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We consider a model Hamiltonian fitted on theab initio band structure to describe the electron-phonon
coupling between the electronics bands and the phononE2g mode in MgB2. The model allows for analytical
calculations and numerical treatments using very largek-point grids. We calculate the phonon self-energy of
theE2g mode along two high symmetry directions in the Brillouin zone. We demonstrate that the contribution
of thes bands to the Raman linewidthsLandau dampingd of theE2g mode via the electron-phonon coupling is
zero. As a consequence the large resonance seen in Raman experiments cannot be interpreted as originated
from the E2g mode atG. We examine in details the effects of Fermi surface singularities in the phonon
spectrum and linewidth and we determine the magnitude of finite temperature effects in the phonon self-energy.
From our findings we suggest several possible effects which might be responsible for the MgB2 Raman spectra.
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I. INTRODUCTION

The knowledge of the MgB2 sRef. 1d electronic structure
allows us to obtain a qualitative understanding of several
peculiar features of this material. A crucial role is played by
thes bands,2–4 formed by the in-plane boron-boronspbond-
ing. Due to the small interlayer coupling between the boron
layers, these bands have a two dimensional character and are
weakly dispersing along theGA direction. Their correspond-
ing Fermi surface sheets4 are two slightly warped cylinders,
with axis perpendicular to the Boron layers. This peculiar
topology results in a large contribution to the real and imagi-
nary parts of the phonon self-energy of theE2g phonon
mode, an in plane displacement of the boron atoms.

The large contribution to the real part of the phonon self-
energy has spectacular consequences on the phonon spec-
trum: the phonon frequencies of theE2g modes undergo a
reduction of roughly 20 meV along theGA directions as pre-
dicted by ab initio calculations5–7 and measured by high-
energy inelastic x-ray scattering.7,8 Density functional theory
calculations of phonon5–7 spectra indicate that the softening
of the E2g phonon frequencies when approaching theGA
direction, even if strong in magnitude, is not as abrupt as
would be expected9 for a pure two-dimensional system hav-
ing a Kohn anomaly. The experimental phonon dispersion7

along AL and GM sRefs. 7 and 8d confirms that theE2g
phonon frequencies decrease gradually as theGA direction is
approached and the softening at momenta corresponding to
the cylinders 2kF is very small. The Kohn anomaly might
indeed be mitigated by the presence of akz band dispersion
and a finite temperature. In this paper we investigate the
magnitude of these two effects and discuss their relevance in
the interpretation of experimental data.

A large contribution due to the electron-phonon coupling
is also associated with the imaginary part of theE2g phonon
self-energy, the phonon linewidth. Inelastic x-ray scattering
experiments and theoretical calculations7,8 show an anoma-
lously large broadeningf,20–30 meV full width at half
maximumsFWHMdg of theE2g mode along theGA direction

only. According to Ref. 8 the broadening of this mode is
almost temperature independent, but the spectra displayed in
Fig. 4 of Ref. 8 do not allow for a definitive conclusion since
the E2g mode has a very small structure factor and it is seen
only as a shoulder of the closeE1u mode.

Raman data show a completely different behavior. Raman
experiments probe excitations at small momentum transfer,
close to theG point of the material. The maximum momen-
tum transfer isqexp=2qlight whereqlight=2p /l and l is the
wavelength of the incident light. Most of the experiments are
performed with a 514.5 nms2.41 eVd argon laser10 which
corresponds toqexp=1.3310−3a0

−1 sa0=0.5292 Å is the Bohr
radiusd. This estimate is further reduced due to the presence
of a finite skin depth in the material.11 The skin depth is
about 944.8a0,

12 leading toqexp
sd =1.3310−2. This region is

inaccessible to x-ray measurement and as a consequence a
direct experimental comparison between the two techniques
cannot be performed. Nevertheless it is instructive to com-
pare Raman spectra with the x-ray data as close as possible
to theG point.

Below Tc, the MgB2 Raman spectra show two prominent
features. A low-energy one at<12.5 meVsRef. 10d related
to the breaking of Cooper pairs in the superconducting
state13 and a second one at<77 meV which is commonly
attributed to theE2g phonon mode at theG point10,14–19sthe
E2g mode is the only Raman active mode in MgB2d. For
temperatures higher thanTc, only the 77 meV feature is left.
In this work we focus on the normal state Raman spectra and
consequently we only consider the 77 meV feature atT
.Tc. The linewidth of the 77 meV feature10,14–19 shows a
very strong temperature dependence since it is,20 meV
sFWHMd at 40 K and reaches almost 40 meV at room tem-
perature, a factor of 2 larger than the one detected in inelastic
x-ray data along theGA direction. Since, according to the
calculation performed in Ref. 7, the anharmonic broadening
at room temperature is 1.2 meV, it cannot be responsible of
neither the large linewidth nor of its strong temperature de-
pendence.

An unexplored cause of such a large temperature depen-
dence of the linewidth might be the electron-phonon cou-

PHYSICAL REVIEW B 71, 064501s2005d

1098-0121/2005/71s6d/064501s10d/$23.00 ©2005 The American Physical Society064501-1



pling. The electron-phonon coupling contribution to the pho-
non linewidth is indeed temperature dependentfsee Eq.s4d,
this workg. Nevertheless the dependence on temperature is
usually assumed to be negligible, but no detailed studies
have been performed on the subject.

