-
faces, which all yield practically the same profilesDiszd and
D'szd.24–27As in Ref. 11, we use perhaps the simplest one,
the “randomly oriented mirror”sROMd model.27 The gap-
suppression effect also introduces spontaneous spin currents
which flow parallel to the surface.25 This is responsible for
the existence of a small spin-vector part in the mean-field
self-energyS0

mf=n0·s, which depends on the Fermi-liquid
parametersFl

a with odd l.11 The self-consistency procedure is
simplest to do by using the imaginary Matsubara energies, as
briefly discussed in Appendix A. In this part of the calcula-
tion, the inelastic relaxation rateG is taken to be infinitesi-
mal.

Once the mean-field self-energiesD0 and S0
mf have been

self-consistently computedssee Appendix Ad, the coherence
functions at real energiesg0

R,A are calculated by integrating
the Riccati equation

i"vF · = g0
R = − 2eRg0

R − D0 − g0
RD0

†g0
R + S0

mfg0
R − g0

RS̃0
mf

s39d

on several trajectoriesR=uk̂ passing through the pinhole at
u=0. To find the propagator atu=0, only integrations from
the bulk toward the wall are needed. In Eq.s9d we again
introduce the quasiparticle relaxation rateG=2G1/" through
eR=e+ is"G /2d. We use the simple normal-state Fermi-liquid
form G=afspkBTd2+e2g / st0p2kB

2d, where t0=1.14ms m K2

is obtained from viscosity measurements,28,29 anda is a free
parameter of order unity. The bulk solution of Eq.s39d is
easily found,20 and this is used as an initial condition. For a
junction with mirror symmetry with respect toz=0, thel and

r solutions at the junction satisfyg0
Rrs−k̂ ,z=0d=−fg0

Rlsk̂ ,z
=0dgT, and thus the integration need only be done on one
side. The different spin-orbit rotations of theB phase on the
two sides of the junction may be taken into account with the
transformations

gRisk̂,z,ed = Uig0
Risk̂,z,edfUigT,

Disk̂,zd = UiD0
i sk̂,zdfUigT,

Smf,isk̂,zd = UiS0
mf,isk̂,zdfUig†, s40d

where Ui =exps−iuLn̂i ·s /2d, and i = l ,r. Finally, the func-
tionsgRisz=0d are inserted into Eq.s16d to obtain the current
amplitudes.

We note that the introduction ofG in Eq. s39d is not self-
consistent, and stress that our normal-state model neglects all
strong-coupling modifications onDR,A.17 This procedure
should therefore be regarded only as a rough model for the

description of the quasiparticle-quasiparticle scattering.
However, the calculation still provides at least a semiquanti-
tative model for studying the simultaneous effects of gap
suppression and inelastic processes on the pinhole currents.

B. Current amplitudes

Figures 2–6 show our results for the lowest-order current
amplitudesI0,I1,2

S , and I1,2
C as a function of the biasU. The

amplitudesIm
S andIm

C for mù3 may be set to zero since they
are negligibly small for all practical purposes. Figures 3 and
4 are for paralleln̂’s on the two sides of the contactsn̂l

= n̂r = ẑd and Figs. 5 and 6 are for the antiparallel cases−n̂l

= n̂r = ẑd. The I0 amplitude shown in Fig. 2 is the same for
both cases. Actually, as our numerical calculation shows, the
result for I0 is practically independentRl,r. For the case
where gap suppression is neglected, this independence was
previously shown to be exact—see Eqs.s22d and s25d.

