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In this paper we report results for magnetic observables of finite spin clusters compdetl/@fions. We
consider clusters of two, three, and four spins in distinct spatial arrangements, with isotropic Heisenberg
interactions of various strengths between ion pairs. In addition to the complete set of energy eigenvalues and
eigenvectors, specific heat and magnetic susceptibility, we also quote results for the single crystal and powder
average inelastic neutron scattering structure factors. Examples of the application of these results to experi-
mental systems are also discussed.
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[. INTRODUCTION (symmetric trimer with apical sp)nMore general reviews of
guantum spin systems have been published by Kaltiner-
Recent years have seen a rapid increase in the interest modynamics and Whangbet al 3 (local origins of magne-
finite quantum spin systems, also known as molecular madism, thermodynamics properties, and mateyia®udies of
nets or nanomagnetst® Molecular magnets typically consist the dynamics of Heisenberg spin clusters using a quasiclas-
of clusters of interacting spins that are magnetically isolate@ical formalism have been reported in a series of papers by
from the other clusters in the molecular solid by nonmag-Ameduri, Efremov, and Klemrif:-2*Waldmani” has carried
netic ligands. Formally, molecular magnets are materials iUt calcuations of the inelastic neutron structure factor for
which the ground state has nonzero total spin. Here we geﬁ:_ychc Heisenberg spin clusters which are quite similar to the
eralize this definition to include all systems of largely iso- res_ll_Jf:[iSS ?ggfeegggg Ihe?/reel.of interest in molecular magnets mo-
l;f?ﬂg?:;%fgogsg 2:(;2%2ur{?gfjl:arrsigigsn}sTfr(])?stﬁems?:fj;acﬁvates more detailed theoretical investigation of the proper-

i i 4b thev h iol | es of finite quantum spin systems. For simple theoretical
quantum magnetism and because (n€y nhave possible appliGiyqels such as the Heisenberg model, clusters that consist of
tions as nanoscale computer memory eleméfiglany re-

S > ) . ! N ~_only a few interacting magnetic ions can be treated analyti-
alizations of finite spin clusters with various ionic spins, cally, and closed-form results can be obtained for many
ground state spins, and geometries have been reported in t3ysical observables. One especially interesting quantity is
literature; some recent examples with 1/2 ions are given  the inelastic neutron scattering structure factor, which is re-
in Table I. quired for the interpretation of inelastic neutron scattering
Theoretical results for the properties of fini®=1/2  experiments. Inelastic neutron scattering is very well suited
quantum spin systems have appeared in several recent refes- the investigation of magnetic interactions at interatomic
ences, primarily in the context of experimental studies ofscales, since the measured structure factor is sensitive to the
specific materials. Dimer results are reported in several studocal geometry and interactions of the magnetic ions. As this
ies of theS=1/2 spin dimer VAHPQ,)-0.5H0; see, for  work is intended in part to facilitate future neutron scattering
example, Johnsoat al,'! Tennantet al,'? and Kooet al’®*  studies, the evaluation of this structure factor is one of our
Theoretical properties dd=1/2 spin trimers have similarly principal concerns.
been given in studies of candidate trimer materials; see, for In this paper we specialize to magnets that are clusters of
example, Refs. 14-18. S=1/2ions with isotropic Heisenberg interactions, and give
Rather few general theoretical results have beermnalytic results for the properties of dimer, trimer, and tet-
reported forS=1/2 spin tetramers, since the results areramer clusters with various geometries. After the Introduc-
more complicated and there are many more independenion, in Sec. Il we define the Heisenberg model and the ob-
geometries and sets of superexchanges. Specific cases gafrvables we evaluate in this work. These include the
tetramers are considered by Prociesiall® (S=1/2 square  standard thermodynamic quantities for magnetic materials
tetrame), Gros et al,?® and Jenseret al?! [an unsym- (partition function, specific heat, and magnetic susceptibil-
metric S=1/2 tetrahedral model of Giie,Os(Br;_,Cl,)], ity), as well as the inelastic neutron scattering structure fac-
Kortz et al!® (unsymmetric tetramer model of tors. In Sec. Il we evaluate these quantities for specific spin
K/Na[ CuK5(H,0)g(a-AsWg033),]-5.5H,0), and Ciftjd®  clusters, which are the spin dimer, symmetric, isosceles and
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TABLE |. Some examples of smaB=1/2 quantum spin systems.

Material Spin system Ground sta®g; References
VO(HPQ,)-0.5H,0 Dimer 0 11-13
Cus(0,C1gH23)6- 1.2GH 15 Symmetric trimer 1/2 16,17
Nag[ CuzNag(H,0)g(a-AsWgO33),] - 26H,0 Symmetric trimer 1/2 18
[Cus(cpses(H,0)3]-8.5H,0 Symmetric trimer 1/2 31
(CNzHg)aNay[H4V g0g(POy) 4((OCH,)3CCH,OH),]- 14H,0  Isosceles trimer 1/2 14
Nag[H4V 05(POy) 4((OCH,)3CCH,OH),] - 18H,0 General trimer 1/2 14
K[V 15A56042(H,0)]- 8H,O Symmetric trimer+capping hexamers 1/2 32-36
NaCuAsQ Linear tetramer 0 28,29
(NHEt)[V 12A550,40(H,0) - Hy,O. Rectangular tetramer +capping tetramers 0 37
KN CusK 5(H50)g(a-AsWyO33)5] - 5.5H,0 Distorted tetramer 1 18
general spin trimers, and three cases of spin tetrafiera- 12 1/2=14 0, (2)
hedral, rectangular, and alternating lineai/e also tabulate

all the energy eigenvalues and eigenvectors for each spin 129 1/2® 1/2 = 3/2® 1/22, (3)

system. Section Il ends with an application, which is a nu-
merical study of powder inelastic neutron scattering ampli-
tudes in NaCuAs@?8 the results appear to support the iden-
tification of this material with the alternating linear tetramer
model and agree well with the data of Nagéral 2° Finally,
Sec. IV discusses several materials which may be candidat
for future experimental studies, as well as some interestin
directions for future theoretical research.

For reference purposes our principal results for the spin B. Expressions for observables

systems considered here are given in a series of tables. TheseThe energy eigenstates and eigenvalues may be found by
results are the spectrum of energy eigenvalues and eigenvegmgonalizing the magnetic Hamiltonian on a convenient ba-
tors (Table 1)), allowed inelastic neutron scattering transi- s (In practice we will employ the usual set &fpolarized
tions between these stat€&able Ill), and the specific heats magnetic basis statesSeveral physically interesting quanti-
(Table 1V) and susceptibilitie¢Table V). _ties may be computed directly from the energy eigenvalues;
Most previous theoretical studies of molecular magnets inp this work these are the partition function, specific heat,

their associated model Hamiltonians. Our results are in-

1221221122 1/2=2¢ 13 0°. (4)

Each S, multiplet contains 3,+1 magnetic states, which
aLe degenerate given an isotropic magnetic Hamiltonian such
as the Heisenberg form of E(L).

tended to be sufficiently general so that they should be useful N _E .
for the interpretation of data on many candidate molecular Z= 2 €5 =2 (25, + DS, (5)
magnets. =1 B
d?In(2)
Il. THE MODEL AND OBSERVABLES C = ke e 6)

A. The Heisenberg magnet

The nearest-neighbor Heisenberg magnet, which we shaﬂnd

assume as our standard model for molecular magnets, is de- B N
fined by the Hamiltonian X= EE (M2),e7PE
i=1
H=2 %S5 (1) 1B
fi¢ = 3(0me)* S 2 (2Sert D(Sart VSe 5. (7)
Ei

where the superexchange constgdig are positive for an-

tiferromagnetic interactions and negative for ferromagnetidn these central formulas the suim1,...,N is over allN

ones, ands is the quantum spin operator for a spin-1/2 ionindependent energy eigenstatéacluding magnetic sub-

at sitei. states, the sumZg, is over energy levels onlyM,=mgug
Since this is a rotationally invariant Hamiltonian in spin where m=S.,/% is the integral or half-integral magnetic

space, the total spiB,; is a good quantum number. For the quantum number, ang is the electrorg-factor.

specific cases of dimer, trimer, and tetramer clusters of In addition to these bulk quantities, we also give results

=1/2ions that we consider here, the energy eigenstates haver inelastic neutron scattering intensities. In “spin-only”

the total spin decompositions given below. magnetic neutron scattering at zero temperature, the differ-
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ential cross section for the inelastic scattering of an incident L a .

neutron from a magnetic system in an initial stakg), with O J O
momentum transfefig and energy transfetw, is propor- S, S,
tional to the neutron scattering structure factor tensor

NS

Shal G, ) = i w ;—;E I S(X, DX, O W), s=1[¥>
- X X

)

The site sums in Eq8) run over all magnetic ions in one

unit cell, anda,b are the spatial indices of the spin operators.
For transitions between discrete energy levels, the time -2 T — —Ss=0 [¥p>

integral gives a trivial delta functiod(E;-E;—#%w) in the

energy transfer, so it is useful to specialize in an “exclusive E

structure factor” for the excitation of states within a specific

magnetic multiplefgenerically|¥;(\;))] from the given ini-

FIG. 1. The geometry and energy levels of a Heisenberg spin

tial state|V;), .
dimer.
S (@) = 2 (WM OIVA P, (9) |
A (SR(@) = 5ab8(6)
where the vectoi/,(d) is a sum of spin operators over all
magnetic ions in a unit cell, 251 1% TGV T ) [V T (V).
f
Va= 2 S,(%)e%. (10) (14

