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Hamiltonian for coupled flux qubits
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An effective Hamiltonian is derived for two coupled three-Josephson-jun€3idh qubits. This is not quite
trivial, for the customary “free” 3JJ Hamiltonian is written in the limit of zero inductabcéleglecting the
self-flux is already dubious for one qubit when it comes to readout, and becomes untenable when discussing
inductive coupling. First, inductance effects are analyzed for a single qubit. Forlsntladl self-flux is a “fast
variable,” which can be eliminated adiabatically. However, the commonly used junction phases @ppro-
priate “slow variables,” and instead one introduces degrees of freedom that are decoupled from the loop current
to leading order. In the quantum case, the zero-point fluctuatloBoscillations in the loop current diverge
asL—0. While their effect thus formally dominates over the classical self-flux, it merely renormalizes the
Josephson couplings of the effectifte/o-phasgtheory. In the coupled case, the strong zero-point fluctuations
render the full(six-phasg wave function significantly entangled in leading order. However, in going to the
four-phase theory, this uncontrollable entanglement is integrated out completely, leaving a computationally
usable mutual-inductance term of the expected form as the effective interaction.
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I. INTRODUCTION merely yields uncoupled 3JJ Hamiltonians. Clearly, by ne-

A commonly considered flux qubit consists ofasupercon-gleCting self-inductances entirely one has missed the effect

ducting loop with three Josephson junctions—a 331 dubi. gty () ! IR o0 e ot T
One readily writes down its Hamiltonian, qubit-q y 9 '

This can be turned into an advantage: most of the analysis

3 2 bt bh— )2 can be done by studyingne qubit to higher order i than
H=> {& -E cos¢i} + (¢1+ ¢ e2¢3 ) , (1.)  usual, after which two qubits require only a straightforward
=1L 2Ci 8eL generalization.
in units with%=1, and with the external flux biab, given in This is taken up in Sec. Il on the level of classical Kirch-
phase units, hoff (circuit) equations. Section Ill is devoted to the quantum
case. Rather than merely confirming the classical result or
oy = 2eDy. (1.2)  resolving operator-ordering ambiguities, one finds an addi-

tional physical effect: zero-point fluctuations in the loop cur-

ply the junction capacitances: for finite inductanice the rent wash out(renormalize t.he effecuvg Josephson_ cou-
plings. The results are verified numerically and critically

redistribution of charges following a tunneling event, often : ; .
accounted for by an effective capacitance matrix, is not in_compared to a previous attenfpSection IV contains the

stantaneousi.e., all three junction charges and phases ar%;v?;\r\]/?er?lljlrf?ttilgr? iéoem';nqlue%tz;m't :ﬁ c?c?r?;i dtgg{bfhehif%u;%?gz?
independent dynamical variab)es 9 y y g

The essence of the 3JJ design is to introduce bistabiliti the inductance than the six-phase one. This integrating out

. ; . f uncontrollable entanglement may indicate that the effec-
without relying on magnetic energy so that the superconductt-ive theory is not mere?ly computai/ionally convenient. but

ing quantum interference devi¢8QUID) loop can be kept d . X
small. ForL—0, the last term in Eq(1.1) implements the also physically appropriate. Some concluding remarks are
: ' : made in Sec. V.

constraintes =, ~ ¢y = ¢, This leads to an effective two- For smallL, self-fluxes vanish but persistent currents re-
phase theory, P :
main finite, so that the latter are often more convenient.

As long as one neglects gate capacitors, etc.Cthere sim-

—1ATA-1Q — - When studying dynamics, etc., one needs the cuwwpata-
Ha=2Q C Q™ Ey cosd, = B, cos4, tor (as opposed to, say, the ground-state expectatinmich
— Ezcod ¢y~ 1~ ¢, (1.9 s not readily available in the growing literature on the 3JJ
qubit. Preliminary to thd. expansion proper, it will now be
_[C1+Cs Cs derived quantum-mechanically in both the three- and two-
€= C; Cy+Cy)’ (1.4 phase theories, which has some independent interest. In fact,