In the calculations, we have always assumedFl
a=0 for l

ù3, while the effect of the remainingF1
a with values be-

tween −1 and 0 on the pinhole currents is at most a few

FIG. 3. The amplitudesI1
S andI1

C for T/Tc=0.4, 0.6, 0.8 in order
of decreasing amplitude in the case of paralleln̂l,r’s. The solid and
dashed lines are forI1

S with and without gap suppression, respec-
tively, and the dash-dotted and dotted lines are the corresponding
values forI1

C. HereF1
a=0 anda=1.6.

FIG. 4. Same as Fig. 3 but forI2
S and I2

C.
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percent of their total amplitude11—in the figures of this paper
F1

a=0 also. The quasiparticle relaxation parameter is chosen
as a=1.6, since this is the value which gives the best fit to
the relevant experiments—see Sec. VI. Although the behav-
ior of the current amplitudes forU&"G depends strongly on
the choice ofa, the asymptotic behavior forU@"G does not.

We have only calculated the currents numerically down to
T/Tc=0.4, although Fig. 2 shows the additional zero-
temperature result of Eq.s34d. This is because the required
number of terms in the MAR sumfEq. s16dg is proportional
to D /G0, which is on the order of thousands already at
T/Tc=0.4. We have taken into account all terms up ton
=4D /"G0. Actually, this is only necessary forU!"G where
the number of successive Andreev reflections is limited by
relaxation. In this regime it would also be possible to use
approximate schemes instead of the full expressions16d. On
the other hand, forU*"G a maximum of,D /U terms
should be enough. The energy cutoff for the coherence func-
tions was typically chosen at around 10kBTc, and the density
of energy discretization points was highest close to the gap
edges, where the highest accuracy is needed. For energies in
between these points, linear interpolation was used in com-
puting the current amplitudes with Eq.s16d. The number of
Gaussian polar angles used in angular integrals was usually
eight.

In the limit U→0 the cosine amplitudesIm
C all vanish

slinearly in U /"G0d as they should, since the equilibrium

current Issfd must satisfy the time-reversal symmetry
Iss−fd=−Issfd. Upon inserting theIm

S amplitudes to Eq.s17d
in this limit, the current-phase relationsIssfd of Ref. 11 are
quite accurately reproduced, when we make the replacement
vJt→f. Note, in particular, that in the antiparallel case with
no gap suppression, the second-order amplitudes are of equal
magnitude with the first-order ones. ThusIssfd exhibits a
strong “p state”.22 When the gap-suppression effect is taken
into account, them=2 amplitudes tend to be very strongly
suppressed, and in this case thep state only presents itself at
very low temperatures.11 Thus as a first approximation,I2

S

may often be neglected in comparison withI1
S. However,

apart from the limitU!"G of very low biases, the cosine
amplitudeI1

C as well as the dc componentI0 are equally large
as the sine amplitudeI1

S. Therefore, the models which are
based onI1

S alone—like that of Ref. 11—are only valid for
U!"G andT close toTc.

C. Bound states

In Sec. IV we saw that in the adiabatic regimeU!D, the
currents in the point contact may simply be described in
terms of the equilibrium bound states. It should be possible
to generalize this description to the case where gap suppres-
sion is included. To study this, we have calculated numeri-
cally the density of quasiparticle states at the pinhole. The

bound states are given by the subgap peaks in thek̂-resolved
local density of statessor spectral densityd

Nsk̂,R;ed = −
Ns0d

p
Im Tr gRsk̂,R;ed. s41d

These peaks correspond to poles ofĝR, which depend on the
phase differencef=wr −wl and the rotation matrices through
ci j =Rmi

l Rm j
r . The width of the peaks is on the order of the

relaxation rate"G. Although the spectral weight of the bound
states is spread around the pinhole up to distances of order
"vF /ÎD2−e2, we only calculate Eq.s41d inside the hole, at
R=0.