If desired, the general results for polarized scattering can be

This exclusive structure factor is related to the eXC|USiV&eCO\/ered by reintroducing the appropriate Clebsch—Gordon
differential inelastic neutron scattering cross section by coefficients of Eq(13) in Eq. (9).

do' K _ The results given above apply to neutron scattering from

= ()% (8ap — Gal) SSV(G)|F ()2 (11)  single crystals. To interpret neutron experiments on powder

dQ samples, we require an orientation average of the unpolar-

ized single-crystal neutron scattering structure factor. We de-

fine this powder average by

where y=-1.913 is the neutron gyromagnetic ratio,
=fia/mg is the classical electron radiuk,and k’ are the
magnitudes of the initial and final neutron wave vectors, and _ dQ-
F(g) is the ionic form factor(This relation is abstracted from S(q) :i —qS((i). (15)
Eq. (7.61) of Ref. 30, specialized to an exclusive procgss. 4w

For a rotationally invariant magnetic interaction and an
Soi=0 initial state(as is often encountered if=0 inelastic
scattering from an antiferromagneonly S,=1 final states lll. RESULTS FOR SPECIFIC CASES
are excited, antﬂof;)(d)océab. In this case we may define a

. A. Spin dimer
scalar neutron scattering structure facgq) by

The “minimal” spin cluster model is th&=1/2 spin
§J'>(® Sap30).- (12)  dimer(Fig. 1), which consists of a single pair 8 1/2 spins

fi) o . interacting through the Heisenberg Hamiltonian,
The result for%a () is more complicated for neutron

scattering from a magneti(S,,>0) initial state. If we as- H=JS S, (16)

sume an isotropic magnetic Hamiltonian and a spherical ba-

sis for the spin operato, the tensosga)(ﬁ) is diagonal but Since this is an isotropic magnetic Hamiltonian, the total

iS not « &,y it instead has entries that are proportional to aSPin is a good quantum number, and from the Clebsch-

universal function ofg times a product of Clebsch-Gordon Gord_on Seres 1/?1/2_:1@0 we expegt the_ spectrum to
coefficients, since consist of anS,=1 triplet and anS,=0 singlet. In a

z-diagonal basis

(Wi N)IVA i) = (Shi[1asnpV (@), (13) )
whereV\)(g) is the reduced matrix element for the transition IT1)
|¥;)—|¥y). Here we simplify the presentation by quoting the I17) 1
unpolarized resultsfnf:(d)), obtained by summing over final
and averaging over initial polarizations. This unpolarized LD
(%?(d)) is &, SO it suffices to give the functio(q); the Hamiltonian matrix is
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FIG. 3. The magnetic susceptibility of a spin dimer, E24)

FIG. 2. The magnetic contribution to the specific heat of a spin ; ‘
(dimensionless uniis

dimer, Eqg.(23) (dimensionless unijs

1/4 One may confirm that this specific heat formula gives the
correct entropy for a dimer dd=1/2 ions,
=] -1/4 1/2 (18)
= ~ . * dq
vz -1/4 s:f c® v 2in2). (25)
1/4 o B
Diagonalizing this Hamiltonian matrix gives the energy ei- The corresponding result for a general spin system is
genvalues and eigenvectors,
S=kg In(MNy), (26)
Ei=3J
! (19) where A is the dimensionality of the full Hilbert space and
E.=—23]3 Ny is the degeneracy of the ground state; for Brel/2
0= 4% dimer, V=22 and Np=1.
_ As an example of the application of the dimer suscepti-
[Wa(+ D))y =[11), bility of Eq. (24) (known as the Bleaney—Bowers formtfla
L in Fig. 4 we show a fit to the susceptibility of the spin dimer
[P1(0)=5(T1+[11)), (200  VO(HPQ,)-0.5H,0.3°[The molar susceptibility shown is re-
lated to the single dimer susceptibility of E@4) by Xmolar
[Wi(-1))=111), =Np/2-x[ The parameters of the fit arg=2.05 andJ
=7.76 meV(consistent with the results of inelastic neutron
1 scattering®. A 1/T defect contribution was also included in
[Wor =T =11 (21)  the fit.
v
The specific heat and magnetic susceptibility for the 4.0 T T T T T
dimer are especially simple, since there is only a single ex-
cited level. The results argn a dimensionless forim
7= e3/4,8J + 36—1/4BJ’ (22)
C e P
— =3B 53, 23
ke (BI) (1+36P)? (23
and
e = o5k - 4 data E
(gIL’L)B()Z/J - ZBJ(l + 36_'BJ) ' (24) 00 PPN N Y T‘.’illn?rlﬁt.(..,f?ze."ley).i
) _ ~o 50 100 150 200 250 300
These results are summarized in Tables IV and V, as are the T (K)

corresponding results we find for the other spin systems con-

sidered in this paper. Plots of the dimensionless specific heat FIG. 4. A fit of the dimer susceptibility formula of E424) to
and susceptibility of the spin dimer are shown in Figs.the measured susceptibility of \@PQ,)-0.5H,0. A defect term
2 and 3. was also included.
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Finally we evaluate the inelastic neutron scattering inten- 10— T
sities, which are given by the structure factors of Hg<)
and(15). (A complete set of inelastic neutron scattering tran- osl |
sitions for all the spin systems we consider in this work is
given in Table Ill; typically we will only evaluate the struc-
ture factors for the ground state of the antiferromagnetic sys-  ~96[ 1
tem) We evaluate Eq(14) for the dimer using the energy =
eigenvectorg¥,(m)) and |¥) of Egs.(20) and (21). This i 04l i
gives
1 o o 0.2} -

S(@) = 5(1 - codq - a) (27)
whergézil—i?:ilz is a spatial vector that coincides with 0 2% 6 & 10 12 14 16 18 20
the dimer. Evidently there should be no excitation of the ga

dimer spin-triplet state when the neutron momentum transfer
g is perpendicular to the dimer axés

In scattering from powder samples one measures the powier S(q) for a spin dimer with pointlike magnetic ions.

der averages(q) of the structure factor, defined by E@.5).
For the dimer this is

dQg, - 1 ;
S(@=| ——3(1-codqG-a)=5(1-jo(qa) (28
A1

wherejy(x)=sin(x)/x is a spherical Bessel function. This re-
sult is shown in Fig. 5 for pointlike magnetic iod&(q)
=1]. The location of the first maximum, gt=4.493%, pro-
vides a convenient estimate of the separation between t
interacting ions in the dimer. Of course in real materials the

1. Symmetric trimer

FIG. 5. The powder average, unpolarized neutron structure fac-

The completely symmetric, equilateral trimer has equal
magnetic couplings and bond lengths between all three pairs
of spins. The Hamiltonian for this model is

H=US $+S-$+5-9).
Since this Hamiltonian is invariant under any permutation of

the three spin labels, it has a discr&esymmetry in addition
5 the magnetic rotational symmetry. In &xdiagonal basis

(29)

incorporation of ionic form factors will reduce the location [TT1)
of this maximum. 1111

Experimental studies of real magnetic materials typically
proceed by establishing the approximate magnetic param- 1111
eters of a model Hamiltonian through a fit to the susceptibil- [1T1)
ity. Given a model Hamiltonian, one can predict the inelastic 1111 (30
neutron scattering structure factor, which is then compared to
experiment.(ldeally this is done on single crystal samples, 1111
but frequently only powder samples are availgblénlike [LIT)
the bulk susceptibility, the inelastic neutron scattering struc- L)
ture factor allows a sensitive and microscopic test of the - -
assumed magnetic Hamiltonian, since it is determined by théhe Hamiltonian matrix is
relative positions of the interacting magnetic ions. The spin- [ 7
dimer material V@QDPQ,) - 0.5D,0 provides a recent illus- 3/4
tration of the use of inelastic neutron scattering in identifying -4 12 12
magnetic interaction pathways; the susceptibility data of 1/2 -1/4 1/2
Johnsoret al* was well known to give an excellent fit to the 1/2 12 -1/4
dimer formula Eq(24), however, the separation of the inter-
acting V-V pair inferred from inelastic neutron scattering -4 12 12
datd? using Eq.(28) showed that the interacting V-V pair 1/2 -1/4 1/2
had been misidentified in the literature. 1/2 12 -1/4

3/4
B. Trimers L J
We will consider the most general case of a spin trimer (31)

with Heisenberg magnetic interactions. It is useful to presenThis matrix is block diagonal within subspaces of definite
the results as special cases with decreasing symmetry, sin&,,, as expected for a rotationally invariant Hamiltonian.
the formulas are simpler in the more symmetric cases, anilhe energy levels of the symmetric trimer are shown in Fig.
examples of both symmetric and isosceles trimers are know6(a). For theJ>0 (antiferromagneticcase the ground state
in the literature. is a quadrupletthe two S;=1/2 multiplets are degenerate
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FIG. 6. Geometries and energy levels (@ symmetric,(b) isosceles, andc) general trimer systems. These systems have Sipe

=3/2 nultiplet and twoS,=1/2 nultiplets.

and there is an energy gap%:] to theS,;=3/2 excited state.
Representative symmetric trimer energy eigenstétiesse
with maximum S,,,) are given in Table Il. Since the two

spin-spin couplingd is antiferromagnetiqas we normally
assumg or ferromagnetic, since both cases have ground
states of nonzero spin. A more detailed comparison of the

So=1/2 levels are degenerate, there is no unique groungusceptibility suffices to distinguish these; see the inset of

state for this system; we use the Jachi|(12),) and|\)
=|(12)9) three-body basis states of definit#2)-exchange
symmetry as our two independent basis vectors.