In this work we carefully analyze all the approximations
involved in the calculation of the phonon linewidth due to
the electron-phonon coupling. We analyze the temperature
dependence of the phonon linewidth and the effects of ne-
glecting the phonon frequency in the Allen formula. It would
be highly desirable to estimate the magnitude of these ap-
proximations usingab initio calculation, but the task is al-
most prohibitive. In actualab initio calculations5,7 a finite
number of k points is used together with a,0.025 Ry
s,3000 Kd smearing of the Fermi surface.20 Physical effects
involving temperature difference between 40 and 300 K are
basically invisible to the calculation, since grids having at
least 1000 times larger number ofk points would be
needed.21 In this case, the calculated electron-phonon cou-
pling contributions and its temperature dependence in the
indicated region would be masked by computational details.
The convergence ofab initio calculations with the number of
symmetry-irreduciblek points is particularly relevant for
MgB2,

22 since only the weak warping of the two cylindrical
s bands Fermi surface sheets prevents the linewidth from
diverging. Moreover, if there were effects such as anomalies
in phonon spectra generated by the 2kF singularities,8 they
could be detected only using a very large number ofk points
in the phonon frequencies calculations. As a consequence the
use of a too smallk points mesh might affect the calculation
of both the real and imaginary part of the phonon self-
energy.

For these reasons, in this work we study the behavior of
the phonon self-energy of theE2g mode due to the electron-
phonon interaction between this mode and thes bands using
a model Hamiltonian. The Hamiltonian is composed by the
two s bands coupled to an harmonic dispersionlessE2g pho-
non mode. The form considered for thes bands is fitted from
ab initio calculations5 in the region close to theG point. The
phonon frequency is that of theE2g at G. The model is illus-
trated in detail in Sec. II, together with the form of the pho-
non self-energy in its realsphonon shiftd and imaginaryspho-
non linewidthd parts. The simplified form of the model
allows to calculate analytically the linewidth asq→G along
any high symmetry direction. Moreover it allows numerical
calculations using grids ofNk=30033003300, symmetry-
irreduciblek points in any point of the Brillouin zone, which
are enough to see temperature effects in the phonon line-
width due to the electron-phonon coupling.

In Sec. III we calculate the phonon linewidthexactly in
the limit q→G both in its intraband and in itss-s interband
contributions. We consider two cases,sid q along theGA
directionsSec. III Ad andsii d q alongGM, or generally along
any direction in theskx,kyd planesSec. III Bd, since the bands
and the considered coupling are isotropic in theskx,kyd
plane. We discuss the relevance of the results for the inter-
pretation of Raman spectra.

In Sec. IV we follow Ref. 23 and derive the Allen formula
starting from the phonon self-energy, paying particular atten-
tion at the approximations involved. Subsequently in Sec. V

we numerically evaluate the phonon self-energy along the
GA and GM directions for the case of ak-independent
electron-phonon coupling. We estimate the effects of tem-
perature and ofs-s interband transitions. We evaluate the
magnitude of the different approximations involved in the
derivation of the Allen formula. The numerical results are
also used as benchmarks to judge the reliability of the pre-
cedingab initio calculations7 performed with a smaller num-
ber of k points and a larger smearing parameter. Finally we
question the attribution of the 77 meV peak to theE2g mode
and we suggest other interpretation of the Raman experi-
ments.

II. MODEL

Following Ref. 5, the structure of thes bands close to the
Fermi energy can be expressed as

ekn = e0 − 2t'cosskzcd −
kx

2 + ky
2

Mn
Ry, s1d

where the indexn label the heavy/light hole bands. The holes
masses areM1=0.59 sheavy holesd, M2=0.28 slight holesd.
The average energy alongGA, t'=0.094 eV, gives the dis-
persion of the bands. The top of thes bands ise0=0.58 eV.
Note thatk are expressed in atomic units andsk2/MdRy in
eV with Ry=13.605. The bands are measured with respect
to the Fermi energy. The Fermi surface sheets identified by
the bands in Eq.s1d are two warped cylindersssee Fig. 1d.
The radii in the kz=0 plane arek0

max=0.13a0
−1 and k0

min

=0.09a0
−1. The radii in the kz= ±p /c planes arektop

max

=0.18a0
−1 andktop

min=0.126a0
−1.

Neglecting vertex corrections,24 the contribution to then
phonon mode phonon self-energy due to the electron phonon
coupling can be written as

Pnsq,vqnd =
2

Nk
o
k,m,n

ugkn,k+qm
n u2

fk+qm − fkn

ek+qm − ekn − vqn − ih
,

s2d

where Nk is the number ofk points, the sum is over the
Brillouin zone andfkn are the Fermi distribution functions.

