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For a model system consisting of a ferromagnetic layer exchange coupled to an antiferromagnetic layer with
a compensated interface, detailed mean-field-type calculations are performed. Both the coercive field and the
exchange bias field are calculated. For the coercive field, a rather broad enhancement around the Néel tem-
peratureTN of the antiferromagnetic layer is found irrespective of whether the antiferromagnetic layer is
structurally disordered or not, while exchange bias is only found for disordered systems. We show that the
observed enhancement of the coercivity aroundTN also found experimentally and the occurrence of exchange
bias are of different origin.
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I. INTRODUCTION

For multilayers consisting of a ferromagnetsFMd in con-
tact with an antiferromagnetsAFMd, a shift of the hysteresis
loop along the magnetic field axis can occur which is called
exchange biassEBd. It is observed that this effect is accom-
panied by an enhancement of the coercivitysHcd. While
there is a vast literature on EBsfor a review, see Ref. 1d, less
attention has been paid to this enhancement ofHc even
though the latter effect might turn out to be relevant for
future applications.2

By now it is well established that the occurrence of an
exchange bias field is the result of an interfacial interaction
between the ferromagnet and the antiferromagnet. Two re-
quirements have to be fulfilled in order for EB to occur: first,
there must be a net magnetization in the interface layer of the
AFM which is exchange coupled to the FM, and secondly,
this magnetization must be stable during field reversal. For
compensated interfaces, in particular, the most important
question is how these requirements are established. Since the
so-called spin-flop coupling has been shown not to be able to
support EB by its own accord,3 attempts to explain EB in
compensated interface structures now focus on disorderlike
structural defects at the interface,4 magnetic dilution,5 or
structures composed of grains of different orientations or
sizes.6,7

Malozemoff4 in his pioneering work argued that an ideal
interface is unrealistic and roughness gives rise to local ran-
dom fields and consequently to stable domains in the AFM
layer carrying an irreversible net interface magnetization at
low temperatures. Recently, in a series of papers we have
extended these considerations introducing a microscopic
model5,8,9 in which disorder is introduced via magnetic dilu-
tion not only in the interface but also in the bulk of the AFM.
According to these investigations, EB has its origin in an
irreversible AF interface magnetization which arises from
volume domains stabilized by defects in the bulk of the AF.
These volume domains then influence the spin structure at
the interface. Strong support is given to this picture by ex-
periments in which nonmagnetic impurities are added in a
systematic and controlled way to the AFM layer5,10–12 to
form and influence domains. Note that we do not make any

assumptions with respect to size, form, or stability of these
domains in the AFM layer. Rather, they form during the
cooling process and their properties are determined by the
dilution of the AFM layer.

In a different approach,6 the AFM layer is modeled as
consisting of individual grains with small or vanishing inter-
grain coupling. Here also metastable configurations are
observed7 carrying an irreversible AFM interface magnetiza-
tion and thus leading to EB. Thus, although different forms
of disorder may change the results in detail, they lead to the
same overall picture as far as the basic understanding of EB
is concerned: what matters is the possibility of establishing a
stable domain structure in the AFM carrying some irrevers-
ible net interface magnetization.

Although many features observed in EB systems are ex-
plained quite successfully within this so-called domain state
model, less attention has been given to the enhancement of
the coercivity observed in EB systems. In the present paper,
we report on results obtained with a mean-field-type calcu-
lation for an EB system consisting of a FM monolayer in
contact with an AFM film having a large anisotropy like CoO
or FeF2 so that the AFM layer can be modeled as an Ising
system. The AFM layer is magnetically diluted and different
degrees of dilution are considered. Both the bias fieldHeb
and the coercivityHc are calculated.

The results obtained for the bias fields are in qualitative
agreement with those obtained previously with Monte Carlo
simulations. For the coercivity we find, in agreement with
experiments, a significant maximum ofHc around the block-
ing temperature at whichHeb vanishes. This maximum is
analyzed in detail as a function of temperature for an ideal
AFM layer as well as for different degrees of dilution.