Figure 7 illustrates the results for one choice ofci j and k̂
with f=0,… ,2p when the gap-suppression effect of a dif-
fusive surface is included. Sinceci j Þdi j , the bound-state
peaks in the densities show clearly a spin splitting between
the “s= ±1” condensates, as in the simple analytic result

s26d. Since the splitting angle depends onk̂, an average of

Nsk̂ ,ed over the Fermi surface in fact leads to the formation
of a wide band of bound-state energies. The bound states

for—k̂ are obtained by using the time-reversal symmetryk̂
→−k̂, f→−f, s→−s, and the “particle-hole” symmetry

k̂ →−k̂, e→−e, which follows from the symmetries of the
equations of motion and the geometry.25

Compared to Eq.s26d, it is seen that the gap suppression
modifies the bound states such that they are always at ener-

gies ueu,D. In the bulk Nsk̂ ,ed<2Ns0dusueu−Ddueu /
Îe2−D2 has divergences atueu=D, but in the middle of the
junction most of the spectral weight is now in the bound
states even atf=0. Thus there are several branches of bound
states coexisting simultaneously for givenf. Accordingly,

FIG. 5. Same as Fig. 3 but for antiparalleln̂l,r’s.

FIG. 6. Same as Fig. 4 but forI2
S and I2

C.
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Eq. s29d for the current should be modified by replacing
ek̂,ssfd with eq,k̂,ssfd, and by adding a sum over the branch
indexq. Since the energieseq,k̂,ssfd for a given branch in the
ranges−D ,Dd are now mapped to phase differences in the
ranges−` ,`d, their slopes are not so steep. Therefore, one
would expect that the dc currents are generally smaller when
the gap-suppression effect is taken into account. As seen in
Fig. 2, this is usually the case.

VI. COMPARISON TO EXPERIMENT

In this section we present a brief comparison of the above
theory to available experimental data on the current-pressure
characteristics in3He-B weak links.12,13 There are a couple
of basic things to note about the experiments. First, as al-
ready mentioned, it is difficult to manufacture apertures
which would satisfy the requirements of a pinhole very
well.3 The apertures withd<100 nm in a 50 nm membrane
used in Ref. 13 are rather close, at least compared with the
0.25µm wide slits in a 0.1µm membrane of Ref. 13. Second,
in order to ensure leak proofness, the pressure biases are
limited to very low values whereU!D. The experiments of
Ref. 13 are even restricted toU!"G!D. Therefore, the
excess current limit of Eq.s35d, for example, seems not prac-
tically achievable in superfluid3He. Nevertheless, the data of
Refs. 12 and 13 are enough to make a comparison between
the most important features of the theoretical and experimen-
tal current-pressure characteristics.

Figure 8 shows a comparison between the data of Ref. 12
and the numerical pinhole calculation ofI0sUd. A diffusive
surface is assumed, and we use the parametera<0.27. Again
we note that although the slope atU=0 depends strongly on
a, the asymptotic behavior forU@"G does not. Indeed, at
U*"G the agreement is rather good for any value ofa on
the order of unity, although a perfect fit for all temperatures
simultaneously cannot be achieved. Note also that the experi-
mental currents are not even approaching zero in the limit

U→0. However, a better fit can hardly be expected, since
the apertures used in these experiments were far from good
pinholes. In fact, in sufficiently large apertures one would
expect a transition into a regime where the dissipation is best
described in terms ofphase slipsby vortices rather than
MAR. Studying this transition would be interesting, but
computationally very demanding. In any case, the overall
form of I0sUd is very similar to the experimental results, and
the order-of-magnitude agreement on both axes is surpris-
ingly good. This gives strong support to the expectation that
the dominating dissipation mechanism in small apertures of
superfluid3He is the MAR process, analogously to supercon-
ductor point contacts.

The apertures used in the experiments reported in Ref. 13
are somewhat better approximations to pinholes. Therefore,
we have chosen to use these data to estimate the value ofa
for the numerical calculations of the preceding section. The
experiments were carried out in the limitU!"G, and ac-
cording to Eq.s33d, the current should be linear in the bias.
For the “L state” this is rather well satisfied, and a fit to the
L-state data givesa<1.6, when gap suppression at a diffu-
sive surface is taken into account.16 The fit is shown in Fig.
9. The increasing low-temperature deviations in this fit may
be partly due to the insufficiency of our normal-state model
for G. The currents for the “H state” reported in Ref. 13 are
larger and more nonlinear than in theL state. We suspect that
part of this nonlinearity may be due to the additional dissi-
pation effects described by Eq.s37d.16 Another possibility is
that the experimental apertures already deviate so strongly
from pinholes that the dependence of the bound states on
textures is not sufficiently described by simple phase shifts.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, we have presented an analysis of pressure-
biased weak links between two volumes of superfluid
3He-B by using the pinhole model of a short, ballistic point
contact. We showed how thes-wave results of Refs. 6 and 8
may easily be reproduced and generalized to thep-wave case
by parametrizing the Green functions with the so-called co-

