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Multiple Andreev reflections in weak links of superfluid *He-B
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We calculate the current-pressure characteristics of a ballistic pinhole aperture between two volumes of
B-phase superfluidHe. The most important mechanism contributing to dissipative currents in weak links of
this type is the process of multiple Andreev reflections. At low biases this process is significantly affected by
relaxation due to inelastic quasiparticle-quasiparticle collisions. In the numerical calculations, suppression of
the superfluid order parameter at surfaces is taken into account self-consistently. When this effect is neglected,
the theory may be developed analytically like in the cases-ofave superconductors. A comparison with
experimental results is presented.
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[. INTRODUCTION pairs themselves may participate in the flow of a dissipative
current. This is because in transmitting a pair between the
Liquid *He is a strongly interacting system of fermionic two condensates, energy can be conserved by transferring the
atoms with nuclear spin 1/2. Its superfluid state below theexcess energy2 to the bound-state quasiparticles. As a re-
critical temperaturel,~1 mK is characterized by the cre- sult, large dc currents can flow with arbitrarily small biases
ation of a condensate where the atoms form Cooper pairsU <A also at low temperatures. The underlying process by
This is similar to what happens for electrons in superconwhich this is accomplished is known as multiple Andreev
ducting metals and, althoughie atoms are electrically neu- reflections(MAR).® In this process, the bound quasiparticles
tral, many analogs exist between the transport properties @fre Andreev-reflected several times from the surrounding
the two physical systems. For example, in both systems sgpairing potentials under the influence of the BihsAfter two
called Andreev reflection can exist, where quasiparticles arsuccessive retroreflections, a quasiparticle has gained the en-
converted between particlelike and holelike branches of thergy 2J, and this corresponds to the dissipative transmission
excitation spectrum by the pairing potenfiaHowever, in-  of one Cooper pair. This coherent process is repeated until
stead of the singles-wave state of conventional supercon- the bound quasiparticles escape to energies above are
ductors, the pairing state in superfluitie exhibits spin- relaxed by inelastic scattering. The maximum numiesf
triplet p-wave symmetry. This means that the condensate hagubgap reflections is given byU=2A. In superconductor
internal degrees of freedom, resulting in a complicated strucweak links with nonperfect transparency, MAR can give rise
ture for the order parameter and in the existence of multipléo a highly pronounced “subharmonic gap structu@Gs,
superfluid phases. There is also no crystal potential to imposehere the differential conductance is peaked at the biases
symmetry restrictions, as in the case of unconventionallyy=2A/n, with n=1,2,3,...° On the other hand, in the limit
paired (d-wave) superconductors. As a result, many of the of very low transparency, a tunnel junction is formed, where
analogous phenomena occur in a more complicated form ithe subgap states and hence MAR are completely sup-
3He than anywhere else. In this paper we study the propertigsressed.
of pressure-biased weak links in superfldide. The weak In the case of superfluitHe the SGS is not likely to be
links consist of small apertures in a wall between two vol-observable in practice. There are two reasons for this. First,
umes of the liquid and, as such, are analogous to ballisticthe practically achievable weak link diameters are quite
point contacts between superconducting metals. The theofarge: generally on the order of the zero-temperature coher-
of superconductor point contacts is well developed, and thuence length{§,~10-70 nm, and certainly much larger than
most of the basic ideas may simply be inferred from existinghe Fermi wavelengti\g=0.8 nm. Since liquid *He is
results?-° naturally free of impurities, the quasiparticles simply follow
Most importantly, due to Andreev reflection, there areclassical ballistics through the aperture. Some nontranspar-
bound quasiparticle states localized at the weak link, whosency is introduced by scattering at the walls inside a finite-
energies are below the bulk gap'® These subgap states are length aperture, but this scattering is diffusive and its princi-
responsible for carrying the phase-dependent supercurrentsal effect is to reduce the net curredtsSecond, also for
i.e., the Josephson effects! When the contact is biased by a practical reasons, the biasesin weak links of°He are al-
chemical-potential differenc®, the supercurrents oscillate ways restricted to the limit) <A,*213while the SGS occurs
at the Josephson frequencW 2:. Under such a bias, also on the scale ofA. In fact, in most experimenttl is even
dissipative dc currents will be generated. The most obviousnuch smaller than the quasiparticle relaxation streridth
source of such currents is due to thermally excited quasipadue to inelastic scattering, which by itself satisfids<A.
ticles, but the resulting current is very small at low tempera-The limit of a low-transparency point contact between
tures. However, in the case of a point contact, the Coopetriplet-paired condensates was recently studfealit, as ex-
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plained above, such results are not likely to be important for A giA fRA A gk X

interpreting experiments in superfluite. For intermediate ghh= ~RA =RA |’ g<= ~ _=K |’ (2)
transparencies, effects similar to those of Ref. 15 may be g -f 9

expected. where the diagonal componemf3~K and off-diagonal com-

In this paper we consider the limit of a short point contactponentsfRAK are 2x 2 spin matrices, and the conjugation
B s, o operaton * is define (k0= In orcer o
’ ying ' automatically satisfy the normalization condition in Ed)),

consider only thd3 phase of superfIwaH.e explicitly. How- . iéis convenient to parametrize the propagator as foll&tv&
ever, some of the general results may just as well be applie

e

for the A phase, or any other triplet or singlet pairing state, =~ . | 1+*A3RA 29RA

and for any value of a constant bids Even though the SGS g = + 1N — HRA —1-FRAcRA

in the dc current cannot be resolved with our assumptions,

there are other details introduced by the complicated struc- (€)

ture of the order parameter ifHe, and its modification and

due to surface scattering. The equilibrium linit=0 for a

3He-B pinhole was studied in Ref. 11 in detail, and this paper., . .cg | X=X oY) = (RoX = x oy~
represents a generalization of that calculation to finite biases T~ 2miNTe (FRoxK=%KoFA) XK =FPRoxKo A
Parts of our results have already been publi$hed we

review them here in order to obtain a self-contained presen- oN?, (4)
tation. In addition, we present some analytical results and a h

more thorough numerical analysis of the dc current and su/here

percurrent amplitudes as a function of the bias pressure. o (1 —yRAHRATT 0

Some aspects related to the so-called “anisotextural” = 0 (1 =FRA0 YRA)L (5

effectd! are covered in more detail elsewhéfe.