FIG. 1. s-band Fermi surface cylinders with projection over the
kz=p /c andkz=0 planes.
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The matrix element is gkn,k+qm
n =kknudV/duqnuk +qml /

Î2vqn, whereuqn is the amplitude of the displacement of the
phononn of wave vectorq, vqn its phonon frequency andV
the electron-ion interacting potential.25

The real part of the phonon self-energy is

Dq

2
=

2

Nk
o
k,m,n

ugkn,k+qm
n u2PF fk+qm − fkn

ek+qm − ekn − vqn
G , s3d

whereP stands for the principal value. With this definition,
Dq express the renormalization of the harmonic phonon fre-
quencies due to electron-phonon coupling effects.

The phonon linewidthsFWHMd is twice the imaginary
part of Pnsq ,vqnd divided by Nk, as it can also be inferred
from Fermi golden rule:

gqn =
4p

Nk
o
k,m,n

ugkn,k+qm
n u2sfkn − fk+qmddsek+qm − ekn − vqnd.

s4d

In the following two subsections we calculate the phonon
linewidth in the limitq→0 analytically. We use formula Eq.
s4d choosingq along two high symmetry directions in the
Brillouin zone:sid the out of planeGA directions andsii d the
in-plane GM direction ssee Fig. 2d. We show that in both
cases the phonon linewidth vanishes in theq→0 limit.

III. MgB 2 RAMAN LINEWIDTH

A. GA direction

We chooseq along theGA direction and consider the limit
for q going to zero:

ek+qm = ekn −
ki

2

Mn
S Mn

Mm
− 1DRy + 2t'qc sinskzcd, s5d

where ki
2=kx

2+ky
2. Equation s5d is correct at orderOsq2d.

Choosingvqn=65 meV si.e., the harmonicE2g phonon fre-
quency atGd and substituting in Eq.s2d we get

gqn =
4p

Nk
o
km,n

ugkn,k+qm
n u2sfk+qm − fknd

3dF ki
2

Mn
S Mn

Mm
− 1DRy − 2t'qc sinskzcd + vqnG .

s6d

This sum can be divided in two different contributions, one
coming from intraband transitionssm=nd and the other from
interband transitionssmÞnd.

If n=m and in the limit ofq→0, in Eq. s6d in order for
the d function to be satisfied we must have thatvqn

=2t'qc sinskzcd. The momentum used in Raman
experiment10 qexp=1.3310−3a0

−1. Raman scattering then
samples a sphere in momentum space centered atG and of
radiusqexp. It follows then that

u2t'qexpcu = 1.6 meV! vqn = 65 meV s7d

usingc=6.653a0. Thus thed-function condition in Eq.s6d is
never fulfilled in Raman experiments. The contribution to the
linewidth due to intraband transition is then exactly zero. The
general fact that an optical phonon mode cannot couple with
electrons atG as long as only intraband transitions are al-
lowed has already been noted in Refs. 26–29.

Choosing a finiteq along GA and using Eq.s7d we can
determine the values ofq in the Brillouin zone for which the
intraband contribution is nonzero, namely,

q ù qintra =
vqn

2tperpc
< 0.052a0

−1 < 0.1GA. s8d

In this estimate we have used the phonon frequency of the
E2g at G, as the phonon branches are fairly flat alongGA and
q→0. We have also assumed the expansions5d at order
Osq2d to be correct. We will show in Sec. V B that this limit
is indeed correct using numerical calculation.

We then consider the interband contributionssmÞnd and
q→G. In order for the argument of the delta function in Eq.
s6d to be satisfied we must have that

2t'qc sinskzcd −
ki

2

Mn
S Mn

Mm
− 1DRy = vqn. s9d

In the casen=1 andm=2, we havesM1/M2−1d.0 since
M1.M2. As a consequence the largest value ofq for which
the delta function is nonzero is determined by the condition

u2t'qcu , vqn s10d

which leads to the same condition as in the intraband transi-
tions case, namely,

q ù 0.1GA. s11d

Then we consider the term withn=2 andm=1. In order
for Eq. s6d to give a finite linewidth atT=0 K, the following
two conditions must be simultaneously satisfied:sid the states
ek1 are occupied and the statesek2 emptysand vice versad and
sii d the delta function in Eq.s6d must be satisfied. Recalling
the Fermi surface topology of the twos bands, the first con-
dition means that the sum is limited to the region of space

FIG. 2. MgB2 Brillouin zone with high symmetry points and
directions considered in the paper.

ELECTRON-PHONON COUPLING AND PHONON SELF-… PHYSICAL REVIEW B 71, 064501s2005d

064501-3



included between the two warped cylinders. This region is
included between the two cylinders having axes alongGA
and radiik0

min andktop
max, respectively. On the other hand, for

the second condition to be fulfilled we must have

uqu ù
ki

2

M2

0.525Ry

2t'c
+

vqn

2t'c
, s12d

where we have substitutedsM2/M1−1d=−0.525. The con-
straint imposed by the two Fermi functionsfcondition sidg
allows one to replaceki with k0

min in the inequality

uqu ù
sk0

mind2

M2

0.525Ry

2t'c
+

vqn

2t'c
.

vqn

2t'c
< 0.1GA. s13d

From Eq.s13d we conclude that even the term withn=2 and
m=1 in Eq.s6d is zero foruqu,0.1GA sthreshold for Landau
dampingd. A similar equation can be derived for the case
ek1.0 and ek+q2,0, so that intraband transitions give no
contribution to the Raman linewidth.

