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Microwave surface resistance of superconductors with grain boundaries
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Microwave-field distribution, dissipation, and surface impedance are theoretically investigated for supercon-
ductors with laminar grain boundari€éSBs). In the present theory we adopt the two-fluid model for intragrain
transport current in the grains, and the Josephson-junction model for intergrain tunneling current across GBs.
Results show that the surface resistaRg@onmonotonically depends on the critical current denkifyat GB
junctions, andRs for superconductors with GBs can be smaller than the surface resigignder ideal
homogeneous superconductors without GBs.
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[. INTRODUCTION situated ay=ma, wherea is the spacing between graifi€.,
effective grain sizecandm=0,+1,%2,...,%c. The thick-

High-temperature superconductors contain many grail?1ess of the barrier of GB junctiorg; is much smaller than

boundariegGBs), where the order parameter is locally sup- botha and the London penetration deptland, therefore, we
pressed due to the short coherence leAgBBs have at- investigate the thin-barrier limit of; — 0, namely, GB bar-

traqted m_uch_ interest for their basic physics as well as forriers situated ama-0<y<ma-+0.
their applications in superconductdrs,and play a crucial

role in microwave response and surface resistaRgef _ _ _
high-temperature superconducting filAs3 B. Two-fluid model for intragrain current

Electrodynamics of GB junctions can be described using e adopt the standard two-fluid mo¥el® for current

the Josephson-junction model, and one of the most importa@Fansport in the grain ana+0<y<(m+1)a-0. The intra-
parameters that characterize GB junctions is the critical cur.

; s grain currentJ=Jgs+J,, is given by the sum of the super-
rent l4delrgsnyJCJ- for Josephson tunneling current acrossg ent j =igE and the normal currend,=oE, where
GBs:—® The J;; strongly depends on the misorienta-

=1/wuoh? and a,, is the normal-fluid conductivity in the
tion angle of GB7%8 In YBa,Cu;07_5 films, J;; can be s Ok on 4

: : S grains. The displacement curreht=-iweE with the dielec-
enhancet andR; reduced® by Ca doping. The investigation i constante can be neglected for a microwave range of
of the relationship betweeRs and J;; is needed to under- 5 - Ampere’s lawug'V X B=(a,+ig)E is thus
stand the behavior dR; and J;; in Ca doped YBgCu;07_5 reduced to 0 "
films. The J.; dependence oRs, however, has not yet been
clarified, and it is not trivial whether GBs enhance the mi-
crowave dissipation that is proportional .

In this paper, we present theoretical investigation on the\:N
microwave field and dissipation in superconductors withy,
laminar GBs. Theoretical expressions of the surface imped-

E=-iwAZV X B, (1)

here A is the intragrain ac field penetration depth defined

anceZ;=R,—iX; of superconductors with GBs are derived as A2= o) = N2 2
functions ofJ;; at GB junctions. g = @ho(05 Ion) et @
II. BASIC EQUATIONS C(_)mbining Eq.(1) with Fara_day’s lawV X E:iQB, we ob-_
tain the London equation for magnetic induction
A. Superconductors with grain boundaries B=B,(x,y)z for y#maas
We consider penetration of a microwave figict., mag- X
netic inductionB=pugH, electric fieldE, and current density B,—~ AgV°B,=0. 3

J) into sup'ercon.ductor's that occupy a sem|-|nf|n|t¢ area of For ideal homogeneous superconductors without GBs,
x>0. We investigate linear response for small microwave,

power limit, such that the time dependence of the microwaveEq' (3) is valid for ~<y< +e and the solution is simply