In Sec. Il we start with some basic issues of the quasiclasjere the spin matrices®A(k,R;e,t) are called coherence
sical theory, and in S(_ec. [l the plnhole_ model and the generqiunctions, and they may often be interpreted as Andreev-
current formulas are introduced. Section IV presents the andgflection amplitudes. Since they fully parametrif, they
lytical results obtained when surface pair breaking is nexompletely determine the density of quasiparticle states of

glected. In this case many limiting cases are studied, and w; . o
also briefly discuss the connection of the quasiclassicatlﬁn;'e system. The spin matri(k,R; €,1), on the other hand,

model to the anisotextural effedfsin Sec. V we present our Is a distribution function describing the occupation of these
numerical results for the current amplitudes and the subgig;tes' All expectation values of one-body observables may

bound states in the presence of the pair-breaking effects, artf cOMPuted from the Keldysh componeft, which in-

the computational methods are briefly explained. A compan-c udes information on the states as well as their occupation.

B . ~ i~ -’-
son of the results to experimental data is provided in Sec. Vi1 "€ coherence functions satisfy the symmétiy (74T and

and the agreement is found to be good. Section VIl con-i‘re_relatﬁd_fo ;he spin components of the propagatqﬁay
cludes with some discussion of future directions. Finally, de-__K(',rW_lEJ )~"of". The distribution function is Hermitian:
tails related to the self-consistent computation of the ordefX")'=x". ] ) ) o
parameters and some mathematical results are gathered in the The functionx is not the only way to introduce a distri-
Appendixes. _butlon function. A more common definition is given by writ-

ing
Il. QUASICLASSICAL FRAMEWORK g<=gRoh-hog? (6)

Our analysis is based on the nonequilibrium formulationyhich satisfies the normalization condition for aimyHow-

of quasiclassical theory, which has been thoroughly reviewe - RK : -
in Ref. 17. We start by considering some basic points of th%}fé’oﬁgy physicag™ may be parametrized by choosiig

formalism here, since it is of essential importance to the
ensuing discussion. The central quantity is the Keldysh-space s {hl 0 }

propagator, which has the form 0o -F (7
—
- gt g« God= - 2l (1) with the spin matrixhl(lz,R;e,t) as the new distribution
9= o | 9°9= ’ function. Alsoh, is Hermitian,(h;)"=h,, and it is connected

to XX by the relation

where §RAK(K,R;e,t) are 4<4 Nambu matrices, ande = B o B
denotes the quasiclassical folding prodtistsee Appendix hy= 2 (RPN [X = PReX T o (T (8)
B. Herek parametrizes positions on the spherical Fermi sur- =0

face of ®He, R is a spatial coordinates the quasiparticle The functionsx¢ andX< have the interpretations of distribu-
energy, and is time. The Nambu matrices have the structuretion functions for “particlelike” and “holelike” excitations,
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while h; includes contributions from the coherent Andreev
reflections between the two types. In equilibrilmreduces
to the function h(e)=tanhBe/2)=1-2f(¢), where B
=1/kgT, T is the temperature, ankk is Boltzmann’s con-
stant, andf(e) is the Fermi distribution. In comparisort
takes the formxX(e)=h(e)(1-y*3"). Thus h; has a more
direct interpretation as a “quasiparticle” distribution function
in, for example, the Andreev bound states inside the weak
link or a vortex core. FIG. 1. Quasiparticles hitting the wall outside of the constriction
The propagatog satisfies a transportlike equation of mo- are scattered, which leads to a suppression of the superfluid state at
tion, which depends on self-consistently computed selfdistances closer to the wall thap (dashed trajectorigsOnly qua-
energies. The latter have a similar Keldysh-space andiparticles hitting the constriction directly are ballistically transmit-
Nambu-space structure @pin Egs. (1) and (2).172° The ted and contribute to the curretgolid trajectories
equation forg may be rewritten as a Riccati-type transport
equation for the coherence functiop”, and a kinetic equa- way to relax the latter assumption was considered in Ref.
tion for x.2° In particular, the equation foy? is 11) The convenience of this model is that the calculation of
) ~ ~ the nonequilibrium current through the constriction need not
ifive - V /== 2697 - AR+ R0 ARo R+ 3Ro R - yRo 3R, be done self-consistently, since all feedback effects away
(9) from the aperture may be neglected to lowest orded/ig,.
. . It is enough to know thequilibrium propagatorgor coher-
where the spin ma_tnceER and A¥ are the NambL_J-space nce func%ion)scalculatedctl:lose to tr?e veal?on its lgfy and
diagonal and off-diagonal self-energies, respectively, andiyp: (1) sides in the absence of the constriction. However, in

VF:UFK.'S.the Fermi velocn_y. H_owever,_we_only need theseanisotropically paired superfluidHe the computation of
in equilibrium, where the kinetic equation is always solvedthese propagators still requires a one-dimensional self-

by x“=h(1-*¥"), and the folding products in E49) sim- ¢ qisrent calculation, since the presence of the surface leads

plify to matrix products. In the mean-field approximation v, hairpreaking effect and to the existence of surface-

IRA=3M and ARA=A™, which are independent af Most 5 quasiparticle states below the bulk gap.

importantly, the off-diagonal spin matrik™ determines the In the following we assume that the order parameters and

order parameter of the superfluid. In this paper the strongg,q corresponding equilibrium coherence functiofé and

coupling effects, i.e., inelastic quasiparticle-quasiparticleyc\i have already been calculated on both sitte r—see

scattering, are only taléin Into_account with a simplegec v and Appendix A for more details. Thus the results of

normal-state” model X"*=3"+iT';(e), where T'i(~€)  his section are still very general and applicable to any type

=I'y(e). This effectively adds an imaginary part to energies: ¢ pairing state.