Most of the results are obtained under the simplifying
assumption that the exchange interaction in the FM layer is
very large. Under this assumption, reversal of the FM layer
to a good approximation is by coherent rotation, making it
possible to obtain a number of analytic results for the fields
Hc andHeb from which more insight into the mechanisms of
EB and coercivity is gained. From these analytic results we
conclude, in agreement with earlier findings,3 that the ap-
pearance of EB and the enhancement of the coercivity in EB
systems are of different origin; both can be present and they
are not correlated, in contrast to Ref. 13.
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The results are supplemented by a calculation in which a
finite exchange interaction is assumed in the FM layer. In
this case, the mean-field equations for the AFM layer have to
be complimented by the corresponding equations for the FM
spins. These equations are solved numerically for a certain
set of parameters showing that a finite FM exchange does not
change the results significantly at low temperatures.

II. GENERAL THEORY

The HamiltonianH of the system is the sum of three
terms,H=HF+HAF+Hint, with

HF = − JFo
ki,jl

Si
W ·Sj

W − o
i

sDSix
2 + SixHd s1d

denoting the Hamiltonian of the FM layer,

HAF = JAFo
ki,jl

eie jsis j − o
i

eisiH s2d

denoting the Hamilton operator of the AFM layer, and

Hint = − Jint o
iPsintd

eiSixsi s3d

denoting the interaction energy of both, where the labeli
runs over all spins in the AFM interface layer and we use the
same index to enumerate the adjacent spin in the FM layer.

Three-dimensional unit vectorsSW i and Ising variabless j de-
note spins in the FM and AFM layer, respectively. The mag-

netic fieldHW is applied along thex direction which is parallel
to the easy axis of the FM layersanisotropy constantD.0d,
while thez direction is normal to the layers. We consider an
AFM layer with quenched disorder,ei =0,1,with probability
p and 1−p, respectively, also having its easy axis alongx.
Furthermore, we consider nearest-neighbor interactions on a
simple cubic lattice with exchange constantsJF.0 and
JAF.0 for the FM and the AFM, respectively, whileJint
stands for the exchange constant between FM and AFM.

Providing the Curie temperature is very large as compared
to all other relevant energies, reversal of the FM is to a good
approximation by coherent rotationssee also Ref. 14d and a
temperature dependence of the magnetization in the ferro-
magnet can be neglected if we restrict ourselves to relatively
low temperatures. This means that the magnetization of the
FM layer acts as an external parameter on the AFM layer
similar to the magnetic field applied. Thus, within this ap-
proximation, the free energy appears to be a function of ex-
ternal field and magnetization direction of the FM layer. For
an Ising-type AFM, it only depends on itsx component,Sx,
and it is given by

FsSxd = − NlDSx
2 − NlHSx − kBT Tr e−bsHAF+Hintd, s4d

wherel is the number of FM monolayers andN the number
of spins in a FM monolayer.

In this paper, we mainly concentrate on this approxima-
tion which enables us to derive a number of results analyti-
cally resulting in a deeper understanding of the complex be-
havior of these exchange coupled FM/AFM layers.

The free energy given in Eq.s4d is a function ofSx and the
external fieldH. It expresses the free energy of the AFM spin
system keeping these parameters fixed. As a function ofSx, it
may have different local minima for fixed external fieldH.
These local minima give rise tosmetastabled branches in hys-
teresis loops. Indeed, starting with a sufficiently large field
applied in thex direction andSx=1, the effective field acting
on the AFM interface layer isB+JintSx.0. Decreasing the
external field, we follow the descending branch of the hys-
teresis loop. For small enough external field, the free energy
for Sx=1 becomes metastable, i.e., it will get larger than the
free energy forSx=−1. The system stays in the metastable
minimum during a further decrease of the external field until
this minimum vanishes at a certain fieldH− at which the
ferromagnet switches fromSx=1 toSx=−1. This procedure is
very similar to the Stoner–Wohlfarth scenario for switching
of a magnetic particle. The only difference is that in the
present case the FM magnetization is coupled to an AFM
layer which may or may not be in thermal equilibrium de-
pending on its dilution or disorder, see below. Similar dis-
cussion holds for the ascending branch of the hysteresis loop.
We now elucidate this scenario in more detail restricting our-
selves first to an idealsundilutedd AFM layer.