_ one merely needs to add the capacitive and Josephson con-
with Q=(Qy,Q,)T [cf. Eq.(4) in Ref. 1, bearing in mind that tributions. In the three-phase theory, one®has
¢, and ¢, have the opposite relative sign there _
When scaling to circuits with more than one qubit, li=—lgsing - Q, (1.5
the question arises how to generalize the effective Hamil-
tonian (1.3). Unfortunately, repeating the above reductionwith I ;= 2eE and
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2e § To see what went wrong, consider the rough analogy of a
Q= T% (1.6 two-dimensional electron gas, where excursions away from
: the x-y plane carry a large penalty in energy. It is intuitively
Then, from Eq.(1.1), clear that the fast oscillations in the corresponding potential
well occur predominantly in thedirection, orthogonal to the
. ) P~ 2]- o, ] easy plane. While the latter plane is uniquely defined by the
Q=[H,iQ]= ool lgsingg O (1.7 potential, in our case “orthogonal” involves the anisotropic
capacitance matrix as wellvhich thus can be said to induce
a metrig. It is not difficult to scale the phases such that the
- 2,- &~ éx (1.9 charging term is<Q'Q (in terms of athreevectorQ; in the
! 2eL ' quantum case, this yields a charging teraV?), upon
) ] which the proper coordinates are found by rotation. How-
That is, I;=1 independent ofi as expected; contrast, e.g., ever, full orthonormalization turns out to be overkill, and the

arbitrarily picking the Josephson current through one of thgesyiting tedious formulas are hard to interpret; crucial is

junctions.

only that the slow coordinateg 6 are constant along the fast

ForL—0, I_Eq.(1.8) tends t_og and a separate derivatio_n direction (¢1,¢2,¢3):(czlycgl,cgl)_ This is readily
from Eq.(1.3) is needed. In this case, however, the canonicalchieved: the easiest seéms
variableQ, is not simply the charge on capacitoribdeed,

two Q's have to account for thre€’s); to find the latter, we

setC*=(P!) and evaluate

(-bl = i[%PQ% +1Q41Qy, ¢1] =

Hence,

C;.
0) — 1 :
|(1)—‘2_6¢1‘|c13|n¢1

=(Cip—Dl¢isin gy + Cyrl gy sin ¢,
—Cy(p+1)lezSin(dy — ¢1— ¢bp)

lea . lco
-C| =sing,;+—
C, 2 C,

sin ¢, +

an appealing and manifestly symmetric forllﬁq):l(o), in-

X 10 -Cy/Cy\[en
0 =0 1 -GCy/Cy || & O (2.3
+ 11 1
26(pQu +1Qy). (L9 o és
¢1 G+t -ct o X
¢ |=Cl -Ct cit+ct ct 0
b3 -Gt -G G\t
(2.9
The Kirchhoff equations become
c
| 1X _ . .
CL?’sin(¢X—¢1—¢2)], 2_e_|°3sm ¢z~ lc1Sindy, (2.9
3
(1.10 )
2 =1 gsin g — lepSin gy, (2.6)

2e

volving the loop’s series capacitan& *=C;*+C;'+C3

Interestingly, the junction areq cancels from Eq(1.10: if,
as is often assumed«C;xk; (with material-dependent
constants of proportionalitythen the three sines have equal

prefactors.

Il. CLASSICAL ANALYSIS

The Hamilton equations

. oH
hi=2e_—

aQ;’ Q=

yield the classical dynamics of the systdfn1).” The last

term inH represents a steep and

b=d1+ ot 3= Py

- 2e—

¢
LC

| . | . | .
=L sin ¢y = =22 sin ¢, — -2 sin s,
Cy C, Cs

(2.7

where theg;’s on the right-hand side are simply shorthand
for the linear combinations in Eq2.4). Indeed, the terms
~L"* have canceled in Eq$2.5) and(2.6). For an interpre-

tation, note thaty«C,;Q;—C5Q3 describes the charging of
theisland between junctions 1 and 3; unlike the charging of,
e.g.,capacitorl, y thus has no net direct contribution from
the loop current, and is affected by it only indirecflin
O(L)] through the flux-quantization condition.
narrow well, S0 one expects |, these variables, the expansion to the required order is
(2.2 almost trivial. InO(L%, one simply setsp=0 in Egs.(2.5
and(2.6), which is readily verified to yield dynamics equiva-

1(..
o+

2e

oH
o0, (2.2

to be small and rapidly oscillating, while the other variablesjent to Eq.(1.3. In O(L), ¢ can be neglected on the right-
can have excursions of order one but move comparativelyand side of Eq(2.7) because it does not occur with a large

slowly—ideal for adiabatic elimination ap. However, from
Eq. (2.1) one finds, e.9.C,¢;=—¢/L—2el, sin ¢y, so that
determination of theg; dynamics toO(L) apparently in-
volves the¢ dynamics toO(L?), rendering theL expansion

quite tedious.

coefficient. The leading adiabatic solution is then
¢=2eL19(y,0), (2.9

or explicitly 19(y,6,$=0) in Eq. (1.10. Subsequently,

Eq. (2.8 can be substituted into the right-hand sides of
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Egs.(2.5 and(2.6), yielding a self-contained dynamical sys- where, thus, an awkward potential term would have compen-
tem with two degrees of freedom. sated an awkward charging teficf. below Eq.(2.10]. The

In preparation for the quantum analysis, it is instructive tosign-flipping of the magnetic term has also been observed
also consider a canonical formulation. The Lagrangian readaround Eq(2) in Ref. 11, though not in terms of the detailed
current operatod @ in Eq. (1.10. Thus, the semiclassical
analysis in Ref. 10 seems a valid approximation for station-
ary currents in the low-lying qubit states.