e— *=exily(e). Physically, the imaginary part describes | et us choose the coordinates such thatzlais is per-

a finite quasiparticle lifetime, which is important in the pa- pendicular to the wall and points frohiz<0) to r(z>0).

rameter ranges ofHe weak link experiment$3 Math-  The current through the pinhole is given'by

ematically, it is important for regularizing the divergences in

the MAR process, which occur at low-pressure bidsks. de -~ Koo K o

general, the collisional self-enefdygives strong-coupling KU:an ﬁ“‘zﬂ Clelg"(k) =g"(=k) Dk ~0, (10)

corrections also taAR” (and hence a gap-dependent contri-

bution to the lifetimé), but their proper calculation is too where gK(Q;ﬁ't) is the diagonal Nambu component gf

complicated for the purposes of this paper. inside the pinhole(---)@Z>0:f@2>0(dﬂ|;/41-r)(---), and Tris a
spin-matrix trace. For particle current the spin matfife)

lll. PRESSURE-BIASED PINHOLE =1. For heat curren€(e)=¢ and the spin current for spin
projection along the axigr=x,y,z would be obtained by
using the corresponding Pauli matr&=o¢,. The unit G,

U= (my/p) P

We now apply the above formalism to describe a smal

constriction of diameted and areaS=(d/2)? in wall be- = - '
tween two volumes of superflufHe, when there is a pres- — 2VFN(0)S=M/i is the normal-state conductance, where

sure difference® between the two sides. As a result of ther- N(0) is the single-spin density of states in the normal State
momechanical effects, there may also exist a temperatu@?dM is the number of conducting transverse modes.
difference. Although we initially allow for this possibility, | we count energies from the chemical potential of the
we shall always assume the sides to be in good thermal coider, the pressure |b|al§ causes a shift in the |-side chemi-
tact and thus at equal temperatures. We use the so-callé@! potential by =y.'- ", whereU=(ms/p)P, ms being the
pinhole model, which is a direct generalization of that usednass of &He atom ang the mass density of the liquid. The
already in Ref. 4—see Fig. 1. Thus we assume that whil@hase differences=¢"-¢' between thd andr condensates
d> Mg, it is still much smaller than the zero-temperature co-then varies according t¢=2U/#. AssumingU to be con-
herence lengthéy=fivg/2mkgT,. We also assume that the stant, this is solved byp(t)=w;t where the Josephson fre-
wall is negligibly thin in comparison witld, so that scatter- quencyw;=2U/%. The constant bias) gives v} a simple
ing inside the aperture need not be considefédsimple  time dependencey®(e) — YRl(e,t)=e¢VRl(¢), while R
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remains time independent. This allows one to evaluate the The current may also be Fourier expanded as
folding products ingk [Eq. (4)] analytically—see Appendix
B. First it is convenient to define -

1(U,1) =1o(U) + 2 [I5(W)sin(mat) + I5(U)cogmayt)],

(D) = Gl (K, )7 o, (1D) "
(an

wherel(lz,t) is a “channel-resolved” current. Since this is

S |C _
periodic with the Josephson peridig= 27/ w,, we expand where the coefficiently), I}, 1, are real valued. They are con

nected to the complex amphtudes of EG2) by

kD= D Ink)emes, (12) lo= Grlkdo(K)i 20,
m=—o%
where |(k)=1",(k)=(I(k, ™) and we defined the I5= 2GIm{k (k)i o,

time average(:--)r, =T, 740+ +)dt. Evaluatmg the folding
products one finds, fom=0 andk >0,

15= 2G Re(ky! (k)i ~o- (18)
I(K)=-> | deTr C(e){Fle'”[Iz,e— (2n+m)u,U] From Egs.(4) and(8) we also note tha¢gK>TJ:—27-rihl and
= thus the dc component is given by
-Fy™M- K,e+(2n+m+1)U,- U]}, (13 i i i
lo=-Gj J de(k,Tr C(e)[hy(k) = hy(=K) Dk 0. (19)
where
Fkl k U P U)K (%Ki (e = UYFA As seen in Eq(16), in the case of particle current it is con-
(k,e,U)=PFj(eUxTe) - RG] venient to separate the dc component kRsU)=G,U
X[P(&, V)] (14)  +1,5(U). HereG,U is the normal-state part angg(U) is due
to MAR only2 At high biased s saturates and gives rise to
and the “excess current” on top dB,U (see beloy. In what

follows we shall be interested in calculatirg, IS IC both
k _ i ~Ri B analytically and numerically for the case of superflmd
Pij(e,U) = E’B<€+2pu)7ﬁ[€+(2p Hul. (19 ®He-B. We only concentrate on analyzing the parti¢tr
P mas$ current, whereC=1.
The distribution function is<'=hi(e)[1-yR5A], and again
i=I,r. Thek dependences have been dropped for clarity. IV. RESULTS FOR THE CASE WITH NO
If C(e) is assumed to be energy independent, then Eq. GAP SUPPRESSION

(13) can be simplified by changing integration variables. In

the following we also assume the two sides to be at equal A. General results

temperatures, such thht'(e)=h(e)=taniBe/2). When the For simplicity we shall first neglect the suppressing effect
normal-state contribution proportional tofdeh(e+U)  of the solid wall on the order parameter. This makes the
—-h(e)]=2U is separated, one finds problem formally similar to thes-wave case, and the results

of this section are rather straightforward generalizations of
R those of Refs. 5-8. Th8-phase order parameteis thus
Im(k) =T C{ZUEW\O_ 2 de assumed to be of the formi(k,2)=Al(K)-aio, for i=l,r,
o and=™=0. In this case Eq(9) is easily solved? The gap
vectors for momentum directiok are given byA" r(k)
=Ae¢"d"(k), whered'"(k)=R"'k. Here,R""=R(A" r,6,) are
rotation matrices, withg, =arcco$-1/4) the dipole-locked
Identifying the coherence function® as an Andreev- rotation anglé andf' the rotation axis on side=I,r.
b et relor, I ot cachk. e choo e sin-uanizaon s par
9 P ! g lel to d'x d", the condensates may be divided intp and

the number of successive reflections. The present resul hich beh h lik ind q
have been derived by assumidgo be constant. However, it | parts, which be ave much like two independsntave

may be shown that even whéhvaries in time, corrections Systems? If we deflne¢>k as the azimuthal angles dt" in
to the results are small at leastUf< <#il'2. WhenU<#4l';  the plane perpendicular td' x d', which satisfy ¢_k—¢>k
andU <#w3 this should be well satisfied. +m, thenA"" and " are diagonal,