‘ ) _ Ik M .
field is egpressed by the harmonic_ face®l*!, wherew/ 27 ?r'(\)ﬁnEzyl(Blz)()gséL E))'j)(f—iwg, ?dHtZi,iIgec.mg 23‘:;;03:?2?
is the microwave frequency that is much smaller than the 7 o _.)V( f hMo g0 ’ duct .
energy-gap frequency of the superconductors. Magnetic in2nce bSOERiOEI 5303:_' _oinoge/n\eogﬁ sup;arcon u'ctors IS
ductionB is assumed to be less than the lower critical field, 9VEN PYZ«0=E,(x=0)/Ho=~iwuoA,. The surface resistance

such that no vortices are present in the superconduct®es. Ro=ReZyp) and reactanc&y=-Im(Zy) of ideal homoge-

Ref. 20 for microwave response of vortices. neous superconductors without GBs are givetf by
The GBs are modeled to have laminar structures as in 2 203
Ref. 21; the laminar GBs that are parallel to #rplane are Reo = uow\ oy/2, (4)
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Xep = powh (5) (11) corresponds to Eg4) in Ref. 22. Substitution of Egs.

i . (1) and(10) into Eg. (11) yields the boundary condition for
for 0,/ 0s<1 well below the superconducting transition tem- B, aty=ma

peratureT,.
C. Josephson-junction model for intergrain current N ly=maro Y ly=ma-o0 Aé ax? y:ma,
We adopt the Josephson-junction mdééffor tunneling (12

current across GBs gt=ma Behavior of the GB junctions iS \yhere A, is the characteristic length for ac field penetration
determined by the gauge-invariant phase difference acrosgio GBs defined by

GBs ¢j(x) and the voltage induced across GRXx) is given

by the Josephson’s relation AJ-_2 = wpod(ysj~ i ¥nj) = o2 o~ 10 Yyy). (13)
ma+0 ¢
f Edy=V;= 2(-iwg), (6) ll. SURFACE IMPEDANCE
ma-0 2m

) ] A. Microwave field and surface impedance
where ¢ is the flux quantum. The tunneling current parallel

to they axis is given by the sum of the superconducting

tunneling currenti.e., Josephson currgnis;=J; sin ¢; and

the normal tunneling currenfi.e., quasiparticle tunneling ¥ 2m

curren) Jn=7,;V;. The critical current densityl;; at GB BZ_ASVZBZ:aAjZ > 225(y—ma), (14)

junctions is one of the most important parameters in the me—e OX

present paper, and the resistance-area product of GB jun\(/:\?hose solution is calculated as

tions corresponds to 3/,;. We neglect the displacement cur-

rent across GBsly;=-iwC;V; whereC; is the capacitance of BAXY) g . 27, coshK(y-a/2)]

the GB junctions. - - —f m
Here we define the Josephson lengthand the charac- 0 9

Equations(3) and (12) are combined into a single equa-
tion for x>0 and = <y<+w as

HoHo m

teristic current density, as k sinkx (15)
X
Ny= (do/Amuodoh)'”, (@) (2KAgaAj) + KeothKal2)
. for 0<y<a, WhereK=(k2+A52)1’2. The right-hand side of
Jo = do/Amuo\”. (8 Eq.(14) and the second term of the right-hand side of Eq.

The ratioJ;/Jo=(\/X,)2 characterizes the coupling strength (15) reflect the GB effects. See the Appendix for the deriva-

of GB junctions?? For weakly coupled GBs, namely,;/J tion of Eq. (15) from Eq. (14).

=(\/\,)2<1 (e.g., high-angle GBs electrodynamics of the E.Iectgic field in the graing is obtained from !EC{l) as
GB junctions can be well described by the weak-link Ey=1®AgdB,/dx, and voltage induced across GB is obtained

model!4-1® For strongly coupled GBs, namely.;/J, from Eq. (10) as V;= iwaA{dB,/ iXly=o. The mean electric
=(\/\;)?=1 (e.g., low-angle GBs the Josephson-junction field Eg at the surface of the superconductor is thus calcu-
model is still valid but requires appropriate boundary condi-ated as

