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In this paper we report results for magnetic observables of finite spin clusters composed ofS=1/2 ions. We
consider clusters of two, three, and four spins in distinct spatial arrangements, with isotropic Heisenberg
interactions of various strengths between ion pairs. In addition to the complete set of energy eigenvalues and
eigenvectors, specific heat and magnetic susceptibility, we also quote results for the single crystal and powder
average inelastic neutron scattering structure factors. Examples of the application of these results to experi-
mental systems are also discussed.
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I. INTRODUCTION

Recent years have seen a rapid increase in the interest in
finite quantum spin systems, also known as molecular mag-
nets or nanomagnets.1–10Molecular magnets typically consist
of clusters of interacting spins that are magnetically isolated
from the other clusters in the molecular solid by nonmag-
netic ligands. Formally, molecular magnets are materials in
which the ground state has nonzero total spin. Here we gen-
eralize this definition to include all systems of largely iso-
lated clusters of interacting quantum spins. These materials
are interesting both as simple model systems for the study of
quantum magnetism and because they have possible applica-
tions as nanoscale computer memory elements.3,4 Many re-
alizations of finite spin clusters with various ionic spins,
ground state spins, and geometries have been reported in the
literature; some recent examples withS=1/2 ions are given
in Table I.

Theoretical results for the properties of finiteS=1/2
quantum spin systems have appeared in several recent refer-
ences, primarily in the context of experimental studies of
specific materials. Dimer results are reported in several stud-
ies of theS=1/2 spin dimer VOsHPO4d ·0.5H2O; see, for
example, Johnsonet al.,11 Tennantet al.,12 and Kooet al.13

Theoretical properties ofS=1/2 spin trimers have similarly
been given in studies of candidate trimer materials; see, for
example, Refs. 14–18.

Rather few general theoretical results have been
reported for S=1/2 spin tetramers, since the results are
more complicated and there are many more independent
geometries and sets of superexchanges. Specific cases of
tetramers are considered by Procissiet al.19 sS=1/2 square
tetramerd, Gros et al.,20 and Jensenet al.21 fan unsym-
metric S=1/2 tetrahedral model of Cu2Te2O5sBr1−xClxdg,
Kortz et al.18 sunsymmetric tetramer model of
K7NafCu4K2sH2Od6sa-AsW9O33d2g ·5.5H2Od, and Ciftja10

ssymmetric trimer with apical spind. More general reviews of
quantum spin systems have been published by Kahn22 sther-
modynamicsd and Whangboet al.23 slocal origins of magne-
tism, thermodynamics properties, and materialsd. Studies of
the dynamics of Heisenberg spin clusters using a quasiclas-
sical formalism have been reported in a series of papers by
Ameduri, Efremov, and Klemm.24–26Waldmann27 has carried
out calcuations of the inelastic neutron structure factor for
cyclic Heisenberg spin clusters which are quite similar to the
results presented here.

This increased level of interest in molecular magnets mo-
tivates more detailed theoretical investigation of the proper-
ties of finite quantum spin systems. For simple theoretical
models such as the Heisenberg model, clusters that consist of
only a few interacting magnetic ions can be treated analyti-
cally, and closed-form results can be obtained for many
physical observables. One especially interesting quantity is
the inelastic neutron scattering structure factor, which is re-
quired for the interpretation of inelastic neutron scattering
experiments. Inelastic neutron scattering is very well suited
to the investigation of magnetic interactions at interatomic
scales, since the measured structure factor is sensitive to the
local geometry and interactions of the magnetic ions. As this
work is intended in part to facilitate future neutron scattering
studies, the evaluation of this structure factor is one of our
principal concerns.

In this paper we specialize to magnets that are clusters of
S=1/2 ions with isotropic Heisenberg interactions, and give
analytic results for the properties of dimer, trimer, and tet-
ramer clusters with various geometries. After the Introduc-
tion, in Sec. II we define the Heisenberg model and the ob-
servables we evaluate in this work. These include the
standard thermodynamic quantities for magnetic materials
spartition function, specific heat, and magnetic susceptibil-
ityd, as well as the inelastic neutron scattering structure fac-
tors. In Sec. III we evaluate these quantities for specific spin
clusters, which are the spin dimer, symmetric, isosceles and
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general spin trimers, and three cases of spin tetramersstetra-
hedral, rectangular, and alternating lineard. We also tabulate
all the energy eigenvalues and eigenvectors for each spin
system. Section III ends with an application, which is a nu-
merical study of powder inelastic neutron scattering ampli-
tudes in NaCuAsO4;

28 the results appear to support the iden-
tification of this material with the alternating linear tetramer
model and agree well with the data of Nagleret al.29 Finally,
Sec. IV discusses several materials which may be candidates
for future experimental studies, as well as some interesting
directions for future theoretical research.

For reference purposes our principal results for the spin
systems considered here are given in a series of tables. These
results are the spectrum of energy eigenvalues and eigenvec-
tors sTable IId, allowed inelastic neutron scattering transi-
tions between these statessTable IIId, and the specific heats
sTable IVd and susceptibilitiessTable Vd.

Most previous theoretical studies of molecular magnets in
the literature have specialized in individual materials and
their associated model Hamiltonians. Our results are in-
tended to be sufficiently general so that they should be useful
for the interpretation of data on many candidate molecular
magnets.

II. THE MODEL AND OBSERVABLES

A. The Heisenberg magnet

The nearest-neighbor Heisenberg magnet, which we shall
assume as our standard model for molecular magnets, is de-
fined by the Hamiltonian

H = o
ki j k

JijSW i ·SW j s1d

where the superexchange constantshJijj are positive for an-
tiferromagnetic interactions and negative for ferromagnetic

ones, andSW i is the quantum spin operator for a spin-1/2 ion
at sitei.

Since this is a rotationally invariant Hamiltonian in spin
space, the total spinStot is a good quantum number. For the
specific cases of dimer, trimer, and tetramer clusters ofS
=1/2 ions that we consider here, the energy eigenstates have
the total spin decompositions given below.

1/2 ^ 1/2 = 1% 0, s2d

1/2 ^ 1/2 ^ 1/2 = 3/2% 1/22, s3d

1/2 ^ 1/2 ^ 1/2 ^ 1/2 = 2% 13
% 02. s4d

EachStot multiplet contains 2Stot+1 magnetic states, which
are degenerate given an isotropic magnetic Hamiltonian such
as the Heisenberg form of Eq.s1d.

B. Expressions for observables

The energy eigenstates and eigenvalues may be found by
diagonalizing the magnetic Hamiltonian on a convenient ba-
sis. sIn practice we will employ the usual set ofẑ-polarized
magnetic basis states.d Several physically interesting quanti-
ties may be computed directly from the energy eigenvalues;
in this work these are the partition function, specific heat,
and magnetic susceptibility, which are given by

Z = o
i=1

N

e−bEi = o
Ei

s2Stot + 1de−bEi , s5d

C = kBb2d2 lnsZd
db2 , s6d

and

x =
b

Z
o
i=1

N

sMz
2die

−bEi

=
1

3
sgmBd2b

Z
o
Ei

s2Stot + 1dsStot + 1dStote
−bEi . s7d

In these central formulas the sumi =1,… ,N is over all N
independent energy eigenstatessincluding magnetic sub-
statesd, the sumoEi

is over energy levels only,Mz=mgmB

where m=Stot
z /" is the integral or half-integral magnetic

quantum number, andg is the electrong-factor.
In addition to these bulk quantities, we also give results

for inelastic neutron scattering intensities. In “spin-only”
magnetic neutron scattering at zero temperature, the differ-

TABLE I. Some examples of smallS=1/2 quantum spin systems.

Material Spin system Ground stateStot References

VOsHPO4d ·0.5H2O Dimer 0 11–13

Cu3sO2C16H23d6·1.2C6H12 Symmetric trimer 1/2 16,17

Na9fCu3Na3sH2Od9sa-AsW9O33d2g ·26H2O Symmetric trimer 1/2 18

fCu3scpsed3sH2Od3g ·8.5H2O Symmetric trimer 1/2 31

sCN3H6d4Na2fH4V6O8sPO4d4(sOCH2d3CCH2OHd2g ·14H2O Isosceles trimer 1/2 14

Na6fH4V6O8sPO4d4(sOCH2d3CCH2OH)2g ·18H2O General trimer 1/2 14

K6fV15As6O42sH2Odg ·8H2O Symmetric trimer+capping hexamers 1/2 32–36

NaCuAsO4 Linear tetramer 0 28,29

sNHEt3dfV12As8O40sH2Odg ·H2O. Rectangular tetramer+capping tetramers 0 37

K7NafCu4K2sH2Od6sa-AsW9O33d2g ·5.5H2O Distorted tetramer 1 18
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ential cross section for the inelastic scattering of an incident
neutron from a magnetic system in an initial stateuCil, with
momentum transfer"qW and energy transfer"v, is propor-
tional to the neutron scattering structure factor tensor

SbasqW,vd =E
−`

` dt

2p
o
xWi,xW j

eiqWsxWi−xW jd+ivtkCiuSb
†sXj,tdSasXi,0duCil.

s8d

The site sums in Eq.s8d run over all magnetic ions in one
unit cell, anda,b are the spatial indices of the spin operators.