We may determine the specific heat and magnetic susce

tibility of the symmetric trimer from these energy levels,
using Egs.(6) and (7). The results are

C_9 g 3
P Z(BJ)ZW (32)
and
1 1+ &—3/2&]
X 1 . ) (33

(gue?3 47 (1 v e

It is notable that the integral of this specific heat gives an

entropy of

S= c%ﬁ =kgIn(2), (34)

[

which is only half as large as the entropy of the dimer, de-

spite the larger trimer Hilbert spaca&/=2%=8. The lower

entropy is due to the fourfold degenerate ground state of this

highly frustrated system;
S=kg IN(NVNp) =kg In(2%/4) = kg In(2).

The susceptibility of the symmetric trimer, E¢33),
agrees with Eq(2) of Veit et al*° (after specializing to a
single g-factor and a change of variabjesThis result is
shown in Fig. 7. Note tha(T) diverges as we approach zero

(35)

For

Fig. 7, which showsyT vs T for both cases. At high tem-
peratures the spin-spin couplidgis unimportant, and both
results approach the same Curie’s law limit.

Next we consider the neutron scattering structure factors
the symmetric trimer. Since this system has two degen-
erateS,=1/2 ground states and a sindlg,=3/2 excitation,
there are two distinct exclusive inelastic neutron structure
factors but only a single transition energyl—EO:%J. We
have chosenp) and |\) basis states for our orthogonal
Sot=1/2 eigenstates, and will give neutron structure factors
for each of these. The same structure factors follow for the
isosceles trimer, although in that case the Syp=1/2 states

are nondegenerate.

1.0 T
15
—J>0
o8} w0
Srob ]

206f\ & —
';rin 05} ;
D04t
=

0.2

0.0 .

0 10

5
kT

FIG. 7. The magnetic susceptibility of a symmetric trimer. The

temperature, since the ground state has nonzero spin. Thisset showsyT vs T for ferromagnetiqdashedl and antiferromag-
divergence is present independent of whether the intrinsioetic (solid) couplings.
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The structure factors for excitation of th&,=3/20) (32, + 1/2) = \/I(|TTL>+|TLT>+|1TT>)
level [using Eq.(14)] are given by ’ E
INL/2, + 12y =NG(TID + LT = 211T1) . (40)
SPo(g) = %(1 - cod§ - %19), (36) (172, +112) =\E(IT 1) - [111).

The Hamiltonian is necessarily diagonal on this basis, since
these three basis states have different values of the conserved
quantitiesS,; and (12)-exchange symmetry. The result is

1+ 2«
H=ZJ 1-4a . (41)
-3

These results may be understood in terms of the differenthe two sot:% levels are split as a result of the reduced
natures of thep) and|\) initial states. In thép) ground state  symmetry of the isosceles trimer; the f& symmetry of the
the (12)-dimer is in a pureS;,»=0 state, which must be symmetric trimer has been reduced $5 [(12)-exchange
excited t0S;,=1 to couple to theo) excited state. The symmetny, and sinceS, is Abelian no degeneracies follow
|p)— |o) excitation problem is thus identical to the dimer from this symmetry.
problem, to within an overall constant. It follows that The specific heat and susceptibility of the isosceles trimer,
Sr—9)(q) is proportional to the dimer structure factor of Eq. which follow from the energy levels of Eq41) and the
(27). In contrast, in thé\) initial state the(12)-dimer is pure ~ formulas Egs(6) and(7), are given in Tables IV and V. The
Si2=1 and the(23)- and(31)-dimers have amplitudes to be susceptibility agrees with the earlier result of Veit al*°
in both spin 0 and 1, so there are contribution§to"* due Note that one recovers the symmetric trimer result in the

to the excitation of each of the three dimer subsystems. limit @=1. ] o )
As SP—9) andSM differ considerably for moderatga We have confirmed by numerical integration of the rather

it will certainly be possible to distinguish betwen and|\) ~ complicated isosceles trimer specific heat formula given in
states from their single crystal structure factors. The powdefable IV that the entropy of the isosceles trimer satisfies

1 1 2
Sh=9)(g) = :—3(1 + 3 coqq - X10) — 3 cogq - X;3)

2
"3 cogq- iza))- (37)

averages, h(ilw.ever, are identical, and cannot be distinguished S _ Jw cdg _ 21n(2), a1 2
experimentally; ke o ke B “lin@). a=1
p—0) () = QA= () = =(1 — i as expected from Ed26) for an eight-dimensional Hilbert
$N@ =3 @ 3(1 Jo(qa). (38) space which has a fourfold-degenerate ground state for

=1 and a twofold-degenerate ground state otherwise.
Although the magnetic contribution to the specific heat is
o9 ) usually masked by much larger phonon contributions, we
gveragg of elafch cqsme_ljrr]] Eg%) a(;\d(37) gives trf1e”same note in passing that one may separate magnetic contributions
jo(qa) Bessel function. The dependen(ie-jo(qa)) follows experimentally by subtracting the specific heats in zero and

from the requirement th(0)=0. _ _ _nonzero magnetic fields. This approach was used recently by
As we shall discuss in the next section, an isosceles trimer,pan et all4 to study anS=1/2 V** vanadium trimer
would be a more favorable system for the identification Of(CN3H6)4Na2[H4V608(PO4)4((OCH2)3CCH20H)2]-14I-bO

|p) and|\) initial states in inelastic neutron scattering; these(seir materialt), which appears to be an accurate realization
levels are nondegenerate in the isosceles system, and tieihe isosceles Heisenberg trimer.

[p)—|0) and|\)— o) powder average structure factors are  ag we found for the symmetric trimer, the susceptibility
no longer equal, due to the different leg lengths. of the isosceles trimer also diverges Bsapproaches zero,
since the system has a magnetized ground state. The rate of
2. Isosceles trimer divergence withT can again be used to distinguish between

The isosceles spin trimer, Fig(t, has two equal mag- ferromagnetic and antiferromagnetic couplir@gich have

netic interactions and bond lengths. The Hamiltonian isSot=3/2 andSe=1/2ground states, respectivglyas shown
given by in Fig. 7 for the symmetric trimer. This behavior is evident in

the susceptibility of material of Lubanet al% in Fig. 3 of
- > . this reference one can see thgt for this material clearly
H=IS S+ dS $+5-9)). (39) follows the lower trimer curve, confirming that it is accu-
rately described by the antiferromagnetic isosceles trimer
To find the energy eigenvalues of this Hamiltonian it sufficesmodel (with an S,,=1/2 ground state
to consider theS, = +1/2 sector, since th&,=1/2 and There are three inelastic transitions excited by neutron
3/2 multiplets both havé, = +1/2members. The remain- scattering from an isosceles spin trimgh— |0, |\)— |o),
ing symmetry of this problem suggests that we use the thregnd|p)— |\). The first two were considered in the discussion
{|Sot, +1/2} energy eigenstates of the symmetric trimer asof the symmetric trimer, and the results for the isosceles
our basis, trimer are identicalexcept that the\E values of the transi-

These powder structure factors are identical because of
the identical dimer lengthg,;,=r,3=r;;=a, so the powder
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FIG. 8. The unpolarized structure factd@d)} (proportionalto _ FIG. 9. The powder average inelastic neutron structure factor
the angular scattering intensitiepredicted for inelastic neutron S(@) for the three allowed transitions of an isosceles trimer, with
scattering from thé\) ground state of a single crystal of an isosce- b/a=2.
les trimer materialsee texk

In the symmetric limito/a=1 these transitions are propor-

tions differ). The |p)— |\) transition was not considered pre- tional to the same function, lig(qa); at best it may be pos-
viously because these states are degenerate in the symmetible to distinguish thép)—|\) transition from the others

trimer. The result we find for the structure factor of this through their relative intensities. However, for significantly
different leg lengths thé\) —|o) powder average structure

. factor may differ enough from the liz(ga) of the |p)
SP-N(G) = =(1 - coLh - %)) . 43 —|o) and |py—|\) transitions to distinguish them. As an
@ 6( 14 %)) 43 example, in Fig. 9 we show the powder structure factors of
Eq. (44) for the three transitions, for an elongated triangle

This has the same form as the dimer gpid—|o) structure with b/a=2. (These results are independent of the magnetic
coupling ratioa.) As there is considerable variation in form

factors because it also involves the excitation of Sg)

=0 (12)-dimer to anS;, =1 state. It can evidently be distin- ang magnitude between these powder structure factors, it

guished from thép) — |o) transition by the overall intensity, should be possible to distinguish them experimentally in
similar isosceles trimer materials. If more than one transition

but not by the functional dependence @n
To illustrate these single crystal structure factors, in Fig. §s clearly observed, it may also be useful to compare struc-

we show the two ground state structure factors for the preture factor ratios, to eliminate the effect of ionic form factors.

