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An effective Hamiltonian is derived for two coupled three-Josephson-junctions3JJd qubits. This is not quite
trivial, for the customary “free” 3JJ Hamiltonian is written in the limit of zero inductanceL. Neglecting the
self-flux is already dubious for one qubit when it comes to readout, and becomes untenable when discussing
inductive coupling. First, inductance effects are analyzed for a single qubit. For smallL, the self-flux is a “fast
variable,” which can be eliminated adiabatically. However, the commonly used junction phases arenot appro-
priate “slow variables,” and instead one introduces degrees of freedom that are decoupled from the loop current
to leading order. In the quantum case, the zero-point fluctuationssLC oscillationsd in the loop current diverge
as L→0. While their effect thus formally dominates over the classical self-flux, it merely renormalizes the
Josephson couplings of the effectivestwo-phased theory. In the coupled case, the strong zero-point fluctuations
render the fullssix-phased wave function significantly entangled in leading order. However, in going to the
four-phase theory, this uncontrollable entanglement is integrated out completely, leaving a computationally
usable mutual-inductance term of the expected form as the effective interaction.

DOI: 10.1103/PhysRevB.71.064503 PACS numberssd: 85.25.Cp, 85.25.Dq

I. INTRODUCTION

A commonly considered flux qubit consists of a supercon-
ducting loop with three Josephson junctions—a 3JJ qubit.1

One readily writes down its Hamiltonian,2

H = o
i=1

3 F Qi
2

2Ci
− Ei cosfiG +

sf1 + f2 + f3 − fxd2

8e2L
, s1.1d

in units with"=1, and with the external flux biasFx given in
phase units,

fx = 2eFx. s1.2d

As long as one neglects gate capacitors, etc., theCi are sim-
ply the junction capacitances: for finite inductanceL, the
redistribution of charges following a tunneling event, often
accounted for by an effective capacitance matrix, is not in-
stantaneoussi.e., all three junction charges and phases are
independent dynamical variablesd.3

The essence of the 3JJ design is to introduce bistability
without relying on magnetic energy so that the superconduct-
ing quantum interference devicesSQUIDd loop can be kept
small. ForL→0, the last term in Eq.s1.1d implements the
constraintf3=fx−f1−f2. This leads to an effective two-
phase theory,

H3JJ=
1
2QW TC−1QW − E1 cosf1 − E2 cosf2

− E3 cossfx − f1 − f2d, s1.3d

C = SC1 + C3 C3

C3 C2 + C3
D , s1.4d

with QW =sQ1,Q2dT fcf. Eq. s4d in Ref. 1, bearing in mind that
f1 andf2 have the opposite relative sign thereg.

When scaling to circuits with more than one qubit,
the question arises how to generalize the effective Hamil-
tonian s1.3d. Unfortunately, repeating the above reduction

merely yields uncoupled 3JJ Hamiltonians. Clearly, by ne-
glecting self-inductances entirely one has missed the effect
of mutual inductanceswhich can never be largerd, respon-
sible for qubit-qubit interaction and ultimately entanglement.
This can be turned into an advantage: most of the analysis
can be done by studyingonequbit to higher order inL than
usual, after which two qubits require only a straightforward
generalization.

This is taken up in Sec. II on the level of classical Kirch-
hoff scircuitd equations. Section III is devoted to the quantum
case. Rather than merely confirming the classical result or
resolving operator-ordering ambiguities, one finds an addi-
tional physical effect: zero-point fluctuations in the loop cur-
rent wash outsrenormalized the effective Josephson cou-
plings. The results are verified numerically and critically
compared to a previous attempt.4 Section IV contains the
generalization to two qubits; it is seen that the four-phase
wave function is entangled only in considerably higher order
in the inductance than the six-phase one. This integrating out
of uncontrollable entanglement may indicate that the effec-
tive theory is not merely computationally convenient, but
also physically appropriate. Some concluding remarks are
made in Sec. V.

For smallL, self-fluxes vanish but persistent currents re-
main finite, so that the latter are often more convenient.
When studying dynamics, etc., one needs the currentopera-
tor sas opposed to, say, the ground-state expectation5d, which
is not readily available in the growing literature on the 3JJ
qubit. Preliminary to theL expansion proper, it will now be
derived quantum-mechanically in both the three- and two-
phase theories, which has some independent interest. In fact,
one merely needs to add the capacitive and Josephson con-
tributions. In the three-phase theory, one has6

I i = − Ici sinfi − Q̇i , s1.5d

with Ici ;2eEi and
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Qi =
2e

i

]

]fi
. s1.6d

Then, from Eq.s1.1d,

Q̇i = fH, iQig =
fx − o j

f j

2eL
− Ici sinfi ⇒ s1.7d

I i =
o j

f j − fx

2eL
. s1.8d

That is, I i = I independent ofi as expected; contrast, e.g.,
arbitrarily picking the Josephson current through one of the
junctions.