For transitions between discrete energy levels, the time
integral gives a trivial delta functiondsEf −Ei −"vd in the
energy transfer, so it is useful to specialize in an “exclusive
structure factor” for the excitation of states within a specific
magnetic multipletfgenericallyuC fsl fdlg from the given ini-
tial stateuCil,

Sba
sf idsqWd = o

lf

kCiuVb
†uC fsl fdkC fsl fduVauCil, s9d

where the vectorVasqWd is a sum of spin operators over all
magnetic ions in a unit cell,

Va = o
xWi

SasxW ideiqW·xWi . s10d

This exclusive structure factor is related to the exclusive
differential inelastic neutron scattering cross section by

dssf id

dV
= sgr0d2k8

k
sdab − q̂aq̂bdSba

sf idsqWduFsqWdu2 s11d

where g<−1.913 is the neutron gyromagnetic ratio,r0
="a /mec is the classical electron radius,k and k8 are the
magnitudes of the initial and final neutron wave vectors, and
FsqWd is the ionic form factor.sThis relation is abstracted from
Eq. s7.61d of Ref. 30, specialized to an exclusive process.d

For a rotationally invariant magnetic interaction and an
Stot=0 initial statesas is often encountered inT=0 inelastic
scattering from an antiferromagnetd, only Stot=1 final states
are excited, andSba

sf idsqWd~dab. In this case we may define a
scalar neutron scattering structure factorSsqWd by

Sba
sf idsqWd = dabSsqWd. s12d

The result forSba
sf idsqWd is more complicated for neutron

scattering from a magneticsStot.0d initial state. If we as-
sume an isotropic magnetic Hamiltonian and a spherical ba-
sis for the spin operatorsSa, the tensorSba

sf idsqWd is diagonal but
is not ~dab; it instead has entries that are proportional to a
universal function ofqW times a product of Clebsch-Gordon
coefficients, since

kC fsl fduVauCislidl = kSfl fu1aSililVsf idsqWd, s13d

whereVsf idsqWd is the reduced matrix element for the transition
uCil→uC fl. Here we simplify the presentation by quoting the
unpolarized resultkSba

sf idsqWdl, obtained by summing over final
and averaging over initial polarizations. This unpolarized
kSba

sf idsqWdl is ~dab, so it suffices to give the functionSsqWd;

kSba
sf idsqWdl = dabSsqWd

=
1

2Si + 1 o
li,lf

kCisliduVb
†uC fsl fdkC fsl fduVauCislidl.

s14d

If desired, the general results for polarized scattering can be
recovered by reintroducing the appropriate Clebsch–Gordon
coefficients of Eq.s13d in Eq. s9d.

The results given above apply to neutron scattering from
single crystals. To interpret neutron experiments on powder
samples, we require an orientation average of the unpolar-
ized single-crystal neutron scattering structure factor. We de-
fine this powder average by

Ssqd =E dVq̂

4p
SsqWd. s15d

III. RESULTS FOR SPECIFIC CASES

A. Spin dimer

The “minimal” spin cluster model is theS=1/2 spin
dimersFig. 1d, which consists of a single pair ofS=1/2spins
interacting through the Heisenberg Hamiltonian,

H = JSW1 ·SW2. s16d

Since this is an isotropic magnetic Hamiltonian, the total
spin is a good quantum number, and from the Clebsch-
Gordon series 1/ 2̂ 1 /2=1% 0 we expect the spectrum to
consist of anStot=1 triplet and anStot=0 singlet. In a
ẑ-diagonal basis

3
u↑↑l
u↑↓l
u↓↑l
u↓↓l

4 s17d

the Hamiltonian matrix is

FIG. 1. The geometry and energy levels of a Heisenberg spin
dimer.
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H = J3
1/4

− 1/4 1/2

1/2 − 1/4

1/4
4 . s18d

Diagonalizing this Hamiltonian matrix gives the energy ei-
genvalues and eigenvectors,

E1 = 1
4J,

s19d
E0 = − 3

4J,

uC1s+ 1dl = u↑↑l,

uC1s0dl = 1
Î2

su↑↓l + u↓↑ld, s20d

uC1s− 1dl = u↓↓l,

uC0l =
1
Î2

su↑↓l − u↓↑ld. s21d

The specific heat and magnetic susceptibility for the
dimer are especially simple, since there is only a single ex-
cited level. The results aresin a dimensionless formd

Z = e3/4bJ + 3e−1/4bJ, s22d

C

kB
= 3sbJd2 e−bJ

s1 + 3e−bJd2 , s23d

and

x

sgmBd2/J
= 2bJ

e−bJ

s1 + 3e−bJd
. s24d

These results are summarized in Tables IV and V, as are the
corresponding results we find for the other spin systems con-
sidered in this paper. Plots of the dimensionless specific heat
and susceptibility of the spin dimer are shown in Figs.
2 and 3.

One may confirm that this specific heat formula gives the
correct entropy for a dimer ofS=1/2 ions,

S=E
0

`

C
db

b
= kB2 lns2d. s25d

The corresponding result for a general spin system is

S= kB lnsN/N0d, s26d

whereN is the dimensionality of the full Hilbert space and
N0 is the degeneracy of the ground state; for theS=1/2
dimer,N=22 andN0=1.

As an example of the application of the dimer suscepti-
bility of Eq. s24d sknown as the Bleaney–Bowers formula38d,
in Fig. 4 we show a fit to the susceptibility of the spin dimer
VOsHPO4d ·0.5H2O.39 fThe molar susceptibility shown is re-
lated to the single dimer susceptibility of Eq.s24d by xmolar
=NA/2·x.f The parameters of the fit areg=2.05 andJ
=7.76 meVsconsistent with the results of inelastic neutron
scattering12d. A 1/T defect contribution was also included in
the fit.

FIG. 2. The magnetic contribution to the specific heat of a spin
dimer, Eq.s23d sdimensionless unitsd.

FIG. 3. The magnetic susceptibility of a spin dimer, Eq.s24d
sdimensionless unitsd.

FIG. 4. A fit of the dimer susceptibility formula of Eq.s24d to
the measured susceptibility of VOsHPO4d ·0.5H2O. A defect term
was also included.
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Finally we evaluate the inelastic neutron scattering inten-
sities, which are given by the structure factors of Eqs.s14d
ands15d. sA complete set of inelastic neutron scattering tran-
sitions for all the spin systems we consider in this work is
given in Table III; typically we will only evaluate the struc-
ture factors for the ground state of the antiferromagnetic sys-
tem.d We evaluate Eq.s14d for the dimer using the energy
eigenvectorsuC1smdl and uC0l of Eqs. s20d and s21d. This
gives

SsqWd = 1
2„1 − cossqW ·aWd… s27d

whereaW =xW1−xW2=xW12 is a spatial vector that coincides with
the dimer. Evidently there should be no excitation of the
dimer spin-triplet state when the neutron momentum transfer
qW is perpendicular to the dimer axisâ.

In scattering from powder samples one measures the pow-
der averageSsqd of the structure factor, defined by Eq.s15d.
For the dimer this is

Ssqd =E dVq̂

4p
1
2(1 − cossqW ·aWd) = 1

2(1 − j0sqad) s28d

where j0sxd=sinsxd /x is a spherical Bessel function. This re-
sult is shown in Fig. 5 for pointlike magnetic ionsfFsqWd
=1g. The location of the first maximum, atq<4.493a−1, pro-
vides a convenient estimate of the separation between the
interacting ions in the dimer. Of course in real materials the
incorporation of ionic form factors will reduce the location
of this maximum.

Experimental studies of real magnetic materials typically
proceed by establishing the approximate magnetic param-
eters of a model Hamiltonian through a fit to the susceptibil-
ity. Given a model Hamiltonian, one can predict the inelastic
neutron scattering structure factor, which is then compared to
experiment.sIdeally this is done on single crystal samples,
but frequently only powder samples are available.d Unlike
the bulk susceptibility, the inelastic neutron scattering struc-
ture factor allows a sensitive and microscopic test of the
assumed magnetic Hamiltonian, since it is determined by the
relative positions of the interacting magnetic ions. The spin-
dimer material VOsDPO4d ·0.5D2O provides a recent illus-
tration of the use of inelastic neutron scattering in identifying
magnetic interaction pathways; the susceptibility data of
Johnsonet al.11 was well known to give an excellent fit to the
dimer formula Eq.s24d, however, the separation of the inter-
acting V-V pair inferred from inelastic neutron scattering
data12 using Eq.s28d showed that the interacting V-V pair
had been misidentified in the literature.

B. Trimers

We will consider the most general case of a spin trimer
with Heisenberg magnetic interactions. It is useful to present
the results as special cases with decreasing symmetry, since
the formulas are simpler in the more symmetric cases, and
examples of both symmetric and isosceles trimers are known
in the literature.

1. Symmetric trimer

The completely symmetric, equilateral trimer has equal
magnetic couplings and bond lengths between all three pairs
of spins. The Hamiltonian for this model is

H = JsSW1 ·SW2 + SW2 ·SW3 + SW3 ·SW1d. s29d

Since this Hamiltonian is invariant under any permutation of
the three spin labels, it has a discreteS3 symmetry in addition
to the magnetic rotational symmetry. In anSz-diagonal basis

3
u↑↑↑l
u↑↑↓l
u↑↓↑l
u↓↑↑l
u↑↓↓l
u↓↑↓l
u↓↓↑l
u↓↓↓l

4 s30d

the Hamiltonian matrix is

J3
3/4

− 1/4 1/2 1/2

1/2 − 1/4 1/2

1/2 1/2 − 1/4

− 1/4 1/2 1/2

1/2 − 1/4 1/2

1/2 1/2 − 1/4

3/4

4 .

s31d

This matrix is block diagonal within subspaces of definite
Sztot, as expected for a rotationally invariant Hamiltonian.
The energy levels of the symmetric trimer are shown in Fig.
6sad. For theJ.0 santiferromagneticd case the ground state
is a quadrupletsthe twoStot=1/2 multiplets are degenerated,

FIG. 5. The powder average, unpolarized neutron structure fac-
tor Ssqd for a spin dimer with pointlike magnetic ions.
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and there is an energy gap of3
2J to theStot=3/2 excited state.

Representative symmetric trimer energy eigenstatessthose
with maximum Sztotd are given in Table II. Since the two
Stot=1/2 levels are degenerate, there is no unique ground
state for this system; we use the Jacobiurl= us12dAl and ull
= us12dSl three-body basis states of definites12d-exchange
symmetry as our two independent basis vectors.