transition is

viously cited Vg isosceles trimer(material 1 of Luban et
al.'%. The parameters ara=3.22 A andb=3.364 A. We 3. General trimer
show the predictions of E and (493) for in-plane scat-

P as37) “3) P The general trimer of Fig. (6) has three different mag-

tering, with momentum transfey=/a. Since this material . . ; . X . \
has two strong bonds and a weak direr 9),4 |\) should netic cou_pllngs and ion pair separations, and is described by
be the ground state, and thie)— |p) and [\)—|o) transi-  he Hamiltonian

tions shown in the figure should both be observafldese - s 5> > .
are expected at 5.0 and 8.4 meV, respectively, given the pa- H=IS S+ ayS S+an$-S).
rameters of Lubaet al) The very different angular distribu-  1:¢ system is also discussed by @ital2%in the context of
tions predicted for the scattered neutrons show that it Sho“'ﬁa@%MoOlz which they model as a two-dimensional
be straightforward to distinguish between these transitions i'&oupled arra;/ oB=1/2 trimers.

an inelastic. neutron s_catte.ring experiment, given a single o may again determine all the trimer energy eigenvalues
crystal of this or a similar tr_|m_er material. . by specializing to the, o= +1/2 sector and using the sym-

The powder average eliminates much of the differencen e trimer basis of Eq40), which gives the Hamiltonian

between these neutron scattering transitions, although it sti atrix
should be possible to distinguish them experimentally. On

(45)

carrying out the powder average we find 1+ oy
_ 1 =
§77a) = 3(1 - jo(q@), H= 1-200 \3aq |, (46)
V3ay -3
SA9(q) = 2(1 +3j4(qa) - 3jo(ab),
(@ =5(2+3i0(aa) - 3io(ab) where ag=az+ap; and ag=asz;— a3 The |o) basis states

again must be energy eigenstates, since they are the only

SP=N(g) = §(1 - jo(qa)). (44 g,=3/2 states in the Hilbert space. They have energies of
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1+ag
4

Ezp= J. 47

The S=1/2 basis state$p) and |\) mix in this problem,
since the general trimer Hamiltonian withy3# a5, breaks

(12)-exchange symmetry. The resulting energies are

E oo (1Fastn@ - ag)?+3ad)
12{3} 1

J. (49

PHYSICAL REVIEW B 71, 064403(2005
W01V ) 1 1
SWi2,1- V12,2 (g = A 1- §(C12+ Cy3+Cay)
1
+ §C4(C'31+ Cx3—2Cy)
(54)

1
+—=54(Cq; — C23)} ,
V3

where the new quantities ag,=cog46) and S,=sin(46).

The specific heat and susceptibility of the general trimefone may confirm that the previously derived symmetric and

follow from the energy levels of Eq$47) and (48) and the

isosceles trimer structure factors of E(R6), (37), and(43)

formulas Eqs.(6) and (7). The resulting expressions are follow from these general trimer results in the lingit- 0.

given in Tables IV and V. One may confirm recovery of the

The powder averages of these general trimer unpolarized

isosceles and symmetric trimer results as special cases gfructure factors may also be evaluated; the result for the
these results. We have also confirmed by numerical integraransition, ,, ;— W5/, is

tion that the rather lengthly general trimer specific heat for-

mula given in Table IV leads to an entropy 8fkg2 In(2),
provided that at least one of the parameiesysand a3, dif-
fers from unity.

The neutron scattering structure factors for the general
trimer involve coherent superpositions of the previously de-
rived |p) and|\) excitation functions, since the energy eigen-

states are superpositions of these basis statesSfjel /2
energy eigenstates of E(6) are explicitly

W1/, = = sin(O)|\) + cod )| p) (49)
and
|¥1/,2 = +cog6)|\) +sin(6)|p), (50)
where the mixing anglé® satisfies
tan(f) = ——— (51)
1+V1+x2

with x:\s’§ad/(2—as). The S,=3/2 energy eigenstate is, as

for all the trimers we have considered,

(V3 = o).

The structure factor for the transition from tBg,=1/2 state
|W1, ) to the So=3/2 state is given by

(52)

1 1
SYe-Yar)(g) = 5[ (1 - §(C12 +Co3t C31)>
1
+ 562(C3l+ Cy3—2Cy)

1
+ Tgsz(csl - sz)] . (53
N

where Cjj=cogq-X;), C,=cog26), and S,=sin2¢). The
structure factor for the second transitioby,, ,— W¥5),, fol-
lows from Eq.(53) on changing the overall signs of tlig
and S, terms. The third transition, between the v,
=1/2 states, has the structure factor

(1+20)
3
(1 _Cz + \'/:—382)
3

1-C,- 138
—%mmw) (55

_ 1
Sz~ Vs2(g) = 5(1 - jolarso)

jo(arzg)

The powder average results for the two remaining transitions
can be obtained from Ed55) by simple substitutions. To
obtainS"122-"32 simply change the overall signs 6§ and

S, in Eq. (55), and to obtairS¥v21-Y122 | divide Eq.(55)

by a factor of 2 and replacg, andS, by C, andS,, respec-
tively.

These results will be useful for the interpretation of neu-
tron scattering data on real materials. One example of a
candidate general trimer is thegVmaterial 2 of Luban
et al.,l4 N36[H4V608(PO4)4((OCH2)3CCH20H)2] 18H20
This compound has three distinct V-V separations between
the S=1/2Vv** ions within each vanadium trimer, 3.212,
3.252, and 3.322 A.

C. Tetramers

We will consider threeS=1/2 tetramer spin clusters of
decreasing symmetry, the regular tetrahedron, the rectangular
tetramer, and the lineddimer-paip tetramer. Our definitions
for the magnetic couplings and geometry of these systems
are shown in Fig. 10. As with the dimer and trimer systems
we will give results for the partition function, specific heat,
magnetic susceptibility, and neutron inelastic scattering
structure factors, the latter for both single crystal and powder
average cases.

1. Tetrahedron

This system has fou8=1/2ions at the vertices of a regu-
lar tetrahedron, with Heisenberg interactions of strength
between each pair of ioffjsee Fig. 1(8)]. The Hamiltonian
of this system is given by
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(@) (b) (c)
J o~ J
O——™©O —®
S, ® s s,
J J
S 0+a)— s=2¥> Gra— —s=2[¥>
3J _
3 —s=2 ¥ i-a) s=1[¥> Iofiva -a) s=1[¥ >
% V1-a+a? —l—a} ~s=0 ¥, > % 44—2a+a’—a—2} s=0[¥,,>
J T ] J <
-2 (s=1)[¥> %(a_l} s=11¥, > 2a-2) s=1¥, >
6 total J Iz =
transitions -3+ s=1 [¥, > 2 1“’1*") S=1¥, >
3J 2
- - s=0)7 ¥ > -
E 2 ¢ AL E —% Jl-a+a'+l+a)—— S=0 I‘P°_1> E —%(244—2a+a’+a+2} S=0|‘Pm>

FIG. 10. Energy level diagrams fda) the tetrahedron(b) the rectangular tetramer, aiid) the linear(dimer-paij tetramer.

4
H=33 S-S (56) +33, Su=2
o Es, = 30(Se(Sut D=3 =1-3), Su=1 (57)
-33, Su=0.

_ _ _ o ) The Clebsch-Gordon series of E@) implies that these
The invariance of this Hamiltonian under permutation of anys =1 andS,=0 energy levels are, respectively, threefold
site labels implies ars, symmetry, in addition to the spin and twofold degenerate.

rotation symmetry S(2). Since the groufs, is non-Abelian Given these energy levels, the specific heat and suscepti-
and has irreducible representations of dimensionaljt@,1 bility of the tetrahedron may then be determined using Egs.

and 3 we anticipate that one may find twofold and threefold (6) and(7), with the results
degeneracies in the spectrum of tetrahedron energy eigen-

states. We will see that this is indeed the case. C_9 o g+ Be 2A) + 10e738)
As with the dimer and symmetric trimer we may deter- ke 5('8‘]) € (1+ 26+ 2g389)?2 (58)
mine the energy eigenvalues of this system by simply squar- 2 2
ing the total spin operatog,==/,S, which gives for this and
case
1+2e28
— X - 306 (9 2 23 o (59)
(gue)ld (1+32eP+2e7%)
14
12|
10}
ém 08|
O os}
04|
02}
0.0
0
k, T/ % 1 2 3 4 5
k T/
FIG. 11. Magnetic contribution to the specific heat of a regular
tetrahedron. FIG. 12. Susceptibility of a regular tetrahedron.
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These quantities are shown in Figs. 11 and 12, respec- _gq'o,l_’q'l,l)(q):%(1—jo(qa)),
tively. The specific heat of the tetrahedron gives an entropy
of S=kg31In(2), as expected for a 16-dimensional Hilbert
space and a doubly degenerate ground state.