For L→0, Eq. s1.8d tends to0
0 and a separate derivation

from Eq.s1.3d is needed. In this case, however, the canonical
variableQ1 is not simply the charge on capacitor 1sindeed,
two Q’s have to account for threeC’sd; to find the latter, we
setC−1= s p r

r q
d and evaluate

ḟ1 = if 1
2pQ1

2 + rQ1Q2,f1g = 2espQ1 + rQ2d. s1.9d

Hence,

I1
s0d = −

C1

2e
f̈1 − Ic1 sinf1

= sC1p − 1dIc1 sinf1 + C1rI c2 sinf2

− C1sp + rdIc3 sinsfx − f1 − f2d

= − CF Ic1

C1
sinf1 +

Ic2

C2
sinf2 +

Ic3

C3
sinsfx − f1 − f2dG ,

s1.10d

an appealing and manifestly symmetric formI1
s0d= I s0d, in-

volving the loop’s series capacitanceC−1=C1
−1+C2

−1+C3
−1.

Interestingly, the junction areaki cancels from Eq.s1.10d: if,
as is often assumed,Ici ~Ci ~ki swith material-dependent
constants of proportionalityd, then the three sines have equal
prefactors.

II. CLASSICAL ANALYSIS

The Hamilton equations

ḟi = 2e
]H

]Qi
, Q̇i = − 2e

]H

]fi
s2.1d

yield the classical dynamics of the systems1.1d.7 The last
term inH represents a steep and narrow well, so one expects

f ; f1 + f2 + f3 − fx s2.2d

to be small and rapidly oscillating, while the other variables
can have excursions of order one but move comparatively
slowly—ideal for adiabatic elimination off. However, from
Eq. s2.1d one finds, e.g.,C1f̈1=−f /L−2eIc1 sinf1, so that
determination of thef1 dynamics toOsLd apparently in-
volves thef dynamics toOsL2d, rendering theL expansion
quite tedious.

To see what went wrong, consider the rough analogy of a
two-dimensional electron gas, where excursions away from
the x-y plane carry a large penalty in energy. It is intuitively
clear that the fast oscillations in the corresponding potential
well occur predominantly in thez direction, orthogonal to the
easy plane. While the latter plane is uniquely defined by the
potential, in our case “orthogonal” involves the anisotropic
capacitance matrix as wellswhich thus can be said to induce
a metricd. It is not difficult to scale the phases such that the

charging term is~QW TQW sin terms of athree-vectorQW ; in the
quantum case, this yields a charging term~−¹2d, upon
which the proper coordinates are found by rotation. How-
ever, full orthonormalization turns out to be overkill, and the
resulting tedious formulas are hard to interpret; crucial is
only that the slow coordinatesx, u are constant along the fast
direction sf1,f2,f3d=sC1

−1,C2
−1,C3

−1d. This is readily
achieved; the easiest seems8

1 x

u

f + fx
2 = 11 0 − C3/C1

0 1 − C3/C2

1 1 1
21f1

f2

f3
2 ⇒ s2.3d

1f1

f2

f3
2 = C1C2

−1 + C3
−1 − C1

−1 C1
−1

− C2
−1 C1

−1 + C3
−1 C2

−1

− C3
−1 − C3

−1 C3
−121

x

u

f + fx
2 .

s2.4d

The Kirchhoff equations become

C1ẍ

2e
= Ic3 sinf3 − Ic1 sinf1, s2.5d

C2ü

2e
= Ic3 sinf3 − Ic2 sinf2, s2.6d

1

2e
Sf̈ +

f

LC
D = −

Ic1

C1
sinf1 −

Ic2

C2
sinf2 −

Ic3

C3
sinf3,

s2.7d

where thefi’s on the right-hand side are simply shorthand
for the linear combinations in Eq.s2.4d. Indeed, the terms
,L−1 have canceled in Eqs.s2.5d ands2.6d. For an interpre-

tation, note thatẍ~C1Q̇1−C3Q̇3 describes the charging of
the islandbetween junctions 1 and 3; unlike the charging of,
e.g.,capacitor1, ẍ thus has no net direct contribution from
the loop current, and is affected by it only indirectlyfin
OsLdg through the flux-quantization condition.

In these variables, theL expansion to the required order is
almost trivial. InOsL0d, one simply setsf=0 in Eqs.s2.5d
ands2.6d, which is readily verified to yield dynamics equiva-
lent to Eq.s1.3d. In OsLd, f can be neglected on the right-
hand side of Eq.s2.7d because it does not occur with a large
coefficient. The leading adiabatic solution is then

f = 2eLIs0dsx,ud, s2.8d

or explicitly I s0dsx ,u ,f=0d in Eq. s1.10d. Subsequently,
Eq. s2.8d can be substituted into the right-hand sides of
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Eqs.s2.5d ands2.6d, yielding a self-contained dynamical sys-
tem with two degrees of freedom.