tion at GBs, as given in Ed4) in Ref. 22, as pointed out by _ g (a0
Gurevich; see also Refs. 21 and 23. E.= —f dyE,(x=0,y)
In the small-microwave-power limit such that = ¢ alo
=27Vl (-iwgy) for |¢;| <1, they; is reduced to 1 a-0
. =—|Vi(x=0)+ d x=0,
Jsj = Jejo; = vV, 9) a{ ix=0 J+o VB y)}
whereys;=2mJ;/ wdo=1/2wueh\3. The total tunneling cur- LB, A2 (20 B,
rent across GB is thus given by =iw| Aj— + —gf dy— . (16
2 x=y=0 aJio X x=0
1B
- —&—XZ =Jgj+ Jnj = (95 + Wy V- (100 Substitution of Eq(19) into Eq.(16) yields the surface im-
Ho 0% Ty=ma pedanceZ;=R;-iX;=EJ/H, as
Integration of Faraday's lawE,/Jdx—dJE,/ dy=iwB, yields . 5 1
= - - ma- —— =14 f dk
Exxy=ma+ (?) Ex(x,y =ma-0) —ioppAg mlo T AKE
mar JE,(X,Y) . Vi(X)
= f dy{—y— —iwBxy) | = —=, 1 17
ma-0 2 X

X 2142 2 '
(KAZ/A?) + (a/2)coth(Ka/2)

(1) . .
The surface resistance and reactance are givenRpy
where we used Ed6). The static versiolti.e., w—0) of EqQ. = =ReZy) and X;=-Im(Z,), respectively.
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B. Microwave dissipation and surface resistance C. Simplified expressions for surface impedance

The time-averaged electromagnetic energy passing The following Eqs(26)—(34) show simplified expressions
through the surface of a superconductoxa0 and —0<y  of the surface impedanc&,, the surface resistanc®

<a-0 is given by the real part of =R€Zy), and the surface reactandg=-Im(Z) for certain
a0 restricted cases, assuming/ o<1 andy,;/ ys;<1 well be-

&= 1 dy(E,B})ye0= E‘ESHB, (18  low the transition temperature.
2u0J —g 2 For small grains ofa<\ such that cotfKa/2)=2/Ka,

_ Eq. (17) is reduced to
where E;=ZH, is defined by Eq(16), and (B,),-0=uoHo-
Poynting’s theorerf states that is identical to the energy Zs= —iwpg(Aj+ ADY2. (26)

stored and dissipated in the superconductor . _ ] )
The right-hand side of Eq14) is reduced to\{5”B,/ x* for

1(” a0 . 5 . 2 a<\, and the effective ac penetration depth is given by
E—EL dx{ﬁo dy(a, = ig)[E[* + (ynj —ivs)|Vj| Aeg=(AZ+A?)1? as in Ref. 21, resulting in the surface im-
o pedance given by Eq26). The R, and X, for small grains is
7 iw obtained as
- f dyM—IBZIZ}- (19)
-0 0 -1/2 2 2
The real parts of Eq918) and (19) show that the surface aJy ao, \J;;
resistancd’;= Re(Es/Hp) =R Z,) is composed of two terms:
X 2\ Jo \ Y2
Rs=Rsg+ Ry;. (20 —S:(1+——° , (28
XSO a JC]

The intragrain contributioRgg is from the energy dissipation
in the grains, and the intergrain contributi®y; is from the  whereRy,, Xy, andJ, are defined by Eqg4), (5), and(8),

dissipation at GBs: respectively. Equatiof27) is decomposed into the intragrain
1 " a-0 Rsg and intergrain Rg; contributions, as Ryy/Ryp=(1
Rey= —2f dxf dye[EP, (21) fZ)\JO/aJCJ-)‘l’Z and Rg;/ Reg= (4\?ynj/ a0 (Jo/ J;)?, respec-
aHl“Jo  Jso tively.
Equation (26) is further simplified whera<2\3/\ for
1 o small grain and weakly coupled GBs as
ol"Jo Zs= —iwugh; (29