BecauseH is invariant, one can here and in the following

increase the similarity to the conventional treatment
[ 4
1

L(x,0,¢) = 2 '¢' - (2.9

_8(;2 gi g: by introducing _?12531{(C§1+C§1)X—0/C1+ ¢ /Cq}  and
$o=C{-x/Co+(C1"+C37) 0+ ¢,/Cy}, so that formally
(2.10 Ho(é):HSJJ(qz). Since comparison to Eg$2.4) and (2.8
in which one is to substitute E¢R.8) for ¢. The transforma-  shows thatg, , do not coincide with the junction phases to
tion (2.3) has achieved that E(R.10 does not contairy¢ or O(L), this formulaticln is not very useful in derivations.
9¢ Such terms, whictdo occur in £(¢y, ¢»,¢), would in ~ However, in terms ofp, the double periodicity o¥/ and any
O(L) result in an extremely unpleasant phase-dependent cadditional symmetries are expressed conveniently, which

pacitance matrix in the effective Lagrangidor Hamil- ~ may be effective numericalljcf. below Eq.(3.28]. Figure 1
tonian. However, in Eq.(2.10 with Eq. (2.8), #(x, 6) is shows both the zeroth-order potentigl and the correctetf

O(L?), hence, negligible for théy, #) dynamics. The effec- Zszlg‘ /(EZ {3% }Cg f?gd?rzdthﬁzr?gzt/ezl:?’) _C\}:(gz (:r;d
; I - : =Eg/E =03/ =0.0. ol @1, P2) =Vol P2, 1),
tive Hamiltonian follows fromQ, =2e7L/dx; etc., as which is preserved iV. Since we have chosen a degenerate

Q,x+ Q0 bias ¢=m, one also hasV(d1,$2) =V (=d1,~¢»).
HX0:Q Qo) = 2e —L (21D The small self-flux has a clear physical effedt!?)2
=V;(1©)2=0 for éTe{(O,O),(O,W),(W,O)} by symmetry,

1l 1 Cs 2, C so both the location and the height of all saddle points
=5 c 1+a Qt C2 , Q| +V are unchanget? Since clearly 5L(19)2<0 in the wells,
both the “easy”(intra-) and “hard” (intercell) barriers are
(2.12 increased, and this term’s suppression of the tunneling
The potentialV merits closer inspection: t®(L), amplitude may not always be negligible. Finally, the lines
¢1+¢,=m (mod 2m), which are straight equipotentials®
_ _ U, ¢ ¢(x,0) through the intercell saddle points ¥f, cease to play this
(2.13 1. QUANTUM ANALYSIS
Using Eg. (2.4 to perform the differentiation in the A. Expansion of the Schrédinger equation
second term explicitlyat constanty,6, one findsd,U,|o .
=-10)(y, 0)/2e2 Substituting Eq.(2.8 for ¢(x,6), this In quantum mechanics, one can advantageously use the

same variable¢2.3), avoiding 4,4, and dyd, in Eq. (3.2)

means that this term inverts the sign of the third téfm, below. The large inductive term in EqL.1) for H now

yielding causes the system to remain in its ground state with respect
_ _ L o ) to ¢. To Ieadmg order this is a harmonic-oscillator ground
HOx. 6,Qu Qo) = Ho - 5! (. 0)%, (2.14 statey~ €%, and one readily finds
1 /C
1| 1 Cs Cs\ A=A/ —. (3.1
Ho=7| = {1+ QX QXQa 1+=1Qj 8e” VL
2[C C, C1C2 C,
- 11 p This unfortunately means that formally~ LY (9,,~ L™/
- E; cos C{(— + —>X— — + ﬂH and strikinglyl ~ L= Hence, the expansion I(G(L) will
C G G G turn out to be sixth order while it was first order in Sec. I,

[ Y 1 b, and keeping the calculation organized is essential. Since it
-Eycog C{ -+ (— + —> 0+ suffices to study the time-independent problem, the expan-
sion will be analogous to, e.g., fast-variable elimination in
(Fokker-Planck diffusion operatord?
~Escos C_g{‘ﬁx_x_ ‘9}] (2.19 Using Egs.(1.6) and (2.3 in Eq. (1.1), in the eigenvalue
equation(H-£&)¢=0 we expand