In preparation for the quantum analysis, it is instructive to
also consider a canonical formulation. The Lagrangian reads

Lsx,u,fd = o
i=1

3
Ciḟi

2

8e2 − V s2.9d

=
C

8e2FSC1

C2
+

C1

C3
Dẋ2 − 2ẋu̇ + SC2

C1
+

C2

C3
Du̇2 + ḟ2G − V,

s2.10d

in which one is to substitute Eq.s2.8d for f. The transforma-
tion s2.3d has achieved that Eq.s2.10d does not containẋḟ or

u̇ḟ. Such terms, whichdo occur in Lsf1,f2,fd, would in
OsLd result in an extremely unpleasant phase-dependent ca-
pacitance matrix in the effective Lagrangiansor Hamil-
toniand. However, in Eq.s2.10d with Eq. s2.8d, ḟ2sx ,ud is
OsL2d, hence, negligible for thesx ,ud dynamics. The effec-
tive Hamiltonian follows fromQx=2e]L /]ẋ, etc., as

Hsx,u;Qx,Qud ;
Qxẋ + Quu̇

2e
− L s2.11d

=
1

2
F 1

C1
S1 +

C3

C1
DQx

2 +
2C3

C1C2
QxQu +

1

C2
S1 +

C3

C2
DQu

2G + V.

s2.12d

The potentialV merits closer inspection: toOsLd,

Vsx,ud = UJsx,u,f = 0d +U ]UJ

]f
U

f=0
fsx,ud +

f2sx,ud
8e2L

.

s2.13d

Using Eq. s2.4d to perform the differentiation in the
second term explicitlyat constantx,u, one finds]fUJu0
=−I s0dsx ,ud /2e.9 Substituting Eq. s2.8d for fsx ,ud, this
means that this term inverts the sign of the third term,10

yielding

Hsx,u;Qx,Qud = H0 −
L

2
I s0dsx,ud2, s2.14d

H0 =
1

2
F 1

C1
S1 +

C3

C1
DQx

2 +
2C3

C1C2
QxQu +

1

C2
S1 +

C3

C2
DQu

2G
− E1 cosFCHS 1

C2
+

1

C3
Dx −

u

C1
+

fx

C1
JG

− E2 cosFCH−
x

C2
+ S 1

C1
+

1

C3
Du +

fx

C2
JG

− E3 cosF C

C3
hfx − x − ujG . s2.15d

Here, H0 plays the role ofH3JJ in sx ,ud coordinates. The
combination of “Josephson” and “inductive” corrections in
Eq. s2.14d would not have occurred in, say,sf1,f2,fd,

where, thus, an awkward potential term would have compen-
sated an awkward charging termfcf. below Eq.s2.10dg. The
sign-flipping of the magnetic term has also been observed
around Eq.s2d in Ref. 11, though not in terms of the detailed
current operatorI s0d in Eq. s1.10d. Thus, the semiclassical
analysis in Ref. 10 seems a valid approximation for station-
ary currents in the low-lying qubit states.

BecauseH is invariant, one can here and in the following
increase the similarity to the conventional treatment
by introducing fI 1=ChsC2

−1+C3
−1dx−u /C1+fx /C1j and

fI 2=Ch−x /C2+sC1
−1+C3

−1du+fx /C2j, so that formally

H0sfWId=H3JJsfW d. Since comparison to Eqs.s2.4d and s2.8d
shows thatfI 1,2 do not coincide with the junction phases to
OsLd, this formulation is not very useful in derivations.

However, in terms offWI, the double periodicity ofV and any
additional symmetries are expressed conveniently, which
may be effective numericallyfcf. below Eq.s3.28dg. Figure 1
shows both the zeroth-order potentialV0 and the correctedV
of Eq. s2.13d, for standard parametersE1=E2, C1=C2, and
a;E3/E1=C3/C1=0.8. In this caseV0sfI 1,fI 2d=V0sfI 2,fI 1d,
which is preserved inV. Since we have chosen a degenerate
bias fx=p, one also hasVs0dsfI 1,fI 2d=Vs0ds−fI 1,−fI 2d.
The small self-flux has a clear physical effect:sI s0dd2

=¹fWI
sI s0dd2=0 for fWI

TP hs0,0d ,s0,pd ,sp ,0dj by symmetry,
so both the location and the height of all saddle points
are unchanged.12 Since clearly −12LsI s0dd2,0 in the wells,
both the “easy”sintra-d and “hard” sintercelld barriers are
increased, and this term’s suppression of the tunneling
amplitude may not always be negligible. Finally, the lines
fI 1+fI 2=p smod 2pd, which are straight equipotentials13

through the intercell saddle points ofV0, cease to play this
role in V.