FIG. 7. Local density of states inside the pinhole fork̂z=0.93
and −n̂l = n̂r = ẑ when gap suppression at a diffusive wall is included.
Here a large, arbitrary valuea<75 was chosen for purposes of
illustration, in order to make the width,"G of the bound-state
peaks better observable. Among the peaks, those corresponding to
the s= +1 ss=−1d spin branch are the ones apparently shifted to-
ward smallerslargerd f. Note that the slope of the bound states is
not so steep as for Eq.s26d. Also, for given phase difference and
spin band, more than one bound state can exist simultaneously.

FIG. 8. Comparison of the datas+ signsd from Ref. 12 to the
pinhole theoryssolid linesd for a diffusive surface anda<0.27 at
indicated temperatures.
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herence functions. In the case where the gap suppression at
surfaces is neglected, we calculated the current amplitudes
analytically in several limits. In the general case, the order
parameters and the pinhole currents were calculated numeri-
cally. Comparison to experiments gives strong support to the
existence of the MAR effect in pressure-biased weak links of
superfluid3He.12 We also predict the existence of additional
dc current contributions, which result from the excitation of
collective order-parameter modes. These “anisotextural” ef-
fects are discussed elsewhere in more detail.16

In order to improve upon the results of the present paper,
one should take into account the strong-coupling effects in a
more detailed way than with our “normal-state” model for
the quasiparticle relaxation rate. One should also consider
apertures of finite size, at least by computing the bound-state
spectra in equilibrium to see if textures have some significant
effect on them in this case. A dynamical calculation for the
finite-size aperture should also be performed, but this already
seems to approach the limits of practical feasibility. A fully
self-consistent calculation of the anisotextural effects in a
pressure-biased pinhole array also appears to be very diffi-
cult. However, until such improvements are made, a
parameter-free comparison with the experimental data cannot
be expected.

With somewhat less effort, the pinhole heat conductivity30

or spin currents could be studied by starting from Eq.s13d.
The current-noise properties7 of a 3He pinhole could also be
of some interest, for example, in the design of accurate su-
perfluid 3He gyrometers.31
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APPENDIX A: EQUILIBRIUM EQUATIONS

Close to the planar wall atz=0 the mean-field self-
energies and the coherence functions must be iterated self-

consistently. Since we are concerned with an equilibrium
system, it is easiest to do this by using the Matsubara tech-
nique, where one makes an analytical continuation from the
real energieseR,A=e± i0+ to the imaginary Matsubara ener-
gies ±i uemu, where emsTd=pkBTs2m+1d and m
=0, ±1, ±2,….17 The coherence functions are then obtained
from Eq. s39d, whereeR→ iem andg0

Rsed→g0semd. sHere we
take G1 as infinitesimal.d The self-energies are of the form
D0=D0·sis2 and S0

mf=n0·s. If we use the symmetryñ0=
−n0,

11,17 the solution of Eq.s39d may be parametrized by
g0=g0·sisy, and the equation becomes

i"vF · = g0 = − 2iemg0 − D0 − 2sg0 · D0
*dg0 + sg0 · g0dD0

*

+ 2in0 3 g0. sA1d

Due to translational symmetry along the wall, the solution
and the self-energies only depend on the coordinatez. The
self-consistency equations are given by17