Note that the susceptibility is rather similar to that of the

SYor-"12(q) = 3(1 - jo(qa)),

spin dimer, since the tetrahedron also hasSg0 ground SYorY19(g) =0,

state and a gap af to the magnetize&,=1 excited states. _ (61
(The fact that the ground state is twofold degenerate does not SYozY19(g) = 2(1 - jo(qa)),

affect this result, since both aig,=0 states and neither

makes a contribution to the susceptibility. gwoﬁwlvz)(q) - %(1 ~is(qa),

Determination of the energy eigenvectors requires diago-
nalization of the Hamiltonian on a specific basis. Operating W W _2 .
on our|(12)(34)) dimer basis of Eqs(A3)—(A5) with the SYozr¥1.9(q) = 5(1 - jo(qa)).
tetrahedron Hamiltonian, Eq56), we find that the Hamil- A generalization of the tetrahedron problem in which the
tonian _matrlx is alread_y fully diagonal; each of these baSl_SHamiItonian has couplings of strength) between ions in
states is an energy eigenvector of the tetrahedron Hamilifferent dimers may also be of interest. This generalized

tonian. _ _ Hamiltonian is
In our discussion of neutron scattering structure factors of R _

the tetrahedron and the other spin tetramers considered in H(a)=J((S;-S+S;-Sy) + (S, S+ S-S+ S, - S
this paper, we will specialize t§.=0 initial states. Structure N
factors for S>>0 initial states, which are of interest for +5,-5)). (62

systems with magnetized ground states and at finite tempera; e . . . )
tures, and can be derived using similar methods. Fhe dimer pair basis of EqeA3)~(A5) s also diagonal un

. his Hamiltonian, with the eigenvalues given belGwe
The tetrahedron has two degenerate ground states, Whlﬁirt .
we take to bdWo 1)=|pp) and Vo »=|aa)e. The three de- cla\:ﬁ ?dded arg,; subscript to all these state vectors for
generateé5,;=1 excited states, which can be reached from the Y-
Sot=0 levels using inelastic neutron scattering, are taken to 1
be [W, )=[(p0)9), [W1)=[(po)n), and| W, H=[(c0)g)y. The H(@]00)s 2= (5 * a>|mf>z' (63
choice of this specific set of initial and final states is rather
arbitrary; in a real material we would expect a spontaneous 1
distortion of the lattice, which would select nearly degener- H(a)|oo), = (— - a>|(m>1, (64)
ate energy eigenstates that need not be these specific basis 2
states. However, these will suffice to illustrate the neutron
scattering structure factors expected for nearly tetrahedral 1
oyatoms. P Y H(@|(po)91= = Sl(p)9, (65
The single crystal structure factors for all of these transi-
tions may be read directly from Eq6A11)—A18). For ex- 1
ample, the transitiof¥, ;) —|¥ ;) is specified by the ma- H(a)|(po)ad1 == =|(po) ad1s (66)
trix element of Egq. (All); using the structure factor 2
definition in Eqg.(14), we find

1
H(a)|oo)g= (— - 201) oo, (67)
SYo1~¥1.9(G) = 1/2 =(Cyp— Cya+ Cyg+ Co3— Cou+ Cai)/4, oo 2 looe

(60)

3

. _ o H(a)|pp)o=- Elpp>o- (68
where as beforeC; =cogq-X;). This characteristic angular
distribution and its five partner distributions could be used in Since the energy eigenvectors of this genera"zed prob|em
an inelastic neutron scattering experiment from a single crysare exactly the basis states we used for the tetrahedron, the
tal sample to characterize the spin states of the individuaheutron scattering structure factors for t8g=0 to S,=1
Sor=0 andSy=1 levels.(Note, however, that one specific transitions are unchanged. In this system, however, all these
transition,[W ) — ¥, »), has a zero matrix element. levels are nondegenerate, so unlike the pure tetrahedron

The powder average structure factors for a tetrahedron ajjgroblem one encounters no structure factor ambiguities due

much less characteristic. Since there is only a single ion paip an arbitrary choice between degenerate basis states.
separation, each cosine in the single crystal structure factors

such as Eq(60) powder averages to the same factor of 2. Rectangular tetramer

jo(ga). This gives a powder structure factor that is propor-  The rectangular tetramer, shown in Fig.()) has(12)

tional to 1-jo(ga) for each transition, just as we found for and(34) dimers of interaction strengthcoupled by interac-
the dimer and symmetric tetramer; only the overall coeffi-tions of strengthad between ion pairg13) and (24). The

cients distinguish the different transitions. These results areHamiltonian is
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= = = = = = = = 0.6 T T T T
= . + . + . + . .
H=)S $+S; S+ alS - $+S-S)). (69 A RN
This Hamiltonian is already diagonal on tBg,=1,2 dimer-
pair basis states of Eq6A3) and(A4); the energy eigenval- 0al
ues are —
g
(1+a) 0
E,=+ J, 70
2 2 (70 02}
l-«a '
Eram + oY (71) K
2 0.0 < I 1 L 1
0 2 4 6 8 10
gqa
(1-a) _
Eio=- TJ' (72) FIG. 13. Powder average, unpolarized structure facgts for
the excitation of the thre§,=1 excited states of the rectangular
spin tetramer from th&q=0 ground staté¥, ;). The interdimer
(1+a) coupling strength isx=0.3, and the side length ratio iFa=1.5.
E;q =~ 5 J. (73 The structure factor for the transition to the third state is scaled up

by a factor of 10 for visibility.

The 2X2 Hamiltonian matrix in theS,=0 subspace ( -
. Co+ Sy/V3
spanned by Eq(A5) is (Co 1732/\ )(fl—fz—f3+f4), n=1
_ 242
1|11-2¢ -3« =
== = (Co+ S/V3)
H%ot_o 2J|: _ \3”36}{ -3 j| ! (74) 1’1<\I’1’n|V+|\If0'1> = < 02—’5(1:1 - f2 + f3 - f4)u n=2
N
which has the eigenvalues _ %(f1+ f,—fa—fy), n=3,
11 — : ' (78)
Eo,{;}:(—§—§a+ \1—a+06)3- (75)

The specific heat and susceptibility of the rectangular tetwhereCy and S, are cosf) and sirt6p), respectively.
ramer may be evaluated using these energy levels and the On converting these matrix elements to structure factors
general formulas of Eq96) and (7). The susceptibility is using Egs.(12) and(14) we find different functional forms
given in Table V. Although the specific heat is straightfor-for each transition for both the single crystal and powder
ward to evaluate, the resulting expression is too lengthly t@verage results, as a result of the different weight factors and
tabulate here. the three distinct ion pair separations. The powder average,
The neutron scattering structure factors of the rectangulaunpolarized structure factors are
tetramer are especially interesting because the ground state is
a linear combination of the dimer-pair basis states; this mix-éqro,lﬂxyl,n(q)
ing leads to coupling-dependent structure factors. Be r

=0 ground state of the rectangular tetramer is a linear super- (Co+ SOI\@)2 ) ) . _
position of unexcited and doubly excited dimer pairs, 5 ——[1-jo(ga) —jo(gb) +jo(qc)], N=1
: [3)2
[Wo,0) = = sin(6p)|oo)o + oL o) pp), (76) =4 W[l—jo(qa) +io(gb) = jo(q)], N=2
where the mixing anglé, between these basis states satisfies 2 ) ) )
31 +jo(aa) = jo(ab) - jo(@)], n=3,
[3al2 \
tan(6) = - e (77 (79

1-al2+Vl-a+a?

The matrix elements of the neutron scattering transitiorwherec=\a?+b. In Fig. 13 we show these structure factors
operatorV,, of Eq. (10) between the ground staf#, ;) and  for a case with moderate interdimer couplifg=0.3) for a
mined using the results of Eq(sﬁ.\lyi')'—(A18). Specializingto  Syu=1 excited statg¥; o is much weaker than the other
So= +1 final states for illustration, these matrix elementstwo, and so is multiplied by a factor of 10 in the figure for
are visibility.
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0 Sot=2 basis staté(oo)), is diagonal, with energy
0.6 11
E2:<—+—a>J. (80)
0.5 2 4
— 04 [ The Si;=1 basis staté(po),) is also diagonal, with energy
S O
e 1 1
7] —_(=_=
0.3 Ei,=-| 2~ J. 81
1,2 (2 4C¥) (81)
0.2 The remainingSy;=1 and §,,=0 two-dimensional Hamil-
0.1 tonian matrices are
1(1- 1n a
0.0 MHe =37 ° 82
ot 2 { a —1—%a] 82
_ and
FIG. 14. Variation of theS(q) structure factors for excitation of _
the lowestS,=1 state of the rectangular spin tetramer with side 11—« %a
length ratiob/a. This illustrates the use of powder structure factors HS[m:O = 5\] 3 _3 (83
in establishing the internal geometry of spin clusters. The dimer 2¢

ﬁgLrJr;:lI;r;gatiizna:O.\’i, however, this only affects the overall ;ip eigenvalues
1 1l —
. . Ely{l}:— —ax—\1+a)Jd (84

Note that the excitation of the higheSf,=1 state|¥; ), 3 4 2
which is a doubly excited dimeftoa)), is only possible be- and
cause the ground state has @fw) excited component, in
addition to the dominant “barelpp) basis state. The weak- = 11 . 1 1,
ness of thel¥, 5 signal is because the structure factor is Bof3}=-\5+ et y1-5at a7)d, (85)
proportional to the nonleading ground state amplitude _
squared, so that it ©(a?). The observation of similar “non- respectively. _ _
valence state” transitions which are forbidden @ta®) The susceptibility of the linear tetramer, which follows
should allow direct experimental tests of the “interaction”from these energy levels and Eg), is given in Table V. As
terms in quantum spin Hamiltonians such as this one. Th&ith the rectangular tetramer, the expression we find for the
strength alone is a sensitive measureapfand the spatial SPecific heat is too lengthy to tabulate here. _
modulation of§(q) is clearly different from theD(a?) tran- The neutron scattering structure factors from the linear
sitions that dominate the structure factors of the lower-lyingl€trameSy=0 ground statel 1) to the threeS,=1 excited
S.=1 states state§ W, ;. 3 may be calculated using the same techniques