><I:Fn+mn(k eU) - |:n nJ'm( I’(\,e,—U)]}. (16)
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I,r _-Eri¢kr 0
A=A 0 at (20)
€%
Ir
: -4 0
aﬁ""‘”:aﬁ*{ 0 k J ¢Lr}- (21)
k

Here YRA=-A/[*+i\A2- (2], and e =exil(e),

wherel’; is present to model inelastic scattering. The phas
differences of the two condensates over the contact are given

by dr.o=d—0oxi, Where o==1, ¢=¢ —¢'=wst, and xi
=arccosd'-d"). Using these definitions, Eq16) simplifies

tOlO
dmk 0
0 e_imX k

X P f de tanH Bel2)[1 - |YR(e)|?]

| (K)=Tr C{2U5m+ 2{

n+2m

X2 [T 1 e-quP TT PR(e- pU)}. (22)

n=00=1 p=l+1

The distribution functiorh, is proportional to the unit matrix
in spin space. Fok,>0 it is given by

hy (e =h(e)+ 2 [ [¥X(e-ju)|?

n=0 j=0

xX{h[e—(n+ 1)U]—h(e—-nU)} (23
and forﬁz<0 by
hi(e) =h(e+U)+ X [T/ e+ (j + DU
n=0 j=0
X{h[e+ (n+2)U]-h[e+ (n+1)nU]}. (24

The dc component of the particle curr¢Bg. (19)] may now
be written as

lo=~(Gy/2) j de[h; (&) = i (e)]. (25

We note that the result fdr, is exactly the same as for an
s-wave superconductér In particular, it is independent of

the spin-orbit rotation matrice$.

B. Limiting cases

In the small-biagor adiabati¢ limit U< A the variation

of phase differencep(t)=w;t is slow. In this case one may
describe the junction in terms of the occupation of the An-

dreev bound stat&$

€. o(}) = - SigN(KSIN( ¢y ,/2))A cog i ,/2),

which are obtained from the poles @f in equilibrium. The

(26)
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dei o(9)

K _ L ~
[g ]0'0'_ 4772' Slgn(kz) d¢

e e (B)Ihi(e).
(27
Defining the bound-state occupation probabilities

P ={1-hile (A2, k=0, (28)

t:Ehe particle current may be written as

I(t) = 47G,, 2,

o,6=t1

~ degso(9)
k—"pss) . (29
< deb P, >@z>0 (29

Neglecting Andreev reflections foel > A, we may approxi-
mateyR~—-e199-¢9 g(A -|e|) whered(e)=arccose/A) and
L(e)=T"1(e)/ VA%~ € which is strictly valid only for|e] <A.

Using these we may approximéitg as

hy (e) =h(e) — (A - |e|)JE de'h’(€')
-A

xexp{— ér dgfg(g,)]

and a similar expression exists flof. Then it may be shown
that the occupation probabilities satisfy the kinetic equation

Pi,o(t) = () f(e) = pio(V],

where f=(1-h)/2 is the Fermi distributione=e ,[o(1)],

and we defined the relaxation rafe=2I";/#. In a normal-
state Fermi-liquid approximatiolf ~ (7kgT)%+ €2, while in

the superfluid state some corrections from the existence of
the gap may be expectédThe initial conditions for this
equation are mostly determined by the “thermalization” of
the bound states when they hit the gap edges=atA .60
Thus if att=t, we haveeg .| $(to)]=-A (for k,>0), then the
occupation is returned to equilibriurpg ,(to) =f(=A). In the
limit U<AI', Eq. (31) may be solved to yield

) . 27B [deg JdpT
IO =1d 0]+ G“U% <k2ﬁr(e) cosR(Bel2) /i, -’

(30)

(31

(32

wheree=eg [ ¢(1)] andly(¢) is the supercurrent of Ref. 22.
Approximating I'(e) =I'(0) =T, its time average may be
simplified to

lo(U) = (A/il'0)g(T)G,U, (33

the temperature factor is given by(T)
=L tanH BAX/ 2)(x/1-x?)dx. This result is only correct to
leading order imI'y/A, since we have neglected the correc-
tions from energiese| > A. This approximation is valid for
temperatures not too close to the critical temperalyré\n-
other exactly soluble limit of Eq.31) is that ofU <A at zero

where

Keldysh function may be now approximated with the “qua-temperature, if we additionally assume the Fermi-liquid form

siequilibrium” form gX=h7(§R-3") so that

I'(e)=cé. In this case
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current (4 G k

0.2}

U

0
(

0
kB

Tc)

0.02

0

! . — — ) ;
o T I(t):WG”’BA2<kZ{COSXl;Sin(ﬁ"'ﬁ[l—COSXlzcosqs

B ”>

+sinyg——sin¢ o, (36)
2U 0

where ¢p=w;t and yz = xx(t). The first and third terms corre-
spond to than=1 terms in Eq(17), while the second term is
the equivalent of Eq(33). The last term is new, and it is only
present whery; is time dependent. Assuming now thgi(t)
oscillates T; periodically, then we see that all the
¢-dependent terms can also have finite-time averages. Actu-
ally, the averages of the last two terms in E86) exactly
cancel each other, but the average of the first term gives a dc

current in addition to Eq.33). Thus, forT= T, we may write
g rotalU) = 1o(U) + <|§(U,t)3in(wﬁ)>TJ, (37

has theT; periodicity of the anglexi(t). The first
ferm in Eq.(37) results from the MAR process, where energy
is dissipated directly to the quasiparticle system. The second
term corresponds to dissipation via the excitation of collec-
tive order-parameter modes, i.e., spin waves, which are
driven by the oscillating Josephson spin curréhfEhe true
magnitude of the resulting dc current depends on the details
of the process, which is in general geometry dependent.
Therefore, we shall not attempt to explore this issue any
further here. Note, however, that while the dc curigt) is