We may determine the specific heat and magnetic suscep-
tibility of the symmetric trimer from these energy levels,
using Eqs.s6d and s7d. The results are

C

kB
=

9

4
sbJd2 e−3/2bJ

s1 + e−3/2bJd2 s32d

and

x

sgmBd2/J
=

1

4
bJ

s1 + 5e−3/2bJd
s1 + e−3/2bJd

. s33d

It is notable that the integral of this specific heat gives an
entropy of

S=E
0

`

C
db

b
= kB lns2d, s34d

which is only half as large as the entropy of the dimer, de-
spite the larger trimer Hilbert space,N=23=8. The lower
entropy is due to the fourfold degenerate ground state of this
highly frustrated system;

S= kB lnsN/N0d = kB lns23/4d = kB lns2d. s35d

The susceptibility of the symmetric trimer, Eq.s33d,
agrees with Eq.s2d of Veit et al.40 safter specializing to a
single g-factor and a change of variablesd. This result is
shown in Fig. 7. Note thatxsTd diverges as we approach zero
temperature, since the ground state has nonzero spin. This
divergence is present independent of whether the intrinsic

spin-spin couplingJ is antiferromagneticsas we normally
assumed or ferromagnetic, since both cases have ground
states of nonzero spin. A more detailed comparison of the
susceptibility suffices to distinguish these; see the inset of
Fig. 7, which showsxT vs T for both cases. At high tem-
peratures the spin-spin couplingJ is unimportant, and both
results approach the same Curie’s law limit.

Next we consider the neutron scattering structure factors
for the symmetric trimer. Since this system has two degen-
erateStot=1/2 ground states and a singleStot=3/2 excitation,
there are two distinct exclusive inelastic neutron structure
factors but only a single transition energy,E1−E0= 3

2J. We
have chosenurl and ull basis states for our orthogonal
Stot=1/2 eigenstates, and will give neutron structure factors
for each of these. The same structure factors follow for the
isosceles trimer, although in that case the twoStot=1/2 states
are nondegenerate.

FIG. 6. Geometries and energy levels ofsad symmetric,sbd isosceles, andscd general trimer systems. These systems have oneStot

=3/2 multiplet and twoStot=1/2 multiplets.

FIG. 7. The magnetic susceptibility of a symmetric trimer. The
inset showsxT vs T for ferromagneticsdashedd and antiferromag-
netic ssolidd couplings.
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The structure factors for excitation of theStot=3/2usl
level fusing Eq.s14dg are given by

Ssr→sdsqWd =
1

3
„1 − cossqW ·xW12d…, s36d

Ssl→sdsqWd =
1

3
S1 +

1

3
cossqW ·xW12d −

2

3
cossqW ·xW13d

−
2

3
cossqW ·xW23dD . s37d

These results may be understood in terms of the different
natures of theurl andull initial states. In theurl ground state
the s12d-dimer is in a pureSs12d=0 state, which must be
excited to Ss12d=1 to couple to theusl excited state. The
url→ usl excitation problem is thus identical to the dimer
problem, to within an overall constant. It follows that
Ssr→sdsqWd is proportional to the dimer structure factor of Eq.
s27d. In contrast, in theull initial state thes12d-dimer is pure
Ss12d=1 and thes23d- ands31d-dimers have amplitudes to be
in both spin 0 and 1, so there are contributions toSsl→sd due
to the excitation of each of the three dimer subsystems.

As Ssr→sd andSsl→sd differ considerably for moderateqa
it will certainly be possible to distinguish betweenurl andull
states from their single crystal structure factors. The powder
averages, however, are identical, and cannot be distinguished
experimentally;

Ssr→sdsqd = Ssl→sdsqd =
1

3
„1 − j0sqad…. s38d

These powder structure factors are identical because of
the identical dimer lengths,r12=r23=r31=a, so the powder
average of each cosine in Eqs.s36d and s37d gives the same
j0sqad Bessel function. The dependence(1− j0sqad) follows
from the requirement thatSs0d=0.

As we shall discuss in the next section, an isosceles trimer
would be a more favorable system for the identification of
url and ull initial states in inelastic neutron scattering; these
levels are nondegenerate in the isosceles system, and the
url→ usl and ull→ usl powder average structure factors are
no longer equal, due to the different leg lengths.

2. Isosceles trimer

The isosceles spin trimer, Fig. 6sbd, has two equal mag-
netic interactions and bond lengths. The Hamiltonian is
given by

H = J„SW1 ·SW2 + asSW2 ·SW3 + SW3 ·SW1d…. s39d

To find the energy eigenvalues of this Hamiltonian it suffices
to consider theSz tot= +1/2 sector, since theStot=1/2 and
3/2 multiplets both haveSz tot= +1/2 members. The remain-
ing symmetry of this problem suggests that we use the three
huStot, +1/2lj energy eigenstates of the symmetric trimer as
our basis,

uss3/2, + 1/2dl = Î1
3su↑↑↓l + u↑↓↑l + u↓↑↑ld

uls1/2, + 1/2dl = Î1
6su↑↓↑l + u↓↑↑l − 2u↑↑↓ld

urs1/2, + 1/2dl = Î1
2su↑↓↑l − u↓↑↑ld.

. s40d

The Hamiltonian is necessarily diagonal on this basis, since
these three basis states have different values of the conserved
quantitiesStot and s12d-exchange symmetry. The result is

H =
1

4
J31 + 2a

1 − 4a

− 3
4 . s41d

The two Stot=
1
2 levels are split as a result of the reduced

symmetry of the isosceles trimer; the fullS3 symmetry of the
symmetric trimer has been reduced toS2 fs12d-exchange
symmetryg, and sinceS2 is Abelian no degeneracies follow
from this symmetry.

The specific heat and susceptibility of the isosceles trimer,
which follow from the energy levels of Eq.s41d and the
formulas Eqs.s6d ands7d, are given in Tables IV and V. The
susceptibility agrees with the earlier result of Veitet al.40

Note that one recovers the symmetric trimer result in the
limit a=1.

We have confirmed by numerical integration of the rather
complicated isosceles trimer specific heat formula given in
Table IV that the entropy of the isosceles trimer satisfies

S

kB
=E

0

` C

kB

db

b
= H2 lns2d, a Þ 1

lns2d, a = 1,
s42d

as expected from Eq.s26d for an eight-dimensional Hilbert
space which has a fourfold-degenerate ground state for
a=1 and a twofold-degenerate ground state otherwise.

Although the magnetic contribution to the specific heat is
usually masked by much larger phonon contributions, we
note in passing that one may separate magnetic contributions
experimentally by subtracting the specific heats in zero and
nonzero magnetic fields. This approach was used recently by
Luban et al.14 to study anS=1/2 V4+ vanadium trimer,
sCN3H6d4Na2fH4V6O8sPO4d4(sOCH2d3CCH2OH)2g ·14H2O
stheir material1d, which appears to be an accurate realization
of the isosceles Heisenberg trimer.

As we found for the symmetric trimer, the susceptibility
of the isosceles trimer also diverges asT approaches zero,
since the system has a magnetized ground state. The rate of
divergence withT can again be used to distinguish between
ferromagnetic and antiferromagnetic couplingsswhich have
Stot=3/2 andStot=1/2 ground states, respectivelyd, as shown
in Fig. 7 for the symmetric trimer. This behavior is evident in
the susceptibility of material1 of Lubanet al.14; in Fig. 3 of
this reference one can see thatxT for this material clearly
follows the lower trimer curve, confirming that it is accu-
rately described by the antiferromagnetic isosceles trimer
model swith an Stot=1/2 ground stated.

There are three inelastic transitions excited by neutron
scattering from an isosceles spin trimer,url→ usl, ull→ usl,
andurl→ ull. The first two were considered in the discussion
of the symmetric trimer, and the results for the isosceles
trimer are identicalsexcept that theDE values of the transi-
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tions differd. The url→ ull transition was not considered pre-
viously because these states are degenerate in the symmetric
trimer. The result we find for the structure factor of this
transition is

Ssr→ldsqWd =
1

6
„1 − cossqW ·xW12d…. s43d

This has the same form as the dimer andurl→ usl structure
factors because it also involves the excitation of theSs12d
=0 s12d-dimer to anSs12d=1 state. It can evidently be distin-
guished from theurl→ usl transition by the overall intensity,
but not by the functional dependence onq.

To illustrate these single crystal structure factors, in Fig. 8
we show the two ground state structure factors for the pre-
viously cited V6 isosceles trimersmaterial 1 of Luban et
al.14d. The parameters area=3.22 Å andb=3.364 Å. We
show the predictions of Eqs.s37d ands43d for in-plane scat-
tering, with momentum transferq=p /a. Since this material
has two strong bonds and a weak dimersa<9d,14 ull should
be the ground state, and theull→ url and ull→ usl transi-
tions shown in the figure should both be observable.sThese
are expected at 5.0 and 8.4 meV, respectively, given the pa-
rameters of Lubanet al.d The very different angular distribu-
tions predicted for the scattered neutrons show that it should
be straightforward to distinguish between these transitions in
an inelastic neutron scattering experiment, given a single
crystal of this or a similar trimer material.