III. QUANTUM ANALYSIS

A. Expansion of the Schrödinger equation

In quantum mechanics, one can advantageously use the
same variabless2.3d, avoiding ]x]f and ]u]f in Eq. s3.2d
below. The large inductive term in Eq.s1.1d for H now
causes the system to remain in its ground state with respect
to f. To leading order this is a harmonic-oscillator ground
statec,e−lf2

, and one readily finds

l =
1

8e2ÎC

L
. s3.1d

This unfortunately means that formallyf,L1/4 s]f,L−1/4d
and strikingly I ,L−3/4. Hence, the expansion toOsLd will
turn out to be sixth order while it was first order in Sec. II,
and keeping the calculation organized is essential. Since it
suffices to study the time-independent problem, the expan-
sion will be analogous to, e.g., fast-variable elimination in
sFokker-Planckd diffusion operators.14

Using Eqs.s1.6d and s2.3d in Eq. s1.1d, in the eigenvalue
equationsH−Edc=0 we expand

H = −
2e2

C
]f

2 +
f2

8e2L
+ H0 + H1f + H2f2 + ¯ , s3.2d
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E = Ezp + E0 + E1 + ¯ , s3.3d

c = c0 + c2 + ¯ , s3.4d

with the zero-point energyEzp,L−1/2 and H0 as in
Eq. s2.15d, with Ei, ci ,Li/4, and where we have been able to
omit an L−1/4 sL1/4d term in E scd from the outset because
H does not have anL−1/4 term. One hasHn= us1/n!d]f

n u0UJ

for nù1, and because the calculation below Eq.s2.13d
is just as valid in quantum as in classical mechanics,
H1=−I s0dsx ,ud /2e.

In OsL−1/2d, one has

F−
2e2

C
]f

2 +
f2

8e2L
− EzpGc0 = 0 ⇒ s3.5d

c0sx,u,fd = c08sx,ude−lf2
, Ezp =

1

2ÎLC
, s3.6d

the obvious answer for zero-point fluctuations of the loop
current.

One can use Eq.s3.6d to factorize the operator in brackets
in Eq. s3.5d. In OsL0d, this leads to

−
2e2

C
elf2

]ffe−2lf2
]fself2

c2dg + sH0 − E0dc08e
−lf2

, s3.7d

where one can commute e−lf2
through H0−E0. Operating

with edf e−lf2
, the first term vanishes, so that one obtains

the solvability condition

sH0 − E0dc08 = 0, s3.8d

equivalent to the standard 3JJ theorys1.3d. Substitution back
into Eq.s3.7d renders the latter identical to the leading order,
so that

c2sx,u,fd = c28sx,ude−lf2
. s3.9d

Proceeding toOsL1/4d, one has

−
2e2

C
elf2

]ffe−2lf2
]fself2

c3dg + S−
I s0d

2e
f − E1Dc08e

−lf2
= 0,

s3.10d

for a solvability condition

E1 = 0 s3.11d

because the term~I s0df cancels by parity. This term does,
however, contribute toc3 itself,15

c3sx,u,fd = FCIs0dc08

16e3l
f + c38sx,udGe−lf2

, s3.12d

where the first term in square brackets is readily verified to
shift the center of the Gaussian in Eq.s3.6d to16 kflx,u in
accordance with Eq.s2.8d.

In OsL1/2d, one obtains the first nontrivial solvability
condition,17

sH0 − E0dc28 + SH2

4l
− E2Dc08 = 0, s3.13d

where the prefactor is obtained asedf f2e−2lf2

=s4ld−1edf e−2lf2
. While we are only expanding the linear

Schrödinger equation, it apparently “knows” that the proper

FIG. 1. The zeroth-order potentialV0 sad and the first-order potentialV sbd, for a=0.8 andfx=p. In sbd, we also usee2LE1=0.3. The
contours correspond toVs0d /E1=−1.42, −1.3, −1.2s=a−2d, −1, −0.8s=−ad, −0.5, 0.5, 1.5, and 2.5, the latter encircling the maximum at
fI 1=fI 2=p. The wellsV0s±fI * , ± fI * d /E1=−a−1/2a=−1.425 atfI * =arccoss1/2ad<0.8957 are shifted toVs±jI * , ± jI * d /E1<−1.7983 at
jI * <0.9602. While the shifts in well location thus are appreciable, just evaluating the persistent current in the unshifted ones, i.e.,
Vs±fI * , ± fI * d /E1=−a−1/2a−e2LE1s2−1/2a2d<−1.7906, gives a good estimate of the well depth.
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statistical weight isuc0u2 not c0. The correction toc follows
as

c4sx,u,fd = F−
CH2c08

16e2l
f2 + c48sx,udGe−lf2

. s3.14d

In OsL3/4d, the solvability condition reads

sH0 − E0dc38 − E3c08 = 0, s3.15d

apparently posing the obstacle that bothc38 and E3 are un-
known in this order. However, one can operate with
edx du sc08d* and use Eq.s3.8d, yielding

E3 = 0 s3.16d

andc38~c08, so that

c38 = 0 s3.17d

is a convenient choice of normalization. Determination ofc5
presents no problems, but is not required.

Finally, one arrives atOsLd, finding a solvability condi-
tion

sH0 − E0dc48 − e2LsH0 − E0dH2c08 −
L

2
sI s0dd2c08 + SH2

4l
− E2Dc28

+ S12e4L

C
H4 − E4Dc08 = 0. s3.18d

What remains is to interpret this in terms of an effective
two-phase Schrödinger equation.