III. COERCIVITY FOR COUPLED FM/AFM LAYERS
WITHOUT DILUTION

The first derivative of the free energy with respect toSx in
the undiluted casesei =1 for all id can be expressed in terms
of the interface magnetization of the AFM layer,

F8sSxd = − 2NlDSx − NlH − Jint o
iPint

ksil s5d

and the second derivative ofF is given by

F9sSxd = − 2NlD − bJint
2 KS o

iPint
ssi − ksildD2L , s6d

whereksil denotes a thermal average. This second derivative
is negative showing thatF8 is decreasing monotonously.
Thus in the interval −1,Sx,1 the first derivative of free
energy has one zero or no zeros. In the first case,F has two
local minima at the end points,Sx=−1,1 and one maximum
in between, and in the second case only one global minimum
at one of these end points, a situation similar to the simple
Stoner-Wohlfarth scenario. Consequently, the fieldsH− and
H+ at which the magnetization of the FM switches can be
obtained in the same way, i.e., fromF8=0 at Sx=1 and
Sx=−1, respectively, and we obtain

H− = − 2D − JintmintsH−,Sx = 1d/l ,

H+ = 2D − JintmintsH+,Sx = − 1d/l , s7d

with mint=s1/NdoiPinteiksil being the AFM interface magne-
tization. Note that these equations are exact as far as the
AFM layer is concerned but fluctuations in the FM layer are
neglected. In Eqs.s7d, the magnetizations of the AFM inter-
face layer enter. These magnetizations have to be calculated
with fixed field applied and for bothSx=1 andSx=−1, re-
spectively.
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For an ideal AFM layer, the induced magnetization in the
AFM interface is completely reversible and it is an odd func-
tion of the effective field. Therefore, the coercive field is
given byHc=H+=−H− and there is no exchange bias.

To obtain the induced interface magnetization of the AFM
layer which influences the coercive field of the FM layer
according to Eq.s7d, we apply a mean-field approximation in
the present paper. The mean-field equations for the local
magnetization of the AFM spins,ksil=mi, are given by

mi = tanhFbS− JAFo
j

mj + JintSx + HDG . s8d

Note that the second term in the brackets in Eq.s8d is present
only if i labels a spin of the AFM interface layer. For the
other AFM spins, this term has to be omitted.

These mean-field equations have been solved numerically
together with Eqs.s7d for obtaining the coercive field
Hc=H+. Results are shown in Fig. 1 for different AFM layer
thicknesses and for positive and negative interlayer exchange
interaction, respectively, withD /JAF=0.01. L denotes the
number of AFM monolayers andTN

s1d the Néel temperature of
an ideal AFM monolayer.

For very low temperatures, the AFM layer is completely
ordered with vanishing net magnetization at the interface so
that the coercive field approaches the free FM layer value
2D. For increasing temperatures it is seen from Fig. 1 that
due to the coupling of the AFM layer to the FM layer, a
strong enhancement of the coercive field results. Its maxi-
mum is at or very close to the Néel temperature at which the
coercive field has a cusp. Note that this enhancement is also
present above the Néel temperature and that it decreases with

increasing temperature only rather slowly. The enhancement
of the coercive field decreases strongly below the Néel tem-
perature when going from one to two AFM monolayers but it
decreases only slowly when increasing the AFM thickness
further. We expect that this behavior may change when con-
sidering an AFM layer with smaller anisotropy.

Within the present approximation in which the FM layer
is described as a macrospin rotating coherently, the coercive
field of the FM layer is independent of temperature and
given by 2D for vanishing coupling to the AFM layer. As can
be seen from Fig. 1, the coupling to the AFM layer results in
a remarkable enhancement of this field which is larger for
antiferromagnetic interface coupling as compared to ferro-
magnetic coupling. With increasing AFM layer thickness, the
Néel temperature shifts to higher temperatures—as
expected—and the enhancement of the coercive field is re-
duced in agreement with experimental findings.15

If the coupling of the AFM layer to the FM layer is weak,
the AFM interface magnetization can be linearized. Under
this condition, explicit expressions for the coercive fields can
be obtained from which a deeper insight into the complex
behavior of these coupled systems can be gained.