Here, Hy plays the role ofH;;;in (y,6) coordinates. The )
combination of “Josephson” and “inductive” corrections in H=— Ziza K +Ho+ Hyp+ Ho? + (3.2)
Eq. (2.14 would not have occurred in, say(¢y, ¢, ), o ¥ ger 0T 2 o
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FIG. 1. The zeroth-order potentist, (a) and the first-order potentiad (b), for «=0.8 and¢y=. In (b), we also use’LE;=0.3. The
contours correspond tW)/E;=-1.42, -1.3, -1.&=a-2), -1, -0.8=-a), —0.5, 0.5, 1.5, and 2.5, the latter encircling the maximum at
d1=po,=. The wellsVy(£d*, + ¢p*)/E;=—a—1/2a=-1.425 atp* =arccog1/2w)=0.8957 are shifted t&/(£&*, + ¢ )/E;~-1.7983 at
£* =~0.9602. While the shifts in well location thus are appreciable, just evaluating the persistent current in the unshifted ones, i.e.,
V(xg*, £ ¢*)/Ey=—a-1/2a~€’LE;(2-1/2a%) ~~1.79086, gives a good estimate of the well depth.

E=bptlotéyt -, (3.3 (Ho=&)yp=0, (3.8
equivalent to the standard 3JJ the¢hyd). Substitution back
Y=o+ Yt e, (3.4  into Eq.(3.7) renders the latter identical to the leading order,
so that

with the zero-point energy&,,~L™2 and H, as in , 2

Eq.(2.19, with &, ¢ ~L"4, and where we have been able to Uax. 0.8) = Py, ). (3.9

omit anL™* (L*) term in £ () from the outset because  proceeding ta?(LY4), one has

H does not have ah™ term. One hadd,= (1/n!)d}|oU, 2

}‘;)r.nz 1, and_bepause the calcu!at|on bglow Eg.13 . —2—e”¢2&¢[e‘zx¢2a¢(e”"’2¢3)]+(—
just as valid in quantum as in classical mechanics, C

Hy=-10(x, 6)/ 2e.

|(0) g
z_efls‘gl o€ =0,

3.10
In O(L™Y3), one has (3.10
for a solvability condition
2¢? s =
=St g~ |%e=0 D (3.5 £=0 (3.1
because the term1©¢ cancels by parity. This term does,
however, contribute ta; itself,*®
2 1
0,0) = Y. 006N, E,p,=——, (3.6 Cl%g 2
l//O(X d) wO X ) zp 2\LC ) 1/1'3()(, 0, (]S) — 2 0¢+ ¢3(X1 0) e A , (312)
16e°\
the obvious answer for zero-point fluctuations of the loopwhere the first term in square brackets is readily verified to
current. shift the center of the Gaussian in E@.6) 0 (¢), 4 in
One can use Ed3.6) to factorize the operator in brackets accordance with Eq2.8).
in Eq. (3.5. In O(LY), this leads to In O(LY?), one obtains the first nontrivial solvability

. conditionl”
2 2 > 2 2

_ 55 -2\ & _ =y

=€ Ao @ )]+ (Ho-Eupe™”,  (3.7) (HO_SO)%+(2§ _52>%:0' (3.13

where one can commute™¥’ through Hy—&,. Operating where the prefactor is obtained agde ¢e 2
with [dpe™#", the first term vanishes, so that one obtains=(4x)"1f d¢ e 24", While we are only expanding the linear
the solvability condition Schrodinger equation, it apparently “knows” that the proper
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(3.12 and (3.17. Combining Egs.(3.4), (3.6), (3.9, and
(3.14), one has

avi INF r2 INF 1T 12
Dax, 0,0) = 16;2‘)#\0 &+ U0 €M, (3.14 |40l + 2 Re () iﬁz] +~| ¢2|~+ 2 Re () )] — 2€2LH gy
+O(L3) =y + gy + i+ -+ |2, (3.23
3/4 i i
In O(L*"), the solvability condition reads which is satisfied by
Ho—Ep) s — Ea4,=0 3.1 ~
(Ho— &) b3 — Etlyy (3.19 = - ELH 0, (3.24

apparently posing the obstacle that bathand &; are un-
known in this order. However, one can operate wit
Jdx dé (yp)* and use Eq(3.8), yielding

h Substituting this into Eq(3.18), the latter is identified as the
second ordéf of Eqg. (3.21), with®®