D0sk̂,zd = 3kBTV1 o
uemu,ec

ksk̂ · k̂8df0sk̂8,z,emdlk̂8, sA2d

where thep-wave pairing interactionVsk̂ ·k̂d=3V1k̂ ·k̂8 was
assumed, and

n0sk̂,zd = 3kBT o
uemu,ec

kAask̂ · k̂8dg0sk̂8,z,emdlk̂8. sA3d

In these k¯lk̂ =esdVk̂ /4pds¯d, g0=Tr2ssg0d /2, f0

=−Tr2ssg0is2d /2 where the upper diagonal and off-diagonal

Nambu components of the Matsubara propagatorĝsk̂ ,z,emd
are given by g0=−pis1+g0ḡ0ds1−g0g̃0d−1 and f0=
−2pig0s1−g0ḡ0d−1. The conjugation symbol “,” now means

g̃0sk̂ ,emd=g0s−k̂ ,emd* =fg0sk̂ ,−emdg†. The coupling constant
V1 may be eliminated in the usual way by noting that atT
→Tc

− the gap vectorD0 is small andf0<pD0/ uemu. ThusD0
may be canceled and one finds

V1
−1 < pkBTc o

uemu,ec

uemu−1 + lnsT/Tcd, sA4d

whereem=emsTd. Inserting this into Eq.sA2d, the cutoffec

may be taken to infinity—see Eq.s12d in Ref. 11. The func-
tion Aasxd=ol=0

` Fl
af1+Fl

a/ s2l +1dg−1Plsxd, where Plsxd are
the Legendre polynomials. From symmetries of the planar

wall geometry it follows that ifk̂ is in thexzplane, so aref0,

D0sk̂d=Dik̂xx̂+D'k̂zẑ and g0, while g0 and n0sk̂d=n0ysk̂dẑ
are perpendicular to it. Also due to symmetries, allFl

a with
evenl drop out of the theory, and forl ù3 we assume them
to be zero.11

In the bulkD0 is constant andn0=0, so that Eq.sA1d is
easily solved, and this solution is used as an initial condition
on trajectories starting from the bulk. On the wall side, one
needs a boundary condition to compute the “outgoing” co-
herence functions from the “incoming” functions. We use the
ROM boundary condition, which is explained in Ref. 27.
This is easiest to express in terms of the components of the

propagatorĝsk̂ ,z,emd, rather than directly with the coherence

functionsg0sk̂ ,z,emd. The relationg0=−sip−g0d−1f0 is then

FIG. 9. Comparison of theL state datas+ signsd from Ref. 13 to
the pinhole theoryssolid linesd for a diffusive surface anda<1.6 at
indicated temperatures.
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useful for computing the initial condition forg0 on the out-
going trajectories.32 A specularly reflecting surface is much
simpler to implement, since it only leads to the continuity

condition g0sk̂Id=g0sk̂d, where k̂I= k̂ −2sk̂ ·ẑdẑ is the specu-
larly reflected direction. As shown in Ref. 11, the pinhole
current amplitudes for specular and diffusive surfaces usu-
ally have only minorsat most a few percentd differences.
Thus, in practice the implementation of a diffusive surface
may not be worth the trouble.

APPENDIX B: FOLDING PRODUCTS

The quasiclassical folding product between objects of the

type Âse ,td is defined in Ref. 17. This result is generalized to

multiple products ofn objectsÂjse ,td, j =1,2,… ,n as fol-
lows:

sÂ1 + ¯ + Ândse,td

= Up
j=1

n

ÂjFe +
"

2i
s¯ + ] j−1 − ] j+1 − ¯ d,tjGU

t j=t

,

sB1d

assuming all the Fourier transformations leading to the

“mixed” representationsÂjse ,td exist. Here] j refers to a de-
rivative with respect to thej th time variabletj. When the

time dependence ofÂjse ,td is harmonicfi.e., ~ expsiet /"dg,
Eq. sB1d yields the folding product analytically. In equilib-
rium all time derivatives vanish and the folding product be-
comes a simple matrix product.
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