The linearized induced interface magnetization contains
two parts, one which is proportional to the sum of the exter-
nal field and the exchange field from the FM layer and one
which is proportional to the external field only. This second
term arises indirectly from an exchange coupling of the AFM
interface layer to its neighboring AFM monolayer which
only sees the applied field resulting in a term linear in the
external field. However, its contribution to the interface mag-
netization is very smallsand absent for an AFM monolayerd
and will be shown to be negligible for moderate values ofJint
resulting in the following approximate expression formint in
the linear regime:

mint = xAF
s1dsH + JintSxd. s9d

Thus, the AFM interface magnetization as a function ofH
contains two branches during a hysteresis cycle. In the case
of Jint.0, there is an upper branch forSx=1 when reducing
the external field and a lower branch after switching of the
FM layer from Sx=1 to Sx=−1 when increasing the field
again. ForJint,0, the behavior is reversed.

Within this linear approximation, an explicit equation for
the coercive fieldHc can be obtained from Eqs.s7d and s9d,

Hc =
2D + Jint

2 xAF
s1d/l

1 + JintxAF
s1d/l

, s10d

where the susceptibility entering this equation is obtained
from Eq. s8d with the following result for a single AFM
monolayer:

xAF
s1d =

b

cosh2sbJAFzms
s1dd + bJAFz

.

In the general case and neglecting the influence of the homo-
geneous magnetization of the neighboring AFM layer on the
AFM interface layer this susceptibility is given by

FIG. 1. sColor onlined Coercive field as a function of reduced
temperature for different AFM layer thicknessesL. sad Jint=−JAF,
sbd Jint=JAF.
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xAF
s1d =

b

cosh2fbJAFszms
s1d + ms

s2ddg + bJAFz
.

In these equations, the staggered magnetizations forH=0,
ms

sld, enter wherel labels the AFM layerssl =1 being the
AFM interface layerd. These quantities have to be obtained
numerically from the self consistency equations.

Equations10d nicely illustrates that the coercive field de-
pends on two contributions, one coming from the FM itself
s2Dd and one from the interaction with the AFM. The de-
nominator depends on the sign of the interface coupling. This
explains the fact that in Fig. 1,Hc is larger for negative
interface coupling.

In Fig. 2, we show the coercive field as a function of
temperature for an AFM monolayer obtained from the full
numerical solution of the self-consistency equations and re-
sults obtained within the linear approximation. Both ap-
proaches give nearly identical results forJint=JAF and the
same is true for smaller values of the interface coupling.
However, with increasing strength of the interface coupling,
the linear approximation gets worse, as can be seen from Fig.
3, in which the coercive field is shown as a function of the
interface coupling at that temperature at which the deviation
of the linear approximation from the full numerical solution
for Jint=JAF is largest.

It is possible to generalize the present approach to sys-
tems in which the FM has not an infinite exchange interac-

tion, as has been assumed up to now, but a finite one. In this
case we have to write down, in addition to the mean-field
equations for the AFM, mean-field equations for the spins in
the FM layer which we solved numerically forL=1. Results
are shown in Fig. 4. The dashed line corresponds to a FM
layer with finite exchange interaction while the solid line
corresponds to a FM layer with very largeJF. For finite JF,
the magnetic order in the AFM layer decreases with increas-
ing temperature and vanishes at the Curie temperature,
Tc=2TN in the present case. The coercive field of the un-
coupled FM layer is expected to go smoothly from its zero-
temperature value 0.02JAF to zero atTc. The remarkable en-
hancement of the coercive field observed in Fig. 4 again is
due to the coupling to the AFM layer and it persists even for
temperatures far above the Néel temperature, in agreement
with experimental findings.16

IV. DILUTED SYSTEMS

In previous work, we have shown with Monte Carlo simu-
lations that in exchange coupled FM/AFM multilayers, mag-
netic dilution leads to a stabilization of domains in the AFM
which carry a net magnetization. This magnetization is fro-
zen at low temperatures leading to a frozen exchange field in
the FM layer and thus to EB.