(0] . J

The detaileci-dependence of the structure factors can b€ @pplied to the rectangular tetramer. The results are some-
used as a “fingerprint” to test whether a given structure igvhat more complicated, since two of tg,=1 linear tet-
indeed the magnetically active system. As an example, ikamer states are rotated between_ the dl_mer—palr basis states,
Fig. 14 we show that the detailed form of the structure factofn @ddition to the ground state basis rotation we found for the
to the firstSy=1 State shows significant variation with the "€ctangular tetramer. The energy eigenvectors in these sec-
ratio b/a. (Values ofb/a=1, 2, and 4 are shownThis type tors are the superpositions of dimer-pair basis states given in

of dependence could be used to establish the geometry of &ble Il, with mixing angles that satisfy

magnetic subsystem, or to check powder neutron scattering a
results against the geometry of a proposed spin system. tan(6,) = Iy (86)
Y o
3. Linear tetramer ) \Ea /a
The linear tetramer consists of two dimers with internal tan(6p) = (87

- 1= 211"
magnetic couplings of strength with a single interdimer 1-al4+V1-al2+al4

coupling of strengthw between the two adjacent end spins This more complicated basis mixing pattern introduces a
(see Fig. 1D The term “linear” refers only to the pattern of new feature, which is that the functional forms of the struc-
magnetic couplings; the actual spatial geometry of our lineature factors for the two mixe8y=1 states|¥; ) and|V; 3,
tetramer is not assumed to be a straight line. The “Clemsodepend on the dimer coupling (In the rectangular tetramer
tetramer” NaCuAsQ@ (Ref. 28 is a recent example of a pos- system discussed previously we found that changing the
sible “linear tetramer” that does not have a true collineardimer couplinga only changed the overall normalization of
dimer geometry. the structure factors, not their detailgddependence.

The linear tetramer Hamiltonian matrix is also relatively ~We will give explicit results for the first transition,
simple in the dimer pair basis of EJ#3)—~(A5). The single  |¥, ) —|¥, ;), and then simply quote the results for the two
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FIG. 16. Contours of equal intensity of the powder average,

the excitation of the thre§,=1 states of the linear tetramer, in- unpolarized structure factors of the linear tetramer, with parameters

cluding the ionic form factor, with magnetic coupling ratic=0.4

and ion positions taken from the NaCuAsGtructure(Ref. 28. [

appropriate to NaCuAsg as in Fig. 15. The contours are normal-

zed to the peak of the first transition, and intervals of 0.2 in inten-

The structure factor for the transition to the third state is scaled ugsity are shown for the two lower states. The much weaker third

by a factor of 10 for visibility.

transition is displayed with intervals of 0.01.

remaining final states. The matrix element of the neutrorflidate material NaCuAs(¥®?°The ion pair separations are

scattering transition operatdf, is

r1,=r3,=3.641 A r3=r,,=3.863 A, r,=6.814 A, andr,;
=3.151 A. The copper positions are consistent with planarity,
although our results do not require this assumption. There are

indications of three5,=1 levels in this material from a re-

16W1 1IVL W 1) = cpa(fy = F4) + Coa(fo — f3) (88)
where
Ciq C /3
g (Co+ Sf)(_\3)C1 . Sof*l 89)
23 212 V6

and Cy; and § ; are, respectively, cosine and sine of thef

linear tetramer basis state mixing angles, which were define
in Egs.(86) and(87).
The resulting unpolarized powder structure factor for this
transition, using Eqsi14) and(15), is
SPor V1= 2cl(1 - jo(arya) + (1 = jo(arza)
+ 2C14C3(jo(aAr12) — Jjo(dria)]. (90)

The transition from the ground state to the second linea

cent inelastic neutron scattering experiment, with energies of
approximately 9, 11, and 18 me¥;in the linear tetramer

model this suggests parametersJef 10 meV anda=0.4,

which we will assume herdgThe structure factors only de-

pend ona.) We also incorporated a simple €tionic form
ctor, F(q)=1/(1+g?/q3)° with q,=8.0 A™%, which agrees
5€ith the online ILL C#* form factof! to <0.5% over the
range ofg shown. Our results are shown in Fig. 15; charac-
teristic features include the displaced relative maxima of the
intensities of the two lower states, and the much weaker
transition to the highes$,;=1 state. The results for the two
lower states are rather insensitivedo The overall scale of
the |W; o structure factor, however, is quite sensitivedp
and scales approximately ag. A measurement of the rela-

tetramerS,,=1 excited state is given by a matrix element wetlive strength of these transitions would provide a useful de-
encountered previously in the rectangular tetramer problenf€rmination ofa, which could be compared with the value
except for a change in spatial geometry. The result for th&xtracted from the energy levelgn principle the suscepti-
unpolarized powder structure factor with completely genera!lity could also be used to determirg but we have found

ion positions is

(Co+ SH/\3)?
2

' 1 . .
SI’O,l‘)\Pl,Z(q) = <1 + 5(— jolarip) —jo(arya)

+jo(aria) +jo(dras) — jo(qras) - io(qr34))> .
(91)

The structure factor for the thir§,=1 state¥; ; may be
found from theW, ; structure factor of Eq(90) with the
simple substitution$C; — S,), (S, ——-C,).

We will illustrate the predicted structure factors for the

that it has a rather weak dependence in this system.

In Fig. 16 we show these results in a contour plot, ap-
proximately as would be observed in a neutron scattering
experiment[Our results should be multiplied by the energy-
dependent factok’/k of Eq. (11) for a direct comparison
with experiment To generate this plot we have convolved a
Gaussian energy resolution function, Bx{E-E;)?/202]
with 0g=0.5 meV, with the structure factors to the three
Soi=1 states. The intensities are shown relative to the maxi-
mum excitation intensity of the transition to the lowé&},
=1 state|¥, ) —|¥; ). Note the characteristic strong peak
in intensity of the second transitiofW, ;) — ¥ ,), near
1.1 A1 Comparison of these general features with the data

linear tetramer assuming parameters appropriate for the caof Nagleret al?® suggests that the linear tetramer model does
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indeed give a realistic description of neutron scattering frommaterial would be a very interesting exercise for a future
NaCuAsQ. inelastic neutron scattering experiment, especially if large
single crystals are available.

Another recent example of anS=1/2 trimer
is the “Na-2" material of Kortz et al. (Ref. 18,

In the previous section we presented results for bulk therNag[ CusNag(H;0)q( @~ AsWgO33),] - 26H,0, which contains
modynamic and magnetic properties of various dimer, trimeran equilateral C§f trimer with a susceptibility consistent
and tetramer molecular magnets wiBs1/2 ions. We also  with equal Heisenberg interactions & 0.35 meV. Inelas-
derived the inelastic neutron scattering structure factors fotic neutron scattering from a powder sample of this material
these systems; inelastic neutron scattering is very useful asshould show th&,=3/2 excited level, with a structure fac-
local probe of magnetic interactions at the atomic scaletor proportional tof1-jy(ga)]. With a single crystal sample
These results clearly have many possible applications to redl might be possible to separate the transitions from the two
materials. In this section we discuss some examples of manearly? degenerat&,=1/2 levels to theS,=3/2 excited
terials that are thought to be realizations ©f1/2 dimer, level.
trimer, and tetramer molecular magnets, and describe how The two “Vg" materials of Luban et al*
our results could be useful in future experimental investiga{CNzHg), Nay[H,V Og(POy) 4((OCH,)3 CCH,OH),]- 14H,0
tions. We also discuss possible extensions of this workand Na[H,VsOg(PO,).((OCH,);CCH,0H),]- 18H,0, con-
which will be useful in interpreting experimental data ontain pairs of(presumably weakly coupleéd/; spin trimers
these and related magnetic materials under more general cthat are, respectively, isosceles and general triangular sys-
cumstances. tems. The isoscelesg\vmaterial was used as an example of

The S=1/2 spin dimer is the simplest of all spin clusters. single-crystal inelastic neutron scattering structure factors in
It provides a textbook case for studies of finite spin systemshis paper.
more generally, since physical observables for the dimer can The “V,;5" material K¢V 15A5604,(H,0)]-8H,0 is an ex-
often be derived as closed form analytic expressions. This iample of anS=1/2 trimer in a more complicated magnetic
the case for the specific heat, susceptibility, and neutron scageometry. This material has a frustrated Wiangle sand-
tering structure factors presented here. Vanadyl hydrogefiched between two nonplanar antiferromagnetic héxa-
phosphate, VEHPQ,) - 0.5H0, is a well-known example of gons. The low-temperature magnetic properties are domi-
an S=1/2 spin dimer materiat'~*3and some of the results nated by the V triangle; other magnetic interactions become
tabulated here have already been used in interpreting data @mportant at elevated temperatufés®4?In addition to dis-
this material. In particular, the magnetic susceptibility wastinguishing between direct vanadium—-vanadium and super-
originally used to determine the exchange consthréand  exchange pathways involving the upper and lower hexagons,
inelastic neutron scattering was used to test the simple dimeteutron scattering was used to probe the magnetic structure,
model and establish which pair of *¥ ions forms the finding two nearly degenera®.=1/2 ground stategwith
dimer!2 This experiment was a dramatic success for inelasti©.035 meV splitting and anS,=3/2 excited staté® The
neutron scattering, as the previously assumed V-V dimeavailability of large single crystals of this material suggests
pair was shown to have been misidentified. that it might be an interesting candidate for inelastic neutron