~ ~ ~ 126 L
53_0 (316) 52:54, H2: H4—§(|(0))2. (325)
and 5 4, so that . ,
, Combining the above, one sees that the effective quantum
$=0 (3.17) HamiltonianH again has the forn2.14), but with renormal-
is a convenient choice of normalization. Determinationypf ~ ized Josephson couplings
presents no problems, but is not required. 23 L3
Finally, one arrives a(L), finding a solvability condi- E—E = E-(l AL e—)_ (3.2
. i i i 2 4
tion C 2G;

To this order, the latter is exactly what one would
expect from a  Gaussian  averaging Uiy, 6)

=[dp e 2% Uy(x, 6, #)/[dp €2 ¥ the zero-point fluctua-
tions in ¢» behave as uncertainty i#h, in Eq. (2.15, which
washes out the Josephson potential. The systematic expan-
sion is not prejudiced about “Josephson” versus “inductive”
contributions to the energy, and instead directly provides a

term —%L(I(O))2 to H with the correct sign.

L H
(Ho= &)y — €L(Ho = Eg)Haty = 5(|(0))2¢6 + <4_§ - 52) W

126"
+ (3.18

C H4_54)¢6:0

What remains is to interpret this in terms of an effective
two-phase Schrédinger equation.

B. Effective theory

While odd powers inLY4 were important in the above, C. Numerics

most clearly through® in Eq. (3.12 implementing the To test the above analysis numerically, introduce the di-
guantum counterpart of EqR.8), they cancel in final results, mensionless inductancg=27L1./®y=4€’LE; (P, is the
such as Eqs(3.11) and(3.16), by ¢ parity. What emerges is  flux quantum and g=E;/Ec (with the charging energy
a two-phase theory involving an expansion in termslofin Ec=¢€°/2C,), and measure all energies in unis. Evalua-
which the zero-point motiof8.5) is absent, the leading order tion of the L-expansion is only meaningful fg8<1, andB
being simply should be varied by at least an order of magnitude. These
imply that for some of our parameter values, the energy lev-
els of the full and effective theories will be very close.
Hence, we focus on the simplest junction systeétonswvhich
“J,O: . (3.20 the above for the 3JJ qubit is readily adaptexiressing ac-
curacy rather than generality.
Subsequently, Eq3.13 is recognized as the first-order part  First, consider the rf-SQUIDH=-(4/g) a¢—cos{¢+ by)
of +¢?/2B,  for  which lthe effective H=\2/8g
~ = A T A A —(1-\B/2g+ Bl4g)cos ¢, — 5B sirte, is zero-dimensional,
[Ho+Hy+ Eo+&at )N+ gt ) =0, i.e., a closed expressi&Pn.'I’o2 evaluateH, we use thaip has
(3.2)  an effective range-\"Y2 [cf. Eq. (3.1)], by truncating the
potential with hard walls aigp=+m{B/g. Discretizing the
resulting Dirichlet boundary value problem, the ground-state
energy £ is found by direct diagonalization, checking for
convergence both with respect to the grid spacingndm
=6,7,8,...21 Using the known error~A? of lowest-order
For the next and final relevant order, care is needed ”ﬂilscreUzatlon of[92 one can perform dhighly effective
identifying the effective wave function. Since probability Rjchardson extrapolatloﬁ(AlO) [48(A)-E(2A)]/3. The
should be conserved, 1// must  obey |¢r()( 0)|? resulting datanot shown confirm that the effective theory
=[de |¢(x, 0, )% in which ¢; cancels toO(L) by Egs. has an erro©(8%?).

(Ho-E0)thp=0 (3.19

i:IO: Ho, Eo=50,

if one sets

~ H ~
H1:_2: &1=6,,

N (3.22

Tﬂl: .
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TABLE I. The ground-state energy of a symmetric dc-SQUID, compared to the standard estifigte
which ignores inductance effects entirely, and to the prediction of the effective ti§eagcounting for
renormalization of the Josephson coupling and for self-flux. Special attention has been mpgid(at

¢x=/4, andB=0.02 to obtain the very smafl-& reliably. For ¢, =1, the zeroth-order problem reduces to
a free rotor, hencé,=2/vpg.

g bx B € o 3
40 T 0.32 0.471441 0.559017 0.463997
40 T 0.08 1.097919 1.118034 1.097038
40 T 0.02 2.231116 2.236068 2.231006
40 wl4 0.32 -1.057313 -1.076987 -1.059445
40 wl4 0.08 -0.503724 -0.517970 -0.503857
40 wl4 0.02 0.608463 0.600064 0.608456
1 wl4 0.32 2.998577 2.870307 2.996471
1 wl4 0.08 6.476253 6.405841 6.476015
1 wl4 0.02 13.513825 13.476908 13.513799