These frozen domains depend on the history which means
that one has to specify the way the low-temperature state in
which the hysteresis loop is calculatedsor measured in ex-
perimentsd is reached. Thus in the diluted case it is necessary
to follow exactly the same procedure as is done in experi-
ments: one starts at a temperature well above the Néel tem-
perature with a fully magnetized FM layerssometimes also
with an applied field parallel to this magnetizationd and cools
the system slowly down to temperatures below the Néel tem-
perature. This cooling process has been done before with
Monte Carlo simulations which mimic a dynamical process.
However, the dynamical aspect is not important. Rather, the
calculation is intended to find local free-energy minima.
Therefore, this cooling procedure can alternatively also be
done within local mean-field theory in which the local mean
field equations which in the present case are given by

mi = ei tanhFbS− JAFo
j

e jmj + JintSx + HDG s11d

are iterated at a fixed temperature until asmetastabled self-
consistent solution is obtained. Then, the temperature is low-

FIG. 2. sColor onlined Comparison of the numerical solution
and the linear approximation for AFM layer thicknessesL=1 as a
function of temperature.Jint=JAF.

FIG. 3. sColor onlined Comparison of the numerical solution
and the linear approximation for AFM layer thicknessesL=1 as a
function of reduced interface coupling atT=0.56TN

s1d.

FIG. 4. sColor onlined Coercive field as a function of reduced
temperature for different exchange parameters of the FM.L=1,
Jint=JAF.
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ered by a small amount and a new iteration process is started
with the previously obtained values of the magnetization as
initial conditions. This procedure is continued until the final
temperature at which the hysteresis curve is going to be cal-
culated is reached. This approach has been applied success-
fully to random field systems in connection with irrevers-
ibilities and frozen states.17

It is important to note that the corresponding mean-field
energy also fulfills Eq.s5d where on the right-hand side the
local magnetization has to be replaced by the local magneti-
zation in the mean-field approximation, i.e.,

FMF8sSxd = − 2NlDSx − NlH − Jint o
iPint

eiksil. s12d

Cooling the system as described above means that one stays
in local minima of the free energy.

The hysteresis loop is calculated in a similar way by
changing the external field in small steps solving the mean-
field equations numerically in each step by iteration. The
AFM interface magnetizationmintsH ,Sxd is recorded for each
value ofH for the descended branchSx=1 and the ascended
branch Sx=−1, respectively, and the fieldsH− and H+ at
which the magnetization of the FM switches are then ob-
tained as before, i.e., fromF8=0 atSx=1 andSx=−1, respec-
tively, that is, from the implicit equation

H± = ± 2D − JintmintsH±,Sx = 7 1d/l . s13d

In these calculations, we use 96396 lattice sites per
monolayer with periodic boundary conditions in the plane.
The fieldsH± depend on the disorder configuration. There-
fore, for each degree of dilution, 16 different realizations of
the disorder are generated and the fields obtained for each
configuration are averaged. The AFM interface magnetiza-
tion mint obtained in this way can be decomposed into a sum
of two terms, an irreversiblesmetastabled part mirr which
does not change when going through the hysteresis loop at
low temperatures and a part which follows the field,mrev,
having two branches forSx=1 andSx=−1, respectively. Due
to this frozen interface magnetization, the fieldsH+ and −H−
are no longer equal, with the consequence that the system
shows exchange bias.

Before we discuss our numerical results, we can go, simi-
lar to the undiluted case, one step further noting that in the
limit of small effective fieldsmrev can be linearized,

mrev = xAF
s1dJintSx + xAF

s2dH. s14d

The first term corresponds to the response to the exchange
field while the second term is the response to the applied
field. Only for the case of an undiluted AFM monolayer is
the induced AFM magnetization strictly proportional to the
effective fieldJintSx+H, in which case both susceptibilities in
Eq. s14d are equal.

Thus, within the linear approximation, the AFM interface
magnetization which is shifted bymirr contains two branches
during a hysteresis cycle. In the case ofJint.0, there is an
upper branch forSx=1 when reducing the external field and
a lower branch after switching of the FM layer fromSx=1 to
Sx=−1 when increasing the field again. ForJint,0, a re-
versed behavior is observed. This scenario is exactly what is

also obtained in our earlier Monte Carlo simulationsssee
Figs. 4 and 5 in Ref. 8d.