The powder average eliminates much of the difference
between these neutron scattering transitions, although it still
should be possible to distinguish them experimentally. On
carrying out the powder average we find

Ssr→sdsqd = 1
3„1 − j0sqad…,

Ssl→sdsqd = 1
3„1 + 1

3 j0sqad − 4
3 j0sqbd… ,

Ssr→ldsqd = 1
6„1 − j0sqad…. s44d

In the symmetric limitb/a=1 these transitions are propor-
tional to the same function, 1−j0sqad; at best it may be pos-
sible to distinguish theurl→ ull transition from the others
through their relative intensities. However, for significantly
different leg lengths theull→ usl powder average structure
factor may differ enough from the 1−j0sqad of the url
→ usl and url→ ull transitions to distinguish them. As an
example, in Fig. 9 we show the powder structure factors of
Eq. s44d for the three transitions, for an elongated triangle
with b/a=2. sThese results are independent of the magnetic
coupling ratioa.d As there is considerable variation in form
and magnitude between these powder structure factors, it
should be possible to distinguish them experimentally in
similar isosceles trimer materials. If more than one transition
is clearly observed, it may also be useful to compare struc-
ture factor ratios, to eliminate the effect of ionic form factors.

3. General trimer

The general trimer of Fig. 6scd has three different mag-
netic couplings and ion pair separations, and is described by
the Hamiltonian

H = JsSW1 ·SW2 + a23SW2 ·SW3 + a31SW3 ·SW1d. s45d

This system is also discussed by Qiuet al.15 in the context of
La4Cu3MoO12, which they model as a two-dimensional
coupled array ofS=1/2 trimers.

We may again determine all the trimer energy eigenvalues
by specializing to theSz tot= +1/2 sector and using the sym-
metric trimer basis of Eq.s40d, which gives the Hamiltonian
matrix

H =
1

4
J31 + as

1 − 2as Î3ad

Î3ad − 3
4 , s46d

where as=a31+a23 and ad=a31−a23. The usl basis states
again must be energy eigenstates, since they are the only
Stot=3/2 states in the Hilbert space. They have energies of

FIG. 8. The unpolarized structure factorshSsqWdj sproportional to
the angular scattering intensitiesd predicted for inelastic neutron
scattering from theull ground state of a single crystal of an isosce-
les trimer materialssee textd.

FIG. 9. The powder average inelastic neutron structure factor
Ssqd for the three allowed transitions of an isosceles trimer, with
b/a=2.
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E3/2 =
1 + as

4
J. s47d

The Stot=1/2 basis statesurl and ull mix in this problem,
since the general trimer Hamiltonian witha23Þa31 breaks
s12d-exchange symmetry. The resulting energies are

E1/2,h1
2j = −

s1 + as ± Îs2 − asd2 + 3ad
2d

4
J. s48d

The specific heat and susceptibility of the general trimer
follow from the energy levels of Eqs.s47d and s48d and the
formulas Eqs.s6d and s7d. The resulting expressions are
given in Tables IV and V. One may confirm recovery of the
isosceles and symmetric trimer results as special cases of
these results. We have also confirmed by numerical integra-
tion that the rather lengthly general trimer specific heat for-
mula given in Table IV leads to an entropy ofS=kB2 lns2d,
provided that at least one of the parametersa23 anda31 dif-
fers from unity.

The neutron scattering structure factors for the general
trimer involve coherent superpositions of the previously de-
rived url andull excitation functions, since the energy eigen-
states are superpositions of these basis states. TheStot=1/2
energy eigenstates of Eq.s46d are explicitly

uC1/2,1l = − sinsudull + cossudurl s49d

and

uC1/2,2l = + cossudull + sinsudurl, s50d

where the mixing angleu satisfies

tansud =
x

1 +Î1 + x2
s51d

with x=Î3ad/ s2−asd. The Stot=3/2 energy eigenstate is, as
for all the trimers we have considered,

uC3/2l = usl. s52d

The structure factor for the transition from theStot=1/2 state
uC1/2,1l to theStot=3/2 state is given by

SsC1/2,1→C3/2dsqWd =
1

3FS1 −
1

3
sC12 + C23 + C31dD

+
1

3
C2sC31 + C23 − 2C12d

+
1
Î3

S2sC31 − C23dG , s53d

where Cij =cossqW ·xW i jd, C2=coss2ud, and S2=sins2ud. The
structure factor for the second transition,C1/2,2→C3/2, fol-
lows from Eq.s53d on changing the overall signs of theC2
and S2 terms. The third transition, between the twoStot
=1/2 states, has the structure factor

SsC1/2,1→C1/2,2dsqWd =
1

6FS1 −
1

3
sC12 + C23 + C31dD

+
1

3
C4sC31 + C23 − 2C12d

+
1
Î3

S4sC31 − C23dG , s54d

where the new quantities areC4=coss4ud and S4=sins4ud.
One may confirm that the previously derived symmetric and
isosceles trimer structure factors of Eqs.s36d, s37d, ands43d
follow from these general trimer results in the limitu→0.

The powder averages of these general trimer unpolarized
structure factors may also be evaluated; the result for the
transitionC1/2,1→C3/2 is

SsC1/2,1→C3/2dsqWd =
1

3
S1 −

s1 + 2C2d
3

j0sqr12d

−
s1 −C2 + Î3S2d

3
j0sqr23d

−
s1 −C2 − Î3S2d

3
j0sqr31dD . s55d

The powder average results for the two remaining transitions
can be obtained from Eq.s55d by simple substitutions. To
obtainSsC1/2,2→C3/2d simply change the overall signs ofC2 and
S2 in Eq. s55d, and to obtainSsC1/2,1→C1/2,2d, divide Eq.s55d
by a factor of 2 and replaceC2 andS2 by C4 andS4, respec-
tively.

These results will be useful for the interpretation of neu-
tron scattering data on real materials. One example of a
candidate general trimer is the V6 material 2 of Luban
et al.,14 Na6fH4V6O8sPO4d4(sOCH2d3CCH2OH)2g ·18H2O.
This compound has three distinct V-V separations between
the S=1/2V4+ ions within each vanadium trimer, 3.212,
3.252, and 3.322 Å.

C. Tetramers

We will consider threeS=1/2 tetramer spin clusters of
decreasing symmetry, the regular tetrahedron, the rectangular
tetramer, and the linearsdimer-paird tetramer. Our definitions
for the magnetic couplings and geometry of these systems
are shown in Fig. 10. As with the dimer and trimer systems
we will give results for the partition function, specific heat,
magnetic susceptibility, and neutron inelastic scattering
structure factors, the latter for both single crystal and powder
average cases.

1. Tetrahedron

This system has fourS=1/2 ions at the vertices of a regu-
lar tetrahedron, with Heisenberg interactions of strengthJ
between each pair of ionsfsee Fig. 10sadg. The Hamiltonian
of this system is given by
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H = J o
i,j=1
i, j

4

SW i ·SW j . s56d

The invariance of this Hamiltonian under permutation of any
site labels implies anS4 symmetry, in addition to the spin
rotation symmetry SUs2d. Since the groupS4 is non-Abelian
and has irreducible representations of dimensionality 1I, 2I,

and 3I, we anticipate that one may find twofold and threefold

degeneracies in the spectrum of tetrahedron energy eigen-
states. We will see that this is indeed the case.

As with the dimer and symmetric trimer we may deter-
mine the energy eigenvalues of this system by simply squar-

ing the total spin operatorSW tot=oi=1
n SW i, which gives for this

case

EStot
= 1

2J„StotsStot + 1d − 3… = 5+ 3
2J, Stot = 2

− 1
2J, Stot = 1

− 3
2J, Stot = 0.

s57d

The Clebsch–Gordon series of Eq.s4d implies that these
Stot=1 andStot=0 energy levels are, respectively, threefold
and twofold degenerate.

Given these energy levels, the specific heat and suscepti-
bility of the tetrahedron may then be determined using Eqs.
s6d and s7d, with the results

C

kB
=

9

2
sbJd2e−bJs1 + 5e−2bJ + 10e−3bJd

s1 + 9
2e−bJ + 5

2e−3bJd2 s58d

and

x

sgmBd2/J
= 3bJe−bJ s1 + 5

3e−2bJd
s1 + 9

2e−bJ + 5
2e−3bJd . s59d

FIG. 10. Energy level diagrams forsad the tetrahedron,sbd the rectangular tetramer, andscd the linearsdimer-paird tetramer.

FIG. 11. Magnetic contribution to the specific heat of a regular
tetrahedron. FIG. 12. Susceptibility of a regular tetrahedron.
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These quantities are shown in Figs. 11 and 12, respec-
tively. The specific heat of the tetrahedron gives an entropy
of S=kB3 lns2d, as expected for a 16-dimensional Hilbert
space and a doubly degenerate ground state.

Note that the susceptibility is rather similar to that of the
spin dimer, since the tetrahedron also has anStot=0 ground
state and a gap ofJ to the magnetizedStot=1 excited states.
sThe fact that the ground state is twofold degenerate does not
affect this result, since both areStot=0 states and neither
makes a contribution to the susceptibility.d

Determination of the energy eigenvectors requires diago-
nalization of the Hamiltonian on a specific basis. Operating
on our us12ds34dl dimer basis of Eqs.sA3d–sA5d with the
tetrahedron Hamiltonian, Eq.s56d, we find that the Hamil-
tonian matrix is already fully diagonal; each of these basis
states is an energy eigenvector of the tetrahedron Hamil-
tonian.

In our discussion of neutron scattering structure factors of
the tetrahedron and the other spin tetramers considered in
this paper, we will specialize toStot=0 initial states. Structure
factors for Stot.0 initial states, which are of interest for
systems with magnetized ground states and at finite tempera-
tures, and can be derived using similar methods.

The tetrahedron has two degenerate ground states, which
we take to beuC0,1l= urrl and uC0,2l= ussl0. The three de-
generateStot=1 excited states, which can be reached from the
Stot=0 levels using inelastic neutron scattering, are taken to
be uC1,1l= usrsdSl, uC1,2l= usrsdAl, anduC1,3l= usssdSl1. The
choice of this specific set of initial and final states is rather
arbitrary; in a real material we would expect a spontaneous
distortion of the lattice, which would select nearly degener-
ate energy eigenstates that need not be these specific basis
states. However, these will suffice to illustrate the neutron
scattering structure factors expected for nearly tetrahedral
systems.