For a system with a non-trivial effective theory, considersmall-C dc-SQUIDs are commonly used as tunable com-
the symmetric dc-SQUID, H=—(4/g)(ail+z9$2)—cos¢1 pound junctions, and 3JJ qubits in an intermeditegime
—~COShy+ (1 + by~ b,)212. With fast and slow variables have also been considered recedfly.

b=+ do— by, XE%((ﬁl—QSZ) respectively, this becomes In summary, the transparent effective Hamiltonkrcan
be used with excellent accuracy also in many cases where the
8, 2, b+ &y s zeroth-ordeH, would be unsatisfactory. In the actual com-
H=- 5% - aﬂx —-2co T Cosy + Zg (3.27) putations, the advantages in speed and storage requirements

are evident; these will persist even when more sophisticated

algorithms are employed in the study of more complex de-

~ 2 2, 1 /B B oy vices. In particular, let us reemphasize that, while the mag-
H=—=—=- 5‘9;(‘ A1V, " 32 co cosx netic effects look small in the example of Table I, these ef-
Vg fects constitute 100% of the interaction energy for two

i ivel I ID- | .
B sir?(%)coszx. (3.28 inductively coupled SQUID-type loops

2

2 D. Comparison

In both Egs.(3.27) and(3.28, 27-periodic boundary condi-  |nductance effects in flux qubits have previously been
tions are imposed og. This is not the only possmle choice, stydied in Ref. 45 with the examples of loops containing
and corresponds to a zero offset charge in the two arms Qfne through three junctions. For one junction, the rf-SQUID,
the SQUID; for largey, the effect of this boundary condition  the two treatments are still largely equivalent and agree on
will be small. Observing that botd andH are even iny, the  the O(\L) contribution to the energjdue to the second term
even sectofcontaining the ground st&®@ can be treated as in Eq. (3.26)]; this presumably is the main reason for the
a Neumann boundary value problem o= @< 7. Further  improved agreement with numerics in their Figl)l In
details areas for the rf-SQUIE. O(L), the last term in Eq(5) gives the self-flux contribution

Some results are shown in Table I, together with the Stan;%L“(O))Z; howeven in the same order the renormalization
dard zeroth-order predictiaf, which results by dropping all  effect [third term in Eq.(3.26] is missing, because in the
correction terms in Eq(.3.282. In all cases, reducin@ by a  transition from Eq.(3) to Eg. (4), the Josephson potential
factor of 4 reduces the erréi—€ by at least a factor 0of~8,  was expanded to second instead of to the required fourth
as predicted. We note without explanation that §r40,  order inl.
¢=l4, this factor seems to be ratherl6, as if the next For loops with multiple junctions, several problems arise
O(B%?) correction were very small numerically or canceledin the treatment of Ref. 4. First, the physical role of the
altogether. In contrast,—& only goes down by a factor loop’s series capacitance is not identifi€as is most clearly
of ~2, except forg, =, in which case the effective theory seen in the third term of Eq9), written in terms of the
has a zero Josephson coupling so thatlts/8) renormal-  parallel capacitance@ (the appropriate effective mass for
ization does not matter. Still, even in the latter case the selfthe © coordinate while this term can be naturally expressed
flux term is nontrivial, so that a®(p) error renders’y less  as3(C/2)L22 [cf. Eq. (3.27]. Observing that the series ca-
accurate thaig. The last three rows emphasize that, in spitepacitance of the 3JJ qubit jg/(1+2a)]C would have un-
of this paper’s title, oul. expansion is not at all limited to covered the missing factcﬁ in the third term of Eq.(14),
the “flux-qubit” regimeg> 1. This is useful, since smadll;  which presently carries through to underestimatiggelow
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Eq. (16) by a factor \2—which is not detected in their used to seeing in charge-qubit Hamiltonians. Physically, they
Fig. 3(b) because the latter does not feature three-phasarise since, e.g.p,—A,By is not simply the self-flux of

numerics. loop a, but includes a mutual contributicf.

Second, the renormalization effect is not estimated cor- Two coupled 3JJ qubits can now be describe? by
rectly. The last term of Eq10) is neglected because it in- 3 5
volvesL?, which is small, without checking wheth&rcould H=> > [ Qe _ = COSfﬁic} +Hy, (4.5)
possibly be large. In fact, this term’s counterpart in E4. c=ab i=1 L 2Cic

yields the dominant correction in E). For three junctions,
the corresponding term is simply omitted from Ed5).
Note that their Fig. &) is given on such a scale, and for
such extremely smalB, that the apparent agreement with
numerics only verifies the zeroth-order result, which neve
was in doubt.