Both the intragrain currerifly| around GBs and the inter- o4 \we have
grain tunneling currerit]” across GBs are suppressed by the

GBs, and are increasing functionsRf. With increasingl, 2y N[N\ Y2( 3,\32

the intragrain electric fieIdE|:|Jg/(on]:rios)| also increasjes, % = —an—<;) (J—0> : (30)
whereas the intergrain voltag¥|=|J;/ (yy+ivs)| decreases " °

becauseys;= J;;. The dissipation in the grains,|E[*/2 and o 1o

the intragrain contribution to the surface resistarig, X - (2_)\> (ﬁ) _ (31)
therefore, tend tancreasewith increasingJ,;. The dissipa- Xs0 a Jgj

tion at GBsy,;|Vj|?/2 and the intergrain contribution to the _ _
surface resistancB;, on the other handjecreasewith in- ~ Thus, we obtain the dependenceRafand X, on the material
creasingly;. parameters aBsx y,a ;2 and X a Y232 which are

The surface reactancé,;=—Im(Zy is also divided into independent oh. The Rs given by Eq.(30) for the small

two contributions grain and weakly coupled GBs is mostly caused by intergrain

dissipationRs=Rg;> Ry, For X, given by Eq.(31), on the
Xs=Xsg* Xsjs (23)  other hand, both intragrai¥s, and intergrainXs; contribute
to the totalXs=Xsq+ Xsj-
For large J; (i.e., strong-coupling limjt such that
KAé/Af»(kza/Z)cotk(KaIZ), Eq. (17) for the surface im-
pedanceZg is simplified as

where the intragrain contributioXsy and the intergrain con-
tribution X; are given by

Xq= —— | dx dy| odE|?+ —|BJ?|, (24
9 alHql o +0 o€l M0| :

Zs=—iopo(Ag+ AZ12Ay), (32
1 * 5 and we have
ij = —a|H |2 dX’yS]|VJ| . (25) ) ,
oo &21_5ﬁ+m(ﬁ) (33
Both X, and X,; decrease with increasini;. R aly aoy \Jg/ '
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FIG. 1. (Color online Dependence of surface resistankg
=ReZy) and surface reactaneg=-Im(Zy) [i.e., Eq.(17) with Egs.
(2) and (13)] on critical current densityl;; at GB junctionsR; is
normalized to the surface resistance without GB, Rg,given by
Eq. (4), Xsis normalized tXg given by Eq.(5), andJ.; is normal-
ized to Jy defined as Eq(8). Parameters are/27w=10 GHz, A
=0.2um, 0,=10" Q"*m™, and y,;=102 0"t m™2, which yield
Rg=0.25 M), X4=16 m), and J,=1.6x 10 A/m?. (a) Total
surface resistandgs=Rg;+ R, intergrain contributiorRs; given by
Eqg. (22), and intragrain contributiorRsg given by Eqg.(21) for
a/\=0.1.(b) Rg and(c) X for a/A=0.1, 1, and 5.

X
Xs0
The first and second terms of the right-hand side of(Bg)

correspond to the intragrain contributid®y, whereas the
third term corresponds to the intergrain contributiy

=1 .
ach

(34)

IV. DISCUSSION

Figures 1a) and 1b) show J; dependence oR,. As
shown in Fig. 1a), the intergrain contributiorRg; is domi-
nant for weakly coupled GBsi.e., small J;/J, regime,
whereas the intragrain contributioRg, is dominant for
strongly coupled GB¢i.e., largeJ;;/Jy). The Rg; decreases

PHYSICAL REVIEW B 71, 064507(2009

with increasingl;; as R J;° [see Eq.(30)], whereasRy,
increaseswith J.;. The resulting surface resistangg=R;;
+Rsg nonmonotonicallydepends orl;; and has a minimum,
because; is determined by the competition betweRy and
Rsg As shown in Fig. {c), on the other handXs monotoni-
cally decreases with increasidg [i.e., X< J;* for weakly
coupled GBs as in Eq31)].