We have shown that both thes bands intraband and in-
terband contributions to the phonon linewidth via the
electron-phonon interaction are zero forq alongGA and

uqu , 0.1GA < 0.052a0
−1. s14d

B. In-plane momenta

We now chooseq in thekx,ky plane and consider the limit
for q going to zero, we have that

ek+qm = ekn −
uki + qu2

Mm
Ry +

ukiu2

Mn
Ry, s15d

where we have chosenq along theGM direction. The pho-
non linewidth becomes

gqn =
4p

Nk
o
km,n

ugkn,k+qm
n u2sfk+qm − fknd

3dF−
uk i + qu2

Mm
Ry +

uk iu2

Mn
Ry + vqnG . s16d

We neglect terms of orderq2. We first consider intraband
transition onlysm=nd. In this case, we obtain

gqn
intra =

4p

Nk
o
km

ugkm,k+qm
n u2sfk+qm − fkmddSvqn −

2qkx

Mm
RyD ,

s17d

wherekx is alongGM. In order for Eq.s17d to give a nonzero
value for gqn the d function must be satisfied so that
2qkxRy=Mmv. The two Fermi functions limit the sum in the
regions of space withsid ekm,0 andek+qm.0 andsii d ekm
.0 andek+qm,0. In casesid the sum overk is limited to the
region included by one of the two cylinders, depending on
the value of the indexm. The maximumk possible iskmax

s1d

=ktop
max for m=1 andkmax

s2d =ktop
min for m=2. We can then substi-

tute kmax
s1d andkmax

s2d in the d-function condition in Eq.s17d to
obtain q1=7.8310−3a0

−1<0.0125GM for m=1 and q2=5.3
310−3a0

−1<0.0085GM for m=2. In casesii d the sum is lim-

ited to the region of space outside one of the two cylinders
and, sinceek+qm,0 then q.ki−ktop

max for m=1 and q.ki

−ktop
min for m=2, with q.0 in both cases. Insertingq=ki

−ktop
max or q=ki−ktop

min in the d-function condition and solving
for kx one getsq18=7.4310−3a0

−1<0.012GM for m=1 and
q28=5.1310−3a0

−1<0.008GM for m=2. Finally the intraband
contribution vanishes completely for uq̃u, uqu,qintra
=minhq1,q2,q18 ,q28j=5.1310−3a0

−1, which is factor of 4
larger than the exchanged momentumqexp=1.3310−3a0

−1 in
Raman scattering.

Note that this conservative estimate has been obtained
using theE2g phonon frequency atG. In theskx,kyd plane the
E2g phonon modes are not degenerate and both have phonon
frequencies which are larger than the value atG.7 The use of
a largervqn would lead to the vanishing of the phonon line-
width at a larger value ofq.

Then we consider the interband casesmÞnd. We start
consideringn=1 andm=2. In order for the Fermi function
difference in Eq.s16d to be nonzero one of the following
conditions must be satisfied:sid ek1.0 and ek+q2,0, sii d
ek1,0 and ek+q2.0. The first condition means thatuqu
.k0

max−k0
min<0.04a0

−1=0.064GM sthe kz=0 plane is where
the surfaces of the two cylinders are closerd, i.e., no contri-
bution to the linewidth for momenta smaller than 0.064GM.

The second condition leads toki ,k0
max and uk i+qu.k0

min.
Thus we have

uki + qu2

M2
Ry .

sk0
mind2

M2
Ry .

sk0
maxd2

M1
Ry s18d

meaning that thed-function condition

uki + qu2

M2
Ry + vq =

ukiu2

M1
Ry s19d

is never satisfied. Then we consider the casen=2, m=1. The
Fermi functions in Eq.s16d give the following two condi-
tions: sid ek2,0 andek+q1.0, sii d ek2.0 andek+q1,0. In
casesid we have thatki ,k0

min and uk +qu.k0
max and we get

the same result ofn=1, m=2 casesid. In casesii d we have
ki .k0

min and uk +qu,k0
max. We have

ki
2

M2
Ry .

sk0
mind2

M2
Ry .

sk0
maxd2

M1
Ry s20d

and similarly to the case withn=1 andm=2, the condition
s19d is never satisfied.

In this subsection we have demonstrated that forq in the
kx,ky plane the linewidth vanishes at small momenta, the
intraband contribution vanishes foruqu,0.008GM while the
interband contribution vanishes foruqu,0.06GM. The pho-
non linewidth alongGM vanishes for

uqu , 0.008GM < 4qexp. s21d

C. Comparison with experiments

In Secs. III B and III A we have analyzed the phonon-
linewidth due to the electron-phonon coupling for MgB2 in
the clean limit. We have shown that in this limit this quantity
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is zero in an ellipsoid centered atG and having axesqi

<0.005a0
−1<0.4qexp

sd <4qexp in the skx,kyd plane andq'

<0.052a0
−1<4qexp

sd <40qexp alongGA, whereqexp
sd is the Ra-

man momentum transfer for a skin depth of 944.8a0
−112 and

qexp is the Raman momentum transfer in the case of an infi-
nite skin depth. Along theG-A axesq' is larger than the
largest momenta accessible with Raman scattering. Thus if
the Raman experiment is prepared with a geometry consis-
tent with an exchanged momentum along theGA direction
one should indeed find a zero linewidth for theE2g mode.
Although this geometry is currently employed10 in most of
the Raman experiments in MgB2, it seems that a large line-
width s<40 meVd is detected in the Raman data published
up to now. We therefore conclude that the broad feature vis-
ible in these experiments cannot be associated to a pureE2g
phonon excitations whose linewidth is determined by the
electron-phonon coupling of theE2g at qexp. In the final sec-
tion of the paper we put forward possible explanations for
the experimental spectra.