Third and most serious, the analysis is conceptually incor-
rect in averaging the dynamics of the fast variable over thé’y
dynamics of the slow ondéirst below Eq.(9)] instead of the — . ~pTAg.
other way round. In the final resul(§1) and(16), this leads Vo= Yo(Xa 0ai X o) ’ (4.6
(in our notation to a perturbative energy correction the inverse covariance matrid is found from ACTA
_%L<|(0>>2 instead of the proper %L((I“)))Z) (cf. Ref. 19. =L"1/64e*, with C=diagC,,C,) diagonal since the cou-
This is inconsistent with the classical limit of Sec. Il and Pling between the qubits is purely inductive. One obtains
underestimates the magnitude of the self-flux effect—most 1 _ A A
dramatically for the two lowest eigenstates of the degener- A = —C[CLJC]Y2(C, Exp= 4e2(i"+ i’)
ately biased 3JJ qubitf. our Fig. 2, where it would incor- 8¢? Ca GCo
rectly predict this effect to vanish entirely. See also the re- 4.7
mark on the coupled case in Sec. V.

with =2 #./2ein Eq.(4.4). This description is valid for
arbitrary inductances; the price to pay is that E45 in-
volves 6 DOF. Let us turn to the quantum expansion right
Away, limiting ourselves to outlining the proper generaliza-
tion of Sec. Ill.

In O(L™Y?), the anisotropic oscillator problem is solved

Since even X 2 matrix square roots are slightly tedious, we
leave A unevaluated in most formuldgf. Eq. (5.1)]. The
IV. TWO COUPLED QUBITS correlation (entanglement expressed by the Gaussian in
Eq. (4.6) seems physically reasonable: for, e.g., again two
Consider two SQUIDsa and b side by side. The direc- small loops on top of each other, deviations ®f;, from
tions of the fluxes have to be chosen consistently in eackach other should be even more strongly suppressed than
loop with respect to the external field, and their magnitude igleviations from®,.

given as In O(LY, one has
d-b,=1l, (4.7 - 2€2€¢TA¢V;’ e 2¢ A1y ¢e¢TA¢¢2 + e N, - &) %
where®=(d,,®,)T, etc., and where =0. (4.8
L= L, - M ) 4.2 Sincerﬁ hasT two components, one needs a double integral
\-M L ' fdp,dp, e ? 2% to cancel it, yielding a single solvability

) _ o _ condition formally equal to Eq.(3.8). However, in the
SO t_h_at the antiferromagnetic coupling is charactenze_d by Bresent case we additionally observe the decoupling
positive M. We can assume a homogeneous external field, so

that the applied fluxes,=(A,,A,) "By are proportional to Ho=Hoa+Hop [
the loop areag\,,. The magnetic energy can now be written
as’ Eo=CoatEop Yo = YoalXar 02) Yop(X0s Ob) - (4.9)
- Thus, the leading six-phase wave functigycan be strongly
Hyw = 5' L (4.3 entangled, while the leading four-phase op factorizes.
1 Subsequentlyy, is obtained analogously to E¢.6).
:E(q) -®)LYD - D) In O(LY4), one again finds;=0, while
5 ) CA™H© T
_ (q)a - Aan) + (q)b - Abe) s = ¢Tﬁ ‘/’(,)a'r/f(,)b + ‘//é()(a: 02 Xo» ab) g A

T 2L, (1K) 2L,(1-K)

M ((Da ~ Aan)(q)b - Abe) . .
+ LL(1-K) : (4.9 A Gaussian vector integral, followed by use of Hg.7),
a-b confirms the expectetp)=2el.l©.
where k*=M?/L,L,<1 will never (need td be assumed. In O(LY?), the correction toH takes the formH,¢2
The factorg® (1-k?)~* are often ignored, but should not be +H,,¢#? since Eq.(4.5) has no Josephson interactipuf. the
surprising given the nontrivial effective capacitances one isemark below Eq(4.6)]. This doesnot generate any interac-

(4.10
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tion when ¢ is integrated out with the entangled weight Q= (L,C,— LyCp)? + 4M2C,C,, (5.2)
T ! )
e24 24, 5o that

¥ = Y2a(Xar 0a) Yo (X O),  E2= Eat Eap,  (4.10)
1 | CG
(Hoa = Eoa) 2 + [Zlu(A_l)aaHza - 52a] Ya=0 (4.12 detA = 64e* V L,L,(1- k?)’ 53

and similarly for a<»h. One could proceed to solve for
i, but this will be omitted, since all that really matters is _
its relation to the effective wave function:/fz while (A1), follows by a«b. The second square root in