B. Effective theory

While odd powers inL1/4 were important in the above,
most clearly throughI s0d in Eq. s3.12d implementing the
quantum counterpart of Eq.s2.8d, they cancel in final results,
such as Eqs.s3.11d ands3.16d, by f parity. What emerges is
a two-phase theory involving an expansion in terms ofÎL in
which the zero-point motions3.5d is absent, the leading order
being simply

sH̃0 − Ẽ0dc̃0 = 0, s3.19d

H̃0 = H0, Ẽ0 = E0, c̃0 = c08. s3.20d

Subsequently, Eq.s3.13d is recognized as the first-order part
of

fH̃0 + H̃1 + ¯ − sẼ0 + Ẽ1 + ¯ dgsc̃0 + c̃1 + ¯ d = 0,

s3.21d

if one sets

H̃1 =
H2

4l
, Ẽ1 = E2, c̃1 = c28. s3.22d

For the next and final relevant order, care is needed in
identifying the effective wave function. Since probability

should be conserved, c̃ must obey uc̃sx ,udu2
=edf ucsx ,u ,fdu2, in which c3 cancels toOsLd by Eqs.

s3.12d and s3.17d. Combining Eqs.s3.4d, s3.6d, s3.9d, and
s3.14d, one has

uc08u
2 + 2 Refsc08d

*c28g + uc28u
2 + 2 Refsc08d

*c48g − 2e2LH2uc08u
2

+ OsL3/2d = uc̃0 + c̃1 + c̃2 + ¯ u2, s3.23d

which is satisfied by

c̃2 = c48 − e2LH2c08. s3.24d

Substituting this into Eq.s3.18d, the latter is identified as the
second order18 of Eq. s3.21d, with19

Ẽ2 = E4, H̃2 =
12e4L

C
H4 −

L

2
sI s0dd2. s3.25d

Combining the above, one sees that the effective quantum

HamiltonianH̃ again has the forms2.14d, but with renormal-
ized Josephson couplings

Ei ° Ei8 = EiS1 −
e2ÎLC3

Ci
2 +

e4LC3

2Ci
4 D . s3.26d

To this order, the latter is exactly what one would

expect from a Gaussian averaging ŨJsx ,ud
=edf e−2lf2

UJsx ,u ,fd /edf e−2lf2
: the zero-point fluctua-

tions in f behave as uncertainty infx in Eq. s2.15d, which
washes out the Josephson potential. The systematic expan-
sion is not prejudiced about “Josephson” versus “inductive”
contributions to the energy, and instead directly provides a

term −1
2LsI s0dd2 to H̃ with the correct sign.

C. Numerics

To test the above analysis numerically, introduce the di-
mensionless inductanceb=2pLIc/F0=4e2LE1 sF0 is the
flux quantumd and g=E1/EC swith the charging energy
EC=e2/2C1d, and measure all energies in unitsE1. Evalua-
tion of theL-expansion is only meaningful forb,1, andb
should be varied by at least an order of magnitude. These
imply that for some of our parameter values, the energy lev-
els of the full and effective theories will be very close.
Hence, we focus on the simplest junction systemssto which
the above for the 3JJ qubit is readily adaptedd, stressing ac-
curacy rather than generality.

First, consider the rf-SQUID,H=−s4/gd]f
2 −cossf+fxd

+f2/2b, for which the effective H̃=Î2/bg
−s1−Îb /2g+b /4gdcosfx− 1

2b sin2fx is zero-dimensional,
i.e., a closed expression.20 To evaluateH, we use thatf has
an effective range,l−1/2 fcf. Eq. s3.1dg, by truncating the
potential with hard walls atf= ±mÎ4b /g. Discretizing the
resulting Dirichlet boundary value problem, the ground-state
energyE is found by direct diagonalization, checking for
convergence both with respect to the grid spacingD andm
=6,7,8, . . ..21 Using the known error,D2 of lowest-order
discretization of]f

2, one can perform ashighly effectived
Richardson extrapolationEsD↓0d<f4EsDd−Es2Ddg /3. The
resulting datasnot shownd confirm that the effective theory
has an errorOsb3/2d.
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For a system with a non-trivial effective theory, consider
the symmetric dc-SQUID, H=−s4/gds]f1

2 +]f2

2 d−cosf1

−cosf2+sf1+f2−fxd2/2b. With fast and slow variables
f;f1+f2−fx, x; 1

2sf1−f2d respectively, this becomes

H = −
8

g
]f

2 −
2

g
]x

2 − 2 cosSf + fx

2
Dcosx +

f2

2b
, s3.27d

H̃ =
2

Îbg
−

2

g
]x

2 − 2S1 −
1

4
Îb

g
+

b

32g
DcosSfx

2
Dcosx

−
b

2
sin2Sfx

2
Dcos2 x. s3.28d

In both Eqs.s3.27d ands3.28d, 2p-periodic boundary condi-
tions are imposed onx. This is not the only possible choice,
and corresponds to a zero offset charge in the two arms of
the SQUID; for largeg, the effect of this boundary condition

will be small. Observing that bothH andH̃ are even inx, the
even sectorscontaining the ground state22d can be treated as
a Neumann boundary value problem on 0øxøp. Further
details areas for the rf-SQUID.23