The single crystal structure factors for all of these transi-
tions may be read directly from Eqs.sA11d–sA18d. For ex-
ample, the transitionuC0,1l→ uC1,1l is specified by the ma-
trix element of Eq. sA11d; using the structure factor
definition in Eq.s14d, we find

SsC0,1→C1,1dsqWd = 1/2 −sC12 − C13 + C14 + C23 − C24 + C34d/4,

s60d

where as beforeCij =cossqW ·xW i jd. This characteristic angular
distribution and its five partner distributions could be used in
an inelastic neutron scattering experiment from a single crys-
tal sample to characterize the spin states of the individual
Stot=0 andStot=1 levels.sNote, however, that one specific
transition,uC0,1l→ uC1,3l, has a zero matrix element.d

The powder average structure factors for a tetrahedron are
much less characteristic. Since there is only a single ion pair
separation, each cosine in the single crystal structure factors
such as Eq.s60d powder averages to the same factor of
j0sqad. This gives a powder structure factor that is propor-
tional to 1−j0sqad for each transition, just as we found for
the dimer and symmetric tetramer; only the overall coeffi-
cients distinguish the different transitions. These results are

SsC0,1→C1,1dsqd = 1
2„1 − j0sqad…,

SsC0,1→C1,2dsqd = 1
2„1 − j0sqad…,

SsC0,1→C1,3dsqd = 0,
s61d

SsC0,2→C1,1dsqd = 1
6„1 − j0sqad…,

SsC0,2→C1,2dsqd = 1
6„1 − j0sqad…,

SsC0,2→C1,3dsqd = 2
3„1 − j0sqad….

A generalization of the tetrahedron problem in which the
Hamiltonian has couplings of strengthaJ between ions in
different dimers may also be of interest. This generalized
Hamiltonian is

Hsad = J„sSW1 ·SW2 + SW3 ·SW4d + asSW1 ·SW3 + SW1 ·SW4 + SW2 ·SW3

+ SW2 ·SW4d…. s62d

The dimer-pair basis of Eqs.sA3d–sA5d is also diagonal un-
der this Hamiltonian, with the eigenvalues given below.sWe
have added anStot subscript to all these state vectors for
clarity.d

HsadusslStot=2 = S1

2
+ aDussl2, s63d

Hsadussl1 = S1

2
− aDussl1, s64d

HsadusrsdSl1 = −
1

2
usrsdSl1, s65d

HsadusrsdAl1 = −
1

2
usrsdAl1, s66d

Hsadussl0 = S1

2
− 2aDussl0, s67d

Hsadurrl0 = −
3

2
urrl0. s68d

Since the energy eigenvectors of this generalized problem
are exactly the basis states we used for the tetrahedron, the
neutron scattering structure factors for theStot=0 to Stot=1
transitions are unchanged. In this system, however, all these
levels are nondegenerate, so unlike the pure tetrahedron
problem one encounters no structure factor ambiguities due
to an arbitrary choice between degenerate basis states.

2. Rectangular tetramer

The rectangular tetramer, shown in Fig. 10sbd, has s12d
ands34d dimers of interaction strengthJ coupled by interac-
tions of strengthaJ between ion pairss13d and s24d. The
Hamiltonian is
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H = J„SW1 ·SW2 + SW3 ·SW4 + asSW1 ·SW3 + SW2 ·SW4d…. s69d

This Hamiltonian is already diagonal on theStot=1,2 dimer-
pair basis states of Eqs.sA3d andsA4d; the energy eigenval-
ues are

E2 = +
s1 + ad

2
J, s70d

E1,3= +
s1 − ad

2
J, s71d

E1,2= −
s1 − ad

2
J, s72d

E1,1= −
s1 + ad

2
J. s73d

The 232 Hamiltonian matrix in theStot=0 subspace
spanned by Eq.sA5d is

HStot=0 =
1

2
JF1 − 2a − Î3a

− Î3a − 3
G , s74d

which has the eigenvalues

E0,h1
2j = S−

1

2
−

1

2
a 7 Î1 − a + a2DJ. s75d

The specific heat and susceptibility of the rectangular tet-
ramer may be evaluated using these energy levels and the
general formulas of Eqs.s6d and s7d. The susceptibility is
given in Table V. Although the specific heat is straightfor-
ward to evaluate, the resulting expression is too lengthly to
tabulate here.

The neutron scattering structure factors of the rectangular
tetramer are especially interesting because the ground state is
a linear combination of the dimer-pair basis states; this mix-
ing leads to coupling-dependent structure factors. TheStot
=0 ground state of the rectangular tetramer is a linear super-
position of unexcited and doubly excited dimer pairs,

uC0,1l = − sinsu0dussl0 + cossu0durrl, s76d

where the mixing angleu0 between these basis states satisfies

tansu0d = −
Î3a/2

1 − a/2 +Î1 − a + a2
. s77d

The matrix elements of the neutron scattering transition
operatorVa of Eq. s10d between the ground stateuC0,1l and
the threeStot=1 final statesuC1,1,…,3l may then be deter-
mined using the results of Eqs.sA11d–sA18d. Specializing to
Sztot= +1 final states for illustration, these matrix elements
are

1,1kC1,nuV+uC0,1l =5
sC0 + S0/Î3d

2Î2
sf1 − f2 − f3 + f4d, n = 1

sC0 + S0/Î3d
2Î2

sf1 − f2 + f3 − f4d, n = 2

−
S0

Î6
sf1 + f2 − f3 − f4d, n = 3,

s78d

whereC0 andS0 are cossu0d and sinsu0d, respectively.
On converting these matrix elements to structure factors

using Eqs.s12d and s14d we find different functional forms
for each transition for both the single crystal and powder
average results, as a result of the different weight factors and
the three distinct ion pair separations. The powder average,
unpolarized structure factors are

SC0,1→C1,nsqd

=5
sC0 + S0/Î3d2

2
f1 − j0sqad − j0sqbd + j0sqcdg, n = 1

sC0 + S0/Î3d2

2
f1 − j0sqad + j0sqbd − j0sqcdg, n = 2

2

3
S0

2f1 + j0sqad − j0sqbd − j0sqcdg, n = 3,

s79d

wherec=Îa2+b2. In Fig. 13 we show these structure factors
for a case with moderate interdimer couplingsa=0.3d for a
rectangle of side ratiob/a=1.5. The transition to the highest
Stot=1 excited stateuC1,3l is much weaker than the other
two, and so is multiplied by a factor of 10 in the figure for
visibility.

FIG. 13. Powder average, unpolarized structure factorsSsqd for
the excitation of the threeStot=1 excited states of the rectangular
spin tetramer from theStot=0 ground stateuC0,1l. The interdimer
coupling strength isa=0.3, and the side length ratio isb/a=1.5.
The structure factor for the transition to the third state is scaled up
by a factor of 10 for visibility.
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Note that the excitation of the highestStot=1 stateuC1,3l,
which is a doubly excited dimersussld, is only possible be-
cause the ground state has anOsad excited component, in
addition to the dominant “bare”urrl basis state. The weak-
ness of theuC1,3l signal is because the structure factor is
proportional to the nonleading ground state amplitude
squared, so that it isOsa2d. The observation of similar “non-
valence state” transitions which are forbidden atOsa0d
should allow direct experimental tests of the “interaction”
terms in quantum spin Hamiltonians such as this one. The
strength alone is a sensitive measure ofa, and the spatial
modulation ofSsqd is clearly different from theOsa0d tran-
sitions that dominate the structure factors of the lower-lying
Stot=1 states.

The detailedq-dependence of the structure factors can be
used as a “fingerprint” to test whether a given structure is
indeed the magnetically active system. As an example, in
Fig. 14 we show that the detailed form of the structure factor
to the firstStot=1 state shows significant variation with the
ratio b/a. sValues ofb/a=1, 2, and 4 are shown.d This type
of dependence could be used to establish the geometry of a
magnetic subsystem, or to check powder neutron scattering
results against the geometry of a proposed spin system.

3. Linear tetramer

The linear tetramer consists of two dimers with internal
magnetic couplings of strengthJ, with a single interdimer
coupling of strengthaJ between the two adjacent end spins
ssee Fig. 10d. The term “linear” refers only to the pattern of
magnetic couplings; the actual spatial geometry of our linear
tetramer is not assumed to be a straight line. The “Clemson
tetramer” NaCuAsO4 sRef. 28d is a recent example of a pos-
sible “linear tetramer” that does not have a true collinear
dimer geometry.

The linear tetramer Hamiltonian matrix is also relatively
simple in the dimer pair basis of Eqs.sA3d–sA5d. The single

Stot=2 basis stateusssdl2 is diagonal, with energy

E2 = S1

2
+

1

4
aDJ. s80d

The Stot=1 basis stateusrsdAl is also diagonal, with energy

E1,2= − S1

2
−

1

4
aDJ. s81d

The remainingStot=1 and Stot=0 two-dimensional Hamil-
tonian matrices are

Hstot=1 =
1

2
JF1 − 1

2a a

a − 1 − 1
2a
G s82d

and

HStot=0 =
1

2
JF1 − a

Î3
2 a

Î3
2 a − 3

G s83d

with eigenvalues

E1,h1
3j = − S1

4
a ±

1

2
Î1 + a2DJ s84d

and

E0,h1
2j = − S1

2
+

1

4
a ±Î1 −

1

2
a +

1

4
a2DJ, s85d

respectively.
The susceptibility of the linear tetramer, which follows

from these energy levels and Eq.s7d, is given in Table V. As
with the rectangular tetramer, the expression we find for the
specific heat is too lengthy to tabulate here.