IV. ALLEN FORMULA

The linewidthgqn can be related to the electron-phonon
coupling23 via a simple approximations. Namely, at tempera-
ture such thatkbT@vqn or in the case of a temperature in-
dependentgqn, using thed-function conditiondsek+qm−ekn

−vqnd in Eq. s4d one can substitute in formulas4d

vqn

fk+qm − fkn

vqn

° vqn U ] f

]e
U

e=ekn

. s22d

If the temperature dependence in Eq.s4d is weak than the
Fermi function can be considered a step function, so that

g̃qn =
4pv

Nk
o
k,m,n

ugkn,k+qm
n u2dseknddsek+qm − ekn − vd.

s23d

If T0 is the highest temperature for which the substitution of
the derivative of the Fermi function with a Diracd function
in Eq. s23d is still correct, then Eq.s23d is valid in the range
of temperatures such thatkbT0.kbT@vqn. If gqn is tempera-
ture independent, then the condition is simplyT,T0. It is
worth noting that in the limiting case of a very large phonon
frequency it might occur thatkbT0,vqn and formulas23d
might never be valid. Since in practice one has phonon fre-
quencies which are of the order of 300 K or more, the only
real condition of applicability of Eq.s23d is thatgqn has to be
temperature independent.

From the definition30 of the electron-phonon coupling
slqnd for the moden at pointq one sees that

lqn =
g̃qn

2pNs0dvqn
2 s24d

which is the Allen formula.23 The Allen formula allows us to
extract the electron phonon coupling from the measured line-
width under the assumption that anharmonic effects are neg-
ligible. For MgB2 this condition is fulfilled along theGA
direction.7

In actual calculations, it is customary to neglect the fre-
quency dependence in thed function in Eq.s23d, obtaining

gqn
0 =

4pvqn

Nk
o
k,m,n

ugkn,k+qm
n u2dseknddsek+qmd. s25d

This assumption is unjustified atq=0 and leads to the
wrong behavior atG. Thus formulas25d cannot be used to
explain finite temperature Raman experiments duesid to its
swrongd behavior atG and sii d to the lack of temperature
dependence. The correct behaviors are included in expres-
sion s4d.

V. NUMERICAL CALCULATIONS

A. Model for the electron-phonon coupling matrix element

We consider a model composed of the twos bands in Eq.
s1d coupled to the phonons through ak-independent cou-
pling. The electron phonon matrix element isgkm,k+qn
=gdm,n+ags1−dmnd, wherem, n run over the twos bands
anda determines the magnitude of the interband transitions
sa=0 correspond to the case where interband transition are
suppressedd. We assume only one dispersionless phonon
mode whose phonon frequency is determined from the cal-
culatedE2g phonon frequency atG,7 namely, vq=65 meV
=754 K. Along theGA direction, as confirmed by inelastic
x-ray scattering data,7 this approximation is fairly correct for
theE2g mode. Considering only one phonon mode, from now
on we drop the indexn from the linewidth definitions. In the
following subsections we calculate the realfEq. s3dg and
imaginaryfEq. s4dg parts of the phonon self-energyfEq. s2dg
in the kx,ky plane and along theGA direction. Technical de-
tails on the numerical calculation of the phonon self-energy
are given in the Appendix.

B. Phonon self-energy due to the electron-phonon coupling

1. Effect of the band-dispersion along kz

In the skx,kyd plane, the band structure of Eq.s1d is com-
posed of two bands each of them formed by a free-electron-
like dispersion. As a consequence in thet'=0, a=0, andT
=0 K case spurely two dimensional with noninteracting
bands and at zero temperatured one expects to find two sin-
gularitiessone for each bandd at 2kF in the imaginary part of
the phonon self-energy and in the first derivative of the real
part of the phonon self-energy.

This is shown in Figs. 3sad and 3sbd sdashed linesd for the
real and imaginary parts, respectively. In the real part the
singularities in the first derivative are seen as cusps at 2kF. At
T=0 the slope on the right of each cusp should be infinite. A
finite slope is obtained as long as a finite nonzero tempera-
ture is used33 seven for small temperatures the slope at 2kF is
not verticald. These singularities are originated by the behav-
ior of the response function in two dimensions atT=0 and
are smoothed out at finite temperature.33 In three dimensions
st'Þ0d the singularities should disappear.33,34 The real part
becomes continuous with no cusps and in the imaginary part
the singularities are replaced by smeared continuous peaks.
The level of smearing is determined by the three dimensional
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character of the system, in our case by the strength oft'.
Since the sigma bands in MgB2 have a smallt' it is impor-
tant to determine how far is the system from the two-
dimensional case.