, , 13 ) independent ofR'", the second contribution may depend
which varies aso(U) ~U™*whenU —0 and notlinearly as  gyongly on them. In fact, folu<#l' the coefficient!S

Eq. (33) at higher temperatures. This is plotted in Fig. 2 for g generally of the form |f(t):(st/ﬁ)[all//zz+a2(¢xx

EX?:eFiTJeEtZiLy feasi_bletpa}ram.etet[]s. VAR ovle bedin t +i,)1(t), wherey;;=R,;R ;. The U-independent parameters
reac%rthe gap v?ittjr?slﬁ%reﬁ(gességtterid h,(pdb(e:z{](i:nes toeg;r;u_o ay(T) and a,(T) may be computed numerically even when
rate. In the limitAl'<U<A the currer;t is slowly varying gap suppression effe-cts are accogntedlfalmd We may ex-
and.on the order of @A Finallv. in the large-bias limitJ ’ pect Eq.(37) to remain valid also in this case. Finally note

) n= Y, - arg . that very similar dc current contributions may arise from the
>A qngs finds thatlsg saturates with the asymptotic “Shapiro” or “Fiske” type effects, where; coincides with
behavior some resonance frequency of the cell instead of the order-

parameter texturé

FIG. 2. The dc currentk, for temperature3/T.=0.4, 0.5, 0.6,
0.7, 0.8, 0.9 in order of decreasing amplitude. The solid lines in-
clude the gap-suppression effects, whereas in the dashed lines it\}%erelf
neglected. The dash-dotted line is the zero-temperature result of E
(34), while the straight dashed line corresponds to ERf) at
T/T.=0.4. The results are similar for both parallel and antiparallel
f'"'s. HereF§=0 anda=1.6.

! cA? —
lo(U) = ZGnAJ dx exp{— —(arcsinx— x\1 —x?) |,
. 2U

(34)

8A
loye= ?Gntanr(,BU/Z). (35

V. GAP SUPPRESSION AND NUMERICS

This is known as an excess current, since the total dc current
is then of the formly(U)=G,U+I.,, where the first term is

the normal-state value and the second one approaches a con-FOr @ more realistic calculation, one must take into ac-
stant count the suppression of thewave order parameted,

=A- oio, close to solid walls. However, when this effect is
included, the calculation of the coherence functions may
only be done numerically, and the current must be computed

Most of the above results have been derived by assumingo\TVeEggét%e the surface to have translation symmetry in its
the biasU to be timeindependent and the spin-orbit textures lane. and a rotation svmmetry around its noryrilalf WZ
to be fixed. Thus alsgi must be constant in time. However, P ’ y y

there are situations where the textures may also oscilIat%IS‘0 neglect external magnetic fields and flow parallel to the

resonantly with the Josephson frequeficand the theory surfacde,t)th?]n ;heB—phase order parameter may be param-
may be generalized to take such anisotextural effects intgtnze y the form

account. Consider in particular the limid <#Al'y and T
~T., which is realized in the experiments of Ref. 13, for
example. Starting from Eq$29) and (31) we find the fol-
lowing expression:

A. Calculation of the coherence functions

C. Anisotextural effects

Ao(k,2) = [A(2)ke A (2K, A L (DK, (38)

where z=0 is at the wall. The real amplitudes,(z) and
A | (2) both approach the valuk as|z| — . Close to the wall
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their behavior must be calculated using one of the different LN
models for the surface scattering, which are generally ex- 06 "
pressed as a boundary condition for the propagafoféThe . parallel
simplest surface model assumes a completely specular scat-—, °4[ :
tering of the quasiparticles from the surface. This already «
leads to significantly improved results for the pinhole
currentst* However, most surfaces are believed to be micro-
scopically rough, so that they scatter quasiparticles diffusely.
There are several model boundary conditions for such sur-
faces, which all yield practically the same profilégz) and

A (2).247?7As in Ref. 11, we use perhaps the simplest one,
the “randomly oriented mirror(ROM) model?” The gap-
suppression effect also introduces spontaneous spin currents
which flow parallel to the surfac®.This is responsible for u
the existence of a small spin-vector part in the mean-field

self-energy> "=, &, which depends on the Fermi-liquid  FIG. 3. The amplitudek; andI for T/T,=0.4, 0.6, 0.8 in order
parameter§; with odd|.1! The self-consistency procedure is of decreasing amplitude in the case of parafi€ls. The solid and
simplest to do by using the imaginary Matsubara energies, agashed lines are fdr; with and without gap suppression, respec-
briefly discussed in Appendix A. In this part of the calcula- tively, and the dash-dotted and dotted lines are the corresponding
tion, the inelastic relaxation raté is taken to be infinitesi- values forl{. HereF3=0 anda=1.6.

mal.

Once the mean-field self-energiag and {" have been description of the quasiparticle-quasiparticle scattering.
self-consistently computeee Appendix A the coherence However, the calculation still provides at least a semiquanti-
functions at real .energieg’é'A are calculated by integrating tative model for studying the simultaneous effects of gap
the Riccati equation suppression and inelastic processes on the pinhole currents.