The neutron scattering structure factors from the linear
tetramerStot=0 ground stateuC0,1l to the threeStot=1 excited
statesuC1,1,…,3l may be calculated using the same techniques
we applied to the rectangular tetramer. The results are some-
what more complicated, since two of theStot=1 linear tet-
ramer states are rotated between the dimer-pair basis states,
in addition to the ground state basis rotation we found for the
rectangular tetramer. The energy eigenvectors in these sec-
tors are the superpositions of dimer-pair basis states given in
Table II, with mixing angles that satisfy

tansu1d =
a

1 +Î1 + a2
, s86d

tansu0d =
Î3a/4

1 − a/4 +Î1 − a/2 + a2/4
. s87d

This more complicated basis mixing pattern introduces a
new feature, which is that the functional forms of the struc-
ture factors for the two mixedStot=1 states,uC1,1l anduC1,3l,
depend on the dimer couplinga. sIn the rectangular tetramer
system discussed previously we found that changing the
dimer couplinga only changed the overall normalization of
the structure factors, not their detailedq dependence.d

We will give explicit results for the first transition,
uC0,1l→ uC1,1l, and then simply quote the results for the two

FIG. 14. Variation of theSsqd structure factors for excitation of
the lowestStot=1 state of the rectangular spin tetramer with side
length ratiob/a. This illustrates the use of powder structure factors
in establishing the internal geometry of spin clusters. The dimer
coupling is a=0.3, however, this only affects the overall
normalization.
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remaining final states. The matrix element of the neutron
scattering transition operatorVa is

11kC1,1uV+uC0,1l = c14sf1 − f4d + c23sf2 − f3d s88d

where

Hc14

c23J = ±
sC0 + S0/Î3dC1

2Î2
+

S0S1

Î6
s89d

and C0,1 and S0,1 are, respectively, cosine and sine of the
linear tetramer basis state mixing angles, which were defined
in Eqs.s86d and s87d.

The resulting unpolarized powder structure factor for this
transition, using Eqs.s14d and s15d, is

SC0,1→C1,1 = 2fc14
2
„1 − j0sqr14d… + c23

2
„1 − j0sqr23d…

+ 2c14c23„ j0sqr12d − j0sqr13d…g. s90d

The transition from the ground state to the second linear
tetramerStot=1 excited state is given by a matrix element we
encountered previously in the rectangular tetramer problem,
except for a change in spatial geometry. The result for the
unpolarized powder structure factor with completely general
ion positions is

SC0,1→C1,2sqd =
sC0 + S0/Î3d2

2
S1 +

1

2
„− j0sqr12d − j0sqr13d

+ j0sqr14d + j0sqr23d − j0sqr24d − j0sqr34d…D .

s91d

The structure factor for the thirdStot=1 stateC1,3 may be
found from theC1,1 structure factor of Eq.s90d with the
simple substitutionssC1→S1d, sS1→−C1d.

We will illustrate the predicted structure factors for the
linear tetramer assuming parameters appropriate for the can-

didate material NaCuAsO4.
28,29 The ion pair separations are

r12=r34=3.641 Å, r13=r24=3.863 Å, r14=6.814 Å, andr23
=3.151 Å. The copper positions are consistent with planarity,
although our results do not require this assumption. There are
indications of threeStot=1 levels in this material from a re-
cent inelastic neutron scattering experiment, with energies of
approximately 9, 11, and 18 meV;29 in the linear tetramer
model this suggests parameters ofJ<10 meV anda<0.4,
which we will assume here.sThe structure factors only de-
pend ona.d We also incorporated a simple Cu2+ ionic form
factor, Fsqd=1/s1+q2/q0

2d3 with q0=8.0 Å−1, which agrees
with the online ILL Cu2+ form factor41 to &0.5% over the
range ofq shown. Our results are shown in Fig. 15; charac-
teristic features include the displaced relative maxima of the
intensities of the two lower states, and the much weaker
transition to the highestStot=1 state. The results for the two
lower states are rather insensitive toa. The overall scale of
the uC1,3l structure factor, however, is quite sensitive toa,
and scales approximately asa2. A measurement of the rela-
tive strength of these transitions would provide a useful de-
termination ofa, which could be compared with the value
extracted from the energy levels.sIn principle the suscepti-
bility could also be used to determinea, but we have found
that it has a rather weaka dependence in this system.d

In Fig. 16 we show these results in a contour plot, ap-
proximately as would be observed in a neutron scattering
experiment.fOur results should be multiplied by the energy-
dependent factork8 /k of Eq. s11d for a direct comparison
with experiment.g To generate this plot we have convolved a
Gaussian energy resolution function, expf−sE−Eid2/2sE

2g
with sE=0.5 meV, with the structure factors to the three
Stot=1 states. The intensities are shown relative to the maxi-
mum excitation intensity of the transition to the lowestStot
=1 state,uC0,1l→ uC1,1l. Note the characteristic strong peak
in intensity of the second transition,uC0,1l→ uC1,2l, near
1.1 Å−1. Comparison of these general features with the data
of Nagleret al.29 suggests that the linear tetramer model does

FIG. 15. Powder average, unpolarized structure factorsSsqd for
the excitation of the threeStot=1 states of the linear tetramer, in-
cluding the ionic form factor, with magnetic coupling ratioa=0.4
and ion positions taken from the NaCuAsO4 structuresRef. 28d.
The structure factor for the transition to the third state is scaled up
by a factor of 10 for visibility.

FIG. 16. Contours of equal intensity of the powder average,
unpolarized structure factors of the linear tetramer, with parameters
appropriate to NaCuAsO4, as in Fig. 15. The contours are normal-
ized to the peak of the first transition, and intervals of 0.2 in inten-
sity are shown for the two lower states. The much weaker third
transition is displayed with intervals of 0.01.
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indeed give a realistic description of neutron scattering from
NaCuAsO4.

IV. FUTURE APPLICATIONS

In the previous section we presented results for bulk ther-
modynamic and magnetic properties of various dimer, trimer,
and tetramer molecular magnets withS=1/2 ions. We also
derived the inelastic neutron scattering structure factors for
these systems; inelastic neutron scattering is very useful as a
local probe of magnetic interactions at the atomic scale.
These results clearly have many possible applications to real
materials. In this section we discuss some examples of ma-
terials that are thought to be realizations ofS=1/2 dimer,
trimer, and tetramer molecular magnets, and describe how
our results could be useful in future experimental investiga-
tions. We also discuss possible extensions of this work,
which will be useful in interpreting experimental data on
these and related magnetic materials under more general cir-
cumstances.

TheS=1/2 spin dimer is the simplest of all spin clusters.
It provides a textbook case for studies of finite spin systems
more generally, since physical observables for the dimer can
often be derived as closed form analytic expressions. This is
the case for the specific heat, susceptibility, and neutron scat-
tering structure factors presented here. Vanadyl hydrogen
phosphate, VOsHPO4d ·0.5H2O, is a well-known example of
an S=1/2 spin dimer material,11–13 and some of the results
tabulated here have already been used in interpreting data on
this material. In particular, the magnetic susceptibility was
originally used to determine the exchange constantJ, and
inelastic neutron scattering was used to test the simple dimer
model and establish which pair of V4+ ions forms the
dimer.12 This experiment was a dramatic success for inelastic
neutron scattering, as the previously assumed V-V dimer
pair was shown to have been misidentified.

Many examples ofS=1/2 iontrimers have been reported
in the literature. These systems are interesting in that the
ground state issideallyd degenerate, and must exhibit ferro-
magnetism.sStot.0 for any energy eigenstate of an isotropic
magnetic Hamiltonian with half-integer ion spins and an
odd number of ions.d Heisenberg trimers with antiferro-
magnet pair interactions are also of interest because they
are the simplest isotropic spin systems which experience
frustration. One example of anS=1/2 trimer is
Cu3sO2C16H23d6·1.2C6H12,

16,17 which has an equilateral
Cu2+ triangle with a Cu2+-Cu2+ separation of 3.131 Å. Re-
cent electron paramagnetic resonancesEPRd measurements
show that the ground state of this material consists of a
twofold-degenerateStot=1/2 level; this is in accord with ex-
pectations for a general isotropic trimer antiferromagnet with
S=1/2 ions, but not with the perfect equilateralssymmetricd
case, in which the ground state is a quartet of two degenerate
Stot=1/2 levels. The gap to theStot=3/2 excited level is
estimated from both EPR and susceptibility data to be
28 meV.16,17There are indications from the EPR studies that
this fourfold degeneracy has been lifted by additional,
nonisotropic interactions.17 Investigation of the level struc-
ture and structure factors in this apparently symmetric trimer

material would be a very interesting exercise for a future
inelastic neutron scattering experiment, especially if large
single crystals are available.

Another recent example of anS=1/2 trimer
is the “Na9-2” material of Kortz et al. sRef. 18d,
Na9fCu3Na3sH2Od9sa−AsW9O33d2g ·26H2O, which contains
an equilateral Cu3

2+ trimer with a susceptibility consistent
with equal Heisenberg interactions ofJ<0.35 meV. Inelas-
tic neutron scattering from a powder sample of this material
should show theStot=3/2 excited level, with a structure fac-
tor proportional tof1− j0sqadg. With a single crystal sample
it might be possible to separate the transitions from the two
snearly?d degenerateStot=1/2 levels to theStot=3/2 excited
level.

The two “V6” materials of Luban et al.,14

sCN3H6d4 Na2fH4V6O8sPO4d4(sOCH2d3 CCH2OH)2g ·14H2O
and Na6fH4V6O8sPO4d4(sOCH2d3CCH2OH)2g ·18H2O, con-
tain pairs ofspresumably weakly coupledd V3 spin trimers
that are, respectively, isosceles and general triangular sys-
tems. The isosceles V6 material was used as an example of
single-crystal inelastic neutron scattering structure factors in
this paper.