As can be seen in Figs. 3sad and 3sbd scontinuous lined the
singularities are strongly affected even in the case of a small
t'. Indeed the real part presents only very smeared cusps
corresponding to the three-dimensional 2kF positions. Simi-
larly the imaginary part presents two smeared peaks at 2kF.
Even the smallt' considered in this paper is sufficient to
basically eliminate the effects of the two-dimensional 2kF
singularities.

We also study the behavior of the phonon linewidth along
the GA direction fort'Þ0. Along this direction, the phonon
linewidth vanishes foruqu,0.1GA, as demonstrated in Sec.
III A. This is confirmed by the numerical calculations re-

ported in Fig. 7scontinuous lined. The phonon linewidth in-
creases monotonically approachingq0=0.1GA from larger
momenta and becomes singular forq→q0

+, due to the behav-
ior caused by thed function in Eq.s4d.

2. Effect of the interband transitions between thes bands

In this section we consider the effect of interband transi-
tions, choosinga=0,1 and t'=94 meV. The calculated
imaginary part of the phonon self-energy atT=40 K is illus-
trated in Fig. 4. In addition to the 2kF features found in the
a=0 case we found several other features which originates
from the interband contribution. The interband contribution
drops to zero atq<0.06GM, as was predicted in Sec. III B
and as shown in the inset of Fig. 4.

Along theGA direction the interband transitions are com-
pletely negligible. This can be seen in Fig. 7 where the two
curves witha=1 anda=0 are indistinguishable on the scale
of the picture.

3. Temperature effects

In addition to a finite dispersion along thekz axis, a sec-
ond effect responsible for the smearing out of the singular
features at 2kF is the finite temperature.

In Fig. 5 we show the phonon linewidth for momenta
alongGM for T=40 K andT=300 K. Overall there is a very
weak dependence on temperature. Finite temperature effects
sbetween 40 and 300 Kd in the skx,kyd plane are larger close
to the 2kF singularitiesssee inset of Fig. 5d. Nevertheless,
when compared to the value of the phonon linewidth, tem-
perature effects are fairly small and negligible in the calcu-

FIG. 3. Realsad and imaginarysbd part of the phonon self-
energy of theE2g mode for t'=0 sdashed linesd and t'=94 meV
scontinuous lined calculated forq along theGM direction and at
T=40 K. Interband transition have been suppressed.

FIG. 4. Imaginary part of the phonon self-energy of theE2g

mode calculated atT=40 K for q along theGM direction and at
T=40 K using formulass3d ands4d for the real and imaginary part,
respectively.a=0 corresponds to the absence of interband transi-
tion. Inset: Intraband contribution to theE2g phonon linewidth. The
dashed lines isq=0.06GM, the limit derived analytically in Sec.
III B for the vanishing of intraband transition.
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lations of the phonon linewidth. Moreover, as can be seen
clearly in the inset of Fig. 5, the singular behavior of the
two-dimensional 2kF feature is completely lost. For theGA
direction the effect is even smaller, indeed the results of the
calculations atT=40 K andT=300 K are indistinguishable
on the scale of Fig. 7.

4. Reliability of Allen formula

In Figs. 6 and 7 we compare the linewidth calculated
usinggq fEq. s4dg, g̃q fEq. s23dg, andgq

0 fEq. s25dg along the
GM direction andGA direction, respectively. In passing from
the gq to g̃q we have assumed the linewidth to be tempera-

ture independent. In the preceding sectionsSec. V B 3d we
have shown that this is indeed the case, so that we expect
gq< g̃q almost everywhere in the Brillouin zone. This is
what is seen in Figs. 6 and 7. These two pictures justify the
use of the Allen formula for MgB2.

From g̃q, gq
0 is obtained by neglecting the phonon fre-

quency in one of the twod functions of Eq.s23d. This ap-
proximation leads to unpredictable results which, as a con-
sequence, must be investigated case by case, since the
magnitude of the effects produced by this approximation cru-
cially depends on details of the band structure close to the
Fermi level and on the value of the phonon frequency.

As shown in Fig. 6, forq along theGM direction this
approximation is fairly well justified. On the contrary along
GA ssee Fig. 7d gq and gq

0 display two completely different
behaviors. This is mainly due to the fact thatgq is singular at
0.1GA, while gq

0 is singular forq→0 ssee Sec. III Ad. More-
over, as we have shown in Sec. IIIgq=0 for q,0.1GA. The
proper behavior is recovered in the region 0.3GA, uqu
,0.5GA, where we find thatgq

0<gq.

VI. CONCLUSIONS

In this work we have studied the behavior of the phonon
self-energy of theE2g mode, both in its real and imaginary
part. Our conclusions can be summarized in the following
three points.

s1d Suppression of Fermi surface singularities in phonon
dispersion and linewidth. Two-dimensional systems display
2kF singularities in the phonon spectrum and linewidth. Na-
ively one would expect MgB2 to be similar, being the band
dispersion along thekz axis very small. On the contrary we
have shown in Sec. V B 1 that even such a smallt' strongly
suppress the 2kF singularities, so that the phonon spectrum

FIG. 5. Imaginary part of the phonon self-energy of theE2g

mode calculated atT=300 K andT=40 K for a=1 andq along the
GM direction using Eq.s4d.