Some results are shown in Table I, together with the stan-
dard zeroth-order predictionE0, which results by dropping all
correction terms in Eq.s3.28d. In all cases, reducingb by a

factor of 4 reduces the errorẼ−E by at least a factor of,8,
as predicted. We note without explanation that forg=40,
fx=p /4, this factor seems to be rather,16, as if the next
Osb3/2d correction were very small numerically or canceled
altogether. In contrast,E0−E only goes down by a factor
of ,2, except forfx=p, in which case the effective theory
has a zero Josephson coupling so that itsOsÎbd renormal-
ization does not matter. Still, even in the latter case the self-
flux term is nontrivial, so that anOsbd error rendersE0 less

accurate thanẼ. The last three rows emphasize that, in spite
of this paper’s title, ourL expansion is not at all limited to
the “flux-qubit” regimeg@1. This is useful, since small-L,

small-C dc-SQUIDs are commonly used as tunable com-
pound junctions, and 3JJ qubits in an intermediate-g regime
have also been considered recently.24

In summary, the transparent effective HamiltonianH̃ can
be used with excellent accuracy also in many cases where the
zeroth-orderH0 would be unsatisfactory. In the actual com-
putations, the advantages in speed and storage requirements
are evident; these will persist even when more sophisticated
algorithms are employed in the study of more complex de-
vices. In particular, let us reemphasize that, while the mag-
netic effects look small in the example of Table I, these ef-
fects constitute 100% of the interaction energy for two
inductively coupled SQUID-type loops.

D. Comparison

Inductance effects in flux qubits have previously been
studied in Ref. 4,25 with the examples of loops containing
one through three junctions. For one junction, the rf-SQUID,
the two treatments are still largely equivalent and agree on
theOsÎLd contribution to the energyfdue to the second term
in Eq. s3.26dg; this presumably is the main reason for the
improved agreement with numerics in their Fig. 1sbd. In
OsLd, the last term in Eq.s5d gives the self-flux contribution
−1

2LsI s0dd2; however, in the same order the renormalization
effect fthird term in Eq.s3.26dg is missing, because in the
transition from Eq.s3d to Eq. s4d, the Josephson potential
was expanded to second instead of to the required fourth
order in I.

For loops with multiple junctions, several problems arise
in the treatment of Ref. 4. First, the physical role of the
loop’s series capacitance is not identified,26 as is most clearly
seen in the third term of Eq.s9d, written in terms of the
parallel capacitance 2C sthe appropriate effective mass for
theQ coordinated while this term can be naturally expressed

as 1
2sC/2dL2İ2 fcf. Eq. s3.27dg. Observing that the series ca-

pacitance of the 3JJ qubit isfa / s1+2adgC would have un-
covered the missing factor12 in the third term of Eq.s14d,
which presently carries through to underestimatingv0 below

TABLE I. The ground-state energyE of a symmetric dc-SQUID, compared to the standard estimateE0,

which ignores inductance effects entirely, and to the prediction of the effective theoryẼ, accounting for
renormalization of the Josephson coupling and for self-flux. Special attention has been paid atg=40,

fx=p /4, andb=0.02 to obtain the very smallẼ−E reliably. Forfx=p, the zeroth-order problem reduces to
a free rotor, henceE0=2/Îbg.

g fx b E E0 Ẽ
40 p 0.32 0.471441 0.559017 0.463997

40 p 0.08 1.097919 1.118034 1.097038

40 p 0.02 2.231116 2.236068 2.231006

40 p /4 0.32 −1.057313 −1.076987 −1.059445

40 p /4 0.08 −0.503724 −0.517970 −0.503857

40 p /4 0.02 0.608463 0.600064 0.608456

1 p /4 0.32 2.998577 2.870307 2.996471

1 p /4 0.08 6.476253 6.405841 6.476015

1 p /4 0.02 13.513825 13.476908 13.513799
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Eq. s16d by a factor Î2—which is not detected in their
Fig. 3sbd because the latter does not feature three-phase
numerics.

Second, the renormalization effect is not estimated cor-
rectly. The last term of Eq.s10d is neglected because it in-

volvesL2, which is small, without checking whetherĨ2 could
possibly be large. In fact, this term’s counterpart in Eq.s4d
yields the dominant correction in Eq.s5d. For three junctions,
the corresponding term is simply omitted from Eq.s15d.
Note that their Fig. 2sbd is given on such a scale, and for
such extremely smallb, that the apparent agreement with
numerics only verifies the zeroth-order result, which never
was in doubt.