Ve Vo= = 26 - Ao = FA0E + 25" - 455"
(39) B. Current amplitudes

n

current (4 G k, T

Figures 2—6 show our results for the lowest-order current
amplitudesly, 17, andI{, as a function of the biatl. The
amplitudes>, and|§, for m=3 may be set to zero since they
are negligibly small for all practical purposes. Figures 3 and
4 are for paralleli’s on the two sides of the conta¢d'
=A'=2) and Figs. 5 and 6 are for the antiparallel c&sa'
=iA"=2). The I, amplitude shown in Fig. 2 is the same for
both cases. Actually, as our numerical c?lculation shows, the
: - - result for Iy is practically in ndenR". For th
easily four_1d2,° and this is used as an initial condition. For avsr?gre gaposjpgr:scstigi )i/s ngglz?:t::je, 'ﬁ\is inger}eﬁdgﬁiz was
junction with mirror symmetry with resgect =0, thel :imd previously shown to be exact—see E(@2) and (25).

r solutions at the junction satisfyf'(-k,z=0)=-[+§'(k,z In the calculations, we have always assunfi@e0 for |

=0)]", and thus the integration need only be done on one=3, while the effect of the remaining2 with values be-
side. The different spin-orbit rotations of tlephase on the tween -1 and 0 on the pinhole currents is at most a few
two sides of the junction may be taken into account with the
transformations

on several trajectorieR =uk passing through the pinhole at
u=0. To find the propagator at=0, only integrations from
the bulk toward the wall are needed. In E§) we again
introduce the quasiparticle relaxation rate2I";/# through
eR=e+i(Al'/2). We use the simple normal-state Fermi-liquid
form T'=a[(mksT)?+ €]/ (7om?k3), where 7,=1.14 us m K2

is obtained from viscosity measuremefft§? anda is a free
parameter of order unity. The bulk solution of E®9) is

0.06f
.~ N ) : arallel
Fikz,0 = U(k,z 9lUT, I
. o I
Al(k,2) =U'Ay(k,2[U'T, & 0.02¢
o°
<+ 0
miice 5\ = [ JismMhicp it -
- Mk =UsgrkauT (40) E oce|
where U'=exp(-i6.A'-o/2), andi=l,r. Finally, the func- 3 0.08
tions yR(z=0) are inserted into E16) to obtain the current e
amplitudes. -0.06|"

W_e note that the introduction df in Eq. (39) is not self- 0 0005 001 0075 .02
consistent, and stress that our normal-state model neglects all U(kyT)
strong-coupling modifications om\RA17 This procedure
should therefore be regarded only as a rough model for the FIG. 4. Same as Fig. 3 but fog and|S.
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045F - Tt ] current I(¢) must satisfy the Stime-reversal symmetry
K ,C !S(—@ =.—I§(¢). Upon inserting thé; gmphtudes to Eq(17)
0.1F/ 1 1 in this limit, the current-phase relatiomg ¢) of Ref. 11 are
o - quite accurately reproduced, when we make the replacement
& 005 wjt— ¢. Note, in particular, that in the antiparallel case with
" no gap suppression, the second-order amplitudes are of equal
N 0 magnitude with the first-order ones. Thug®) exhibits a
E, ~0.05} strong “mr state”?2 When the gap-suppression effect is taken
3 into account, then=2 amplitudes tend to be very strongly
—0.1} antiparallel 1 suppressed, and in this case thetate only presents itself at
very low temperature¥. Thus as a first approximatiorh,?
-0.15 . . . may often be neglected in comparison with However,
0 0.005 0.01 0.015 0.02 apart from the limitU<#4I" of very low biases, the cosine
Ulkg 1) amplitudel§ as well as the dc componeitare equally large

as the sine amplitud&. Therefore, the models which are
based onl$ alone—like that of Ref. 11—are only valid for
percent of their total amplitud&—in the figures of this paper Y <#I" andT close toT.

F§=0 also. The quasiparticle relaxation parameter is chosen

asa=1.6, since this is the value which gives the best fit to C. Bound states

the relevant experiments—see Sec. VI. Although the behav- |, sec. IV we saw that in the adiabatic regitde< A, the

ior of the current amplitudes fdy =#1" depends strongly on ¢ \rrents in the point contact may simply be described in
the choice of, the asymptotic behavior f&y>#1" does not. 4o m¢ of the equilibrium bound states. It should be possible

We have only calculated the currents numerically down t - ; . )
T/T,=0.4, although Fig. 2 shows the additional zero- o generalize this description to the case where gap suppres

g . sion is included. To study this, we have calculated numeri-
temperature result of Eq34). This is because the required v the densitv of narticle stat t the oinhole. Th
number of terms in the MAR suifEqg. (16)] is proportional cally the density of quasiparticie states at the pinhole. 1he
to A/T,, which is on the order of thousands already atbound states are given by the subgap peaks iik fesolved
T/T,=0.4. We have taken into account all terms upnto local density of stateor spectral density
=4A/hTy. Actually, this is only necessary fas <Al where A N(0) A
the number of successive Andreev reflections is limited by N(k,R;e)=———Im Tr gR(k,R;¢). (41)
relaxation. In this regime it would also be possible to use ™
approximate schemes instead of the full expresgi@h On
the other hand, foU=#I" a maximum of~A/U terms

h
should be enough. The energy cutoff for the coherence funcp‘_:R| R .. The width of the peaks is on the order of the
o

. . . ij
tions was typically chosen at aroundkg0;, and the density  o|xation rateil™. Although the spectral weight of the bound

of energy discretiza_tion points was _highest close to the 93Btates is spread around the pinhole up to distances of order
edges, where the highest accuracy is needed. For e”erg'eSﬁDF/\;’Az—ez, we only calculate Eq(41) inside the hole, at

between these points, linear interpolation was used in coms —
puting the current amplitudes with E(L6). The number of Fi 7 illustrates th its hoi fandi
Gaussian polar angles used in angular integrals was usually ' '9uré 7 fiustrates the resufts for one c oicejgtan .
P g g g \kflth ¢=0 27 when the gap-suppression effect of a dif
eight. N ¢=0,....2m W p- .
gIn the limit U—0 the cosine amplitudelﬁ all vanish fusive _surface IS !ncluded. Sincgy; # &, _the b'ognd—state
(linearly in U/Al'y) as they should, since the equilibrium fheeaiﬁzlnjrf foennds;tr;iztzzov;scl%artlr)]/eas?rr:glj p;':;:?tigertgsej{]
0.02 \ ‘ ‘ (26). Since the splitting angle depends bnan average of

0.0151 N(IQ,e) over the Fermi surface in fact leads to the formation
~ 001} n ] of a wide band of bound-state energies. The bound states

FIG. 5. Same as Fig. 3 but for antiparalfél’s.