FIG. 6. Phonon linewidth of theE2g mode calculated atT
=300 K anda=1 for q along theGM direction using Eq.s4d sgqd,
Eq. s23d sg̃qd, and Eq.s25d sgq

0d.

FIG. 7. Phonon linewidth atT=300 K for q along theGA direc-
tion. Thea=1 case is overlapped to thea=0 one, the contribution
from intraband transition is very small. The linewidth vanishes for
qø0.1GA sdotted lined.
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becomes rather smooth, and the singularities in the phonon
linewidth are removed. An additional effectssee Sec. V B 3d
is given by finite temperature which at 300 K completely
washes out any feature in the imaginary part of the phonon
self-energy.

s2d Behavior of the phonon linewidth forq→G. We have
shown that in the clean limit the phonon linewidth, both in
its intraband and interband contributions, vanishes in an el-
lipsoid centered atG and having axesqi=0.008GM in the
skx,kyd plane andq'=0.1GA along thekz axis sthreshold for
Landau dampingd. The two values are larger than the Raman
momentum, namely,qi <0.4qexp

sd <4qexp and q'<4qexp
sd

<40qexp, whereqexp
sd is the Raman momentum transfer for a

skin depth of 944.8a0
−1 sRef. 12d andqexp is the Raman mo-

mentum transfer in the case of an infinite skin depth. This
calculation demonstrates that the huge linewidth seen in Ra-
man experiments cannot be attributed to theE2g mode.

s3d Temperature dependence ingqn and reliability of the
Allen formula g̃qn and of gqn

0 . The phonon linewidth is al-
most temperature independent in theT=0–300 K region.
Small temperature effects are detected close to 2kF, but al-
ways less than some percent of the total linewidth. Since the
phonon linewidth is basically temperature independent the
use of the Allen formulag̃qn is justified in the full Brillouin
zone. On the contrary the approximations customary em-
ployed in ab initio calculations of neglecting the phonon
frequency in one of thed functions ing̃qn, obtaininggqn

0 is
not always justified. Along theG-A directions the neglecting
of the phonon frequency in thed function shifts the singu-
larity at q<0.1G−A to theG point, leading to a completely
wrong behavior which affects all the region withq,0.3GA.

VII. CONSEQUENCES FOR THE INTERPRETATION OF
RAMAN SPECTRA

An immediate result of these three points is that the inter-
pretation of the broad feature seen in Raman spectra at
77 meVsRefs. 10 and 14–19d as a phonon excitation due to
the E2g mode atG is not correct. Indeed we have shown in
this work that the huge temperature dependence of the Ra-
man linewidth cannot be explained by a temperature effect in
the electron-phonon contribution to the phonon linewidth. In
a preceding work35 we showed that the anharmonic contri-
butions to the phonon linewidth has a weak temperature de-
pendence. As a consequence the temperature dependence
found in Raman data remains completely unexplained. In
addition to its temperature dependence, the value of the Ra-
man linewidth atG is not consistent with the theoretical find-
ings. Indeed we have demonstrated that electron-phonon
contribution to the phonon linewidth is zero in an ellipsoid
centered inG and larger than the Raman exchanged momen-
tum. This is not at all the case for what concerns Raman
spectra.

There are additional considerations, concerning the posi-
tion of the 77 meV feature, which seem to indicate that it is
very unlikely that it can be interpreted as due to a phonon
excitation atG. The calculated harmonic phonon frequency
of theE2g mode atG is indeed 65 meV, a value 15% smaller

than the experimental result. This has led several groups to
the conclusion that the difference might be due to anhar-
monic effects.4,27,36,37A careful determination35 of the anhar-
monic phonon frequency shift, explicitly taking into account
three and four phonon vertexes and the scattering between
different phonon modes at differentq points in the Brillouin
zone gives a fairly small value of this quantity atG s+5% of
the harmonic phonon frequency,<3.12 meVd, clearly too
small to justify the feature at 77 meV. This is confirmed by
inelastic x-ray data of two independent groups7,8 showing
phonon spectra in good agreement with the harmonic phonon
frequencies, suggesting small anharmonic effects. Unfortu-
nately inelastic x-ray scattering is not possible at the zone
center, so that a direct comparison of the spectra cannot be
performed.

In what follows we analyze several hypotheses that can be
made in order to reconcile, theory and inelastic x-ray data
with experiments with Raman data. A possibility is that the
77 meV feature in Raman data could be ascribed to a single
resonant process involving theE2g phonon mode coupled to
electronic excitations. This would be consistent with the
asymmetric shape of the peak, reminiscent of a Fano
resonance.38 As a consequence the position of the peak
would not correspond to theE2g mode phonon frequencies
but it would be slightly shifted to lower frequencies. The
temperature dependence of the linewidth might be different
in this case. In this case it is interesting to study the peak
position as a function of the energy of the incident light. A
study of the dependence of the spectrum from the wave-
length of the incident light has been performed in Ref. 14. It
is shown that as the wavelength is changed, the peak energy
position remains basically the same, even if the shape
changes substantially. In the same work, from the study of
the depolarization ratio between parallel and perpendicular
orientations of the incident and emitted light, it is concluded
that the symmetry of the excitationcannotbe that of a single
E2g mode, supporting the idea illustrated in this paper that
the Raman does not measure theE2g phonon excitation atG.