Many examples o6=1/2 iontrimers have been reported scattering studies.
in the literature. These systems are interesting in that the Clearly, the analytical expressions we have presented here
ground state igideally) degenerate, and must exhibit ferro- for spin-trimer thermodynamic properties and inelastic neu-
magnetism(S,,> 0 for any energy eigenstate of an isotropic tron scattering amplitudes have wide potential application,
magnetic Hamiltonian with half-integer ion spins and anand should be useful in particular for interpreting the results
odd number of iong. Heisenberg trimers with antiferro- of future inelastic neutron scattering experiments on spin-
magnet pair interactions are also of interest because theyimer molecular magnets.
are the simplest isotropic spin systems which experience Examples of tetramer systems wiB¥1/2 ions include
frustration. One example of anS=1/2 trimer is  sodium copper arsenate, NaCuAs®2® which we used as
Cu(0,C1gH29)6- 1.2GH1,, 1817 which has an equilateral an illustration of the evaluation of inelastic neutron scatter-
Cw* triangle with a Cé*-Cu?* separation of 3.131 A. Re- ing structure factors in the previous section. The neutron
cent electron paramagnetic resonafE®R measurements scattering data of Naglegt al?® supports a model of this
show that the ground state of this material consists of anaterial as an open-chain tetramer, with antiferromagnetic
twofold-degenerat&=1/2 level; this is in accord with ex- Heisenberg bonds of alternating strength. Transitions from
pectations for a general isotropic trimer antiferromagnet withthe S,,=0 ground state to all thre&§,=1 triplet excited
S=1/2ions, but not with the perfect equilatef@ymmetri¢  states have been observed on a powder saffied the
case, in which the ground state is a quartet of two degeneratelative intensities and the-dependence of the powder av-
Sot=1/2 levels. The gap to th&,=3/2 excited level is erage structure factors appear to be approximately consistent
estimated from both EPR and susceptibility data to bewith our predictions for the open-chain model. As we have
28 meV817There are indications from the EPR studies thatgiven detailed analytic predictions for the neutron structure
this fourfold degeneracy has been lifted by additionalfactor for these transitions, a comparison with data from a
nonisotropic interaction’. Investigation of the level struc- high-statistics experiment on a larger powder sample should
ture and structure factors in this apparently symmetric trimebe straightforward.

IV. FUTURE APPLICATIONS
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TABLE Il. Energy eigenvectors and eigenvalues.

Spin system Eigenvectcty\lfgf)‘)(SZ tot=Sot) Energy
Dimer [Py =lo(+1))=|11) E;=3J
Woy=lpy=3(1 =111 Eo=-3J
Symmetric trimer [Wa=|o(+3/2)=|T11) Esp=3J
(W12 2= INFL2)=5( T L D+LT =211 1) Eirp=—3
[W10=lp(+1/2)=3(1 L 1)=[111))
Isosceles trimer [ W30 =|a(+3/2)) Esp=(3+3a)J
[W1/22=\(+1/2) Ei=(5-0)
[¥1/29=|p(+1/2) E1/2,1=‘4§1J
General trimer [W30)=|(+3/2)) Eapp=3(1+adJ
[W1/2,9=+CogO)|N(+1/2)+sin(6)|p(+1/2)) E12.= S[+\(2-a92+3a5-1-ag]d
W12, 9==SIN(O)|\(+1/2)+cog 6)|p(+1/2)) E12.1= [~(2-a92+3a2 - 1-ag)J
Tetrahedron [W=loa),=|111T) SEEN
|¥1 9=[g0)y E;=-1J
[¥12=[(po)g
[¥1,0=[(po)a)
[Wo,2=[g0)o Ep=-3J
[Wo,0=pp)
Rectangular tetramer [Vo)=|oa), Er=(3+3a)J
|¥1 9=[00)y Ely3=(%—%a)\]
V1 2=|(p0)9) Eyo=(-3+3a)J
[V, 0=[(po)n) Ey,=(-3-3a)d
[Wo,2)=+cog fo)|aa)o+sin(do)|pp) Eoo=(+\1-a+a?-3-3a)d
[Wo,1)=-sin(6p)|ca)o+cog o) pp) Epa1=(-V1-a+a?-3-1a)J
Linear tetramer [Vo)=|o0), Er=(3+3a)J
|19 = +cog6y)|oo), +sin(61)|(po)s) Ei 3= (+%\51+—a2— %a)J
|‘1'1,2>:\(PCT)A> E; o= (—%+;11a J
[y, )==sin(6y)|o0);+cog6)|(po)s) E;1=(-3V1+a?-a)]
[¥o,2) = +cog bp)|oa)o+sin(bo) pp) Eo 2= (+\"m_ 3- ia)J
[Wo,1)==sin(6p)|ca)o+ g 6p) | pp) Eo=(-\1-ta+la?-1-1a)y

Additional examples 06=1/2 tetramers are found in va- material might involve an inelastic neutron scattering study
nadium materials containing th¥ ;,Asg0,4(H,0)]* cluster  of a single crystal, which could be used to test the detailed
anion. Basleret al3’” have recently reported studies of the orientation dependence expected for the structure factor for
magnetic properties of three such materials,[Mg,AsgO,9  each of the observed magnetic transitions to excited states,
(H0)]:23H,0,  Nay[V15Asg04o(D,0)]-16.50,0, and given their fitted magnetic Hamiltonian. Since this Hamil-
(NHE3)[V 1,A85040(H20) ] - H,O. These materials have three tonian includes anisotropies, a study using polarized neu-
stacked \, tetramers, but are mixed-valefivg'V;°). The trons could provide additional useful information.
middle tetramer dominates the magnetic properties. This tet- There are several interesting questions which were not
ramer is antiferromagnetic and close to square, with exeonsidered in detail in this paper that would be appropriate
change constants 6£1.5 meV (inferred from energy levels for future research on finite spin clusters. Consideration
established by EPR and inelastic neutron scattgrilpe  of higher ionic spin is one obvious generalization of
Basleret al. study is a very nice illustration of the combined this work. Several examples of uncompensated molecular
use of bulk magnetic properties and inelastic neutron scattemagnetsiwhich have ground states with nonzero gpimay
ing to characterize magnetic materials, as we advocate in thize found in relatively simple higher-spin materials.
work. Additional studies of this already well-characterizedOne example is the first cobalt molecular magiet,
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TABLE lll. Inelastic neutron scattering transitiofs.
System Transition AE
Dimer LWy —|Pq) J
Symmetric trimer W10 9 —[Par0 33
I Wiy — Va0
Isosceles trimer W10 — |War0) (1+%a)
I [Way0.0— Va0 3ad
M. (W0 — P12  (1-a)d
General trimer W10 ) — Vg0 [2(1+a)+1fo]
I W= Ve [3(2+a)-3foly
W Wi —[Wip2  3fod
Tetrahedron Wo p— ¥y J
1. |‘I’0,]>—>\‘1’1,2>
. [¥o ) — ¥y 9
V. [Wo ) —|¥q,0)
V. [Wo ) — W15
VI [Wo)— W19
VII. |\Ifl’1>—>\\lf2> 2J
VIII. |‘I’1v2>—>|\lf2)
IX. [Wy 9 —|¥y)
Rectangular tetramer  |¥g p— |V ) fiJ
Il [Wo ) — P15 (f1+a)d
1. |‘I’0,1>—’|\I’1,3> (f+1)J
IV. |‘I’1,]}H|‘PO’2> fiJ
V. Wy ) — ¥y ) ol
VI. |\I’11)H|\I’13> J
VII. |\I’1’1>H\‘P2> (1+a)d
VIII. |\P1,2>H|\I’0’2> (fi—a@)d
IX. |\I’12)H|\I’13> (1-a)d
X. Wy ) —|¥5) J
Xl [Wo ) — ¥y 9 (1-f)J
XIlI. |‘I’l’3>—>\‘l’2> al
Linear tetramer 1| Wo ) — Wy 1) [f,-3(fs-1)]d
I |Wo ) — Wy 5 (fy+2a)d
N [Wop—|¥19  [f+5(f3+ 1))
IV Wy 9= [Wop  [f+5(f-1)]
V. [¥ ) —[Wy 5 5(fa=1+a)J

VI |‘I'1,1>H|‘I’1,3>
VII. |\If1,])H\\P2>
VIII. |\P1,2)H|\If0,2>
IX. |‘I'1,2>H|‘I’1,3>
X, W0 — W)
XI. |‘I'0,2>H|‘I’1,3>
XIl. |\If1,3)a\\lf2)

f2J
5(f3+1+a)]
(fz_%a)-]

5(f3+1-a)d

J
[-fo+3(fs+ 1))
5(~fa+1+a)d

aThis table uses the abbreviationsEQ:),(2—a3)2+3a§, fq

=Vl-a+a? f,= V1-al/2+d?l4, andfz= V1+aZ.
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been estimated from fits to magnetization curves, and are at
the meV scalé? The magnetic C8 ions in this material
form a tetramer with important tetrahedral and dimer mag-
netic interactiong? which would be an important case for
future neutron scattering studies, especially with large single
crystals. Another example of a molecular magnet with higher
ion spin is the chromium magn¢€r,S(O,CCHs)g(H,0),]
(NOg),-H,0O, which has four ferromagnetically couplesi
=3/2 CP"ions arranged in a nearly regular tetrahedron, with
an S,;=6 ground state. Furukawet al® determined the ex-
change constant for this material from the susceptibility, and
predict a gap to the firsh,;=5 excited state of ca. 15 meV.
Observation of this excitation using inelastic neutron scatter-
ing should be a straightforward exercise, and the intensities
should agree well with theoretical expectations of the
Heisenberg model, since this model gives a reasonably good
description of the bulk magnetic properties.