These peaks correspond to poleyBf which depend on the
ase differenceb=¢' — ¢' and the rotation matrices through

"; 00057\';‘\ ST e for—k are obtained by using the time-reversal symm&try
X B + S e 7 ~ .

o 0,"7\ S ?_k; ¢——¢, o——0a, and the “particle-hole” symmetry
} k —-k, e——¢, which follows from the symmetries of the
©-0.005; equations of motion and the geomedry.

=}

o

~0.01 Compared to Eq(26), it is seen that the gap suppression

modifies the bound states such that they are always at ener-

el A5 NI antiparallel 1 gies | <A. In the bulk N(k,e)=~2N(0)d(|e-A)|€/
L a——r 5o G 002 .\562—'A2 has divergences a¢/=A, but in the middle of the
Uk T) junction most of the spectral weight is now in the bound
states even ap=0. Thus there are several branches of bound
FIG. 6. Same as Fig. 4 but fo and|S. states coexisting simultaneously for given Accordingly,
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o=+1 3.5
S ) —
@ 20 \ J;""!& NE
o = 1\ 2
S ¥ K k& K ' S E
% 1 & 7 © 1.5}
© 05 N\ &K = 5
0 1 5 14
-0.5 5] i
1 @ i g 0.87
e/A 0 o/ g 0.5 g— o
~ # // -4-+:i-+-i-q.-\=0-0--v-H'0-f—+""“"‘“"""""*"H'M'F*'"d""#‘WW.H'h“w”‘w"‘M‘+ 0.93
FIG. 7. Local density of states inside the pinhole kor0.93 % 05 ] 15 5
and -A'=A"=2 when gap suppression at a diffusive wall is included. pressure (Pa)
Here a large, arbitrary value=75 was chosen for purposes of
illustration, in order to make the width-#I" of the bound-state FIG. 8. Comparison of the dafe signg from Ref. 12 to the

peaks better observable. Among the peaks, those corresponding Rinhole theory(solid lines for a diffusive surface and~0.27 at

the o=+1 (o=-1) spin branch are the ones apparently shifted to-indicated temperatures.

ward smaller(largep ¢. Note that the slope of the bound states is

not so steep as for E¢26). Also, for given phase difference and |y_, o, However, a better fit can hardly be expected, since

spin band, more than one bound state can exist simultaneously. he apertures used in these experiments were far from good
pinholes. In fact, in sufficiently large apertures one would

Eqg. (29) for the current should be modified by replacing expect a transition into a regime where the dissipation is best

€ o(¢) with €, ,(¢), and by adding a sum over the branch described in terms ophase slipsby vortices rather than

indexq. Since the energies,; ,(¢) for a given branch in the MAR. Studying this transition would be interesting, but

range(-A,A) are now mapped to phase differences in thecomputationally very demanding. In any case, the overall

range(—o,%), their slopes are not so steep. Therefore, ondorm of Io(U) is very similar to the experimental results, and

would expect that the dc currents are generally smaller whethe order-of-magnitude agreement on both axes is surpris-

the gap-suppression effect is taken into account. As seen ifgly good. This gives strong support to the expectation that

Fig. 2, this is usually the case. the dominating dissipation mechanism in small apertures of
superfluid®He is the MAR process, analogously to supercon-
VI. COMPARISON TO EXPERIMENT ductor point contacts.

The apertures used in the experiments reported in Ref. 13

In this section we present a brief comparison of the aboverre somewhat better approximations to pinholes. Therefore,
theory to available experimental data on the current-pressufge have chosen to use these data to estimate the valae of
characteristics ifHe-B weak links!213 There are a couple for the numerical calculations of the preceding section. The
of basic things to note about the experiments. First, as alexperiments were carried out in the limMit<#I', and ac-
ready mentioned, it is difficult to manufacture aperturescording to Eq.(33), the current should be linear in the bias.
which would satisfy the requirements of a pinhole veryFor the ‘L state” this is rather well satisfied, and a fit to the
well.2 The apertures witll=100 nm in a 50 nm membrane [ -state data givea~ 1.6, when gap suppression at a diffu-
used in Ref. 13 are rather close, at least compared with theive surface is taken into accodfitThe fit is shown in Fig.
0.25um wide slits in a 0.Jum membrane of Ref. 13. Second, 9. The increasing low-temperature deviations in this fit may
in order to ensure leak proofness, the pressure biases apse partly due to the insufficiency of our normal-state model
limited to very low values wher&) <A. The experiments of for I'. The currents for thel state” reported in Ref. 13 are
Ref. 13 are even restricted td <AI'<A. Therefore, the |arger and more nonlinear than in thestate. We suspect that
excess current limit of Eq35), for example, seems not prac- part of this nonlinearity may be due to the additional dissi-
tically achievable in superfluitHe. Nevertheless, the data of pation effects described by E(7).16 Another possibility is
Refs. 12 and 13 are enough to make a comparison betweeRat the experimental apertures already deviate so strongly
the most important features of the theoretical and experimerfrom pinholes that the dependence of the bound states on
tal current-pressure characteristics. textures is not sufficiently described by simple phase shifts.

Figure 8 shows a comparison between the data of Ref. 12
and the numerical pinhole calculation BfU). A diffusive
surface is assumed, and we use the paramaetd).27. Again
we note that although the slopeldt0 depends strongly on In conclusion, we have presented an analysis of pressure-
a, the asymptotic behavior fdd >#I" does not. Indeed, at biased weak links between two volumes of superfluid
U=#I the agreement is rather good for any valueaosn ~ 3He-B by using the pinhole model of a short, ballistic point
the order of unity, although a perfect fit for all temperaturescontact. We showed how tleewave results of Refs. 6 and 8
simultaneously cannot be achieved. Note also that the expeninay easily be reproduced and generalized tgptheave case
mental currents are not even approaching zero in the limiby parametrizing the Green functions with the so-called co-