Within this linear approximation, explicit equations for
the fieldsH+,H− can be obtained from Eq.s13d, i.e.,

H± =
±2D − Jintmirr/l ± Jint

2 xAF
s1d/l

1 + JintxAF
s2d/l

, s15d

resulting in the following expressions for the coercive field
and the bias field, respectively:

Heb=
1

2
sH+ + H−d =

− Jintmirr/l

1 + JintxAF
s2d/l

, s16d

Hc =
1

2
sH+ − H−d =

2D + Jint
2 xAF

s1d/l

1 + JintxAF
s2d/l

. s17d

From Eq.s16d it can be concluded that EB only occurs if the
interface magnetization contains a part which is frozen dur-
ing field reversal. Even though this is rather obvious, it is
seen here most clearly. Note that the second term in the
denominator of Eq.s16d is missing in the usual estimate for
the bias field.1 This is consistent with our approach since in
this estimate a part of an AFM interface magnetization which
follows the external field is generally not considered. This
linear approximation is expected to be valid for a not too
large interface coupling just as in the undiluted case.

These analytic results obtained in the linear approxima-
tion contribute to a deeper understanding of bias and coer-
civity. For a numerical calculation of these quantities, how-
ever, it is more convenient to start with the calculation of the
interface magnetizationmint during a hysteresis cycle in the
way described above. From this quantity, the fieldsH± can be
obtained directly using Eq.s13d not invoking the linear ap-
proximation. Corresponding results for the bias field and the
coercive field for different dilutions of the AFM layer are
shown in Fig. 5 for negative interface coupling and in Fig. 6
for positive coupling.

For zero dilution, the coercive fields have a cusp at the
onset of the antiferromagnetic order in the AFM layer. For
smallL, this is also the maximum of the coercivity while for
largerL the maximum is slightly shifted to smaller tempera-
tures scf. Figs. 1 and 2d. In the diluted cases the cusp is
smeared out. The bias field shows a nearly linear decrease as
a function of temperature, in agreement with previous inves-
tigations both experimentally and theoretically. It vanishes
roughly at that temperature at which the coercive field has its
maximum. Note, however, that for stronger dilution there is a
pronounced shift of this maximum to temperatures lower
than the temperature at which the bias vanishes.

The coercive fields show an interesting behavior at low
temperatures where in the diluted case a dip occurs for fer-
romagnetic interface coupling and an upwards turn for anti-
ferromagnetically coupled FM/AFM layers. This feature has
its origin in nearly loose spins in the AFM interface layer
which contribute significantly to the susceptibilityxAF

s2d at low
temperatures leading to an enhancement or a depression of
the coercive field due to the changing sign ofJint in the
denominator in Eq.s17d. This sensitivity of the coercive field
with respect to the sign ofJint has as an important conse-
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quence the possibility of an experimental determination of
the sign of the exchange interaction. In Ref. 15, the measured
coercive fields of IrMn multilayers show an upwards shift
very similar to our findings. Thus it is tempting to conclude
that the exchange interaction at the FM/AFM interface in
these layers is antiferromagnetic.

V. CONCLUSION

In conclusion, we derived in the present paper within a
mean-field approach some analytic results for both the coer-
cive field and the bias field from which a deeper insight into
the physics of exchange coupled FM/AFM layers can be ob-
tained. For these systems, a significant enhancement of the
coercive field was found with a maximum around the Néel
temperature. Diluting the AFM layer magnetically in addi-
tion to this behavior EB is obtained depending on the degree
of dilution in the AFM layer, in complete qualitative agree-
ment with our previous investigations on the domain state
model studied with Monte Carlo simulations. In particular,

the domains formed after field cooling with the mean-field
approach have the same structure as those obtained with
Monte Carlo simulations. However, there are slight differ-
ences as far as the magnitude of the exchange bias fields is
concerned, since cooling with the mean-field approach may
freeze the system in shallow local minima from which it still
could escape within the Monte Carlo approach.

The observed enhancement of the coercive field originates
in the coupling of the FM layer to that part of the AFM
interface layer magnetization which follows the external field
during a hysteresis cycle. Since the AFM layer carries an
induced magnetization even above the Néel temperature, the
enhancement of the coercivity persists well above this tem-
perature. The bias field, on the other hand, originates in the
frozen part of the magnetization of the AFM interface layer.
Both are not directly related in the sense that one can change
one of them without changing the other one.
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