Third and most serious, the analysis is conceptually incor-
rect in averaging the dynamics of the fast variable over the
dynamics of the slow onesffirst below Eq.s9dg instead of the
other way round. In the final resultss11d ands16d, this leads
sin our notationd to a perturbative energy correction
−1

2LkI s0dl2 instead of the proper −12LksI s0dd2l scf. Ref. 19d.
This is inconsistent with the classical limit of Sec. II and
underestimates the magnitude of the self-flux effect—most
dramatically for the two lowest eigenstates of the degener-
ately biased 3JJ qubitscf. our Fig. 1d, where it would incor-
rectly predict this effect to vanish entirely. See also the re-
mark on the coupled case in Sec. V.

IV. TWO COUPLED QUBITS

Consider two SQUIDsa and b side by side. The direc-
tions of the fluxes have to be chosen consistently in each
loop with respect to the external field, and their magnitude is
given as

F − Fx = LI , s4.1d

whereF=sFa,FbdT, etc., and where

L = S La − M

− M Lb
D s4.2d

so that the antiferromagnetic coupling is characterized by a
positiveM. We can assume a homogeneous external field, so
that the applied fluxesFx=sAa,AbdTBx are proportional to
the loop areasAa,b. The magnetic energy can now be written
as27

HM =
1

2
I TLI s4.3d

=
1

2
sF − FxdTL−1sF − Fxd

=
sFa − AaBxd2

2Las1 − k2d
+

sFb − AbBxd2

2Lbs1 − k2d

+
MsFa − AaBxdsFb − AbBxd

LaLbs1 − k2d
, s4.4d

where k2;M2/LaLb!1 will never sneed tod be assumed.
The factors28 s1−k2d−1 are often ignored, but should not be
surprising given the nontrivial effective capacitances one is

used to seeing in charge-qubit Hamiltonians. Physically, they
arise since, e.g.,Fa−AaBx is not simply the self-flux of
loop a, but includes a mutual contribution.29

Two coupled 3JJ qubits can now be described by30

H = o
c=a,b

o
i=1

3 F Qic
2

2Cic
− Eic cosficG + HM, s4.5d

with Fc=oi=1
3 fic /2e in Eq. s4.4d. This description is valid for

arbitrary inductances; the price to pay is that Eq.s4.5d in-
volves 6 DOF. Let us turn to the quantum expansion right
away, limiting ourselves to outlining the proper generaliza-
tion of Sec. III.

In OsL−1/2d, the anisotropic oscillator problem is solved
by

c0 = c08sxa,ua;xb,ubde−fTLf; s4.6d

the inverse covariance matrixL is found from LC−1L
=L−1/64e4, with C;diagsCa,Cbd diagonal since the cou-
pling between the qubits is purely inductive. One obtains

L =
1

8e2
ÎCfÎCLÎCg−1/2ÎC, Ezp = 4e2SLaa

Ca
+

Lbb

Cb
D .

s4.7d

Since even 232 matrix square roots are slightly tedious, we
leave L unevaluated in most formulasfcf. Eq. s5.1dg. The
correlation sentanglementd expressed by the Gaussian in
Eq. s4.6d seems physically reasonable: for, e.g., again two
small loops on top of each other, deviations ofFa,b from
each other should be even more strongly suppressed than
deviations fromFx.

In OsL0d, one has

− 2e2efTLf¹f
T e−2fTLfC−1¹fefTLfc2 + e−fTLfsH0 − E0dc08

= 0. s4.8d

Since¹f
T has two components, one needs a double integral

edfa dfb e−fTLf to cancel it, yielding a single solvability
condition formally equal to Eq.s3.8d. However, in the
present case we additionally observe the decoupling

H0 = H0a + H0b ⇒

E0 = E0a + E0b, c08 = c0a8 sxa,uadc0b8 sxb,ubd. s4.9d

Thus, the leading six-phase wave functionc0 can be strongly
entangled, while the leading four-phase onec08 factorizes.
Subsequently,c2 is obtained analogously to Eq.s4.6d.

In OsL1/4d, one again findsE1=0, while

c3 = FfT
CL−1I s0d

16e3 c0a8 c0b8 + c38sxa,ua;xb,ubdGe−fTLf.

s4.10d

A Gaussian vector integral, followed by use of Eq.s4.7d,
confirms the expectedkfl=2eLI s0d.

In OsL1/2d, the correction toH takes the formH2afa
2

+H2bfb
2 since Eq.s4.5d has no Josephson interactionfcf. the

remark below Eq.s4.6dg. This doesnot generate any interac-
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tion when f is integrated out with the entangled weight
e−2fTLf, so that

c28 = c2a8 sxa,uadc2b8 sxb,ubd, E2 = E2a + E2b, s4.11d

sH0a − E0adc2a8 + f 1
4sL−1daaH2a − E2agc0a8 = 0 s4.12d

and similarly for a↔b. One could proceed to solve for
c4 but this will be omitted, since all that really matters is

its relation to the effective wave function c̃2

=edfa dfb c4e
−fTLf /edfa dfb e−2fTLf.

The next orderOsL3/4d again is comparatively uninterest-
ing, as it mainly justifies takingE3=c38=0.