An alternative scenario is that the Raman peak might be
due to excitation of phonons which are not at theG point.
Such an excitation can be activated bysid the presence of
defects such as Mg vacancies, andsii d multiphonon scatter-
ing. A defect breaks translational symmetry and it makes
possible to observe in Raman spectra phonon excitations at
nonzero momenta. Indeed in a similar system such as de-
fected Graphite, due to the almost two dimensional character
of the electronic structure and a strong electron-phonon
coupling,39,40 the phonon at theK-zone boundary has a very
strong signal in Raman spectrasknown as theD peakd.

However, impurities scattering alone cannot explain the
strong temperature dependence of MgB2 Raman linewidth
between 40 and 300 K. This temperature range is not high
enough to change the population of a phonon at 77 meV. The
temperature dependence might be explained by a mul-
tiphonon process such as the absorption of an acoustic pho-
non and emission of an optical phonon with opposite non-
zero momenta. Multiphonon scattering is also seen in
graphite41 and is responsible for theG8 peak observed in
Raman spectra.

Finally there is an additional mechanism that could ex-
plain the absence of a Landau threshold in MgB2. Indeed it

MATTEO CALANDRA AND FRANCESCO MAURI PHYSICAL REVIEW B71, 064501s2005d

064501-8



has been suggested28 that, in the presence of impurities and
in the dirty limit, there is no threshold for Landau damping.
However also this mechanism is temperature independent
and therefore not compatible with the strong temperature de-
pendence of MgB2 Raman spectra. Moreover it is not yet
clear if the MgB2 single crystals are in the clean or dirty
limit.42 Therefore additional work is necessary to determine
if this effect is relevant in MgB2 single crystals.
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APPENDIX: TECHNICAL DETAILS

In the calculations of the real part of the phonon self-
energy alongGM we consider a finite temperature and we
implement Eq.s2d with a h smearing of 350 K. This smear-
ing is necessary to calculate the principal value in Eq.s2d.
Thus we extract the real part at the end. This procedure gives
a faster convergence as a function ofNk. The sums are per-
formed using a grid of Nk=3003300 for the two-
dimensional case witht'=0 andNk=30033003300 for the
three-dimensional case witht'Þ0. In both cases the grids
are formed byNk symmetry-irreducible kpoints, obtained
from a mesh centered atG and randomly displaced from the
origin.

In the calculation of the imaginary part we replace the
Dirac delta functions with Gaussians of widths, namely,

dsxd → e−x2/s2

Îps
. s26d

We then computegq, g̃q, andgq
0 fusing Eqs.s4d, s23d, and

s25d, respectivelyg as a function ofs on a given mesh ofNk
symmetry-irreducible kpoints. We then repeat the calculation
on grids with always higherNk swith Nk up to 3003300
3300d in order to perform the limits ofNk→` ands→0. In
this way we obtain the continuum limit. The comparison
between the results for the phonon linewidth obtained using
the different formulas allows to judge the reliability of the
different approximations in the calculation of the phonon
linewidth.

In Figs. 8sad and 8sbd we show the convergence of the
linewidths gq sq=0.6GAd as a function of the Gaussian
smearings sexpressed in Kd. In sad we used a Gaussian
smearing, insbd an Hermitian-Gaussian smearing of order
1.20 As can be seen, the dependence on the smearing is fairly
weak for the largest meshsNk=273106d. In this case the
calculation is converged fors.50 K. Moreover the phonon
linewidth is weakly dependent ons for s,600 K. We adopt
this mesh ands included between 50–100 K in the calcula-
tions.

Note that previousab initio calculations of the phonon
linewidth7 have been performed with mesh of 27000
symmetry-irreduciblek points. For the case of an Hermite

Gaussian smearing, as can be seen in the picture, this would
lead to an error in the estimation of the phonon linewidth of
the order of<5%.

It is interesting to evaluate the effect of the scattering
between electron and impurities on the phonon linewidth.31

To this purpose one should use a finite values fors equal to
the electron linewidthsthe inverse of the electron scattering
rated. This quantity inc-axis-oriented MgB2 films has been
estimated in the range of 52–400 KsRef. 32d at a tempera-
ture of 45 K. Since in Fig. 8 there is a very weak dependence
of the phonon linewidth ons, for s,600 K, we can con-
clude that the finite electron linewidth has no observable
effects on the phonon linewidth.

FIG. 8. Phonon linewidth calculated atT=300 K using formula
s4d as a function of the Gaussian smearingssd, of the numberNk of
k points used in the sum. The arrow indicates the value that can be
extracted from the largest mesh calculation. Insad a pure Gaussian
smearing has been used, while insbd an Hermite-Gaussian smearing
of order 1.
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