VII. CONCLUSIONS AND DISCUSSION
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7 " y - T consistently. Since we are concerned with an equilibrium
c system, it is easiest to do this by using the Matsubara tech-
6 y 04401 nique, where one makes an analytical continuation from the
55 L state i ‘/ real energies®*=¢e+i0" to the imaginary Matsubara ener-
. + - . .
® w0498 gies dley, where ey (T)=mkgT(2m+1) and m
+ + s . -
=4 4 #f**/ e 0545 =0,+1,+2,...17 The coherence functions are then obtained
+ g .
o fﬁj/m#* A 0600 from Eq.(39), wheree®— i€, and y5(e) — yo(em). (Here we
s T et A _
33 e #ﬁ’;ﬁ'” T +0.649] take I'; as infinitesima). The self-energies are of the form
/ F et +# 0. . ~
@ /. /,/W%’*}jfﬁﬁ;#ﬁtgff/’ Ao=Aq-aio, and3"=w;-o. If we use the symmetr§,=
£ 2r S j“f/wﬁfﬂf/ﬁﬁﬂwwjggi? -1, the solution of Eq.(39 may be parametrized by
1 /%WW‘:&W/'&Z; 0,800, Yo=Yo-0ioy, and the equation becomes
- T 4t . A
S A e OB ihVE -V y0==2ieny¥o— Ao = 2(v0 - Ap) Yo+ (70 Y0)Ag

30 + 2| L) X Yo- (Al)
pressure (mPa) ) )
Due to translational symmetry along the wall, the solution

FIG. 9. Comparison of the state datd+ sign9 from Ref. 13to  and the self-energies only depend on the coordizafehe
the pinhole theorysolid lineg for a diffusive surface and~1.6 at  self-consistency equations are givertby
indicated temperatures. . o .
Ag(k,2) =3kgTV, > ((k-k)fo(k',z e, (A2)
herence functions. In the case where the gap suppression at el <o

surfaces is neglected, we calculated the current amplitudes; . .o thep-wave pairing interactioV(k -K)=3V,k -k’ was
analytically in several limits. In the general case, the order, !

: assumed, and
parameters and the pinhole currents were calculated numeri-

cally. Comparison to experiments gives strong support to the Do — c e (k! .
existence of the MAR effect in pressure-biased weak links of vo(ki2) = 3T 2 (Ag(k -K)Golk" Zemicr- (A3)
superfluid®He 12 We also predict the existence of additional
dc current contributions, which result from the excitation ofIn  these (- =/(dQg/4m)(--*), go=Tr(0go)/2, fo
collective order-parameter modes. These “anisotextural” ef=—Tr,(aggi0)/2 where the upper diagonal and off-diagonal

fects are diSCL'JSSGd elsewhere in more dé@aﬂ Nambu Components of the Matsubara propagg(&nzyem)
In order to improve upon the results of the present papelare  given by gy=-mi(1+y970)(1-y570)~: and fo=

one should take into account the strong-coupling effects in a,_. vo(1=y570)"%. The conjugation symbol™ now means
more detailed way than with our “normal-state” model for _

the quasiparticle relaxation rate. One should also consideto(K:€m=Yo(~K, €m) :[_70(k1_6m)]T- The coupling constant

apertures of finite size, at least by computing the bound-stat¥1 May be eliminated in the usual way by noting thafTat

spectra in equilibrium to see if textures have some significant” Tc te gap vectol, is small andfo~ 7Ao/ |€y|. ThusAg

effect on them in this case. A dynamical calculation for theMy be canceled and one finds

finite-size aperture should also be performed, but this already _

seems to approach the limits of practical feasibility. A fully \Gl ~ 7kgTe 2 e+ In(T/To), (A4)

self-consistent calculation of the anisotextural effects in a fem/<ec

pressure-biased pinhole array also appears to be very diffivhere e,,=€,(T). Inserting this into Eq(A2), the cutoff e,

cult. However, until such improvements are made, amay be taken to infinity—see E(L2) in Ref. 11. The func-

parameter-free comparison with the experimental data cann@ibn A,(x) =32 F[1+F}/(21+1)]7'P,(x), where P|(x) are

be expected. . ~ the Legendre polynomials. From symmetries of the planar
W'Fh somewhat less effort, the pinhole h_eat conductiYity wall geometry it follows that ik is in thexz plane, so aré,,

or spin currents could be studied by starting from Ep). S ~ ~ . ~ ~

The current-noise propertiesf a *He pinhole could also be A0K)=AkX+A k2 and yo, while go and wo(k)=rp,(k)2

of some interest, for example, in the design of accurate si@'€ Perpendicular to it. Also due to symmetries, Ffllwith

€eml <ec

perfluid *He gyrometersl evenl drop out of the theory, and fdi=3 we assume them
to be zero'!
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APPENDIX A: EQUILIBRIUM EQUATIONS This is easiest to express in terms of the components of the

Close to the planar wall az=0 the mean-field self- propagato@(g,z,em), rather than directly with the coherence
energies and the coherence functions must be iterated seffinctionsyy(k,z, €,). The relationy,=—(im—go) f, is then
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useful for computing the initial condition foy, on the out- (A - oAn)(e )
going trajectories? A specularly reflecting surface is much ! '
simpler to implement, since it only leads to the continuity
condition yo(k) = yo(k), wherek=k-2(k-2)2 is the specu- T 2i
larly reflected direction. As shown in Ref. 11, the pinhole

current amplitudes for specular and diffusive surfaces usu- (B1)
ally have only minor(at most a few perceptdifferences.
Thus, in practice the implementation of a diffusive surface
may not be worth the trouble.

assuming all the Fourier transformations leading to the

APPENDIX B: FOLDING PRODUCTS “mixed” representationé‘ (e,t) exist. Hered, refers to a de-
rivative with respect to the;th time varlablet When the
The quasiclassical folding product between objects of th%me dependence (ﬁ‘ (.1) is harmonidfi.e., « exp(let/h 1
typeA(e,t) is defined in Ref. 17. This result is generalized to Eq. (B1) yields the f0|d|ng product analytically. In equilib-
multiple products ofn objectsA (e,1), j=1,2,...,n as fol-  rium all time derivatives vanish and the folding product be-
lows: comes a simple matrix product.
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