Finally, in OsLd, everything can be combined, and the
effective Hamiltonian can be read off. Doing so leads to the
central result of this paper,

H̃ = H0a8 + H0b8 − 1
2sI s0ddTLI s0d, s4.13d

whereH0a8 , H0b8 are as in Eq.s2.15d swith fxc=2eAcBxd, ex-
cept for the renormalizations

Eic ° Eic8 = EicF1 −S Cc

Cic
D2sL−1dcc

8
+ S Cc

Cic
D4sL−1dcc

2

128
G

sc = a,bd. s4.14d

V. DISCUSSION

Let us first of all return to this paper’s motivation. In a
classical potential, such as in Fig. 1, inductance effects are
typically on the order of a few percent. However, this is
compared to the Josephson coupling, i.e., to a typical tunnel-
ing barrier. For two coupled 3JJ qubits, the magnetic inter-
action energy may well be comparable to the tunnelsplitting,
so nontrivial interplay31 between the two is expected,
prompting the present systematic derivation.

One can view Eq.s4.13d in at least two ways. Experimen-
tally, the bare couplingsEic will usually be unknown and the
diagonal contributions from the last term may be compara-
tively small. In that case, most interesting will be the inter-
action MIa

s0dsxa,uadIb
s0dsxb,ubd, derived with the antiferro-

magnetic sign without any remaining ambiguity. Also, this
interaction is given in terms of explicitly known current op-
erators so that, in, e.g., the two-levelsqubitd approximation,
one hasHint=MuIauuIbusa

zsb
z in the flux basis without addi-

tional handwaving. Contrast Ref. 4, where improper averag-
ing of the I s0d’s would have led tokHl=¯ +MkIa

s0dlkIb
s0dl,

which for instance vanishes for all four two-qubit Bell states.
On the other hand, for detailed numerical comparison be-

tween the four- and six-phase theories, every last bit of pa-
rameter dependence needs to be made explicit. Therefore, we
take the square root in Eq.s4.7d in the eigenbasis, yielding

sL−1daa =
2Î2e2

Ca
FS1 +

LaCa − LbCb

V
DÎLaCa + LbCb + V

+ S1 +
LbCb − LaCa

V
DÎLaCa + LbCb − VG , s5.1d

V = ÎsLaCa − LbCbd2 + 4M2CaCb, s5.2d

detL =
1

64e4Î CaCb

LaLbs1 − k2d
, s5.3d

while sL−1dbb follows by a↔b. The second square root in
Eq. s5.1d has a positive argument becausek2,1 spositive-
definiteness ofLd. Note that Eq.s5.1d reduces tola

−1 as in
Eq. s3.1d for V→ ± sLaCa−LbCbd si.e., regardless of which
of the uncoupled qubits has the largerLCd.

As already seen in Sec. III C, theL expansion involves
two different dimensionless parameters—as expected in a
system with Coulomb, Josephson, and magnetic energies.
“Classical” self-flux effects go asLI2/E1,b. On the other
hand, from Eq.s3.26d one reads off that the “quantum” zero-
point effects go ase2ÎL /C,l−1,EC/vLC. Thus, the former
slatterd parameter does not contain the chargingsJosephsond
energy, which is also the reason why, to the given order, their
contributions are separated in the final results. In particular,
for comparatively large junctions and not too small area, the
OsLd self-flux effect could dominate over theOsÎLd renor-
malization within the domain of validity of our expansion—
as was implicitly used in Fig. 1. However, in the experiments
for which all parameters are available, one has32

sLIc/F0,e2ÎL /Cd=s0.003,0.015d and33,34 s0.007, 0.02d re-
spectively, so that, if anything, the renormalization effect
dominates.

Extension to.2 qubits, using the same vector notation, is
immediate. It is hoped that the methods presented will have
additional use in other devices with near-constrained vari-
ables.

Note added in proof. Let us finally raise a question
slightly beyond this paper’s scope, about the proper form of
the two-level approximation for multi-flux-qubit systems.
The conventional approach is to determine a two-level
single-qubit Hamiltonian involving both bias and tunneling
terms, and subsequently add interactions involving products
of Pauli matrices. However, the free and coupled systems are
simply different, and therefore tunneling amplitudes should
properly be evaluated using the interacting multi-qubit po-
tential. The simplest case consists of two inductively coupled
rf-SQUIDs, having a two-dimensional potential landscape.
For the qubit approximation to this system, one should cal-
culate the four lowest states in this potential. The resulting
effective Hamiltonian may well contain, e.g., a direct
u↑↑l↔ u↓↓l tunneling amplitude—a transition which is
second-order in the conventional approach. To study this
question for 3JJ qubits, it is vital to have a well-defined
interactionoperator, as derived in this paper.

I thank M.H.S. Aminswho also pointed out the exception
in Ref. 30d, A.J. Berkley, M. Grajcar, J.F. Ralph, G. Rose,
M.F.H. Steininger, M.C. Thom, J.Q. You, and A.M. Zagoskin
for fruitful discussions and comments on the manuscript.
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