The nonmonotonic dependenceRafon the grain size is
also seen in Fig. (b). For smallJ;;/J, the R; decreases with
increasinga asR,>a %°[see Eq(30)], whereaR, increases
with a for large Jg;/ Jo.

The R, for strongly coupled GBs can mnallerthanRy,
for ideal homogeneous superconductors without GBs,
namely,Ry/Rgp <1 for J;/Jy= 1. The minimum surface re-
sistance for Nyn;/0,=0.2 is RJ/Ryp=0.97 for a/A=5,
Ry/Ryp=0.86 for a/A=1, and R/Ry=~=0.59 for a/A=0.1.
The minimumR/Ry, is further reduced wheny,;/ o, is
further reduced.

Theoretical results shown above may possibly be ob-
served by measuringR;, X, and J; in Ca doped
YBa,Cu;07_; films. The enhancement &; (Ref. 19 and
reduction ofR; (Ref. 13 by Ca doping are individually ob-
served in YBaCu;O,_s, but simultaneous measurements of
Jej andRs are needed to investigate the relationship between
Rs and J;. The nonmonotonicl;; dependence oR; for
strongly coupled GBs may be observed in high quality films
with small grainsa<\ and with largeJ; on the order of
Jo~10'° A/m? at low temperatures.

V. CONCLUSION

We have theoretically investigated the microwave-field
distribution in superconductors with laminar GBs. The field
calculation is based on the two-fluid model for current trans-
port in the grains and on the Josephson-junction model for
tunneling current across GBs. Results show that the micro-
wave dissipation at GBs is dominant for weakly coupled
GBs ofJ;j<J,, whereas dissipation in the grains is dominant
for strongly coupled GBs od;;>J,. The surface resistance
Rs nonmonotonically depends aRy;; the R decreases with
increasingl,j as Ry J;° for Jg;<Jo, whereasR; increases
with J¢; for J;;>Jo. The intragrain dissipation can be sup-
pressed by GBs, and the surface resistance of superconduct-
ors with GBs can be smaller than that of ideal homogeneous
superconductors without GBs.
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APPENDIX

Equation (15) is derived by solving Eq(14) with the
boundary condition 08,=ugHy at x=0, as follows. We in-
troduce the Fourier transform oB,x,y) and B,(x,ma)
=B,(x,0) as
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b(k,q) = f ’ dx J ‘dyBZ(x,y)e'iqysin kx, (Al
0] —00

+0o0

bo(K) = f ’ dxB,(x,0)sinkx = f ?B(k,q), (A2)
0 ar

respectively. The Fourier transform of Ed.4) leads to

bk, q) kK ak _ [ kBO(k)]
— L =278Q) 5+ ——— imaal 1 - —2
oHo i (q) K? K2+q2§m:e oHo 7

(A3)
whereK = (k?+A3%)*2 anda=aA?/ A}, Substituting Eq(A3)
into Eq. (A2), we have

byk) Kk Kby (k ¥ dq emaa
o<):_2+ak{l_ By )}EJ dg e
moHo K HoHo » 2mKe+(q

(A4)

which is reduced to

PHYSICAL REVIEW B 71, 064507(2005

by _1 2 1
moHo K KKAZ2K + ak? coth(Ka/2)’

(A5)

B,(x,y) is calculated fron‘B(k,q) given by Eq.(A3) as

B,xy) 2(* . (" dgbka) .., .
—Z(Xy):—J dkf 495D ey g e
m™Jo —%

HoHo 2m poHo
2a [ Kby(K
=g+ —“f dkksin kx[l _ Kby )]
m™Jo HoHo
** dqeay-ma
X —_——. A6
Em"f_m 2m K>+ qf (A0)

Substitution of Eq(A5) into Eq. (A6) yields Eq.(15).
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