= [de, deby ¢4e—¢TA¢/ [dé, deby e 26"Ad Eqg. (5.1) has a positive argument becauge<1 (positive-
a a . .. — .
The next orde®(L¥%) again is comparatively uninterest- definiteness of..). Note that Eq.(5_.1) reduces tmal as in
ing, as it mainly justifies takings=y4=0. Eq. (3.2) for O — +(L,C,—Lx,Cp) (i.e., regardless of which

Finally, in O(L), everything can be combined, and the Of the uncoupled qubits has the lardet). o
effective Hamiltonian can be read off. Doing so leads to the AS already seen in Sec. Ill C, the expansion involves

central result of this paper, two different dimensionless parameters—as expected in a
_ ) system with Coulomb, Josephson, and magnetic energies.
H = Hg, + Hgo = 3(1)TLI, (4.13  “Classical” self-flux effects go akl?/E,~ 8. On the other

hand, from Eq(3.26) one reads off that the “quantum” zero-
point effects go ag?\|L/C~\"t~Ec/w . Thus, the former
(latten parameter does not contain the chargidgsephson
&)Z(A_l)cc N (&)4(/\_1)&} energy, which is also the reason why, to the given order, their
Cic 8 Cic 128 contributions are separated in the final results. In particular,
for comparatively large junctions and not too small area, the

whereH(,, H{, are as in Eq(2.15 (with ¢,.=2eAB,), ex-
cept for the renormalizations

Eic— Ei,c = Eic|:1 _<

(c=a,b). (4.149  O(L) self-flux effect could dominate over th@(\L) renor-
malization within the domain of validity of our expansion—
V. DISCUSSION as was implicitly used in Fig. 1. However, in the experiments

for which all parameters are available, one %as

Let us first of all return to this paper’s motivation. In a (LIC/QJO,eZ\"m):(O.OOS,0.015 and334 (0.007, 0.02 re-
classical potential, such as in Fig. 1, inductance effects argpectively, so that, if anything, the renormalization effect
typically on the order of a few percent. However, this is dominates.
compared to the Josephson coupling, i.e., to a typical tunnel- Extension to>2 qubits, using the same vector notation, is
ing barrier. For two coupled 3JJ qubits, the magnetic inter-immediate. It is hoped that the methods presented will have
action energy may well be comparable to the turspditting,  additional use in other devices with near-constrained vari-
so nontrivial interplaj* between the two is expected, gples.
prompting the present systematic derivation. . Note added in prooflLet us finally raise a question

One can view Eq(4.13 in at least two ways. Experimen- gjightly beyond this paper's scope, about the proper form of
tally, the bare couplingk;; will usually be unknown and the  the two-level approximation for multi-flux-qubit systems.
diagonal contributions from the last term may be comparaThe conventional approach is to determine a two-level
tively small. In that case, most interesting will be the inter-single-qubit Hamiltonian involving both bias and tunneling
action M1 (xa, 6211 (xb, 6y), derived with the antiferro- terms, and subsequently add interactions involving products
magnetic sign without any remaining ambiguity. Also, this of Pauli matrices. However, the free and coupled systems are
interaction is given in terms of explicitly known current op- simply different, and therefore tunneling amplitudes should
erators so that, in, e.g., the two-leveubit) approximation,  properly be evaluated using the interacting multi-qubit po-
one hasH;=M|l[|[l|c%af in the flux basis without addi- tential. The simplest case consists of two inductively coupled
tional handwaving. Contrast Ref. 4, where improper averagrf-SQUIDs, having a two-dimensional potential landscape.
ing of the I©”s would have led to<H>:~~+M<I;°)><If)°)>, For the qubit approximation to this system, one should cal-
which for instance vanishes for all four two-qubit Bell states.culate the four lowest states in this potential. The resulting

On the other hand, for detailed numerical comparison beeffective Hamiltonian may well contain, e.g., a direct
tween the four- and six-phase theories, every last bit of pali1)«<>|]|) tunneling amplitude—a transition which is
rameter dependence needs to be made explicit. Therefore, wecond-order in the conventional approach. To study this
take the square root in E¢4.7) in the eigenbasis, yielding question for 3JJ qubits, it is vital to have a well-defined

o5e? Lo L.C interactionoperator, as derived in this paper.
(A_l)aa: v |:(1 y-aza b b) \s”LaCa+ LyCp+ Q
Ca Q

| thank M.H.S. Amin(who also pointed out the exception
L e oLc in Ref. 30, A.J. Berkley, M. Grajcar, J.F. Ralph, G. Rose,
bvb"Laba|l T~ T~ _ o M.F.H. Steininger, M.C. Thom, J.Q. You, and A.M. Zagoskin
+l1+——y + - ) : _ ) X
(1 Q )NLaCa LoCo Q} 5.3 for fruitful discussions and comments on the manuscript.
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