The “V15” material K6fV15As6O42sH2Odg ·8H2O is an ex-
ample of anS=1/2 trimer in a more complicated magnetic
geometry. This material has a frustrated V3 triangle sand-
wiched between two nonplanar antiferromagnetic V6 hexa-
gons. The low-temperature magnetic properties are domi-
nated by the V3 triangle; other magnetic interactions become
important at elevated temperatures.32–36,42In addition to dis-
tinguishing between direct vanadium–vanadium and super-
exchange pathways involving the upper and lower hexagons,
neutron scattering was used to probe the magnetic structure,
finding two nearly degenerateStot=1/2 ground statesswith
0.035 meV splittingd and anStot=3/2 excited state.35 The
availability of large single crystals of this material suggests
that it might be an interesting candidate for inelastic neutron
scattering studies.

Clearly, the analytical expressions we have presented here
for spin-trimer thermodynamic properties and inelastic neu-
tron scattering amplitudes have wide potential application,
and should be useful in particular for interpreting the results
of future inelastic neutron scattering experiments on spin-
trimer molecular magnets.

Examples of tetramer systems withS=1/2 ions include
sodium copper arsenate, NaCuAsO4,

28,29 which we used as
an illustration of the evaluation of inelastic neutron scatter-
ing structure factors in the previous section. The neutron
scattering data of Nagleret al.29 supports a model of this
material as an open-chain tetramer, with antiferromagnetic
Heisenberg bonds of alternating strength. Transitions from
the Stot=0 ground state to all threeStot=1 triplet excited
states have been observed on a powder sample,29 and the
relative intensities and theq-dependence of the powder av-
erage structure factors appear to be approximately consistent
with our predictions for the open-chain model. As we have
given detailed analytic predictions for the neutron structure
factor for these transitions, a comparison with data from a
high-statistics experiment on a larger powder sample should
be straightforward.
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Additional examples ofS=1/2 tetramers are found in va-
nadium materials containing thefV12As8O40sH2Odg4− cluster
anion. Basleret al.37 have recently reported studies of the
magnetic properties of three such materials, Na4fV12As8O40

sH2Odg ·23H2O, Na4fV12As8O40sD2Odg ·16.5D2O, and
sNHEt3dfV12As8O40sH2Odg ·H2O. These materials have three
stacked V4 tetramers, but are mixed-valentsV8

4+V4
+5d. The

middle tetramer dominates the magnetic properties. This tet-
ramer is antiferromagnetic and close to square, with ex-
change constants of<1.5 meVsinferred from energy levels
established by EPR and inelastic neutron scatteringd. The
Basleret al. study is a very nice illustration of the combined
use of bulk magnetic properties and inelastic neutron scatter-
ing to characterize magnetic materials, as we advocate in this
work. Additional studies of this already well-characterized

material might involve an inelastic neutron scattering study
of a single crystal, which could be used to test the detailed
orientation dependence expected for the structure factor for
each of the observed magnetic transitions to excited states,
given their fitted magnetic Hamiltonian. Since this Hamil-
tonian includes anisotropies, a study using polarized neu-
trons could provide additional useful information.

There are several interesting questions which were not
considered in detail in this paper that would be appropriate
for future research on finite spin clusters. Consideration
of higher ionic spin is one obvious generalization of
this work. Several examples of uncompensated molecular
magnetsswhich have ground states with nonzero spind may
be found in relatively simple higher-spin materials.
One example is the first cobalt molecular magnet,43

TABLE II. Energy eigenvectors and eigenvalues.

Spin system EigenvectoruCStot
lsSz tot=Stotd Energy

Dimer uC1l= uss+1dl= u↑ ↑ l E1= 1
4J

uC0l= url= 1
Î2

su↑ ↓ l− u↓ ↑ ld E0=−3
4J

Symmetric trimer uC3/2l= uss+3/2dl= u↑ ↑ ↑ l E3/2= 3
4J

uC1/2,2l= uls+1/2dl= 1
Î6

su↑ ↓ ↑ l+ u↓ ↑ ↑ l−2u↑ ↑ ↓ ld E1/2=−3
4J

uC1/2,1l= urs+1/2dl= 1
Î2

su↑ ↓ ↑ l− u↓ ↑ ↑ ld

Isosceles trimer uC3/2l= uss+3/2dl E3/2= s 1
4 + 1

2adJ
uC1/2,2l= uls+1/2dl E1/2,2= s 1

4 −adJ
uC1/2,1l= urs+1/2dl E1/2,1=−3

4J

General trimer uC3/2l= uss+3/2dl E3/2= 1
4s1+asdJ

uC1/2,2l= +cossuduls+1/2dl+sinsudurs+1/2dl E1/2,2=
1
4f+Îs2−asd2+3ad

2−1−asgJ

uC1/2,1l=−sinsuduls+1/2dl+cossudurs+1/2dl E1/2,1=
1
4f−Îs2−asd2+3ad

2−1−asgJ

Tetrahedron uC2l= ussl2= u↑ ↑ ↑ ↑ l E2= 3
2J

uC1,3l= ussl1 E1=−1
2J

uC1,2l= usrsdSl

uC1,1l= usrsdAl

uC0,2l= ussl0 E0=−3
2J

uC0,1l= urrl

Rectangular tetramer uC2l= ussl2 E2= s 1
2 + 1

2adJ
uC1,3l= ussl1 E1,3= s 1

2 − 1
2adJ

uC1,2l= usrsdSl E1,2= s−1
2 + 1

2adJ
uC1,1l= usrsdAl E1,1= s−1

2 − 1
2adJ

uC0,2l= +cossu0dussl0+sinsu0durrl E0,2= s+Î1−a+a2− 1
2 − 1

2adJ
uC0,1l=−sinsu0dussl0+cossu0durrl E0,1= s−Î1−a+a2− 1

2 − 1
2adJ

Linear tetramer uC2l= ussl2 E2= s 1
2 + 1

4adJ
uC1,3l= +cossu1dussl1+sinsu1dusrsdSl E1,3= s+1

2
Î1+a2− 1

4adJ
uC1,2l= usrsdAl E1,2= s−1

2 + 1
4adJ

uC1,1l=−sinsu1dussl1+cossu1dusrsdSl E1,1= s−1
2
Î1+a2− 1

4adJ
uC0,2l= +cossu0dussl0+sinsu0durrl E0,2=s+Î1− 1

2a+ 1
4a2− 1

2 − 1
4adJ

uC0,1l=−sinsu0dussl0+cossu0durrl E0,1=s−Î1− 1
2a+ 1

4a2− 1
2 − 1

4adJ
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Co4sNC5H4H2COd4sCH3OHd4Cl4. This material consists of
four S=3/2 Co2+ ions and four ligand-related oxygen atoms
situated on the corners of a cube, with a ferromagnetic
Stot=6 ground state. The magnetic exchange constants have

been estimated from fits to magnetization curves, and are at
the meV scale.43 The magnetic Co2+ ions in this material
form a tetramer with important tetrahedral and dimer mag-
netic interactions,43 which would be an important case for
future neutron scattering studies, especially with large single
crystals. Another example of a molecular magnet with higher
ion spin is the chromium magnetfCr4SsO2CCH3d8sH2Od4g
sNO3d2·H2O, which has four ferromagnetically coupledS
=3/2 Cr3+ ions arranged in a nearly regular tetrahedron, with
an Stot=6 ground state. Furukawaet al.5 determined the ex-
change constant for this material from the susceptibility, and
predict a gap to the firstStot=5 excited state of ca. 15 meV.
Observation of this excitation using inelastic neutron scatter-
ing should be a straightforward exercise, and the intensities
should agree well with theoretical expectations of the
Heisenberg model, since this model gives a reasonably good
description of the bulk magnetic properties.

Extension of this work to mixed-valent spin
clusters would also be interesting, since many examples
of these are known, including systems with magnetized
ground states. One example is the “Mn4” material
fMn4O3Cl4sO2CEtd3spyd3g2·2C6H14 studied by Hill et al.,44

which has a mixed-valent spin tetramer consisting of a tri-
angle ofS=2 Mn3+ ions with an apicalS=3/2 Mn4+, and a
ground-state spin ofStot=9/2. Although the interest in this
material as a molecular magnet is largely due to the weak
coupling between pairs of Mn4 clusters, the magnetic Hamil-
tonian within a single Mn4 cluster could be tested by powder
inelastic neutron scattering.

Another interesting theme for future studies is the effect
of finite temperatures on inelastic neutron scattering; al-
though increasing temperatures are usually associated with
weaker inelastic transitions, the finite Hilbert space of a spin
cluster implies that magnetic transitions will weaken in a
simple, known manner according to their Boltzman factors,
and will approach finite limits at high temperaturessprovided
that the magnetic Hamiltonian remains validd. Since moder-
ate temperaturesson the scale of the magnetic excitationsd
will significantly populate excited levels, it may also be pos-
sible to observe inelastic transitions from excited levels that
are inaccessible at low temperatures.

Another important topic which we briefly alluded to in the
text is the issue of magnetic interactions between spin clus-
ters; these interactions will broaden the discrete levels as-
sumed here into bands, which will be observable if the inter-
cluster interactions are sufficiently large.

Finally, the generalization of our results to non-
Heisenberg interactions, and the determination of these inter-
action parameters through polarized inelastic neutron scatter-
ing experiments, would be an especially interesting and
important extension of the work presented here.