Extension of this work to mixed-valent spin
clusters would also be interesting, since many examples
of these are known, including systems with magnetized
ground states. One example is the “Nnmaterial
[Mn,4O5Cl,(O,CEY5(py)sl,- 2CH44 studied by Hillet al,**
which has a mixed-valent spin tetramer consisting of a tri-
angle ofS=2 Mn** ions with an apicaB=3/2 Mrf**, and a
ground-state spin 08,=9/2. Although the interest in this
material as a molecular magnet is largely due to the weak
coupling between pairs of Mrclusters, the magnetic Hamil-
tonian within a single Mpcluster could be tested by powder
inelastic neutron scattering.

Another interesting theme for future studies is the effect
of finite temperatures on inelastic neutron scattering; al-
though increasing temperatures are usually associated with
weaker inelastic transitions, the finite Hilbert space of a spin
cluster implies that magnetic transitions will weaken in a
simple, known manner according to their Boltzman factors,
and will approach finite limits at high temperatufesovided
that the magnetic Hamiltonian remains vali§ince moder-
ate temperature®n the scale of the magnetic excitatipns
will significantly populate excited levels, it may also be pos-
sible to observe inelastic transitions from excited levels that
are inaccessible at low temperatures.

Another important topic which we briefly alluded to in the
text is the issue of magnetic interactions between spin clus-
ters; these interactions will broaden the discrete levels as-
sumed here into bands, which will be observable if the inter-
cluster interactions are sufficiently large.

Finally, the generalization of our results to non-
Heisenberg interactions, and the determination of these inter-
action parameters through polarized inelastic neutron scatter-
ing experiments, would be an especially interesting and
important extension of the work presented here.

V. SUMMARY AND CONCLUSIONS

In this paper we have evaluated several thermodynamic

Coy(NCsH,H,CO),(CH;0H),Cl,. This material consists of and neutron scattering observables that characterize the mag-
four S=3/2 Ca* ions and four ligand-related oxygen atoms netic behavior of finite quantum spin systems. After an intro-
situated on the corners of a cube, with a ferromagneticuction that gives results applicable to the general case, we
Soi=6 ground state. The magnetic exchange constants hawpecialized to clusters &=1/2 ions with a Heisenberg in-
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TABLE V. Specific heats

Spin system

Clkg

Dimer

Symmetric trimer

Isosceles trimer

General trimer

Tetrahedron

3BJ)%eM (3+e)?
?1(:8‘]) 2632831 (1 +e3/283)2

(BYA2(1-a)?et+28]

+ (2 + a) Ze(1+(1/2)a)BJ + 9a26(3/2)aBJ)/

(2 +e312apl 4 g(1+(1/2a) )2

1_16 (BJ) Ze(1/2)(1+aS)BJ(fge(1/2)(l+a5) BJ

+[4(1+a)?+f3]cost(foBI/ 4)
+4fo(1+ag)sinh(foB/4))/
(1+6 121798 cosH(fo33/ 4))?

1831)%(10e*+ 563+ |
(5+9e?P+2e349)2

aThis table uses the abbreviatig= (2 - ag)?+ 3a3.

PHYSICAL REVIEW B71, 064403(2009

neutron scattering structure factor show that accurate inten-
sity measurements of inelastic neutron scattering cross sec-
tions from a powder can be useful in establishing the spatial
geometry of an assumed set of interacting magnetic ions. The
linear spin-tetramer candidate NaCuAs®@as considered as

an example, and we found that the observed inelastic powder
pattern for excitation of the two lowe§,;=1 excited levels

is indeed consistent with the predictions of the linear tet-
ramer model. We also considered inelastic neutron scattering
from single crystals, and found dramatic angular dependence
that could be used in future experiments as sensitive tests of
the assumed magnetic Hamiltonian. We concluded with a
discussion of specific materials that might be studied using
our results, and suggested future extensions of our work to
more general systems.
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TABLE V. Susceptibilities?

Spin system

x!(gue)®

Dimer

Symmetric trimer

Isosceles trimer

General trimer

Tetrahedron

Rectangular tetramer

Linear tetramer

28/ (3+e)
1 B(5+e/3/28%) /(1 +&¥28)

%,8(10 +e(3/2)aﬁ.]+ e[1+(1/2)a]/3J)/
(2 +e32apd 1 d14(1/2)alp)

%'18(54_6(1/2)(&&5)3J cost(foBJ/4))/
(1+e1/2(1+a9 ) cosK(f, 3/ 4))

B(5+3e?8) | (5+9e?P+ 2¢389)

325+ + 7B+ gL+a)BY) |
(5 + 3eBJ + 3eaﬁJ + 3e(l+a)ﬁJ
+2e1*0)BI coskf, 8/ 2))

B(5+eP+2e12(1+aB) cosHf,R1/2))/

(5+ 38+ 2l 1+(112)a]Bd cosH(f, BJ)
+6e121+a)B) cosK(f481/2))

This table uses the abbreviation§y=y(2-ag?+3a?, f1

=Jl-a+d? f2=\s“‘1—a/2+a2/4, andf3=\fl+a2.

ELEMENTS

Since there is a natural separation of the rectangle and
linear tetramer systems into dimer components, it is useful to
introduce al(12)(34)) dimer basis to represent tetramer en-
ergy eigenvectors. The dimer basis states are

o) = 715(”“ 1) (A1)
and
1T, m=+1
o) = 715<|T1>+|¢T>>, m=0 |. (A2
111, m=-1

These are combined as Clebsch—Gordon series to form tet-
ramer basis states of definite total spin and symmetry, which
are [(00)g),S50t=0,2; [(00)a), Sor=1; |(P<T)3A>=Stot:1? and
lpp),Soi=0. In the interest of clarity we will occasionally
specify the total spin of one of these basis states with a
subscript; thugoo), refers to the(oco)g) state withSy=0.

Using these states as basis vectors reduces the 16-
dimensional full tetramer Hilbert space to one-, two- and
three-dimensional subspaces, which are spanned by the basis
sets

|Sot=2) =[00)2, (A3)
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|oa), states, which is all that we require to determine all neutron
scattering structure factors for all the spin tetramer problems
{|Sot=1)} = l(po)9 | (A4)  we consider. These tetramer matrix elemeftith explicit
Sot OF Son Syior SUbSCripts on the states where required for
(po)w) clarity) are
o), {pplVelpp) =0, (A10)
{|Sot=0)} = (AS)
lop)

fl_f2+f3_f4

V. =9 = , All
Thus symmetry arguments alone determine the eigenvectors 1. (p0)sIValpp) = Garm 2\2 (AlD
for one level, and the eigenvectors for the remaining levels
involve at most < 2 and 3x 3 diagonalizations. As we shall B fi—f,—f3+1,
see, for the three tetramer models we consider here we actu- 1{(po)alVal pp) = 5a,m—2\5 . (A12)
ally encounter at most:2 2 diagonalization problems using ‘
this basis. -
These basis states are also convenient for determining (oolValpp} =0, (A13)
neutron scattering structure factors, since they have relatively _
simple matrix elements of the spin transition operatgrof (pplValoo) =0, (A14)
Eq. (10). The complete set of matrix elements\6f (spheri- fofotfurf
cal componentsbetween singl€12)-dimer basis states, with 1l (pa)dVy ooy =— 6, a—2=2 4 (A15)
fi=e**, is ’ ‘ 2V6
] 1
(pVelp) =0, (A6) fy—fp—fg+f
1,m<(P0')A|Va|0'0'>O == 5a,m%a (A16)
fi—f ‘
((m)|Valp) = Sam— =, (A7)
ooV oa),=0, (A17)
(PIVlo () == 5y 2 (n8) - gyt fomfa
PIVal a-m= 5 1’m<(ra'|Va|mT>0— 5a'mT, (A18)
fio+f =
(M) Ve (M) = = Sy mea———. (A9) Ao0|Veloa)=0. (A19)

2 - . .
The remaining matrix elements between pairsSgf=1

These dimer results may be combined to give the comstates and betweef,;=1 andS,;=2 states, which were not
plete set of matrix elements &f, between tetramer basis required in this paper, may be evaluated similarly.
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