V. SUMMARY AND CONCLUSIONS

In this paper we have evaluated several thermodynamic
and neutron scattering observables that characterize the mag-
netic behavior of finite quantum spin systems. After an intro-
duction that gives results applicable to the general case, we
specialized to clusters ofS=1/2 ions with a Heisenberg in-

TABLE III. Inelastic neutron scattering transitions.a

System Transition DE

Dimer I. uC0l→ uC1l J

Symmetric trimer I.uC1/2,1l→ uC3/2l
3
2J

II. uC1/2,2l→ uC3/2l
Isosceles trimer I.uC1/2,1l→ uC3/2l s1+ 1

2adJ
II. uC1/2,2l→ uC3/2l

3
2aJ

III. uC1/2,1l→ uC1/2,2l s1−adJ
General trimer I.uC1/2,1l→ uC3/2l f 1

2s1+asd+ 1
4 f0gJ

II. uC1/2,2l→ uC3/2l f 1
2s1+asd− 1

4 f0gJ

III. uC1/2,1l→ uC1/2,2l
1
2 f0J

Tetrahedron I.uC0,1l→ uC1,1l J

II. uC0,1l→ uC1,2l
III. uC0,1l→ uC1,3l
IV. uC0,2l→ uC1,1l
V. uC0,2l→ uC1,2l
VI. uC0,2l→ uC1,3l
VII. uC1,1l→ uC2l 2J

VIII. uC1,2l→ uC2l
IX. uC1,3l→ uC2l

Rectangular tetramer I.uC0,1l→ uC1,1l f1J

II. uC0,1l→ uC1,2l sf1+adJ
III. uC0,1l→ uC1,3l sf1+1dJ
IV. uC1,1l→ uC0,2l f1J

V. uC1,1l→ uC1,2l aJ

VI. uC1,1l→ uC1,3l J

VII. uC1,1l→ uC2l s1+adJ
VIII. uC1,2l→ uC0,2l sf1−adJ
IX. uC1,2l→ uC1,3l s1−adJ
X. uC1,2l→ uC2l J

XI. uC0,2l→ uC1,3l s1− f1dJ
XII. uC1,3l→ uC2l aJ

Linear tetramer I.uC0,1l→ uC1,1l f f2− 1
2sf3−1dgJ

II. uC0,1l→ uC1,2l sf2+ 1
2adJ

III. uC0,1l→ uC1,3l f f2+ 1
2sf3+1dgJ

IV. uC1,1l→ uC0,2l f f2+ 1
2sf3−1dgJ

V. uC1,1l→ uC1,2l
1
2sf3−1+adJ

VI. uC1,1l→ uC1,3l f3J

VII. uC1,1l→ uC2l 1
2sf3+1+adJ

VIII. uC1,2l→ uC0,2l sf2− 1
2adJ

IX. uC1,2l→ uC1,3l
1
2sf3+1−adJ

X. uC1,2l→ uC2l J

XI. uC0,2l→ uC1,3l f−f2+ 1
2sf3+1dgJ

XII. uC1,3l→ uC2l 1
2s−f3+1+adJ

aThis table uses the abbreviationsf0=Îs2−asd2+3ad
2, f1

=Î1−a+a2, f2=Î1−a /2+a2/4, and f3=Î1+a2.

NEUTRON SCATTERING AND MAGNETIC OBSERVABLES… PHYSICAL REVIEW B 71, 064403s2005d

064403-17



teraction between ion pairs. We considered dimer, trimer, and
tetramer systems with various magnetic interaction strengths,
and evaluated the magnetic specific heat, the susceptibility,
and the inelastic neutron scattering structure factor for these
systems. The structure factor was derived both for single
crystals and for the powder average case. Our results for the

neutron scattering structure factor show that accurate inten-
sity measurements of inelastic neutron scattering cross sec-
tions from a powder can be useful in establishing the spatial
geometry of an assumed set of interacting magnetic ions. The
linear spin-tetramer candidate NaCuAsO4 was considered as
an example, and we found that the observed inelastic powder
pattern for excitation of the two lowestStot=1 excited levels
is indeed consistent with the predictions of the linear tet-
ramer model. We also considered inelastic neutron scattering
from single crystals, and found dramatic angular dependence
that could be used in future experiments as sensitive tests of
the assumed magnetic Hamiltonian. We concluded with a
discussion of specific materials that might be studied using
our results, and suggested future extensions of our work to
more general systems.

ACKNOWLEDGMENTS

This project was supported by the Petroleum Research
Fund administered by the American Chemical Societysunder
Contract No. PRF-AC 38164d, the Joint Institute for Neutron
Sciences, the Chemical Physics Program, and the Neutron
Sciences Consortium, all at the University of Tennessee. We
are grateful to C. C. Torardi for providing a sample of the
spin dimer VOsHPO4d ·0.5H2O, J. R. Thompson for measur-
ing the susceptibility, and S. E. Nagler for useful communi-
cations and access to unpublished data on NaCuAsO4.

APPENDIX: TETRAMER BASIS STATES AND MATRIX
ELEMENTS

Since there is a natural separation of the rectangle and
linear tetramer systems into dimer components, it is useful to
introduce aus12ds34dl dimer basis to represent tetramer en-
ergy eigenvectors. The dimer basis states are

url =
1
Î2

su↑↓l − u↓↑ld sA1d

and

ussmdl = 3
u↑↑l, m= + 1

1
Î2

su↑↓l + u↓↑ld, m= 0

u↓↓l, m= − 1
4 . sA2d

These are combined as Clebsch–Gordon series to form tet-
ramer basis states of definite total spin and symmetry, which
are usssdSl ,Stot=0,2; usssdAl ,Stot=1; usrsdS,Al ,Stot=1; and
urrl ,Stot=0. In the interest of clarity we will occasionally
specify the total spin of one of these basis states with a
subscript; thusussl0 refers to theusssdSl state withStot=0.

Using these states as basis vectors reduces the 16-
dimensional full tetramer Hilbert space to one-, two- and
three-dimensional subspaces, which are spanned by the basis
sets

uStot = 2l = ussl2, sA3d

TABLE IV. Specific heats.a

Spin system C/kB

Dimer 3sbJd2ebJ/ s3+ebJd2

Symmetric trimer 9
4sbJd2es3/2dbJ/ s1+es3/2dbJd2

Isosceles trimer 1
2sbJd2(2s1−ad2es1+2adbJ

+s2+ad2es1+s1/2dadbJ+9a2es3/2dabJ) /
s2+es3/2dabJ+es1+s1/2dadbJd2

General trimer 1
16sbJd2es1/2ds1+asdbJ(f0

2es1/2ds1+asdbJ

+f4s1+asd2+ f0
2gcoshsf0bJ/4d

+4f0s1+asdsinhsf0bJ/4d) /
(1+es1/2ds1+asdbJ coshsf0bJ/4d)2

Tetrahedron 18sbJd2s10e2bJ+5e3bJ+e5bJd /
s5+9e2bJ+2e3bJd2

aThis table uses the abbreviationf0=Îs2−asd2+3ad
2.

TABLE V. Susceptibilities.a

Spin system x / sgmBd2

Dimer 2b / s3+ebJd

Symmetric trimer 1
4bs5+es3/2dbJd / s1+es3/2dbJd

Isosceles trimer 1
4bs10+es3/2dabJ+ef1+s1/2dagbJd /
s2+es3/2dabJ+ef1+s1/2dagbJd

General trimer 1
4b(5+es1/2ds1+asdbJ coshsf0bJ/4d) /
(1+es1/2ds1+asdbJ coshsf0bJ/4d)

Tetrahedron 2bs5+3e2bJd / s5+9e2bJ+2e3bJd

Rectangular tetramer 2bs5+ebJ+eabJ+es1+adbJd /
(5+3ebJ+3eabJ+3es1+adbJ

+2es1+adbJ coshsf1bJ/2d)

Linear tetramer 2b(5+ebJ+2es1/2ds1+adbJ coshsf3bJ/2d) /
(5+3ebJ+2ef1+s1/2dagbJ coshsf2bJd
+6es1/2ds1+adbJ coshsf3bJ/2d)

aThis table uses the abbreviationsf0=Îs2−asd2+3ad
2, f1

=Î1−a+a2, f2=Î1−a /2+a2/4, and f3=Î1+a2.
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huStot = 1lj = 3
ussl1

usrsdSl
usrsdAl

4 , sA4d

huStot = 0lj = Fussl0

urrl G . sA5d

Thus symmetry arguments alone determine the eigenvectors
for one level, and the eigenvectors for the remaining levels
involve at most 232 and 333 diagonalizations. As we shall
see, for the three tetramer models we consider here we actu-
ally encounter at most 232 diagonalization problems using
this basis.

These basis states are also convenient for determining
neutron scattering structure factors, since they have relatively
simple matrix elements of the spin transition operatorVa of
Eq. s10d. The complete set of matrix elements ofVa sspheri-
cal componentsd between singles12d-dimer basis states, with
f i =eikW·xWi, is

kruVaurl = 0, sA6d

kssmduVaurl = da,m
f1 − f2

2
, sA7d

kruVaussmdl = − da,−m
f1 − f2

2
, sA8d

kssm8duVaussmdl = − dm8,m+a
f1 + f2

2
. sA9d

These dimer results may be combined to give the com-
plete set of matrix elements ofVa between tetramer basis

states, which is all that we require to determine all neutron
scattering structure factors for all the spin tetramer problems
we consider. These tetramer matrix elementsswith explicit
Stot or Stot, Sztot subscripts on the states where required for
clarityd are

krruVaurrl = 0, sA10d

1,mksrsdSuVaurrl = da,m
f1 − f2 + f3 − f4

2Î2
, sA11d

1,mksrsdAuVaurrl = da,m
f1 − f2 − f3 + f4

2Î2
, sA12d

kssuVaurrl = 0, sA13d

krruVaussl = 0, sA14d

1,mksrsdSuVaussl0 = − da,m
f1 − f2 + f3 − f4

2Î6
, sA15d

1,mksrsdAuVaussl0 = − da,m
f1 − f2 − f3 + f4

2Î6
, sA16d

0kssuVaussl0 = 0, sA17d

1,mkssuVaussl0 = da,m
f1 + f2 − f3 − f4

Î6
, sA18d

2kssuVaussl0 = 0. sA19d

The remaining matrix elements between pairs ofStot=1
states and betweenStot=1 andStot=2 states, which were not
required in this paper, may be evaluated similarly.
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